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Wavelet-Based Multiresolution Analysis of Irregular

Surface Meshes
Sébastien Valette and Rémy Prost, Member, IEEE

CREATIS∗, Lyon, France

Abstract—This paper extends Lounsbery’s multiresolution
analysis wavelet-based theory for triangular 3D meshes, which
can only be applied to regularly subdivided meshes and thus
involves a remeshing of the existing 3D data. Based on a new
irregular subdivision scheme, the proposed algorithm can be
applied directly to irregular meshes, which can be very interesting
when one wants to keep the connectivity and geometry of the
processed mesh completely unchanged. This is very convenient in
CAD (Computer Assisted Design), when the mesh has attributes
such as texture and color information, or when the 3D mesh
is used for simulations, and where a different connectivity could
lead to simulation errors. The algorithm faces an inverse problem,
for which a solution is proposed. For each level of resolution the
simplification is processed in order to keep the mesh as regular
as possible. In addition, a geometric criterion is used to keep
the geometry of the approximations as close as possible to the
original mesh. Several examples on various reference meshes are
shown, to prove the efficiency of our proposal.

Index Terms—irregular meshes, wavelets, multiresolution.

I. INTRODUCTION

MULTIRESOLUTION analysis of 3D objects is receiv-

ing a lot of attention nowadays, due to the practical

interest of 3D modeling in a wider and wider range of appli-

cations, such as Computer Graphics and Computer Assisted

Design (CAD). Multiresolution analysis of these objects gives

some useful features : several levels of detail can be built

for these objects, accelerating the rendering when there is no

need for sharp detail, and allowing progressive transmission.

Another feature is that multiresolution analysis can be an

efficient means of data compression. A survey of the existing

methods used to simplify meshes, which is the first step

for processing multiresolution analysis, was reported in [7].

We can briefly mention vertex decimation [15], edge con-

traction [8], wavelet based analysis [14], valence-based mesh

simplification [1], [4]. We concentrated on the wavelet-based

method, because wavelets are well-suited for multiresolution

analysis. In [2] an algorithm able to perform multiresolution

analysis on irregular meshes is proposed, but it is restricted

to planar or spherical meshes. The algorithm described in this

paper can be applied to any manifold mesh, with any genus

and any number of boundaries. In section II, we will briefly

explain multiresolution analysis of meshes [14], and show its

drawbacks in practical implementation, which we extend for

irregular triangular meshes. Based on our recent work [19] we

consider the inverse problem of wavelet scheme construction
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Fig. 1. subdivision-based geometrical refinement : (a) a base mesh is (b)
subdivided and (c) its geometry is enhanced to match a finer surface

and both its connectivity and geometry optimization in section

III. Section IV gives comparative results obtained with this

new algorithm and a conclusion follows.

II. LOUNSBERY’S WAVELET BASED MULTIRESOLUTION

SCHEME

In wavelet decomposition, a mesh (for example a tetra-

hedron, see figure 1) is quaternary subdivided (figure 1.b)

and deformed (figure 1.c), to make it fit the surface to

be approximated. This quadrisection is also used for Loop

subdivision [10]. These steps can be repeated depending on

the required resolution levels.

Multiresolution analysis is computed with two analysis fil-

ters Aj and Bj for each resolution level j. The reconstruction
(synthesis) is done with two synthesis filters P j and Qj . Let

us call Cj the vj × 3 matrix giving the coordinates of each

vertex of the mesh M j having vj vertices (superscript j is the

resolution level). Then we have :

Cj−1 = Aj .Cj (1)

Dj−1 = Bj .Cj (2)

Cj = P j .Cj−1 +Qj .Dj−1 (3)

Dj represents the wavelet coefficients of the mesh, necessary

to reconstruct Cj from Cj−1 . From a theoretical point of

view, each column of the P j matrix (respectively the Qj

matrix) is derived from a scaling function (respectively a

wavelet function). These functions are defined on a 3D space

fixed by the mesh topology.

To ensure the exact reconstruction of M j from M j−1 and

Dj−1, the filter-bank must satisfy the following constraint:
[

Aj

Bj

]

= [P j |Qj ]−1 (4)

To make the mesh approximation M j−1 as close as possible to

the original mesh M j , the lifting scheme [17] is used, which

consists in constructing wavelet functions, starting from the hat

function (this wavelet is called the ”lazy” wavelet), orthogonal
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Fig. 2. Different wavelet examples : (a) lazy wavelet, (b) 0-ring support
wavelet, (c) 1-ring support wavelet, (d) 2-ring support wavelet.

to the scaling functions which are hat functions too, but with

a twice wider support. The main material for the lifting is the

inner product between two functions defined by Lounsbery as:

< f, g >=
∑

τ∈∆(Mj)

Kj

area(τ)

∫

τ

f(s)g(s)ds (5)

where ∆(M j) is the set of triangles τ of the mesh M j and

Kj is a constant for a given resolution level j (Kj = 4−j).

Note that this definition assumes that the triangular faces of the

mesh have the same area. As a consequence, the more the area

of the mesh faces differs, the less accurate the approximation

is. To reduce the computational cost of the algorithm and

guarantee its linear complexity, the support of each wavelet

function constructed for a particular vertex is restricted to a

close neighborhood of the vertex, as depicted in figure 2. The

more restricted the support is, the faster the algorithm will

be to compute [16]. In this paper, we used wavelets from

their lazy version (figure 2.a) to their lifted version where

the support is restricted to the 2-ring neighborhood of the

considered vertex (figure 2.d).

Wavelets provide a powerful tool for multiresolution analy-

sis of surfaces. However, the major drawback of Lounsbery’s

scheme is that faces are always merged four by four to

construct the approximation. Then the high resolution mesh

must have Loop subdivision connectivity. Note that Taubin

proposed in [18] an algorithm to find if a given mesh has

subdivision connectivity and to reconstruct its approximation

by inverse Loop subdivision. If the mesh does not respect this

connectivity constraint, one has to process a resampling of the

mesh, known as remeshing, which results in a mesh having

more faces than the original, as explained in detail in [5] and

[9]. The aim of this work is to overcome this difficulty by

improving the subdivision process, as described in the next

section.

III. A PROPOSAL FOR IRREGULAR MULTIRESOLUTION

ANALYSIS

A. Avoiding the remeshing step

The aim of this paper is to provide a new method allowing

multiresolution analysis directly on irregular meshes, avoiding

the remeshing step, as shown in figure 3. This would result

in two major improvements in multiresolution analysis on

meshes:

• No extra computation is needed (for the remeshing)

• The reconstruction of the mesh leads to a mesh identical

to the original mesh. This allows progressive encoding.

Mesh design

Remeshing

Regular multiresolution analysis Irregular multiresolution analysis

Volume data ( voxels)

Irregular mesh

Regular mesh

Irregular mesh

Classical approach Our approach

Fig. 3. Regular versus Irregular Wavelet Scheme

Applying the multiresolution scheme on irregular meshes

requires the modification of the two main steps:

• The subdivision step, which gives the relationship be-

tween the different level meshes (connectivity)

• The analysis-synthesis step, where the vertex coordinates

of the lower resolution mesh and the wavelet coefficients

are computed (geometry)

These two modifications are described in details in the next

two sections.

B. Modelling irregular subdivision scheme is an inverse prob-

lem

In the regular multiresolution scheme, the connectivity of all

different level meshes depends on the lowest level mesh con-

nectivity. Then the highest resolution level mesh connectivity

has to be highly regular. Unfortunately, classically built meshes

(for example, meshes built with the marching cubes algorithm

[11] or with [12]), are not regular and cannot be directly used.

As a result, the subdivision scheme has to be changed, in order

to allow every mesh to be processed. Based on our previous

work [19], we propose an enhanced subdivision process, where

the subdivision differs from one face to another.

In our scheme, each face of a mesh can be subdivided into

four, three or two faces, or remain unchanged. Figure 4 depicts

the possible cases of subdivision for one face.

1) The direct problem (subdivision): Taking a mesh M j

having nj faces and vj vertices, we call Sj a subdivision

scheme applied to it, represented by a row vector sj containing
nj elements (integers between 1 and 11), and describes the

subdivision case for each face:

sj = [qj1q
j
2 . . . q

j

nj ] (6)

where 1 < qjk < 11, according to figure 4. M j+1 is then the

result of the subdivision process:

Sj(M j) = M j+1 (7)
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Original face

Subdivided face

(unchanged)

Subdivided face

(1 to 4)

Subdivided face

(1 to 2)

Subdivided face

(1 to 3)

1

(unchanged)
2

3

4

5

11

(Lounsbery)

6

7 8

9 10

Fig. 4. Possible cases of subdivision

(a)

(b)

Fig. 5. The manifold constraint : (a) manifold result (b) non-manifold result
(marked vertex)

We define the merging ratio rj as:

rj =
nj+1

nj
(8)

Note that:

1 ≤ rj ≤ 4 (9)

There are 11n
j

possible subdivision schemes, but not all

of them lead to a manifold mesh, as shown in figure 5. The

subdivision of the two faces in figure 5.a results in a manifold

mesh, but in figure 5.b, the result is non-manifold.

2) The inverse problem (merging): In order to apply mul-

tiresolution analysis by the wavelet decomposition to a given

mesh M j , one can find a mesh M j−1 and a subdivision

scheme Sj−1 satisfactory:

Sj−1(M j−1) = M j (10)

This is a blind inverse problem. For maximum efficiency in

compressing the mesh, we try to make the ratio rj−1 as near as

G1

G2 G3

G6
G5

G4

Fig. 6. An example of mesh simplification

(a) (b)

(c) (d)

Fig. 7. Expansion of the simplified face set

4. This consists in merging the faces of the mesh M j , leading

to a mesh having the lowest possible number of faces.

Figure 6 shows an example, where 15 faces are reduced to 6,

resulting from merging 4:1 faces for G2, 3:1 faces for G3 and

G6, 2:1 faces for G1 and G4 and keeping one face unchanged

for G5. For this subdivision scheme, rj−1 = 15
6 = 2.5.

Briefly, the simplification algorithm starts by selecting four

faces, building a set of merged faces, and tries to expand

this set by merging faces around it. Figure 7 shows the

beginning of the expansion of the merged faces set (in gray),

merging sequentially, 2:1 faces, 3:1 faces, and leaving one face

unchanged.

During the simplified face set expansion, visited vertices

are labeled as parent or child vertices. As the simplified face

set grows over the input mesh, its boundaries may encounter

each other, and the algorithm sometimes faces cases where it

cannot merge some faces as wanted, because the faces don’t

match any expected irregular subdivision case. In these cases, a

modification of the mesh is allowed. It consists in an edge flip

between two neighbor faces, as shown in figure 8. Of course

this modification information has to be stored, to recover the

original mesh after subdivision and guarantee the reversibility

of the simplification process.

We notice that this modification will introduce a quality loss

in terms of mean squares error of the approximation of M j

with M j−1. But the difference between the original mesh and

the modified mesh is small and experimental results show that

this quality loss can be ignored. The next part describes the

algorithm in detail.
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Fig. 8. An edge flip for two adjacent faces

C. The merging algorithm

First, we have to define three codebooks, describing the

different merge-split cases involved in the proposed algorithm:

• The Wavelet Codebook W = {put } . Figure 9.a describes

the subdivision cases (1:1, 1:2, 1:3, 1:4). Superscript u
denotes the order of subdivision (1:u). Note that u is also

the number of faces in the patches.

• The Incident Codebook I = {fv
e } Figure 9.b depicts all

the cases of allowed edge flips combined with subdivi-

sions. Superscript v denotes the number of faces for each

patch.

• The Merge Codebook M = {gwl }. Figure 9.c shows

how triangles are merged : each patch in the Wavelet

Codebook or in the Incident Codebook has an associated

merge patch in the merge Codebook. Note that every

patch in the Wavelet Codebook is associated to g11 .

In these three codebooks, the white marked vertices are

called parent vertices, and the black marked ones are called

child vertices. Child vertices disappear during the mesh sim-

plification, while the parent vertices are kept. One child vertex

has always two associated parent vertices. Note that some

constraints must be respected during the mesh simplification

step, in order to keep this step reversible:

• A vertex can be labeled as a child vertex only if its

valence is equal to 4, 5 or 6.

• Some child vertices can share a parent vertex, but two

vertices must never have the same parents (figure 10.a).

• A vertex V1 cannot have vertices V2 and V3 as parent

vertices if the edge V2V3 exists in the mesh (figure 10.b).

• An edge flip cannot occur if the resulting created edge

already exists (figure 10.c).

With this material, one can build a reversible algorithm that

can simplify a given meshM j to a lower resolution oneM j−1.

Next is the description of the merging algorithm. First, we

note as ”matching” both the full search for the best match

in the corresponding codebook and a test on the number of

edges outside the merged region for each vertex to be removed.

This number of outside edges must be one or two to prevent

the algorithm from being stuck in a trap configuration (see

example in figure 10.c). Then the merging algorithm consists

of the following operations :

• Choose a seed triangle s. The seed triangle and its three

neighbor triangles s1, s2 and s3 define the simplified face

set F0 = {s, s1, s2, s3} and the to-be-simplified face set

F0 with F0

⋃

F0 = M j . It also defines the boundary edge

set E0 = {e0,kk=0...N0
} as E0 = F0

⋂

F0. The integer N0

is the number of edges on the boundary of F0 minus 1

(as an example, N0 = 5)

2V

3V

1V

4V

(a)

3V

2V
1V

(b)

2V

1V

5V

3V

4V

(c)

Fig. 10. Forbidden simplification cases: (a) two vertices V1 and V2 have the
same parent vertices V3 and V4; (b) the vertex V1 has V2 and V3 as parent
vertices, but the edge V1V2 exists; (c) the edge flip that would change V1V5

to V3V4 is not allowed as V3V4 already exists in the mesh. On the other
hand, flipping V1V4 to V2V5 is allowed

• Set i = 0
• Ni is the number of edges on the boundary of Fi minus

1

• While Ni ≥ 0 do

– For k=0 to Ni − 1:

∗ select in the Wavelet Codebook pum = (pvn match-

ing Fi at ei,k)/u = max(v)
∗ if no match found : select in the Incident Code-

book fw
l = (fv

n matching Fi at ei,k)/w =
max(v)

– Fi+1 =
⋃

mselected pum
⋃

lselected fw
l

⋃

Fi

– Create M j−1
i+1 by merging each selected pum and each

fw
l according to its associated patch in the Merge

Codebook M = {glw}
– Set i = i+ 1
– Define the to-be-simplified face set Fi and the

boundary edge set Ei = {ei,k}k=0...Ni
such that

Fi

⋃

Fi = M j and Ei = Fi

⋂

Fi

• M j−1 = M j−1
i is then the new simplified mesh at

resolution level j − 1

Figure 11 shows an example of the progression of the

proposed algorithm for a small triangular face set:

• The chosen seed triangle is shown in figure 11.a. F0 =
{s, s1, s2, s3}, and E0 = {e0, e1, e2, e3, e4, e5} consists

of the six edges surrounding F0.

• Figures 11.b and 11.c show the patterns matching F0 at
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: Parent vertices : Child vertices

1
1p

4
1p

2
1p 3

1p

3
3p2

2p

3
5p

3
2p

3
4p

3
6p2

3p

(a)

1
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3
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3
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4
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(c)

4
1f

4
2f

3
1f

3
2f

3
4f3

3f

3
6f

4
3f

3
5f

(b)

Fig. 9. Codebooks : (a) Wavelet Codebook W = {pu
t
}; (b) Incident Codebook I = {fv

e }; (c) Merge Codebook M = {gw
l
}

e0,0 and e0,1. Finally, the chosen patch for these edges is

p32, for optimality.

• figure 11.d depicts the algorithm configuration after the

first loop. Three wavelet patches were selected: p32 for

e0,0 and e0,1, f
3
3 for e0,2 and e0,3, p

2
3 for e0,4 and e0,5.

The simplified face set F1 is the gray colored region. In

figure 11.e the resulting merged mesh M1
j−1 is shown.

• figure 11.f : after the second loop, F2 covers the entire

face set except one face. Four new patches have been

selected.

• figure 11.g : F3 covers the entire face set and the

simplification step is complete. The final simplified mesh

Mj−1 is shown in figure 11.h.

In this example, 20 triangles were merged into 10 triangles.

Finally, the algorithm is very efficient for simplifying meshes.

So far, we have not seen a mesh that we could not simplify

efficiently. Note that the number of resolution levels (merg-

ing efficiency) depends on the choice of the seed triangle.

However, in practice, we have observed only minor efficiency

variations when choosing another seed triangle. Also, if the

original mesh is a quadrisected one (i.e. it results from Loop

subdivision), our algorithm finds the original base mesh in

25% of the cases. For 100% efficiency with quadrisected

meshes as in [18], our algorithm would need to run four times

with four different adjacent seed triangles1.

D. Optimizations

Although our algorithm is able to simplify every mesh

we had in our possession, we improved it by introducing

optimization constraints, leading to better results.

1) Connectivity-based optimization: For a given high reso-

lution mesh M j , the optimal simplification would be obtained

if all the faces of M j were merged four by four. This

happens only when M j has a subdivision connectivity, where

all child vertices have their valence equal to 6. Applying a

new simplification step to M j−1 would lead to the optimal

simplification M j−2 if M j−1 had a subdivision connectivity,

where all child vertices again have their valence equal to 6.

This recurrent demonstration leads us to the conclusion that

optimal results are obtained when the input mesh has vertices

with a valence equal to 6 most of the time. Unfortunately,

natural meshes do not always have this kind of regularity, but

our algorithm can be driven so that the approximation meshes

are as regular as possible. Looking at the merge and incident

codebooks defined in section 3, we can see that the valence of

some parent vertices is changed after the simplification step :

1Note that a solution to obtain directly the original base mesh is proposed
in [21]



VALETTE AND PROST : WAVELET BASED MULTIRESOLUTION ANALYSIS OF IRREGULAR SURFACE MESHES 105

3,0
e

4,0
e

2,0
e

5,0
e

0,0
e 1,0

e

s
s1

s2

s3

(a)

2

2
p

(b)

3

2
p

(c)

2
3p

3
3f

3

2
p

(d)

(e)

2
2p

1
1p

1
1p 3

5p

(f) (g) (h)

Fig. 11. Example of iterative mesh simplification

• for each three-to-one and two-to-one merging patch, the

valence of a parent vertex is decreased by one.

• for each edge flip, two vertices have their valence de-

creased by one, and two vertices have their valence

increased by one.

As a consequence, when several patches match a given edge

during the simplification step, we chose the patch that changes

the valence of the parent vertices to the more regular local con-

figuration. Figure 12 gives an example of such optimization:

two patches match the edge V1V2, the first one (figure 12.a)

leads to the creation of the face V1V2V4 in the simplified mesh.

The second patch (figure 12.b) leads to the creation of the face

V1V2V3. In the first case, V1 and V2 have their valence changed

to 6 for both vertices. In the second case their valence is also

changed to 5 for V1 and 7 for V2. As a consequence, the first

patch is chosen, so that the vertices have their valence well

balanced. With this connectivity-based optimization, the mesh

regularity increases during its simplification, and the proposed

scheme is considerably improved.

2) Geometry-based optimization: At this point in the paper,

the geometry of the input mesh M j is not taken into account.

Actually, the simplification is only based on the connectivity

of M j to construct the connectivity M j−1. Afterwards, the

geometry of M j−1 is obtained by approximating M j with

the proposed irregular wavelet decomposition. The wavelet

scheme is driven by the hierarchical relationship between

the connectivity of M j and the connectivity of M j−1, and

ensures the best possible approximation with the given hier-

archical dependency. Instead of the previous geometry-blind

simplification scheme, the approximation can be improved by

selecting which vertices to remove (the child vertices) and

which vertices to associate with them (their parent vertices) in

accordance with a geometric criterion. We propose here a two

1
V

2
V

2
V

3
V

4
V 4

V

1
V

(a)

1
V

2
V

3
V

4
V

3
V

1
V

2
V

(b)

Fig. 12. Connectivity-based optimization : the simplified face set is the gray
colored area. 2 three-to-one patches can be chosen to expand it. (a) V1, V2

and V4 are chosen to construct a new face in the simplified mesh. (b) V1,
V2 and V3 are chosen. The best choice between these two patches is the first
one, as it leads to valences equal to 6 for both vertices V1 and V2 instead of
valence 5 and 7 with the second choice

stage geometry-based criterion, that we call Wavelet Geometri-

cal Criterion (WGC), embedded in the inverse problem solver

as an additional constraint. When the solver tries to expand the

simplified face set, it labels vertices as parent vertices or child

vertices (with two associated parents). The constraint appears

when testing if a vertex V1 can be labelled as child vertex,

with V2 and V3 as parent vertices :

• We first verify if this labelling satisfies the connectivity
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Fig. 13. Geometrical criterion for mesh simplification: V1 is a sharp vertex
and cannot be removed properly if it has V4 and V5 as parent vertices. On
the other hand, it can be removed if its parent vertices are V2 and V3, since
this removal won’t change the geometry significantly.

constraints defined in section III.C. If these constraints

are not respected, then the request is rejected.

• If the connectivity constraints are well respected, then

the geometry of the mesh is taken into account. The first

geometrical criterion is the sharpness of V1: if V1 is not

a sharp vertex it can be labelled as child vertex without

any supplementary test, since its removal won’t change

the mesh geometry very much. We define V1 as a sharp

vertex if any dihedral angle between two neighbor faces

around V1 is superior to a given threshold tsharp.
• If V1 has been detected as a sharp vertex, one more test

has to be done with the proposed parent vertices V2 and

V3. We define the wavelet ratio Rw as:

Rw =
‖
−−→
V1V2 ∧

−−→
V2V3‖

−−→
V2V3

2 =
‖
−−−→
V1W ∧

−−→
V2V3‖

−−→
V2V3

2 (11)

where W is the midpoint of the edge V2V3. If Rw is

superior to a given threshold TWavelet, then V1 cannot

be labeled as a child vertex with V2 and V3 for parent

vertices. Note that even if the test is negative, V1 may be

further labeled as a child vertex with other parents than

the pair (V2, V3).

An example is shown in figure 13: we look forward to

removing V1, which is a sharp vertex. Its parents can be either

V4 and V5 or V2 and V3. For the first solution, Rw mainly

depends on the product
−−−−→
V1W45∧

−−→
V4V5 which is non negligible

as
−−−−→
V1W45 and

−−→
V4V5 are far from collinear. Then V1 cannot be

labeled as a child vertex with V4 and V5 as parent vertices. For

the second solution, Rw depends on the product
−−−−→
V1W23∧

−−→
V2V3

which is almost zero as
−−−−→
V1W23 and

−−→
V2V3 are almost collinear.

Tsharp and Twavelet are the two tuning parameters which

drive the geometric constraint during the simplification step.

Note that setting these thresholds too low could prevent the

merging algorithm from simplifying the mesh. However, in our

different tests, we used Tsharp = 0.3 rad and Twavelet = 0.2,
without any lockup. For the fandisk mesh, we set Twavelet =
0.2, which is a more selective threshold, because this mesh

is mainly made of perfectly flat surfaces and very sharp

edges. Figure 14 shows the different results obtained on the

”fandisk” mesh : the sharp edges sometimes disappear with the

(a)

(b) (c)

Fig. 14. Approximations of the ”fandisk” mesh: (a) original mesh (6475
vertices) , (b) mesh simplification without geometry criterion (2266 vertices)
: some sharp edges were removed, (c) mesh simplification with a geometric
criterion (2438 vertices): sharp edges are well preserved, keeping the visual
aspect of the approximation close to the original mesh.

connectivity-only based simplification algorithm (figure 14.b).

With WGC, the shape resulting simplified mesh (figure 14.c)

is much closer to the original mesh (figure 14.a).

E. An inner product for filter-bank construction

Once the simplified mesh connectivity has been constructed,

we have to compute its geometry, that is to calculate the

analysis filters Aj and Bj from which we can compute the

simplified mesh vertex coordinates. In sharp contrast with

Lounsbery’s scheme, due to the change of the subdivision

process, the inner product (5) has to be reformulated and

becomes:

< f, g >=
∑

τ∈∆(Mj)

Kj(τ)

area(τ)

∫

τ

f(s)g(s)ds (12)

where Kj(τ) is no longer a constant for a given resolution

level and changes with each face of the mesh. As an example,

a face split into 3 faces will have Kj(τ) = 3 and the three

resulting faces will have Kj+1(τ) = 1, taking into account

the differences between the triangle areas : the area of the

first face cited above will be approximately three times wider

than the last three. With this new inner product definition,

Lounsbery’s scheme can be extended to the calculation of the

analysis-synthesis filters as described in section II. Figure 15

briefly compares both approaches : a tetrahedron is regularly

subdivided in figure 15.a and irregularly subdivided in figure

15.b. The synthesis filter P 1 and the inner product matrix I0

are shown for both cases. We can see that both approaches

lead to similar matrices, the main difference being between

the inner product matrices.
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Fig. 15. Regular vs irregular subdivision of a tetrahedron : (a) regular case
where all the faces are quadrisected. (b) irregular case where a face is split
into four faces, two faces are split into three faces and one face is split in
two

IV. RESULTS

This section shows experimental results obtained by our

implementation. Our algorithm was able to build approxi-

mations for every mesh we tested on it. For any mesh of

genus 0 without boundaries, we were able to simplify it to

a tetrahedron. For other kinds of meshes, the size of simplest

approximation depends on the input mesh. As an example, the

Stanford Bunny, which has 5 holes, was reduced to a mesh

with 22 vertices, and the ”eight” mesh which has genus 2

was reduced to a mesh with 15 vertices. Figure 16 shows

some approximation levels obtained with the ”fandisk” mesh

(6475 vertices), with 2438, 1250, 648, 378, 230, 155 and 83

vertices, respectively. Figure 17 shows some results obtained

on ”bunny”, ”blob” and ”eight” : (a) is the original mesh, (b)

is the first approximation and (c) shows a mesh having about

10 times fewer vertices than the original. We can see that the

approximation remains good in low levels.

Table I compares the mean square error computed by the

Metro tool [3] for the first approximation level, with both

different configurations and several reference models. For each

mesh, we tried to change the size of the wavelet support,

to use a ”connectivity-only” simplification scheme or to use

WGC. Computation time is also given for the construction

of all the approximation levels of the ”bunny mesh” (not

only the first one), using an Intel Pentium III PC running at

500Mhz. The last two rows show the average error for the

collection, and the approximation error decrease over using

our algorithm without the lifting scheme and without any

geometric criterion. These figures show that using the lifting

scheme (0-ring wavelet support) decreases the error by more

than 30%, and that using the lifting for a larger wavelet support

does not improve the results significantly (32.1% for a 2-

ring wavelet support vs 31.7% for a 0-ring wavelet support),

while it decreases significantly the speed of the algorithm (40.2

seconds vs 14.5 seconds). Using WGC decreases the error by

19.5%, and combining the lifting scheme with WGC during

simplification improves the quality by 42.4%, if we use a 0-

ring or a 2-ring sized wavelet support. As a conclusion, the

most effective combination is the combination of the lifting

scheme for a 0-ring wavelet support WGC, for a fast and very

effective multiresolution analysis of irregular meshes.

V. CONCLUSION

We proposed the enhancement of the new scheme [19] for

multiresolution analysis on arbitrary meshes. In sharp contrast

with [5] and [9] where a resampling of the original mesh

is necessary, our scheme processes directly on the original

mesh. The irregular multiresolution scheme is an inverse

problem for which we proposed an efficient solution based

on the connectivity and the geometry of the input mesh.

The proposed method has many potential applications such

as mesh compression and progressive transmission [20], fast

rendering of 3D images, acceleration for volume extraction

and segmentation [13] and multiresolution mesh processing

algorithms as in [6].
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