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Abstract— In this paper, we propose a generic framework
for 3D surface remeshing. Based on a metric-driven Discrete
Voronoi Diagram construction, our output is an optimized 3D
triangular mesh with a user defined vertex budget. Our approach
can deal with a wide range of applications, from high quality
mesh generation to shape approximation. By using appropriate
metric constraints the method generates isotropic or anisotropic
elements. Based on point-sampling, our algorithm combinesthe
robustness and theoretical strength of Delaunay criteria with the
efficiency of entirely discrete geometry processing . Besides the
general described framework, we show experimental resultsusing
isotropic, quadric-enhanced isotropic and anisotropic metrics
which prove the efficiency of our method on large meshes, at
a low computational cost.

I. I NTRODUCTION

With the ever increasing range of applications using sampled
3D geometric models, resampling has become a very important
feature for inter-operability between those applications. As
an example, the accuracy of current 3D scanners has been
improved, and they are able to produce very faithful 3D
meshes of the scanned model, for the price of a large number
of vertices. As a consequence, a resampling step is usually
carried out before displaying, storing, or using the mesh in
another application. Also, the mesh triangle shape factor can
be important when considering finite element simulations. In
this paper, we propose an adaptive surface mesh coarsening
algorithm, which samples the input surface to a mesh with
fewer elements than the original mesh. Extension of this
approach also leads to remeshing, when one wants the con-
structed model to have an arbitrary number of elements. Our
approach extends the work of Valette and Chassery [1] to non-
uniform and anisotropic discrete Centroidal Voronoi Diagrams.
The complexity of our algorithm (in terms of calculations and
memory requirements) is low, allowing the processing of large
meshes up to several million triangles.

II. PREVIOUS WORK

Coarsening a mesh consists in resampling the original
surface with a lower number of vertices. This field of research
has been explored in many ways in recent years. A good
review of existing remeshing approaches is given in [2], and
coarsening approaches are described more precisely in [3].

In [4] and [1], the triangles of the input mesh are clustered
and a new coarsened mesh is built according to the clustering.
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These approaches are efficient when the number of triangles
of the output mesh is much lower than the number of triangles
of the input mesh. The approach of Cohen-Steiner et al. [4]
aims to create approximation-efficient meshes, whereas the
approach of Valette and Chassery [1] aims to create uniform
output triangulations. Note that in [5] an extension to the work
of Valette and Chassery to adaptive coarsening is proposed.
In [6], similar clustering approaches are used to create base
domains on polygonal meshes. These base domains are then
combined with parametrization techniques to process quad-
rangular remeshing of the original model. Note that clustering
can have several possible applications, aside from remeshing.
As an example, in [7] a hierarchical clustering approach is
proposed, with a multiresolution radiosity application example.
The coarsening of very large meshes (made of millions of
vertices) is also an issue when the mesh data structure cannot
fit inside the computer memory. As a consequence, out-of-core
approaches have been proposed [8]–[11].

Remeshing approaches compute a mesh with a given num-
ber of elements or approximation error budget in a single
resolution way. Some approaches remesh the original surface
in a global parametric space [12]–[15]. They provide good
results, but are limited in practice by the parametrization
step, involving heavy calculations and numerical instability.
To overcome these problems, methods in [16], [17] were
proposed, involving local parametrization and optimization of
the remeshed model. Other works [18], [19] distribute new
vertices directly on the original surface mesh, to build a new
tessellation which can be further optimized.

In [20] and [21] the authors propose to remesh the model
using geodesic distances: the new vertices are created using
geodesic front propagation, and their distribution can be driven
by local curvature.

Remeshing approaches allow the construction of meshes
with as many vertices as required. Indeed, mesh coarsening
is not the main goal of remeshing approaches, as they permit
other improvements (in terms of triangle aspect ratio) and
shape adapted remeshing (e.g. adaption of the sampling ac-
cording to the local curvature).

III. C ONTRIBUTION AND PAPER OUTLINE

The proposed approach is an extension of the work by
Valette and Chassery [1]. It is based on partitioning (clus-
tering) the input mesh in a variational framework, in order to
distribute efficiently the vertex budget on the mesh, according
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Fig. 1. Remeshing the fandisk to 3k vertices. Top : results. Bottom : closeup view. The previous approach builds a coarsened mesh according to linear
criteria (each vertex is the center of mass of its corresponding cluster). The resulting mesh elements have good aspect ratio, but the sharp details of the
original model are lost (left). Post-processing relocatesthe vertices according to approximation criteria. The resulting mesh (middle left) respects faithfully
the original model features, but the good aspect ratio is lost for some triangles (see closeup view). A Lloyd-based clustering leads to similar results (middle
right). With the proposed approach (right), both properties are preserved by embedding the approximation criteria inside the minimization algorithm.

to user-defined criteria. In this paper, several key-pointsare
addressed :

• The clustering is driven by the minimization of a discrete
energy term. The minimization approach is enhanced
by generalizing the notion of Voronoi Diagrams, in
spirit with Constrained Voronoi Diagram definitions [22].
This generalization allows us to define arbitrary ver-
tex placement strategies which are embedded inside the
minimization step, directly constructing accurate meshes
without post-processing. As a consequence, the removal
of post-processing steps keeps the overall mesh quality
from decreasing. As an example, figure 1 shows the
results obtained from the Fandisk model by the previous
approaches with the proposed one. Clearly, the quality
of the resulting mesh (in terms of element aspect ratio)
is well preserved. Also, this scheme avoids the need
for curve sampling along sharp features, as the created
vertices naturally align with the underlying features.

• The clustering is driven by a user-defined metric, allowing
the creation of isotropic or anisotropic elements, depend-
ing on the desired output. Thus, our approach has uniform
sampling capabilities as well as approximation-efficient
properties, depending on the chosen metric. Figure 2
shows some results with different metrics on the hand
model : The left model was constructed using an isotropic
metric and results in elements having good aspect ratio.
The model displayed in the middle was created using
an anisotropic metric. Unfortunately, the post-processing
used to enhance the approximation quality of the mesh in-
duces artifacts, and the resulting mesh is not satisfactory.
The model on the right was created using the anisotropic
metric with embedded vertex placement strategy, and is

Fig. 2. Coarsening the hand model. Left : Isotropic metric. Center :
Anisotropic metric + post-processing. Artifacts are clearly visible. Right :
Anisotropic metric with approximation-effective embedded vertices placement
scheme.

made of anisotropic elements with a good approximation
quality.

• We also give some details about the minimization algo-
rithm, and enhance it with a safe acceleration scheme
which dramatically reduces computing times.

Section IV and V of this paper give technical overviews of
Voronoi Diagrams, both for their continuous and new discrete
definitions. In section VI, we explain some implementation
details along with theoretical justifications. Section VIIshows
some experimental results, and a conclusion follows.
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IV. V ORONOI DIAGRAMS IN THE CONTINUOUS SETTING

Given an open setΩ of Ra, andn different sites (or seeds)
zi;i=0,1,...,n−1, the Voronoi Diagram (or Voronoi Tesselation)
can be defined asn distinct cells (or regions)Ci such that:

Ci = {w ∈ Ω|d(w, zi) < d(w, zj)j = 1, 2, . . . , n, j 6= i} (1)

where d is a distance measure. These diagrams are well
known in the literature [23]. The dual of a Voronoi Diagram
(VD) is a Delaunay Triangulation (DT), which has the property
that the out-circle of every triangle does not contain any other
site when considering the 2D plane.

A Centroidal Voronoi Diagram (CVD) is a Voronoi Diagram
where each Voronoi sitezi is also the mass centroid of its
Voronoi Region [24]:

zi =

∫

Ci
x.ρ(x)dx

∫

Ci
ρ(x)dx

(2)

whereρ(x) is a density function.
Centroidal Voronoi Diagrams minimize the energy given as:

E =

n
∑

i=1

∫

Ci

ρ(x)‖x − zi‖
2dx (3)

Constructing a CVD can be done, using algorithms such as
k-means or Lloyd relaxations [25]. The practical efficiencyof
CVD construction has been demonstrated for a wide range of
applications [24].

More generally, the definition of VD stands for non-
euclidean settings. Indeed, only a notion of distance and
density is needed for such a computation. Recent works
have introduced new investigation techniques [26], [27], using
Anisotropic Voronoi Diagrams (AVD), involving anisotropic
distance measures. Those two approaches are very similar,
since they measure distances on the plane with Riemannian
metric tensors, which can be represented by2 × 2 matrices.
The distance between two pointsp1 andp2 on the plane with
respect to the tensorKm can be computed as:

dm(p1, p2) =
√

(p2 − p1)T Km(p2 − p1) (4)

This notion is referred to as a directional distance. Labelle and
Shewchuk [27] define AVD cells as:

Ci = {w ∈ Ω|dzi
(w, zi) < dzj

(w, zj)j = 0, 1, . . . , n−1, j 6= i}
(5)

on the other hand, Du and Wang [26] propose :

Ci = {w ∈ Ω|dw(w, zi) < dw(w, zj)j = 0, 1, . . . , n−1, j 6= i}
(6)

Note that the difference between those two definitions is
the choice of the tensors for the distance computation: With
Labelle and Shewchuk’s definition, distances are measured
according to the Voronoi Siteszi. As a consequence, there
is no need to define a tensor field for this kind of diagram,
only one tensor is needed for each site.

In the second case, distances are computed according to
tensors defined on each pointw of the space. This requires
the definition of a tensor field on the entire domain.

In [26], Du and Wang proved that their definition is more
consistent with the classical definition of Voronoi Diagrams
and CVD. As an example, if the tensor field is isotropic
(but non-uniform), their definition reduces to the classical
VD definition. Moreover, defining Riemannian tensors for the
Voronoi sites can be problematic for sharp features. As an
example, a site placed on the corner of a cube would have an
ill-defined metric Tensor whereas it is very possible to define
accurate tensors for the points belonging to the flat regions
of its cell. More details on the differences between these two
definitions are given in [26].

V. VORONOI DIAGRAMS IN A DISCRETE SETTING

In [1] a discrete definition of CVD is given.Ω is no longer
a continuous space, but a polygonal meshM . Subsequently
we will only consider triangular meshes, but extension to the
polygonal case is straightforward. PartitioningM can be done
in two ways : building clustersCi of triangles, as proposed
in [1], or by building clusters of vertices. We found it more
practical to cluster the mesh vertices instead of the mesh
triangles, mainly for two reasons :

• For a triangular mesh, the number of vertices is about half
the number of triangles, and clustering vertices reduces
the required memory space for the clustering data.

• Clustering vertices is more rigorous when considering
topological changes that may occur during the simpli-
fication, and is better suited for non-manifold meshes.

In the following equations, we will refer to itemsIj which
may be triangles or vertices of the mesh.

A. Isotropic case

The discrete definition of the CVD consists in reformulating
the energy termE (equation (3)) and trying to find the
clustering minimizingEiso, which is defined by:

Eiso =
∑

i





∑

Ij∈Ci

∫

Ij

ρ(x)‖x − zi‖
2dx



 (7)

In this equation, the domainIj considered in the integral term
is :

• the jth triangle when clustering triangles
• the jth vertex dual cell

Figure 3 shows the difference between those two cases.
Note that in contrast to previous definitions of CVD, we will

make no assumption on the pointszi, which were identified
previously as centers of mass of their respecting clusters.This
generalization will be of great help when considering non-
planar meshes, where the best location of the pointszi might
not be the cluster centroids. As a consequence, we can simply
assume that the coordinates ofzi depend on their respective
cluster configuration.

It is easy to demonstrate that the individual contribution of
each itemIj to the global energy termEiso can be simplified
to:

∫

Ij

ρ(x)‖x − zi‖
2dx = Mj‖zi − γj‖

2 + Aj (8)
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Fig. 3. The domains taken into account when computing integral values. Left:
when clustering triangles, the elementary domains are simply the triangles
themselves. Right : when clustering vertices, the elementary domains are their
vertex respective dual cell.

where

Aj =

∫

Ij

ρ(x)‖x − γi‖
2dx (9)

Mj =

∫

Ij

ρ(x)dx (10)

γj =
1

Mj

∫

Ij

ρ(x)xdx (11)

Aj depends only on the geometry ofIj and on the density
function ρ(x), Mj is the global weight ofIj according to
ρ(x) andγj is the center of mass ofIj . By considering each
item’s individual contribution toEiso, following equation (8),
we obtain:

Eiso =
n

∑

i=1





∑

Ij∈Ci

Mj‖zi − γj‖
2



 +
∑

j

Aj (12)

which simplifies to :

Eiso =
∑

j

Aj +
∑

j

Mj‖γj‖
2 + Fiso (13)

with

Fiso =
∑

i

Liso,i (14)

and

Liso,i = ‖zi‖
2

∑

Ij∈Ci

Mj − 2zT
i

∑

Ij∈Ci

Mjγj (15)

Liso,i is the individual contribution of the clusterCi to the
global energyFiso. Equation 13 proves that whatever the
cluster configuration is, the contribution of the termsAj and
Mj‖γj‖

2 will always be the same. We can then safely omit
their computation to minimize the energy depicted byFiso

Finally, this energy-term is flat-exact, meaning that its min-
imization is consistent and equivalent to a Discrete Centroidal
Voronoi Diagram (DCVD) on the plane, with no assumption
on the input mesh sampling properties (i.e. uniformity or
aspect ratio). Note that if one makes the assumption that the
Voronoi seedszi are the centroids of their respective clusters,
equation (14) simplifies to the energy term given in [1], [5].

B. Anisotropic case

In order to extend the discrete CVD described before to
anisotropic discrete CVD, we consider the work of Du and
Wang [26]. Following their definition of directional distance
(equation (4)), and using a similar evaluation of the previous
section we define an anisotropy-based energy function as:

Eaniso =
∑

i





∑

Ij∈Ci

(γj − zi)
T Kj(γj − zi)



 (16)

whose minimization leads to an anisotropic partitioning of
the initial mesh. Again, simplifications lead to another energy
term:

Faniso =
∑

i

Laniso,i (17)

with

Laniso,i = zT
i





∑

Ij∈Ci

Kj



 zi − 2zT
i





∑

Ij∈Ci

Kjγj



 (18)

Note that when the directional distance tensor fieldKj is
chosen to be isotropic, equation (17) reduces to the isotropic
energy termFiso defined in equation (14).

C. Voronoi Center Location

In previous works [1], the Voronoi site locations are defined
to be the center of mass of their respective cluster. This
placement strategy is not optimal for the case of 3D meshes,
since for curved clusters, the barycenter will beinside or
outsidethe object, with no proof that it is the best position
for surface approximation. Indeed, this position can be further
optimized to enhance the quality of the approximating mesh.

In [5], the authors propose to relocate the cluster site
positions (the output mesh vertices) using Quadric Error
Metrics [28]. This post-processing was previously proposed
by Lindstrom [8]. The Quadric Error Metric (QEM) associates
each triangle.Ti with a 4 × 4 matrix Qi which reflects the
distance from a given point to the plane tangent toTi. For
a given set of triangles, an ’optimal’ vertex position can be
computed from the sum of the QEM matrices associated to
the triangles. This framework was proved to be very efficient,
and has been linked to approximation theory in [29]. Figure
1 (center) shows the effect of such post-processing on the
fandisk model.

Actually, this post-processing can be embedded inside the
minimization scheme : for each cluster, we store and update
its QEM matrix. This allows us to compute at each iteration
the best location for a given site, and then inject this location
in the computation of the energy termF . As a result, during
the clustering, the cluster sites are well placed, and the post-
processing is avoided. Figure 1 (right) shows the results
obtained on the fandisk model. Note that we use QEM only
to evaluate the positions of the clusters centers. This new
placement scheme has actually an impact on the energy value
E, as shown by equations (15) and (18), but the shape of
the optimized clusters will still be driven by the chosen
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metrics. As a consequence, when a cluster contains a local
feature, the resulting vertex will be well placed on the feature
while the energy minimization optimizes the clusters shape
independently. Note that if a cluster evolves during the energy
minimization, its equivalent vertex can also move, but when
the cluster lays on a feature, the vertex will slide along that
feature. In figure 18, the top image shows a clustering of the
fandisk with 3000 clusters. One can notice the good alignment
of the clusters with the features of the mesh. This clustering
was obtained without any feature-aware initialization. The
middle image shows a clustering with 1500 clusters. Given
this low number of clusters, the algorithm cannot represent
faithfully the original mesh with uniform sampling. On this
example, one cluster spans two corners of the fandisk, and
it results in one lost corner in the coarsened mesh (bottom
image).

VI. I MPLEMENTATION

In this section, we propose to partition the input mesh
according to Delaunay criteria, extending [1]. We will explain
several key-points, namely the chosen clustering-meshingap-
proach, the chosen metrics and implementation details.

A. Clustering algorithm

It is possible to efficiently minimize the energy termsFiso

or Faniso with an iterative algorithm that updates the clustering
according to tests on the boundaries between the different
clusters. Assuming that a given edgee (further referred to
as aboundary edge) is on the boundary between two clusters
Ca andCb (see figure 4),e has two adjacent itemsIj andIk

belonging respectively toCa and Cb, three values ofF are
computed:

• Finit (the initial configuration) :Ij belongs toCa andIk

belongs toCb.
• F1 (Ca grows andCb shrinks) : bothIj and Ik belong

to Ca.
• F2 (Ca shrinks andCb grows): bothIj andIk belong to

Cb.
the cluster configuration is updated according to the lowest

energy term betweenFinit, F1 and F2. By looping in the
boundary edge set (the set of edges between two different
clusters), we iteratively minimizeF . By definition, we know
that E is always positive.F differs from E by only an
additive constant, and as each local modification reduces F,
the convergence of the algorithm is guaranteed. See Algorithm
1 for a pseudo-code equivalent of our algorithm. Figure 4
depicts the existing analogy between vertices clustering and
triangle clustering. Note that in this context,F refers to
Fiso or Faniso depending on the chosen setting. A fast and
efficient computation ofF is possible by storing the data in
accumulator arrays. Moreover, during an elementary test, we
actually do not need to really compare the global values ofF

between the three possibilities. We just need to compare the
valuesLa+Lb, as only clustersCa andCb are to be modified.

Figure 5 shows an example of clustering on a randomly
triangulated plane. The original plane (left) consists in 4areas
with a different sampling density. The four regions contain

Fig. 4. Local neighborhood used for the clustering evolution. The items
Ij can either be trianglesTj (figure on the left) or verticesVj (figure on
the right) depending on the chosen clustering framework. Left (resp. right):
The trianglesTj andTk (resp. verticesVj andVk) originally belong to the
clustersCa and Cb, and the test consists in checking whether changing the
configuration (movingTj to Cb or Tk to Ca (resp.Vj to Cb or Vk to Ca)
will decrease the global energy term.

Fig. 5. Center: a triangulated plane (triangular itemsIj) falls into 4 parts
having different vertex density (close-up view on the left image). Despite the
sharp density changes, the clustering (right) remains uniform over the plane

respectively (from top left to bottom right) 10000, 20000,
40000 and 80000 vertices. Notice that despite the sharp density
changes in the original sampling, the resulting clustering
(right) is uniform, which proves that our approach is sampling
independent.

This minimization algorithm has several advantages over
Lloyd relaxation :

• We keep track of the boundaries between the clusters
using a simple FIFO queue containing all the candidate
edges. Thus, the complexity of looping on the boundary
elements is linear. On the other hands, the algorithms
proposed in [4], [20] use priority queues which slow
the clustering down when dealing with large meshes,
exhibitingO(nlog(n)) complexity instead of a linear one.

• Our minimization algorithm has a guaranteed conver-
gence. Moreover, when the algorithm is close to conver-
gence, only a subset of the boundary edges is actually
modified, because some regions already have reached
local convergence. Thus, during a loop, we keep track
of the clusters which were modified during the previous
loop, and we are able to avoid testing a boundary edge for
clustering update if its two neighboring clusters have not
previously changed. This way, a lot of useless tests are
avoided, and the clustering speed is increased. Typically,
this scheme reduces the computing time by at least 50%
when using a low complexity metric, and more than 80%
when using a complex metric such as the QEM enhanced
metric.

• The tests on boundary edges involve mostly local topo-
logical and geometric operations. Consequently, we have
been able to implement this algorithm in a parallel way,
which improves the speed of our approach on multicore
architectures when using computationally expensive met-
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Algorithm 1 : pseudo-code for our clustering algorithm.
Data: An initial clustering (each cluster has at least one

item I associated)
Result: An optimized clustering
begin

Fill the queueQueue1 with the edges present on
clusters boundaries;
Empty the queueQueue2;
repeat

Modifications = 0;
while Queue1 not emptydo

Pop a candidate edgee from Queue1;
if the edgee is on a boundary between
different clusters AND the edgee was not
already tested in this loopthen

Ca andCb are the clusters for whiche is
a boundary;
for the three different cases (see figure 4)
do

Computeza, zb andLa + Lb

end
CompareLa + Lb between the three
cases;
if the minimal energy does not come from
the initial configurationthen

Update the clusters according to the
case giving the minimal energy;
Push the modified item neighbor
edges inQueue2;
IncrementModifications;

else
Push the candidate edgee in Queue2;

end
end

end
Swap the queuesQueue1 andQueue2;

until Modifications = 0 ;
end

rics.

B. Guaranteed valid clusters

Once the clustering done, each cluster has to be a connected
set of vertices. One way to respect this constraint, after the
algorithm convergence, is to ”clean” the clusters falling into
several connected components, and to restart the clustering
step again, as proposed in [1]. These two steps can be repeated
until the constraint is respected. Figure 6 shows the effectof
the cleaning step on a clustering having a defect. Although
this approach works well in practice, there is no theoretical
proof that it will always succeed, and running alternatively the
clustering step and the cleaning step can be computationally
expensive. To overcome this difficulty, we run a three step
algorithm. First, we run the clustering algorithm as described
by algorithm 1. During this optimization, one does not need
the convergence to be achieved, as a second optimization step
will be used later. As a consequence, the optimization (energy

Fig. 6. Clustering cleaning : the clustering (left) has a defect : the white
clusters falls into two connex components. A cleaning step resets the smallest
component tonot associated, in black color (center). After few iterations of
the clustering algorithm, the disconnected component has disappeared(right)

minimization) stops when the clustering algorithm is near
convergence. In our experiments, we defined near-convergence
to be achieved when the number of modified items during a
loop on the candidate edges is smaller than0.1%. Afterwards,
we run the cleaning step. If some cleaning was done (meaning
that some clusters did not respect the connexity constraint), we
then re-apply the clustering step, with an additional embedded
checking step. Figure 4 displays a local boundary context used
during clustering evolution. Each time a vertexVj has to move
from one clusterCa to another clusterCb, we check if this
modification does not break the connectedness property of the
clusterCa, which can be easily done by checking the vertex
1-ring configuration.

With this constraint, after the second clustering step, allthe
clusters are guaranteed to have only one connecting compo-
nent. Note that we do not take this constraint into account
during the first minimization process, as it would significantly
decrease the speed of the algorithm, and it could prevent the
removal of the input mesh topological noise.

C. Meshing

As explained in section II, many works have already pro-
posed a clustering-based simplification of the input mesh. Vari-
ational approaches such as those proposed in [4] and [1] are the
most promising, since they are based on global optimizationof
the clustering. Both aggregate the mesh triangles into clusters,
but the meshing strategies are dual.

Basically, Cohen-Steiner et al. [4] construct one polygon
for each created cluster, and the polygon vertex positions are
computed according to the cluster adjacency relationships. As
a consequence, the produced clusters must have as much as
possible a planar shape. Note that the polygons can also be
further modified depending on the type of desired output mesh
e.g. quad-dominant or pure triangular, but it would be very
hard to restrict the properties of the resulting polygons toa
specific type.

On the other hand, Valette and Chassery [1] create one
vertex for each cluster. Meshing is done by creating triangles
by dualizing the clustering i.e. two vertices are adjacent if
their corresponding clusters are adjacent too. The resulting
mesh contains only triangles. In this case, the clusters do not
need to satisfy the planarity criterion. Moreover, this approach
provides a direct control on the vertex positions, which canbe
vital when considering approximation quality.

D. Dealing with mesh boundaries

Note that meshes with boundaries need a supplementary
meshing step to adjust the coarsened model, by adding extra
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Fig. 7. A part of a mesh contains a boundary, resulting in a hole in the
clustering. The resulting triangulation (left) has also one boundary, but it is
wider than the original one. Adding a triangle strip (right)creates a boundary
closer to the original one

vertices and triangles on the boundaries. Basically, each time
two clusters meet at one boundary, one vertex and two trian-
gles are added. This results in the construction of a triangle
strip for each boundary. Figure 7 depicts how this procedure
fixes the new mesh boundaries.

E. Extension to 3D surfaces and challenges

The previous definition of DCVD stands for planar configu-
ration, but is still very reliable when considering 3D surfaces.
Indeed, the equations only involve measures of distance and
weights. A strict equivalent of DCVD for 3D surfaces would
involve the computation of geodesic distances (which would
be computationally prohibitive), but when considering highly
sampled meshes, the error induced by using euclidean dis-
tance instead of geodesic distance remains low. Moreover, if
we compare such a discrete approach with parametrization-
based Delaunay algorithms [12], [13], parametrization also
introduces distortion in the remeshing process. Those works
compensate the parametrization distortion by introducingscal-
ing factors based on the ratio between distances on the
parametrized plane and euclidean (but not geodesic) distances
on the mesh. As a consequence, those approaches seem to have
at least the same shortcomings as regards geometric accuracy.
Also, computing geodesic distances would probably increase
the influence of the geometric noise present in the input mesh.

F. Remeshing by over-sampling

Cluster-based approaches have a restriction : the resulting
mesh will have fewer vertices than the original one. However,
we are able to construct meshes with as many vertices as
the original ones, by simply subdividing the input mesh using
linear, Loop or Butterfly schemes. Figure 8 shows a remeshed
version of the Stanford Bunny with 36k vertices. The input
mesh (36k Vertices) was subdivided twice to obtain a mesh
with 1111k triangles, well suited for a clustering approach.

G. Efficient initial sampling

To begin the clustering process, an initial sampling step
must be done, to associate at least one itemIj to each
clusterCi. In [1], the initial sampling is done by randomly
selecting one vertex of the mesh for each cluster. As a
consequence, the clusters will be equally distributed overthe

Fig. 8. Uniform remeshing of the Stanford Bunny to 36k vertices

original mesh. This is convenient for uniform coarsening, as
the goal is to build clusters with the same area. But this is
not appropriate for adaptive clustering, since the regionswith
higher density should contain more clusters than regions with
low density. Indeed, if we randomly distribute the clusters
during the energy minimization process, the clusters in low
density regions will slowly move towards regions with high
density, resulting in very low convergence speed. To alleviate
this problem, we propose to distribute the clusters according
to the density function. For this aim, we first compute a global
average cluster density:

D =
1

n

n
∑

j=1

ρj (19)

where n is the number of desired clusters. This density
corresponds to the average accumulated density that each
cluster should have at the end of the clustering process. We
try to initialize the clustering with clusters having such an
accumulated density. For each cluster, we randomly pick a
free vertexVf (a vertex which was not previously associated to
any cluster) and grow a region aroundVf until its accumulated
density reachesD. If at one point some clusters remain to be
initialized and no more vertices are free (which can happen,
as we operate on a discrete set), we randomly pick one non-
free vertex for each non initialized cluster. In practice, this
initial sampling strategy accelerates the convergence of the
approach, and allocates more clusters in regions needing a
higher sampling rate.

H. Metrics

First, when considering isotropic settings, the clustering
can be optimized by maximizing the compactness of the
cells (equation (3)), which requires the definition of a density
function ρ on the mesh. Choosing a uniform density leads to
uniform clustering [1]. Adaptive clustering is also possible by
defining a density map according to some curvature measures
[5]. Adaptivity is a key feature for many applications, when
some parts of the mesh must contain more vertices than
other parts. As we aim at applying our scheme to very
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complex meshes, the curvature measure has to be very robust
against bad sampling conditions that may be encountered when
processing such models. We propose to compute a curvature
indicator with such properties. We calculate the matrixA2×2

of the Weingarten map of the surface using a polynomial
fitting of the local neighborhood of each vertex, as explained
in [30]. The local principal curvatureskj,1 andkj,2 (resp. the
principal directionsDj,1 and Dj,2) are the eigenvalues of A
(resp. the eigenvectors). In all our experiments, we chose the
neighborhood of a vertex to be its 3-ring. Finally, we set each
vertex weightρj to:

ρj = |Pj |
(√

k2
j,1 + k2

j,2

)γ

(20)

where|Pj | is one third of the area of the triangles aroundPj

and γ is a gradation parameter which controls the curvature
adapted behavior of our scheme. Considering [13], settingγ =
0 will produce uniform clustering whereas higher values ofγ

will give more and more importance to the regions with high
curvatures. Subsequently, we will refer to this metric as the I

Metric.
To offer our algorithm anisotropic behavior, following the

energy term defined by equation (17), we need to define
directional distance tensors for each vertex of the input mesh.
Again, local curvature computation can lead to the definition
of a directional3×3 distance tensor for each vertexKj defined
as:

Kj = MT
j Mj (21)

with

Mj =





√

‖kj,1‖D
T
j,1

√

‖kj,2‖D
T
j,2

0



 (22)

this metric tensor ensures that regions with constant prin-
cipal directions and curvatures will produce clusters withan

elongation ratio equal to

√

∣

∣

∣

kj,1

kj,1

∣

∣

∣, which is consistent with

approximation theory [31].

VII. R ESULTS AND DISCUSSION

Figure 9 compares the clustering efficiency of our approach
with Lloyd relaxation for two cases : using a linear isotropic
metric, and a quadric enhanced isotropic metric, both applied
on the statuette model. The horizontal axis is the time, while
the vertical axis gives the energy valueFiso, which differs
from Eiso only by a constant value. For both cases (and
all our experiments), our approach led to values ofFiso

lower than what Lloyd relaxation gave. The relative difference
between the two algorithms was around10−6 for the statuette
model. While this improvement is not significant in terms of
energy value, our algorithm has other advantages, in terms of
acceleration and convergence. Our approach always reaches
convergence whereas Lloyd relaxations failed to produce a
stable clustering for the statuette model. More generally,we
sometimes observed convergence with Lloyd relaxation when
using the simple isotropic metric, but at least an order of mag-
nitude slower than with our approach, and never when com-
bining quadric-based placement and Lloyd iterations. Finally,
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Fig. 9. Comparison of efficiency between Lloyd relaxation clustering and
Our proposal on the statuette model. Top : isotropic metric (I). Bottom :
isotropic metric with quadric-based vertices placement (IQ).

we do not need to manually stop our minimization algorithm
(by defining a fixed number of iterations, or by measuring
the energy decrease rate), which could be problematic when
processing large meshes. Indeed, it is observed that in the last
minimization steps, only a small subset of the clustering is
evolving. An arbitrary decision to stop the minimization could
penalize the clustering quality in these regions.

We compared the speed between Lloyd relaxation and our
approach. One single Lloyd relaxation step lasts 45s in aver-
age. With the isotropic metric, our approach converges within
165s, which is less than the time needed to perform 5 Lloyd
iterations. As figure 9 shows, processing 5 Lloyd relaxation
steps is far from convergence. When using quadrics-based
placement, the difference is smaller, but still our approach
reaches convergence, in contrast with Lloyd relaxations. The
curves for the quadric-based placement metric also reveal
the effect of the connexity constraint embedded in our algo-
rithm. One can clearly observe that convergence is reached
twice. As explained in section VI-B, the first convergence
(or near convergence) is reached without connexity constraint.
Afterwards, the cleaning step and the constrained clustering
proceed, and the energy term gets even lower. To explain this,
one can notice that CVD clustering tends to create clusters
which are as compact as possible, and that compactness and
connexity are actually not contradictory properties. As a result,
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Fig. 10. Clustering with the IQ metric for the David model. Top : clustering
time vs. number of wanted clusters. Bottom : Hausdorff distance between the
original and coarsened model vs. number of wanted clusters.

the connexity constraint helps our algorithm to reach lower
energy values. Our implementation can take advantage of
multicore workstations. Tested on a dual Xeon processors
workstation, clustering using quadric-based placement takes
less than half of the time needed to do the same task with only
one processor on the workstation (the speed ratio is superior
to 2 because those processors have hyperthreading capabil-
ities). Future improvements could introduce other clustering
optimization schemes, to reach even lower minima value for
the energy functionFiso or Faniso. As an example, Cohen-
Steiner et al [4] proposed thetunnelingof clusters from over-
sampled regions to under-sampled ones. Figure 10 displays
the clustering time and approximation error vs the number of
wanted clusters, for the David model, with the isotropic metric
enhanced by quadric-based placement.

Table I shows the timings and quality measures for some
results displayed in this paper. The results were obtained with a
desktop computer running at 3GHz, with 2GB of RAM, except
for the Lucy model and the Michelangelo David, which were
processed on a SGI workstation due to memory requirements
(The Lucy model itself fits in more than 2GB with our data
structure, and the David model, originally made of 507k
vertices was subdivided twice, in order to remesh it to 500k
vertices). The first two columns are the number of vertices
of the input and output meshes. The third column gives the

Fig. 11. Left: A 500k vertices coarsened version of the Lucy model. Right:
closeup views of the face and pedestal with displayed edges :adaptivity is
noticeable in relatively flat regions

metric used for the clustering (respectively I for isotropic with
Voronoi Centers taken as cluster centroids, IQ for isotropic
with Voronoi Centers optimized with QEM, AQ for anisotropic
metric with Voronoi Centers optimized with QEM). The
parameter between parenthesis is the gradation parameterγ

defined in section VI-H. Note that for the anisotropic metrics,
this parameter is only used for the sampling initialization. The
next two columns show the time spent on the curvature mea-
sure computation and on the clustering. These last two steps
dominate the processing time. Note that we experimentally
measured the SGI workstation to be half as fast as the used
desktop computer. The last two columns show for each model
the percentage of minimal internal angles bellow30o and the
average triangle aspect ratio, as defined in [33].

Figure 11 shows a coarsened version of Lucy to 500k ver-
tices, using the isotropic metric. Note that here, the sampling
is well adapted, as shown by the closeup views. Figure 12
shows the rockerarm coarsened to 1000 vertices (AQ metric)
and the Buddha model coarsened to 40k vertices (AQ metric).
The comparison of coarsened versions of the hand models (IQ,
A and AQ metric, figures 2) gives a representative overview of
what we observed in our experiments : the anisotropic metric
does elongate the triangles along the directions of minimal
curvatures, but choosing the clusters centers as centroids(A
metric) produces artifacts at the meshes extremities. Introduc-
ing QEM based centers localization (AQ metric) solves this
problem. Figure 14 shows a closeup view of coarsened Buddha
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Model #v #v2 Metric curvature clustering 6 < 30o Qav

(original) (coarsened) time (s) time (s) (%)

Lucy 14M 500k IQ(1.5) 213 (12 CPUS) 8357 3.73 0.77
500k IQ(1.5) 2822 (4CPUS) 3.73 0.77

David 507k 500k IQ (1.5) 76 6365 6.9 0.73
Statuette 5M 300k I (1.5) 319 165 10 0.69

300k IQ (1.5) 319 1665 8.4 0.71
300k AQ (1.5) 328 1826 16 0.62

Buddha 500k 20k IQ (1.5) 47 255 7.5 0.72
20k AQ (1.5) 49 295 17 0.61

TABLE I

PROCESSING TIMES AND QUALITY MEASURES FOR THE PROCESSED MESHES. THE COLUMNS ARE RESPECTIVELY THE NUMBER OF VERTICES OF THE

INPUT AND OUTPUT MESHES, THE METRIC USED FOR THE CLUSTERING, THE TIME SPENT ON THE CURVATURE MEASURE COMPUTATION AND ON THE

CLUSTERING, THE PERCENTAGE OF MINIMAL INTERNAL ANGLES BELLOW30
o AND THE AVERAGE TRIANGLE ASPECT RATIO.

Fig. 12. Coarsened versions of the rockerarm model (1000 vertices) and the
buddha model (20k vertices).

models (left : AQ metric; right: IQ metric). The anisotropic
behavior of the AQ metric is clearly visible in elongated
regions (the cloth around the Buddha’s neck), and sampling
remains isotropic in spherical regions (e.g. on the head). Note
that the sharp features located on the back of the model are
better preserved with the AQ metric.

On figure 13, we can see a closeup view of the Michelangelo
David remeshed to 500k vertices, illustrating that the limitation
of our approach in a remeshing point of view is only its
memory footprint.

Figure 15 shows a remeshed version of the Statuette model
to 500k vertices, using the IQ metric. the right side compares
the results between the IQ (top) and AQ (bottom) metrics.
Again, the anisotropic metric gives more pleasant results.
As the results table shows, the IQ metric is about 10 times
slower than the I metric. This is due to the QEM based center
localization, which requires for each iteration a3× 3 singular
value decomposition in order to have a robust placement.
Anisotropic clustering exhibits a reasonable overhead com-

Fig. 13. Closeup view of the David model remeshed to 500k vertices
(Isotropic metric)

pared to isotropic clustering (below 20%).
Figure 17 and table III compare the mesh quality between

our approach and [16]. One one hand, our approach provides
a triangulation with less quality than [16]. On the other hand,
table II shows that our approach provides a model which is far
more faithful to the original model, with a Hausdorff distance
about 4 times smaller than with [16]. Note that this table
also shows the average and RMS errors between the original
and coarsened models (in both directions, as these distances
measures are not symmetric), obtained with Metro [32].

Figure 16 shows the hand model coarsened to 300 vertices,
using qslim [28], our approach and VSA [4]. Clearly, our
results are close to the ones of qslim, VSA efficiently capturing
the anisotropy of the model, but failing to represent it with
the same precision. We tried our algorithm with two different
random initializations. In table II, we can see that in terms
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Fig. 14. Closeup view of the Buddha model. Left : anisotropicmetric (AQ).
Right : isotropic metric (IQ).

Model Hausdorff d. Mean distance RMS distance
×10

−3
×10

−3
×10

−3

David [SAG03] 27.1 1.6 1.6 1.9 1.9
David [ours] 6.22 0.06 0.1 0.05 0.1
Hand [GH97] 16.9 2.3 2.3 3.0 3.0

Hand [CAD04] 34.6 7.2 7.3 9.3 9.4
Hand [ours] 37.6 3.9 3.9 5.2 5.5
Hand *[ours] 32.9 3.8 3.8 5.1 5.2

TABLE II

COMPARISON OF APPROXIMATION QUALITIES BETWEEN SEVERAL

APPROACHES. THE FIRST COLUMN IS THEHAUSDORFF DISTANCE

BETWEEN THE ORIGINAL AND COARSENED MODELS. NEXT ARE MEAN

AND AVERAGE DISTANCES FOR BOTH DIRECTIONS. THE LAST LINE WAS

OBTAINED WITH A DIFFERENT INITIAL CONDITION .

of Hausdorff distance, our approach gives results similar to
VSA, while in terms of average or RMS distance, our approach
provides a significant improvement over VSA. The last line of
table II shows the results obtained with our approach, but with
an different random initialization, showing the robustness of
our approach.

VIII. C ONCLUSION

We proposed a generalization to anisotropic remeshing of
the isotropic approach proposed in [1]. Based on discrete De-
launay criteria, this algorithm is able to process large meshes
and to create meshes made of isotropic and/or anisotropic
elements. The proposed framework is general, and the metric
definition, which drives the elements aspect ratio, could be
improved in further works. We plan to define new metrics
based on Local Feature Size, to enhance the approximation
quality, and to use filtering to enhance noise removal. Also,
giving out-of-core features to this approach could be of great
help when considering large models.
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Région Rhône Alpes Cluster 2 ISLE, PP3, subproject I3M:
Imagerie Médicale et Modélisation Multiéchelles : du petit
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