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Generic Remeshing of 3D Triangular Meshes with
Metric-Dependent Discrete Voronoi Diagrams

Sébastien Valette Jean-Marc Chasseénand Rémy Prost Member, IEEE,
ICREATIS-LRMN, Lyon, France
2GIPSA-LAB, Grenoble, France

Abstract—In this paper, we propose a generic framework These approaches are efficient when the number of triangles
for 3D surface remeshlng. Based on a metric-driven Discrete of the Output mesh is much lower than the number of triang|es

Voronoi Diagram construction, our output is an optimized 3D ; _Gtai
triangular mesh with a user defined vertex budget. Our appro&h of the input mesh. The approach of Cohen-Steiner et al. [4]

can deal with a wide range of applications, from high quality aims to create approximation-efficient _meshes, wherea_s the
mesh generation to shape approximation. By using appropri@ approach of Valette and Chassery [1] aims to create uniform
metric constraints the method generates isotropic or anigeopic ~ output triangulations. Note that in [5] an extension to therkv

elements. Based on point-sampling, our algorithm combinethe  of Valette and Chassery to adaptive coarsening is proposed.

robustness and theoretical strength of Delaunay criteria vith the In [6], similar clustering approaches are used to create bas
efficiency of entirely discrete geometry processing . Besid the ’

general described framework, we show experimental resultssing doma_'ns on .polygonal m_ESh.eS' Thes? base domains are then
isotropic, quadric-enhanced isotropic and anisotropic meics Combined with parametrization techniques to process quad-
which prove the efficiency of our method on large meshes, at rangular remeshing of the original model. Note that cluster
a low computational cost. can have several possible applications, aside from remgshi
As an example, in [7] a hierarchical clustering approach is
l. INTRODUCTION proposed, with a multiresolution radiosity applicatiommple.
The coarsening of very large meshes (made of millions of

With the ever increasing range of applications using Samplse{tices) is also an issue when the mesh data structure tanno

3D geometric models, resampling has become a very import‘ﬁpmside the computer memory. As a consequence, out-a-cor
feature for inter-operability between those applicatioAs agﬁroaches have been propos.ed B1-[11] '

an example, the accuracy of current 3D scanners has bé emeshina aporoaches compute a mesh with a given num-
improved, and they are able to produce very faithful 3 g app omp ' given
er of elements or approximation error budget in a single

meshes of the scanned model, for the price of a large number

; : : rﬁsolution way. Some approaches remesh the original furfac
of vertices. As a consequence, a resampling step is usually

carried out before displaying, storing, or using the mesh iR global paramet_nc space [1?]_[15]' They prowde_ gqod
another application. Also, the mesh triangle shape facor Cresults_,, bUt. are limited in practlce by the pgrametr|z§t|on
be important when considering finite element simulations. ﬁ_gepévgx:cgmggtﬁzggy ig:;gﬁgon;eiﬂgdgu{:eﬁ%? IFlit?vaere
this paper, we propose an adaptive surface mesh coarsenin : . P IR P
r(gposed, involving local parametrization and optimizatof

algorithm, which samples the input surface to a mesh wi .
fewer elements than the original mesh. Extension of thia® remeshed model. Other works [18], [19] distribute new

: vertices directly on the original surface mesh, to build wne
approach also leads to remeshing, when one wants the con

structed model to have an arbitrary number of elements. dﬁr%sellanon which can be further optimized.

approach extends the work of Valette and Chassery [1] to non—l_n [20] and_[21]_ the aut.hors propose _to remesh the m"d?'
uniform and anisotropic discrete Centroidal Voronoi Dags. using ggodesm d|stanc_es. the new vertices are cregteg usin
The complexity of our algorithm (in terms of calculationsdangeo‘jes'C front propagation, and their distribution canresd

memory requirements) is low, allowing the processing ajear byRIocaI crl]J_rvature. h low th fruct ‘ h
meshes up to several million triangles. emeshing approaches allow the construction of meshes

with as many vertices as required. Indeed, mesh coarsening
Il. PREVIOUS WORK is not the main goal of remeshing approaches, as they permit

. . . . .. other improvements (in terms of triangle aspect ratio) and

Coarsemng a mesh consists n resampll_ng the Or'g'rlﬁt‘rape adapted remeshing (e.g. adaption of the sampling ac-
surface with a lower pumber of vertlc.es. This field of reSbar‘f:ording to the local curvature).
has been explored in many ways in recent years. A good
review of existing remeshing approaches is given in [2], and
coarsening approaches are described more precisely in [3]. I1l. CONTRIBUTION AND PAPER OUTLINE

In [4] and [1], the triangles of the input mesh are clustered 110 proposed approach is an extension of the work by
and a new coarsened mesh is built according to the clusterigiette and Chassery [1]. It is based on partitioning (clus-

*CREATIS-LRMN, Universite de Lyon, INSA, UCB, CNRS UMR 5220 te_ring) the in.p.ut mesh in a variational framework, in o.rctert
Inserm U630 distribute efficiently the vertex budget on the mesh, adogrd
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Fig. 1. Remeshing the fandisk to 3k vertices. Top : resultsttd®n : closeup view. The previous approach builds a coarsenesh according to linear
criteria (each vertex is the center of mass of its correspondluster). The resulting mesh elements have good aspéot but the sharp details of the
original model are lost (left). Post-processing relocdtes vertices according to approximation criteria. The ltegy mesh (middle left) respects faithfully
the original model features, but the good aspect ratio isftussome triangles (see closeup view). A Lloyd-based ehirsg leads to similar results (middle
right). With the proposed approach (right), both propertiee preserved by embedding the approximation criteriderthe minimization algorithm.

to user-defined criteria. In this paper, several key-poants
addressed :

« The clustering is driven by the minimization of a discre
energy term. The minimization approach is enhan
by generalizing the notion of Voronoi Diagrams,
spirit with Constrained Voronoi Diagram definitions [2Z
This generalization allows us to define arbitrary wi
tex placement strategies which are embedded inside
minimization step, directly constructing accurate mes
without post-processing. As a consequence, the rem
of post-processing steps keeps the overall mesh qu
from decreasing. As an example, figure 1 shows
results obtained from the Fandisk model by the previ
approaches with the proposed one. Clearly, the qu
of the resulting mesh (in terms of element aspect ratio)
is well preserved. Also, this scheme avoids the nedtd. 2. Coarsening the hand model. Left : Isotropic metrienter :

. isotropic metric + post-processing. Artifacts are digarisible. Right :
for curve sampling along sharp features, as the Crea@z’zotropic metric with approximation-effective embeddertices placement

vertices naturally align with the underlying features.  scheme.

« The clustering is driven by a user-defined metric, allowing
the creation of isotropic or anisotropic elements, depend-
ing on the desired output. Thus, our approach has uniform
sampling capabilities as well as approximation-efficient ~made of anisotropic elements with a good approximation
properties, depending on the chosen metric. Figure 2 quality.
shows some results with different metrics on the hande We also give some details about the minimization algo-
model : The left model was constructed using an isotropic  rithm, and enhance it with a safe acceleration scheme
metric and results in elements having good aspect ratio. Wwhich dramatically reduces computing times.
The model displayed in the middle was created using
an anisotropic metric. Unfortunately, the post-procesgsin Section IV and V of this paper give technical overviews of
used to enhance the approximation quality of the mesh Meronoi Diagrams, both for their continuous and new diseret
duces artifacts, and the resulting mesh is not satisfactodgfinitions. In section VI, we explain some implementation
The model on the right was created using the anisotropietails along with theoretical justifications. Section $hows
metric with embedded vertex placement strategy, andseme experimental results, and a conclusion follows.




IV. VORONOIDIAGRAMS IN THE CONTINUOUS SETTING In [26], Du and Wang proved that their definition is more
consistent with the classical definition of Voronoi Diagsam
)and CVD. As an example, if the tensor field is isotropic
(but non-uniform), their definition reduces to the claskica
VD definition. Moreover, defining Riemannian tensors for the
Ci ={w € Qd(w, z;) < d(w,z;)j =1,2,...,n,j #4} (1) Voronoi sites can be problematic for sharp features. As an
_ _ _ example, a site placed on the corner of a cube would have an
where d is a distance measure. These diagrams are Wglljefined metric Tensor whereas it is very possible to defin
known in the literature [23]. The dual of a Voronoi Diagramyccyrate tensors for the points belonging to the flat regions
(VD) is a Delaunay Triangulation (DT), which has the property its cell. More details on the differences between these tw
that the out—C|rc_Ie o_f every triangle does not contain ameot yefinitions are given in [26].
site when considering the 2D plane.
A Centroidal Voronoi Diagram (CVD) is a Voronoi Diagram
where each Voronoi site; is also the mass centroid of its

Given an open se® of R*, andn different sites (or seeds)
Zisi=0,1,...n—1, the Voronoi Diagram (or Voronoi Tesselation
can be defined as distinct cells (or regionsy’; such that:

V. VORONOIDIAGRAMS IN A DISCRETE SETTING

Voronoi Region [24]: In [1] a discrete definition of CVD is giverf) is no longer
a continuous space, but a polygonal megh Subsequently

fci z.p(x)dx we will only consider triangular meshes, but extension ® th
2= va p(z)dz ) polygonal case is. st_raightforward. Part.itionifng can be done

‘ in two ways : building clusterg’; of triangles, as proposed

wherep(x) is a density function. in [1], or by building clusters of vertices. We found it more

Centroidal Voronoi Diagrams minimize the energy given agractical to cluster the mesh vertices instead of the mesh
triangles, mainly for two reasons :

n
E= Z/ p(x)||z — z]|*dx 3 « For atriangular mesh, the number of vertices is about half
i=17Ci the number of triangles, and clustering vertices reduces

Constructing a CVD can be done, using algorithms such as the required memory space for the clustering data.

k-means or Lloyd relaxations [25]. The practical efficierfy ~ ¢ Clustering vertices is more rigorous when considering

CVD construction has been demonstrated for a wide range of toPological changes that may occur during the simpli-

applications [24]. fication, and is better suited for non-manifold meshes.
More generally, the definition of VD stands for nonin the following equations, we will refer to itemg which

euclidean settings. Indeed, only a notion of distance aftRy be triangles or vertices of the mesh.

density is needed for such a computation. Recent works

have introduced new investigation techniques [26], [28Ing A Isotropic case

Anisotropic Voronoi Diagrams (AVD), involving anisotrapi . — L .
distance measures. Those two approaches are very simi a;l'he discrete definition of the CVD consists in reformulating

since they measure distances on the plane with Riemannﬁ fi ten.ergy .te_”r.‘]? (equanorr: 513)) g\nfq t;yglg. to find the
metric tensors, which can be represented2by 2 matrices. °Userng minimizingE;,,, which is defined by:
The distance between two poinig andp, on the plane with

respect to the tensak,,, can be computed as: By, = Z Z /I p(@)l|z — 2| 2da @)

7 I;eC; "I
dm(p1,p2) = \/(pz —p1)T Ko (p2 — p1) (4) _ _ _ _ _ _
In this equation, the domaify considered in the integral term
This notion is referred to as a directional distance. Labafd g -

Shewchuk [27] define AVD cells as:

« the jt* triangle when clustering triangles

Ci = {w € Qld., (w, 2) < dsy(w,2)j = 0,1,...,n—1,j #i} * the " vertex dual cel
(5) Figure 3 shows the difference between those two cases.

on the other hand, Du and Wang [26] propose : Note that in contrast to previous definitions of CVD, we will
, ~_ make no assumption on the points which were identified
Ci ={w € Qldy(w, 2) < dw(w,z;)j=0,1,...,n-1,j # i} previously as centers of mass of their respecting clustéris.

_ _ _(_6) generalization will be of great help when considering non-
Note that the difference between those two definitions Blanar meshes, where the best location of the paintaight
the choice of the tensors for the distance computation: Witfat pe the cluster centroids. As a consequence, we can simply
Labelle and Shewchuk’s definition, distances are measutgesme that the coordinates gfdepend on their respective
according to the Voronoi Sites;. As a consequence, thereg|ster configuration.
is no need to define a tensor field for this kind of diagram, |t js easy to demonstrate that the individual contributién o

only one tensor is needed for each site. ~ each item/; to the global energy term;,, can be simplified
In the second case, distances are computed accordinggo

tensors defined on each poiat of the space. This requires

2 2 .
. ) . . — zill*dx = M;||z; — ;4 A 8
the definition of a tensor field on the entire domain. I pl@)lle =zl de sllzi =l" + A7 ®)



B. Anisotropic case

In order to extend the discrete CVD described before to
anisotropic discrete CVD, we consider the work of Du and
Wang [26]. Following their definition of directional distes
(equation (4)), and using a similar evaluation of the presio
section we define an anisotropy-based energy function as:

— N (N — s
Fig. 3. The domains taken into account when computing iategidues. Left: Eaniso = Z Z (7.7 21) KJ (7.7 Zz) (16)
when clustering triangles, the elementary domains are Igitie triangles i I;eC;
themselves. Right : when clustering vertices, the elemgrtamains are their L . . L
vertex respective dual cell. whose minimization leads to an anisotropic partitioning of
the initial mesh. Again, simplifications lead to anotherrgye
term:
where
Faniso = Z Laniso,i (17)
2 .
4 = [ o)l =il © :
L with
;= [ pla)ds (10)
I
11 Laniso,i - Z;r Z Kj Zi — 2'2? Z Kj”yj (18)

Vo= ﬁ/ p(z)xdx (11) 1;€C; 1;€C;
7 Note that when the directional distance tensor figld is
A; depends only on the geometry f and on the density chosen to be isotropic, equation (17) reduces to the isigtrop
function p(z), M, is the global weight ofl; according to energy termf,, defined in equation (14).
p(x) and~; is the center of mass df;. By considering each
item’s individual contribution taZ;,,, following equation (8), . Vioronoi Center Location

we obtain: . - . )
In previous works [1], the Voronoi site locations are defined

to be the center of mass of their respective cluster. This
n placement strategy is not optimal for the case of 3D meshes,
FEigo = Z Z M|z — ;]2 +ZAJ (12) since for curved clusters, the barycenter will leside or
i=1 \I,eC: ; outsidethe object, with no proof that it is the best position
for surface approximation. Indeed, this position can béhfur
which simplifies to : optimized to enhance the quality of the approximating mesh.
In [5], the authors propose to relocate the cluster site
o _ RIPRIE : positions (the output mesh vertices) using Quadric Error
Biso = ;AJ + ;MJH%H  Fiso (13) Metrics [28]. This post-processing was previously propose
by Lindstrom [8]. The Quadric Error Metric (QEM) associates
with each triangleT; with a 4 x 4 matrix @Q; which reflects the
Froy = ZLMZ_ (14) distance from a given point to the plane tangentlio For
p ’ a given set of triangles, an 'optimal’ vertex position can be
computed from the sum of the QEM matrices associated to
and the triangles. This framework was proved to be very effigient
Lisos = ||zi|? Z M; — 22T Z M;; (15) and has been linked to approximation theory in [2_9]. Figure
[eC: [eC: 1 (center) shows the effect of such post-processing on the
fandisk model.
Liso,; is the individual contribution of the cluster; to the  Actually, this post-processing can be embedded inside the
global energyFi,,. Equation 13 proves that whatever theninimization scheme : for each cluster, we store and update
cluster configuration is, the contribution of the tersis and its QEM matrix. This allows us to compute at each iteration
M;||lv;|I* will always be the same. We can then safely omthe best location for a given site, and then inject this liocat
their computation to minimize the energy depicted gy, in the computation of the energy terf. As a result, during
Finally, this energy-term is flat-exact, meaning that itsmi the clustering, the cluster sites are well placed, and tts-po
imization is consistent and equivalent to a Discrete Céudito processing is avoided. Figure 1 (right) shows the results
Voronoi Diagram (DCVD) on the plane, with no assumptionbtained on the fandisk model. Note that we use QEM only
on the input mesh sampling properties (i.e. uniformity do evaluate the positions of the clusters centers. This new
aspect ratio). Note that if one makes the assumption that fhlacement scheme has actually an impact on the energy value
Voronoi seeds; are the centroids of their respective clusterdy, as shown by equations (15) and (18), but the shape of
equation (14) simplifies to the energy term given in [1], [5].the optimized clusters will still be driven by the chosen



metrics. As a consequence, when a cluster contains a loc
feature, the resulting vertex will be well placed on the tieat
while the energy minimization optimizes the clusters shap €2
independently. Note that if a cluster evolves during thegne
minimization, its equivalent vertex can also move, but when
the cluster lays on a feature, the vertex will slide along tha
feature. In figure 18, the top image shows a clustering of thg 4 Local neighborhood used for the clustering evolutiFhe items
fandisk with 3000 clusters. One can notice the good aligimef can either be triangled; (figure on the left) or vertices/; (figure on

of the clusters with the features of the mesh. This clusgerifh 10 fepending en e aser Sty ramenan e o,
was obtained without any feature-aware 'n't'al'Zat'on-eTrblustersCa ancji Cyp, and the test consisjts in checking whether changing the
middle image shows a clustering with 1500 clusters. Givennfiguration (movingT}; to Cj, or Ty, to Cy (resp.V; to Gy, or Vi, to Cq)
this low number of clusters, the algorithm cannot represetfit decrease the global energy term.

faithfully the original mesh with uniform sampling. On this__
example, one cluster spans two corners of the fandisk, af '~
it results in one lost corner in the coarsened mesh (bottd
image). ’

VI. MPLEMENTATION

In this section, we propose to partition the input me
according to Delaunay criteria, extending [1]. We will exipl
several key-points, namely the chosen clustering-mesiging Fig. 5. Center: a triangulated plane (triangular itefi} falls into 4 parts

proach the chosen metrics and implementation details having different vertex density (close-up view on the lefiage). Despite the
! ’ sharp density changes, the clustering (right) remainsotmifover the plane

A. Clustering algorithm

It is possible to efficiently minimize the energy teris, respectively (from top left to bottom right) 10000, 20000,
or F,,.is0 With an iterative algorithm that updates the clustering0000 and 80000 vertices. Notice that despite the sharptgens
according to tests on the boundaries between the differehanges in the original sampling, the resulting clustering
clusters. Assuming that a given edge(further referred to (right) is uniform, which proves that our approach is samgpli
as aboundary edggis on the boundary between two clustergndependent.

C, andC} (see figure 4)¢ has two adjacent itemk and I, This minimization algorithm has several advantages over
belonging respectively t@', and C;, three values off" are Lloyd relaxation :

computed: « We keep track of the boundaries between the clusters
o Finit (the initial configuration) 7; belongs toC, andIj, using a simple FIFO queue containing all the candidate
belongs toCy,. edges. Thus, the complexity of looping on the boundary
« I (C, grows andCy, shrinks) : bothl; and I, belong elements is linear. On the other hands, the algorithms
to Cy. proposed in [4], [20] use priority queues which slow
o I, (C, shrinks and’y, grows): bothl; and I belong to the clustering down when dealing with large meshes,
Ch. exhibitingO(nlog(n)) complexity instead of a linear one.
the cluster configuration is updated according to the loweste Our minimization algorithm has a guaranteed conver-
energy term betweeit’,,;;, F1 and F;. By looping in the gence. Moreover, when the algorithm is close to conver-
boundary edge set (the set of edges between two different gence, only a subset of the boundary edges is actually
clusters), we iteratively minimizé'. By definition, we know modified, because some regions already have reached
that F is always positive.F' differs from E by only an local convergence. Thus, during a loop, we keep track
additive constant, and as each local modification reduces F, of the clusters which were modified during the previous
the convergence of the algorithm is guaranteed. See Algorit loop, and we are able to avoid testing a boundary edge for

1 for a pseudo-code equivalent of our algorithm. Figure 4 clustering update if its two neighboring clusters have not
depicts the existing analogy between vertices clusterimd a previously changed. This way, a lot of useless tests are
triangle clustering. Note that in this contexk refers to avoided, and the clustering speed is increased. Typically,
F;s, or F,.;s0o depending on the chosen setting. A fast and this scheme reduces the computing time by at least 50%
efficient computation off” is possible by storing the data in when using a low complexity metric, and more than 80%
accumulator arrays. Moreover, during an elementary test, w  when using a complex metric such as the QEM enhanced

actually do not need to really compare the global valueg' of metric.

between the three possibilities. We just need to compare thea The tests on boundary edges involve mostly local topo-

valuesL, + L;, as only clusterg’, andC, are to be modified. logical and geometric operations. Consequently, we have
Figure 5 shows an example of clustering on a randomly been able to implement this algorithm in a parallel way,

triangulated plane. The original plane (left) consists iardas which improves the speed of our approach on multicore

with a different sampling density. The four regions contain  architectures when using computationally expensive met-



Algorithm 1: pseudo-code for our clustering algorithm.

Data: An initial clustering (each cluster has at least one
item I associated)

Result An optimized clustering

begin

Fill the queueQueuel with the edges present on Fig. 6. Clustering cleaning : the clustering (Ieft)_has aedef. the white
. clusters falls into two connex components. A cleaning sésets the smallest
clusters boundaries; component tanot associatedin black color (center). After few iterations of
Empty the gqueudueue?; the clustering algorithm, the disconnected component Feppeared(right)
repeat
Modi fications = 0; o ] ] ]
while Queuel not emptydo minimization) stops when the clusterm.g algorithm is near
Pop a candidate edgefrom Queuel; convergence. In our experiments, we defined near-conveegen
if the edgee is on a boundary between to be achieved when the number of modified items during a
different clusters AND the edgewas not loop on the candidate edges is smaller thal. Afterwards,
already tested in this loofhen we run the cleaning step. If some cleaning was done (meaning
C, andC} are the clusters for which is that some clusters did not respect the connexity cons}raet
a boundary; then re-apply the clustering step, with an additional endieeld
for the three different cases (see figure 4) checking step. Figure 4 displays a local boundary contead us
do during clustering evolution. Each time a vertéxhas to move
| Computez,, z, and L, + Ly from one clusterC, to another cluster’,, we check if this
end modification does not break the connectedness propertyeof th
CompareL, + L; between the three clusterC,, which can be easily done by checking the vertex
cases; 1-ring configuration.
if the minimal energy does not come from  With this constraint, after the second clustering stepthel
the initial configurationthen clusters are guaranteed to have only one connecting compo-
Update the clusters according to the  nent. Note that we do not take this constraint into account
case giving the minimal energy; during the first minimization process, as it would signifitan
Push the modified item neighbor decrease the speed of the algorithm, and it could prevent the
edges inQueue2; removal of the input mesh topological noise.
I IncrementM odi fications;
else ;
| Push the candidate edgen Queue2; c. MeSh'”9 ) ]
end As explained in section Il, many works have already pro-
end posed a clustering-based simplification of the input meahi-V
end ational approaches such as those proposed in [4] and [lare t
Swap the queueQueuel and Queue; most promising, since they are based on gl_obal op'Flmlzaﬂon
until Modi fications =0 ; the clustering. Both aggregate the mesh triangles intdeaisis
end but the meshing strategies are dual.
Basically, Cohen-Steiner et al. [4] construct one polygon
for each created cluster, and the polygon vertex positioas a
fics computed according to the cluster adjacency relationsifips

a consequence, the produced clusters must have as much as
possible a planar shape. Note that the polygons can also be
B. Guaranteed valid clusters further modified depending on the type of desired output mesh

Once the clustering done, each cluster has to be a conne&@éh quad-dominant or pure triangular, but it would be very
set of vertices. One way to respect this constraint, after thard to restrict the properties of the resulting polygonsito
algorithm convergence, is to "clean” the clusters fallimgoi SPecific type.
several connected components, and to restart the clugterinOn the other hand, Valette and Chassery [1] create one
step again, as proposed in [1]. These two steps can be repeX¥gstex for each cluster. Meshing is done by creating triesig|
until the constraint is respected. Figure 6 shows the effectby dualizing the clustering i.e. two vertices are adjacént i
the cleaning step on a clustering having a defect. Althoud€ir corresponding clusters are adjacent too. The resulti
this approach works well in practice, there is no theoréticBtesh contains only triangles. In this case, the clustersado n
proof that it will always succeed, and running alternagible Nneed to satisfy the planarity criterion. Moreover, this @@ggeh
C|ustering step and the C|eaning step can be Computaljonﬂ[OVideS a direct control on the vertex pOSitionS, which lban
expensive. To overcome this difficulty, we run a three stefital when considering approximation quality.
algorithm. First, we run the clustering algorithm as ddsenli
by algorithm 1. During this optimization, one does not nedd- Dealing with mesh boundaries
the convergence to be achieved, as a second optimizatipn steNote that meshes with boundaries need a supplementary
will be used later. As a consequence, the optimization (gnemeshing step to adjust the coarsened model, by adding extra



Fig. 7. A part of a mesh contains a boundary, resulting in a hiolthe
clustering. The resulting triangulation (left) has als@ droundary, but it is
wider than the original one. Adding a triangle strip (rightates a boundary
closer to the original one

vertices and triangles on the boundaries. Basically, eiach t
two clusters meet at one boundary, one vertex and two trigrg- 8. Uniform remeshing of the Stanford Bunny to 36k vesic
gles are added. This results in the construction of a treangl

strip for each boundary. Figure 7 depicts how this procedure . o . : .
fixes the new mesh boundaries original mesh. This is convenient for uniform coarsening, a

the goal is to build clusters with the same area. But this is
: not appropriate for adaptive clustering, since the regiuitis
E. Extension to 3D surfaces and challenges higher density should contain more clusters than regiotis wi
The previous definition of DCVD stands for planar configulow density. Indeed, if we randomly distribute the clusters
ration, but is still very reliable when considering 3D seda. during the energy minimization process, the clusters in low
Indeed, the equations only involve measures of distance atehsity regions will slowly move towards regions with high
weights. A strict equivalent of DCVD for 3D surfaces woulddensity, resulting in very low convergence speed. To alevi
involve the computation of geodesic distances (which wouttis problem, we propose to distribute the clusters acogrdi
be computationally prohibitive), but when consideringhiyg to the density function. For this aim, we first compute a globa
sampled meshes, the error induced by using euclidean diserage cluster density:
tance instead of geodesic distance remains low. Moredver, i n
we compare such a discrete approach with parametrization- D= 1 ij (19)
based Delaunay algorithms [12], [13], parametrizatioro als ni3
introduces distortion in th.e rgmes_h|ng_proce§s. Thoge Wo%here n is the number of desired clusters. This density
compensate the parametrization distortion by introdustat- .
. . . orresponds to the average accumulated density that each
ing factors based on the ratio between distances on tfe .
) . S clister should have at the end of the clustering process. We
parametrized plane and euclidean (but not geodesic) dissan T . . ;
s to initialize the clustering with clusters having such a
on the mesh. As a consequence, those approaches seem toth Ve

. . accumulated density. For each cluster, we randomly pick a
at least the same shortcomings as regards geometric ageurag . . )
€e vertexl/; (a vertex which was not previously associated to

; S . [
Also, computing geodesic distances would probably mcereasny cluster) and grow a region aroukig until its accumulated

the influence of the geometric noise present in the input mesgqensity reache®. If at one point some clusters remain to be

initialized and no more vertices are free (which can happen,

F. Remeshing by over-sampling as we operate on a discrete set), we randomly pick one non-

Cluster-based approaches have a restriction : the regultfree vertex for each non initialized cluster. In practiceist
mesh will have fewer vertices than the original one. Howgvenitial sampling strategy accelerates the convergencehef t
we are able to construct meshes with as many vertices agproach, and allocates more clusters in regions needing a
the original ones, by simply subdividing the input mesh gsirhigher sampling rate.
linear, Loop or Butterfly schemes. Figure 8 shows a remeshed
version of the Stanford Bunny with 36k vertices. The inpylj Metrics
mesh (36k Vertices) was subdivided twice to obtain a mesh

with 1111k triangles, well suited for a clustering appraach First, when considering isotropic settings, the clusgrin

can be optimized by maximizing the compactness of the
S ) cells (equation (3)), which requires the definition of a digns

G. Efficient initial sampling function p on the mesh. Choosing a uniform density leads to

To begin the clustering process, an initial sampling stemiform clustering [1]. Adaptive clustering is also podsiby

must be done, to associate at least one itBmto each defining a density map according to some curvature measures
cluster C;. In [1], the initial sampling is done by randomly[5]. Adaptivity is a key feature for many applications, when
selecting one vertex of the mesh for each cluster. Assame parts of the mesh must contain more vertices than
consequence, the clusters will be equally distributed d¢iver other parts. As we aim at applying our scheme to very



complex meshes, the curvature measure has to be very robust — ; T
against bad sampling conditions that may be encountered whe 3
processing such models. We propose to compute a curvatur
indicator with such properties. We calculate the mattix, o

of the Weingarten map of the surface using a polynomial
fitting of the local neighborhood of each vertex, as expldine
in [30]. The local principal curvaturels; ; andk; o (resp. the
principal directionsD;, and D, ) are the eigenvalues of A
(resp. the eigenvectors). In all our experiments, we chose t
neighborhood of a vertex to be its 3-ring. Finally, we setheac
vertex weightp; to:

pj = |Pjl (\/ K21+ k?,2)7 (20)

where|P;| is one third of the area of the triangles arouRd
and~ is a gradation parameter which controls the curvature
adapted behavior of our scheme. Considering [13], settirg

0 will produce uniform clustering whereas higher valuesyof
will give more and more importance to the regions with high
curvatures. Subsequently, we will refer to this metric asith
Metric.

To offer our algorithm anisotropic behavior, following the
energy term defined by equation (17), we need to define
directional distance tensors for each vertex of the inputhme
Again, local curvature computation can lead to the definitio ANUR A " T T A S I
of a directionaB x 3 distance tensor for each verték defined L Tl L
as: 0 500 1000 1500 2000 2500 3000 3500 4000
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with Fig. 9. Comparison of efficiency between Lloyd relaxationstéring and
VIk; 1HD;~,F1 Our proposal on the statuette model. Top : isotropic metiic ottom :

: i isotropic metric with quadric-based vertices placeme).(l

M; = [kj2]lD] 5 (22) P g P A

0

this metric tensor ensures that regions with constant prige do not need to manually stop our minimization algorithm
Cipal directions and curvatures will prOduce clusters véth (by defining a fixed number of iterations, or by measuring
:J_l which is consistent with the energy decrease rate), which _cc_>u|d be problema}tic when

ot processing large meshes. Indeed, it is observed that iragte |
minimization steps, only a small subset of the clustering is
evolving. An arbitrary decision to stop the minimizatioruét
VIl. RESULTS AND DISCUSSION penalize the clustering quality in these regions.

Figure 9 compares the clustering efficiency of our approachWe compared the speed between Lloyd relaxation and our
with Lloyd relaxation for two cases : using a linear isotmpiapproach. One single Lloyd relaxation step lasts 45s in-aver
metric, and a quadric enhanced isotropic metric, both edpliage. With the isotropic metric, our approach convergesiwith
on the statuette model. The horizontal axis is the time, evhil65s, which is less than the time needed to perform 5 Lloyd
the vertical axis gives the energy valug,,, which differs iterations. As figure 9 shows, processing 5 Lloyd relaxation
from FE;,, only by a constant value. For both cases (arsteps is far from convergence. When using quadrics-based
all our experiments), our approach led to values lof, placement, the difference is smaller, but still our apphoac
lower than what Lloyd relaxation gave. The relative differe reaches convergence, in contrast with Lloyd relaxatiome T
between the two algorithms was arour@® for the statuette curves for the quadric-based placement metric also reveal
model. While this improvement is not significant in terms athe effect of the connexity constraint embedded in our algo-
energy value, our algorithm has other advantages, in tefmsrithm. One can clearly observe that convergence is reached
acceleration and convergence. Our approach always readiwase. As explained in section VI-B, the first convergence
convergence whereas Lloyd relaxations failed to produce(@ near convergence) is reached without connexity coinstra
stable clustering for the statuette model. More generally, Afterwards, the cleaning step and the constrained clungjeri
sometimes observed convergence with Lloyd relaxation whproceed, and the energy term gets even lower. To explain this
using the simple isotropic metric, but at least an order of-maone can notice that CVD clustering tends to create clusters
nitude slower than with our approach, and never when convhich are as compact as possible, and that compactness and
bining quadric-based placement and Lloyd iterations. I§ina connexity are actually not contradictory properties. Assuit,

elongation ratio equal t

approximation theory [31].
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Fig. 11. Left: A 500k vertices coarsened version of the Lu@ydei. Right:
closeup views of the face and pedestal with displayed edgemptivity is

Fig. 10. Clustering with the 1Q metric for the David model.pToclustering noticeable in relatively flat regions

time vs. number of wanted clusters. Bottom : Hausdorff distabetween the
original and coarsened model vs. number of wanted clusters.

metric used for the clustering (respectively | for isotpiith

Voronoi Centers taken as cluster centroids, 1Q for isotropi
the connexity constraint helps our algorithm to reach lowevith Voronoi Centers optimized with QEM, AQ for anisotropic
energy values. Our implementation can take advantage métric with Voronoi Centers optimized with QEM). The
multicore workstations. Tested on a dual Xeon processquarameter between parenthesis is the gradation parameter
workstation, clustering using quadric-based placemekesta defined in section VI-H. Note that for the anisotropic metyic
less than half of the time needed to do the same task with otiij's parameter is only used for the sampling initializatibhe
one processor on the workstation (the speed ratio is supemext two columns show the time spent on the curvature mea-
to 2 because those processors have hyperthreading capalite computation and on the clustering. These last two steps
ities). Future improvements could introduce other cluster dominate the processing time. Note that we experimentally
optimization schemes, to reach even lower minima value foreasured the SGI workstation to be half as fast as the used
the energy functionF;s, or Fu,iso. AS an example, Cohen- desktop computer. The last two columns show for each model
Steiner et al [4] proposed thannelingof clusters from over- the percentage of minimal internal angles bellg®¢ and the
sampled regions to under-sampled ones. Figure 10 displaygrage triangle aspect ratio, as defined in [33].
the clustering time and approximation error vs the number of Figure 11 shows a coarsened version of Lucy to 500k ver-
wanted clusters, for the David model, with the isotropicmiget tices, using the isotropic metric. Note that here, the samgpl
enhanced by quadric-based placement. is well adapted, as shown by the closeup views. Figure 12

Table | shows the timings and quality measures for sonsbows the rockerarm coarsened to 1000 vertices (AQ metric)

results displayed in this paper. The results were obtairiddav and the Buddha model coarsened to 40k vertices (AQ metric).
desktop computer running at 3GHz, with 2GB of RAM, excepthe comparison of coarsened versions of the hand models (1Q,
for the Lucy model and the Michelangelo David, which werd and AQ metric, figures 2) gives a representative overview of
processed on a SGI workstation due to memory requirementisat we observed in our experiments : the anisotropic metric
(The Lucy model itself fits in more than 2GB with our dataloes elongate the triangles along the directions of minimal
structure, and the David model, originally made of 507&urvatures, but choosing the clusters centers as centfAids
vertices was subdivided twice, in order to remesh it to 500ketric) produces artifacts at the meshes extremitiesodinie-
vertices). The first two columns are the number of verticéisg QEM based centers localization (AQ metric) solves this
of the input and output meshes. The third column gives tipeoblem. Figure 14 shows a closeup view of coarsened Buddha
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Model #v #v2 Metric curvature clustering /< 30° | Qav
(original) | (coarsened time (s) time (s) (%)

Lucy 14M 500k IQ(1.5) | 213 (12 CPUS) 8357 3.73 0.77
500k 1Q(1.5) 2822 (4CPUS)| 3.73 0.77

David 507k 500k IQ (1.5) 76 6365 6.9 0.73
Statuette 5M 300k I (1.5) 319 165 10 0.69
300k IQ (1.5) 319 1665 8.4 0.71

300k AQ (1.5) 328 1826 16 0.62

Buddha 500k 20k IQ (1.5) 47 255 7.5 0.72
20k AQ (1.5) 49 295 17 0.61

TABLE |

PROCESSING TIMES AND QUALITY MEASURES FOR THE PROCESSED MESH. THE COLUMNS ARE RESPECTIVELY THE NUMBER OF VERTICES OF THE
INPUT AND OUTPUT MESHES THE METRIC USED FOR THE CLUSTERINGTHE TIME SPENT ON THE CURVATURE MEASURE COMPUTATION AND ON TH
CLUSTERING, THE PERCENTAGE OF MINIMAL INTERNAL ANGLES BELLOW30°® AND THE AVERAGE TRIANGLE ASPECT RATIQ

Fig. 12. Coarsened versions of the rockerarm model (100xegsy and the
buddha model (20k vertices).

Fig. 13. Closeup view of the David model remeshed to 500kicest

models (left : AQ metric; right: IQ metric). The anisotropic(lsmmpiC metric)

behavior of the AQ metric is clearly visible in elongated
regions (the cloth around the Buddha's neck), and sampling ] ) ]
remains isotropic in spherical regions (e.g. on the headjeN Pared to isotropic clustering (below 20%).
that the sharp features located on the back of the model aréigure 17 and table Il compare the mesh quality between
better preserved with the AQ metric. our approach and [16]. One one hand, our approach provides
On figure 13, we can see a closeup view of the Michelangeidriangulation with less quality than [16]. On the other ¢han
David remeshed to 500k vertices, illustrating that thetiaipn ~ table 1l shows that our approach provides a model which is far
of our approach in a remeshing point of view is only itgnore faithful to the original model, with a Hausdorff distan
memory footprint. about 4 times smaller than with [16]. Note that this table
Figure 15 shows a remeshed version of the Statuette mo@lglo shows the average and RMS errors between the original
to 500k vertices, using the 1Q metric. the right side compar@nd coarsened models (in both directions, as these distance
the results between the 1Q (top) and AQ (bottom) metricBleasures are not symmetric), obtained with Metro [32].
Again, the anisotropic metric gives more pleasant results.Figure 16 shows the hand model coarsened to 300 vertices,
As the results table shows, the IQ metric is about 10 timesing gslim [28], our approach and VSA [4]. Clearly, our
slower than the | metric. This is due to the QEM based centegsults are close to the ones of gslim, VSA efficiently captyr
localization, which requires for each iteratior8 & 3 singular the anisotropy of the model, but failing to represent it with
value decomposition in order to have a robust placemetite same precision. We tried our algorithm with two diffdren
Anisotropic clustering exhibits a reasonable overhead-comandom initializations. In table Il, we can see that in terms
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1Q Metric

N

Fig. 14. Closeup view of the Buddha model. Left : anisotrapietric (AQ).
Right : isotropic metric (1Q).

Model Hausdorff d. || Mean distance|| RMS distance
x1073 x1073 x1073
David [SAGO03] 27.1 1.6 1.6 1.9 1.9
David [ours] 6.22 0.06 0.1 0.05 0.1
Hand [GH97] 16.9 2.3 2.3 3.0 3.0
Hand [CADO04] 34.6 7.2 7.3 9.3 9.4
Hand [ours] 37.6 3.9 3.9 5.2 55
Hand *[ours] 32.9 3.8 3.8 5.1 5.2
TABLE 1l

COMPARISON OF APPROXIMATION QUALITIES BETWEEN SEVERAL
APPROACHES THE FIRST COLUMN IS THEHAUSDORFF DISTANCE
BETWEEN THE ORIGINAL AND COARSENED MODELS NEXT ARE MEAN
AND AVERAGE DISTANCES FOR BOTH DIRECTIONSTHE LAST LINE WAS
OBTAINED WITH A DIFFERENT INITIAL CONDITION.

Fig. 15. Comparison between 2 approaches for isotropicseoarg. Left: the
statuette model coarsened to 500k vertices (AQ metric)htRigomparison
between 1Q (top) and AQ (bottom) metrics.

of Hausdorff distance, our approach gives results simiar t _
VSA, while irj terms of.average or RMS distance, our approac 'Davi'&m[)gfeos] %’_’3; gg’i 40735 Z’Eiz’fé““ E ; 4310
provides a significant improvement over VSA. The last line of  pavid [ours] 0013 | 0.80 | 0.85 45.2 1.2
table Il shows the results obtained with our approach, bth wi
an different random initialization, showing the robustes$
our approach.

TABLE Ill
COMPARISON OF TRIANGULATION QUALITIES

VIIl. CONCLUSION

We proposed a generalization to anisotropic remeshing Répository, the Aim@Shape Shape Repository and the Digital
the isotropic approach proposed in [1]. Based on discrete Ddichelangelo Project. This work was supported in part by the
launay criteria, this algorithm is able to process largetraes Région Rhone Alpes Cluster 2 ISLE, PP3, subproject I3M:
and to create meshes made of isotropic and/or anisotropitagerie Médicale et Modélisation Multiechelles : dutipe
elements. The proposed framework is general, and the mettiimal a | '"Homme. This work is within the scope of the
definition, which drives the elements aspect ratio, could Beientific topics of the PRC-GDR ISIS research group of the
improved in further works. We plan to define new metricErench National Center for Scientific Research (CNRS). We
based on Local Feature Size, to enhance the approximatitso thank Pierre Alliez for his comments on the paper and for
quality, and to use filtering to enhance noise removal. Alsproviding comparison models. Finally, we thank the reviesve
giving out-of-core features to this approach could be ofgrefor their constructive remarks, which helped us a lot imjmgv
help when considering large models. the quality of the paper.
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