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Abstract-This paper extends Lounsbery's multiresolution analysis wavelet-based theory for triangular 3D meshes, which can only be applied to regularly subdivided meshes and thus involves a remeshing of the existing 3D data. Based on a new irregular subdivision scheme, the proposed algorithm can be applied directly to irregular meshes, which can be very interesting when one wants to keep the connectivity and geometry of the processed mesh completely unchanged. This is very convenient in CAD (Computer Assisted Design), when the mesh has attributes such as texture and color information, or when the 3D mesh is used for simulations, and where a different connectivity could lead to simulation errors. The algorithm faces an inverse problem, for which a solution is proposed. For each level of resolution the simplification is processed in order to keep the mesh as regular as possible. In addition, a geometric criterion is used to keep the geometry of the approximations as close as possible to the original mesh. Several examples on various reference meshes are shown, to prove the efficiency of our proposal.

Index Terms-irregular meshes, wavelets, multiresolution.

I. INTRODUCTION

M ULTIRESOLUTION analysis of 3D objects is receiv- ing a lot of attention nowadays, due to the practical interest of 3D modeling in a wider and wider range of applications, such as Computer Graphics and Computer Assisted Design (CAD). Multiresolution analysis of these objects gives some useful features : several levels of detail can be built for these objects, accelerating the rendering when there is no need for sharp detail, and allowing progressive transmission. Another feature is that multiresolution analysis can be an efficient means of data compression. A survey of the existing methods used to simplify meshes, which is the first step for processing multiresolution analysis, was reported in [START_REF] Heckbert | Survey of polygonal surface simplification algorithms[END_REF]. We can briefly mention vertex decimation [START_REF] Soucy | Multiresolution surface modeling based on hierarchical triangulation[END_REF], edge contraction [START_REF] Hoppe | Progressive meshes[END_REF], wavelet based analysis [START_REF] Lounsbery | Multiresolution Analysis for Surfaces of Arbitrary Topological Type[END_REF], valence-based mesh simplification [START_REF] Alliez | Progressive encoding for lossless transmission of 3d meshes[END_REF], [START_REF] Cohen-Or | Progressive compression of arbitrary triangular meshes[END_REF]. We concentrated on the wavelet-based method, because wavelets are well-suited for multiresolution analysis. In [START_REF] Bonneau | Multiresolution Analysis on Irregular Surface Meshes[END_REF] an algorithm able to perform multiresolution analysis on irregular meshes is proposed, but it is restricted to planar or spherical meshes. The algorithm described in this paper can be applied to any manifold mesh, with any genus and any number of boundaries. In section II, we will briefly explain multiresolution analysis of meshes [START_REF] Lounsbery | Multiresolution Analysis for Surfaces of Arbitrary Topological Type[END_REF], and show its drawbacks in practical implementation, which we extend for irregular triangular meshes. Based on our recent work [START_REF] Valette | A multiresolution wavelet scheme for irregularly subdivided 3d triangular mesh[END_REF] we consider the inverse problem of wavelet scheme construction subdivided and (c) its geometry is enhanced to match a finer surface and both its connectivity and geometry optimization in section III. Section IV gives comparative results obtained with this new algorithm and a conclusion follows.

II. LOUNSBERY'S WAVELET BASED MULTIRESOLUTION

SCHEME

In wavelet decomposition, a mesh (for example a tetrahedron, see figure 1) is quaternary subdivided (figure 1.b) and deformed (figure 1.c), to make it fit the surface to be approximated. This quadrisection is also used for Loop subdivision [START_REF] Loop | Smooth subdivision surfaces based on triangles[END_REF]. These steps can be repeated depending on the required resolution levels.

Multiresolution analysis is computed with two analysis filters A j and B j for each resolution level j. The reconstruction (synthesis) is done with two synthesis filters P j and Q j . Let us call C j the v j × 3 matrix giving the coordinates of each vertex of the mesh M j having v j vertices (superscript j is the resolution level). Then we have :

C j-1 = A j .C j (1) D j-1 = B j .C j (2) C j = P j .C j-1 + Q j .D j-1 (3) 
D j represents the wavelet coefficients of the mesh, necessary to reconstruct C j from C j-1 . From a theoretical point of view, each column of the P j matrix (respectively the Q j matrix) is derived from a scaling function (respectively a wavelet function). These functions are defined on a 3D space fixed by the mesh topology.

To ensure the exact reconstruction of M j from M j-1 and D j-1 , the filter-bank must satisfy the following constraint:

A j B j = [P j |Q j ] -1 (4) 
To make the mesh approximation M j-1 as close as possible to the original mesh M j , the lifting scheme [START_REF] Sweldens | The lifting scheme : A custom-design construction of biorthogonal wavelets[END_REF] is used, which consists in constructing wavelet functions, starting from the hat function (this wavelet is called the "lazy" wavelet), orthogonal to the scaling functions which are hat functions too, but with a twice wider support. The main material for the lifting is the inner product between two functions defined by Lounsbery as:

< f, g >= τ ∈∆(M j ) K j area(τ ) τ f (s)g(s)ds (5) 
where ∆(M j ) is the set of triangles τ of the mesh M j and K j is a constant for a given resolution level j (K j = 4 -j) . Note that this definition assumes that the triangular faces of the mesh have the same area. As a consequence, the more the area of the mesh faces differs, the less accurate the approximation is. To reduce the computational cost of the algorithm and guarantee its linear complexity, the support of each wavelet function constructed for a particular vertex is restricted to a close neighborhood of the vertex, as depicted in figure 2. The more restricted the support is, the faster the algorithm will be to compute [START_REF] Stollnitz | Wavelets for Computer Graphics[END_REF]. In this paper, we used wavelets from their lazy version (figure 2.a) to their lifted version where the support is restricted to the 2-ring neighborhood of the considered vertex (figure 2.d).

Wavelets provide a powerful tool for multiresolution analysis of surfaces. However, the major drawback of Lounsbery's scheme is that faces are always merged four by four to construct the approximation. Then the high resolution mesh must have Loop subdivision connectivity. Note that Taubin proposed in [START_REF] Taubin | Detecting and reconstructing subdivision connectivity[END_REF] an algorithm to find if a given mesh has subdivision connectivity and to reconstruct its approximation by inverse Loop subdivision. If the mesh does not respect this connectivity constraint, one has to process a resampling of the mesh, known as remeshing, which results in a mesh having more faces than the original, as explained in detail in [START_REF] Eck | Multiresolution analysis of arbitrary meshes[END_REF] and [START_REF] Khodakovsky | Progressive Geometry Compression[END_REF]. The aim of this work is to overcome this difficulty by improving the subdivision process, as described in the next section.

III. A PROPOSAL FOR IRREGULAR MULTIRESOLUTION ANALYSIS

A. Avoiding the remeshing step

The aim of this paper is to provide a new method allowing multiresolution analysis directly on irregular meshes, avoiding the remeshing step, as shown in figure 3. This would result in two major improvements in multiresolution analysis on meshes:

• No extra computation is needed (for the remeshing) • The reconstruction of the mesh leads to a mesh identical to the original mesh. This allows progressive encoding. Applying the multiresolution scheme on irregular meshes requires the modification of the two main steps:

• The subdivision step, which gives the relationship between the different level meshes (connectivity) • The analysis-synthesis step, where the vertex coordinates of the lower resolution mesh and the wavelet coefficients are computed (geometry) These two modifications are described in details in the next two sections.

B. Modelling irregular subdivision scheme is an inverse problem

In the regular multiresolution scheme, the connectivity of all different level meshes depends on the lowest level mesh connectivity. Then the highest resolution level mesh connectivity has to be highly regular. Unfortunately, classically built meshes (for example, meshes built with the marching cubes algorithm [START_REF] Lorensen | Marching cubes : A high rresolution 3d surface construction algorithm[END_REF] or with [START_REF] Lotjonen | A triangulation method of an arbitrary point set for biomagnetic problem[END_REF]), are not regular and cannot be directly used. As a result, the subdivision scheme has to be changed, in order to allow every mesh to be processed. Based on our previous work [START_REF] Valette | A multiresolution wavelet scheme for irregularly subdivided 3d triangular mesh[END_REF], we propose an enhanced subdivision process, where the subdivision differs from one face to another.

In our scheme, each face of a mesh can be subdivided into four, three or two faces, or remain unchanged. Figure 4 depicts the possible cases of subdivision for one face.

1) The direct problem (subdivision): Taking a mesh M j having n j faces and v j vertices, we call S j a subdivision scheme applied to it, represented by a row vector s j containing n j elements (integers between 1 and 11), and describes the subdivision case for each face:

s j = [q j 1 q j 2 . . . q j n j ] (6) 
where 1 < q j k < 11, according to figure 4. M j+1 is then the result of the subdivision process: We define the merging ratio r j as:

S j (M j ) = M j+1 (7) 
r j = n j+1 n j (8) 
Note that:

1 ≤ r j ≤ 4 (9) 
There are 11 n j possible subdivision schemes, but not all of them lead to a manifold mesh, as shown in figure 5. The subdivision of the two faces in figure 5.a results in a manifold mesh, but in figure 5.b, the result is non-manifold.

2) The inverse problem (merging): In order to apply multiresolution analysis by the wavelet decomposition to a given mesh M j , one can find a mesh M j-1 and a subdivision scheme S j-1 satisfactory:

S j-1 (M j-1 ) = M j (10) 
This is a blind inverse problem. For maximum efficiency in compressing the mesh, we try to make the ratio r j-1 as near as 4. This consists in merging the faces of the mesh M j , leading to a mesh having the lowest possible number of faces. Figure 6 shows an example, where 15 faces are reduced to 6, resulting from merging 4:1 faces for G2, 3:1 faces for G3 and G6, 2:1 faces for G1 and G4 and keeping one face unchanged for G5. For this subdivision scheme, r j-1 = 15 6 = 2.5. Briefly, the simplification algorithm starts by selecting four faces, building a set of merged faces, and tries to expand this set by merging faces around it. Figure 7 shows the beginning of the expansion of the merged faces set (in gray), merging sequentially, 2:1 faces, 3:1 faces, and leaving one face unchanged.

G1 G2 G3 G6 G5 G4
During the simplified face set expansion, visited vertices are labeled as parent or child vertices. As the simplified face set grows over the input mesh, its boundaries may encounter each other, and the algorithm sometimes faces cases where it cannot merge some faces as wanted, because the faces don't match any expected irregular subdivision case. In these cases, a modification of the mesh is allowed. It consists in an edge flip between two neighbor faces, as shown in figure 8. Of course this modification information has to be stored, to recover the original mesh after subdivision and guarantee the reversibility of the simplification process.

We notice that this modification will introduce a quality loss in terms of mean squares error of the approximation of M j with M j-1 . But the difference between the original mesh and the modified mesh is small and experimental results show that this quality loss can be ignored. The next part describes the algorithm in detail. 

C. The merging algorithm

First, we have to define three codebooks, describing the different merge-split cases involved in the proposed algorithm:

• The Wavelet Codebook W = {p u t } . Figure 9.a describes the subdivision cases (1:1, 1:2, 1:3, 1:4). Superscript u denotes the order of subdivision (1:u). Note that u is also the number of faces in the patches.

• The Incident Codebook I = {f v e } Figure 9.b depicts all the cases of allowed edge flips combined with subdivisions. Superscript v denotes the number of faces for each patch.

• The Merge Codebook M = {g w l }. Figure 9.c shows how triangles are merged : each patch in the Wavelet Codebook or in the Incident Codebook has an associated merge patch in the merge Codebook. Note that every patch in the Wavelet Codebook is associated to g 1 1 . In these three codebooks, the white marked vertices are called parent vertices, and the black marked ones are called child vertices. Child vertices disappear during the mesh simplification, while the parent vertices are kept. One child vertex has always two associated parent vertices. Note that some constraints must be respected during the mesh simplification step, in order to keep this step reversible:

• A vertex can be labeled as a child vertex only if its valence is equal to 4, 5 or 6. • Some child vertices can share a parent vertex, but two vertices must never have the same parents (figure 10.a). • A vertex V 1 cannot have vertices V 2 and V 3 as parent vertices if the edge V 2 V 3 exists in the mesh (figure 10.b). • An edge flip cannot occur if the resulting created edge already exists (figure 10.c). With this material, one can build a reversible algorithm that can simplify a given mesh M j to a lower resolution one M j-1 .

Next is the description of the merging algorithm. First, we note as "matching" both the full search for the best match in the corresponding codebook and a test on the number of edges outside the merged region for each vertex to be removed. This number of outside edges must be one or two to prevent the algorithm from being stuck in a trap configuration (see example in figure 10.c). Then the merging algorithm consists of the following operations :

• Choose a seed triangle s. The seed triangle and its three neighbor triangles s 1 , s 2 and s 3 define the simplified face set F 0 = {s, s 1 , s 2 , s 3 } and the to-be-simplified face set F 0 with F 0 F 0 = M j . It also defines the boundary edge set E 0 = {e 0,k k=0...N 0 } as E 0 = F 0 F 0 . The integer N 0 is the number of edges on the boundary of F 0 minus 1 (as an example, N 0 = 5)
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Fig. 10. Forbidden simplification cases: (a) two vertices V 1 and V 2 have the same parent vertices V 3 and

V 4 ; (b) the vertex V 1 has V 2 and V 3 as parent vertices, but the edge V 1 V 2 exists; (c) the edge flip that would change V 1 V 5 to V 3 V 4 is not allowed as V 3 V 4 already exists in the mesh. On the other hand, flipping V 1 V 4 to V 2 V 5 is allowed • Set i = 0
• N i is the number of edges on the boundary of

F i minus 1 • While N i ≥ 0 do -For k=0 to N i -1: * select in the Wavelet Codebook p u m = (p v n match- ing F i at e i,k )/u = max(v) * if no match found : select in the Incident Code- book f w l = (f v n matching F i at e i,k )/w = max(v) -F i+1 = m selected p u m l selected f w l F i -Create M j-1
i+1 by merging each selected p u m and each f w l according to its associated patch in the Merge Codebook M = {g l w } -Set i = i + 1 -Define the to-be-simplified face set F i and the boundary edge set

E i = {e i,k } k=0...Ni such that F i F i = M j and E i = F i F i • M j-1 = M j-1 i
is then the new simplified mesh at resolution level j -1 Figure 11 shows an example of the progression of the proposed algorithm for a small triangular face set:

• The chosen seed triangle is shown in figure 11 e 0,0 and e 0,1 . Finally, the chosen patch for these edges is p 3 2 , for optimality. • figure 11.d depicts the algorithm configuration after the first loop. Three wavelet patches were selected: p 3 2 for e 0,0 and e 0,1 , f 3 3 for e 0,2 and e 0,3 , p 2 3 for e 0,4 and e 0,5 . The simplified face set F 1 is the gray colored region. In figure 11.e the resulting merged mesh M1 j-1 is shown. • figure 11.f : after the second loop, F 2 covers the entire face set except one face. Four new patches have been selected. • figure 11.g : F 3 covers the entire face set and the simplification step is complete. The final simplified mesh M j-1 is shown in figure 11.h.
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In this example, 20 triangles were merged into 10 triangles. Finally, the algorithm is very efficient for simplifying meshes. So far, we have not seen a mesh that we could not simplify efficiently. Note that the number of resolution levels (merging efficiency) depends on the choice of the seed triangle. However, in practice, we have observed only minor efficiency variations when choosing another seed triangle. Also, if the original mesh is a quadrisected one (i.e. it results from Loop subdivision), our algorithm finds the original base mesh in 25% of the cases. For 100% efficiency with quadrisected meshes as in [START_REF] Taubin | Detecting and reconstructing subdivision connectivity[END_REF], our algorithm would need to run four times with four different adjacent seed triangles 1 .

D. Optimizations

Although our algorithm is able to simplify every mesh we had in our possession, we improved it by introducing optimization constraints, leading to better results.

1) Connectivity-based optimization: For a given high resolution mesh M j , the optimal simplification would be obtained if all the faces of M j were merged four by four. This happens only when M j has a subdivision connectivity, where all child vertices have their valence equal to 6. Applying a new simplification step to M j-1 would lead to the optimal simplification M j-2 if M j-1 had a subdivision connectivity, where all child vertices again have their valence equal to 6. This recurrent demonstration leads us to the conclusion that optimal results are obtained when the input mesh has vertices with a valence equal to 6 most of the time. Unfortunately, natural meshes do not always have this kind of regularity, but our algorithm can be driven so that the approximation meshes are as regular as possible. Looking at the merge and incident codebooks defined in section 3, we can see that the valence of some parent vertices is changed after the simplification step : • for each three-to-one and two-to-one merging patch, the valence of a parent vertex is decreased by one. • for each edge flip, two vertices have their valence decreased by one, and two vertices have their valence increased by one. As a consequence, when several patches match a given edge during the simplification step, we chose the patch that changes the valence of the parent vertices to the more regular local configuration. Figure 12 gives an example of such optimization: two patches match the edge V 1 V 2 , the first one (figure 12.a) leads to the creation of the face V 1 V 2 V 4 in the simplified mesh. The second patch (figure 12.b) leads to the creation of the face V 1 V 2 V 3 . In the first case, V 1 and V 2 have their valence changed to 6 for both vertices. In the second case their valence is also changed to 5 for V 1 and 7 for V 2 . As a consequence, the first patch is chosen, so that the vertices have their valence well balanced. With this connectivity-based optimization, the mesh regularity increases during its simplification, and the proposed scheme is considerably improved.

2) Geometry-based optimization: At this point in the paper, the geometry of the input mesh M j is not taken into account. Actually, the simplification is only based on the connectivity of M j to construct the connectivity M j-1 . Afterwards, the geometry of M j-1 is obtained by approximating M j with the proposed irregular wavelet decomposition. The wavelet scheme is driven by the hierarchical relationship between the connectivity of M j and the connectivity of M j-1 , and ensures the best possible approximation with the given hierarchical dependency. Instead of the previous geometry-blind simplification scheme, the approximation can be improved by selecting which vertices to remove (the child vertices) and which vertices to associate with them (their parent vertices) in accordance with a geometric criterion. We propose here a two
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Fig. 12. Connectivity-based optimization : the simplified face set is the gray colored area. 2 three-to-one patches can be chosen to expand it. (a) V 1 , V 2 and V 4 are chosen to construct a new face in the simplified mesh. (b) V 1 , V 2 and V 3 are chosen. The best choice between these two patches is the first one, as it leads to valences equal to 6 for both vertices V 1 and V 2 instead of valence 5 and 7 with the second choice stage geometry-based criterion, that we call Wavelet Geometrical Criterion (WGC), embedded in the inverse problem solver as an additional constraint. When the solver tries to expand the simplified face set, it labels vertices as parent vertices or child vertices (with two associated parents). The constraint appears when testing if a vertex V 1 can be labelled as child vertex, with V 2 and V 3 as parent vertices :

• We first verify if this labelling satisfies the connectivity Fig. 13. Geometrical criterion for mesh simplification: V 1 is a sharp vertex and cannot be removed properly if it has V 4 and V 5 as parent vertices. On the other hand, it can be removed if its parent vertices are V 2 and V 3 , since this removal won't change the geometry significantly. constraints defined in section III.C. If these constraints are not respected, then the request is rejected.

• If the connectivity constraints are well respected, then the geometry of the mesh is taken into account. The first geometrical criterion is the sharpness of V 1 : if V 1 is not a sharp vertex it can be labelled as child vertex without any supplementary test, since its removal won't change the mesh geometry very much. We define V 1 as a sharp vertex if any dihedral angle between two neighbor faces around V 1 is superior to a given threshold t sharp . • If V 1 has been detected as a sharp vertex, one more test has to be done with the proposed parent vertices V 2 and V 3 . We define the wavelet ratio R w as:

R w = --→ V 1 V 2 ∧ --→ V 2 V 3 --→ V 2 V 3 2 = ---→ V 1 W ∧ --→ V 2 V 3 --→ V 2 V 3 2 (11)
where W is the midpoint of the edge V 2 V 3 . If R w is superior to a given threshold T W avelet , then V 1 cannot be labeled as a child vertex with V 2 and V 3 for parent vertices. Note that even if the test is negative, V 1 may be further labeled as a child vertex with other parents than the pair (V 2 , V 3 ). An example is shown in figure 13: we look forward to removing V 1 , which is a sharp vertex. Its parents can be either V 4 and V 5 or V 2 and V 3 . For the first solution, R w mainly depends on the product

----→ V 1 W 45 ∧ --→ V 4 V 5 which is non negligible as ----→ V 1 W 45 and --→ V 4
V 5 are far from collinear. Then V 1 cannot be labeled as a child vertex with V 4 and V 5 as parent vertices. For the second solution, R w depends on the product

----→ V 1 W 23 ∧ --→ V 2 V 3 which is almost zero as ----→ V 1 W 23 and --→ V 2 V 3 are almost collinear.
T sharp and T wavelet are the two tuning parameters which drive the geometric constraint during the simplification step. Note that setting these thresholds too low could prevent the merging algorithm from simplifying the mesh. However, in our different tests, we used T sharp = 0.3 rad and T wavelet = 0.2, without any lockup. For the fandisk mesh, we set T wavelet = 0.2, which is a more selective threshold, because this mesh is mainly made of perfectly flat surfaces and very sharp edges. Figure 14 shows the different results obtained on the "fandisk" mesh : the sharp edges sometimes disappear with the 

E. An inner product for filter-bank construction

Once the simplified mesh connectivity has been constructed, we have to compute its geometry, that is to calculate the analysis filters A j and B j from which we can compute the simplified mesh vertex coordinates. In sharp contrast with Lounsbery's scheme, due to the change of the subdivision process, the inner product [START_REF] Eck | Multiresolution analysis of arbitrary meshes[END_REF] has to be reformulated and becomes:

< f, g >= τ ∈∆(M j ) K j (τ ) area(τ ) τ f (s)g(s)ds (12) 
where K j (τ ) is no longer a constant for a given resolution level and changes with each face of the mesh. As an example, a face split into 3 faces will have K j (τ ) = 3 and the three resulting faces will have K j+1 (τ ) = 1, taking into account the differences between the triangle areas : the area of the first face cited above will be approximately three times wider than the last three. With this new inner product definition, Lounsbery's scheme can be extended to the calculation of the analysis-synthesis filters as described in section II. Figure 15 briefly compares both approaches : a tetrahedron is regularly subdivided in figure 15.a and irregularly subdivided in figure 15.b. The synthesis filter P 1 and the inner product matrix I 0 are shown for both cases. We can see that both approaches lead to similar matrices, the main difference being between the inner product matrices. This section shows experimental results obtained by our implementation. Our algorithm was able to build approximations for every mesh we tested on it. For any mesh of genus 0 without boundaries, we were able to simplify it to a tetrahedron. For other kinds of meshes, the size of simplest approximation depends on the input mesh. As an example, the Stanford Bunny, which has 5 holes, was reduced to a mesh with 22 vertices, and the "eight" mesh which has genus 2 was reduced to a mesh with 15 vertices. Figure 16 shows some approximation levels obtained with the "fandisk" mesh (6475 vertices), with 2438, 1250, 648, 378, 230, 155 and 83 vertices, respectively. Figure 17 shows some results obtained on "bunny", "blob" and "eight" : (a) is the original mesh, (b) is the first approximation and (c) shows a mesh having about 10 times fewer vertices than the original. We can see that the approximation remains good in low levels.

Table I compares the mean square error computed by the Metro tool [START_REF] Cignoni | Metro : Measuring error on simplified surfaces[END_REF] for the first approximation level, with both different configurations and several reference models. For each mesh, we tried to change the size of the wavelet support, to use a "connectivity-only" simplification scheme or to use WGC. Computation time is also given for the construction of all the approximation levels of the "bunny mesh" (not only the first one), using an Intel Pentium III PC running at 500Mhz. The last two rows show the average error for the collection, and the approximation error decrease over using our algorithm without the lifting scheme and without any geometric criterion. These figures show that using the lifting scheme (0-ring wavelet support) decreases the error by more than 30%, and that using the lifting for a larger wavelet support does not improve the results significantly (32.1% for a 2ring wavelet support vs 31.7% for a 0-ring wavelet support), while it decreases significantly the speed of the algorithm (40.2 seconds vs 14.5 seconds). Using WGC decreases the error by 19.5%, and combining the lifting scheme with WGC during simplification improves the quality by 42.4%, if we use a 0ring or a 2-ring sized wavelet support. As a conclusion, the most effective combination is the combination of the lifting scheme for a 0-ring wavelet support WGC, for a fast and very effective multiresolution analysis of irregular meshes.

V. CONCLUSION

We proposed the enhancement of the new scheme [START_REF] Valette | A multiresolution wavelet scheme for irregularly subdivided 3d triangular mesh[END_REF] for multiresolution analysis on arbitrary meshes. In sharp contrast with [START_REF] Eck | Multiresolution analysis of arbitrary meshes[END_REF] and [START_REF] Khodakovsky | Progressive Geometry Compression[END_REF] where a resampling of the original mesh is necessary, our scheme processes directly on the original mesh. The irregular multiresolution scheme is an inverse problem for which we proposed an efficient solution based on the connectivity and the geometry of the input mesh.

The proposed method has many potential applications such as mesh compression and progressive transmission [START_REF] Valette | A wavelet-based progressive compression[END_REF], fast rendering of 3D images, acceleration for volume extraction and segmentation [START_REF] Lotjonen | Model extraction from magnetic resonance volume data using the deformable pyramid[END_REF] and multiresolution mesh processing algorithms as in [START_REF] Guskov | Multiresolution signal processing for meshes[END_REF]. 
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 1 Fig. 1. subdivision-based geometrical refinement : (a) a base mesh is (b) subdivided and (c) its geometry is enhanced to match a finer surface
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 2 Fig. 2. Different wavelet examples : (a) lazy wavelet, (b) 0-ring support wavelet, (c) 1-ring support wavelet, (d) 2-ring support wavelet.
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 8 Fig. 8. An edge flip for two adjacent faces

  .a. F 0 = {s, s 1 , s 2 , s 3 }, and E 0 = {e 0 , e 1 , e 2 , e 3 , e 4 , e 5 } consists of the six edges surrounding F 0 . • Figures 11.b and 11.c show the patterns matching F 0 at
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 9 Fig. 9. Codebooks : (a) Wavelet Codebook W = {p u t }; (b) Incident Codebook I = {f v e }; (c) Merge Codebook M = {g w l }
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 11 Fig. 11. Example of iterative mesh simplification
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 14 Fig. 14. Approximations of the "fandisk" mesh: (a) original mesh (6475 vertices) , (b) mesh simplification without geometry criterion (2266 vertices) : some sharp edges were removed, (c) mesh simplification with a geometric criterion (2438 vertices): sharp edges are well preserved, keeping the visual aspect of the approximation close to the original mesh.
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 15 Fig. 15. Regular vs irregular subdivision of a tetrahedron : (a) regular case where all the faces are quadrisected. (b) irregular case where a face is split into four faces, two faces are split into three faces and one face is split in two

Fig. 16 .

 16 Fig. 16. Results on the Fandisk : (a) original mesh (6475 vertices), (b) to (h) : successive approximations meshes of 2438, 1250, 648, 378, 230, 155 and 83 vertices, respectively

TABLE I METRO

 I MEAN SQUARE ERROR (% OF BOUNDING BOX) FOR THE FIRST APPROXIMATION LEVEL

	Geometric criterion		No				Yes	
	Wavelet support	Without lifting 0-ring	1-ring	2-ring Without lifting 0-ring	2-ring
	Blob	0.1197	0.0947 0.0936 0.0937	0.1061	0.0876 0.0873
	Bunny	0.0309	0.0253 0.0249 0.0249	0.0287	0.0239 0.0236
	(time in seconds)	(11.7)	(14.5)	(19.8)	(40.2)	(13.6)	(16.4)	(41.4)
	Eight	0.3204	0.1828 0.1834 0.1816	0.3204	0.1828 0.1816
	Fandisk	0.1337	0.0992 0.0992 0.0996	0.0248	0.0348 0.0420
	Horse	0.0305	0.0252 0.0250 0.0250	0.0269	0.0228 0.0229
	Mannequin	0.0320	0.0238 0.0236 0.0236	0.0261	0.0257 0.0205
	Venus Head	0.0478	0.0377 0.0374 0.0373	0.0423	0.0341 0.0340
	Average	0.102	0.0698 0.0696 0.0694	0.0822	0.0588 0.0588
	Improvement	0	31.7% 31.9% 32.1%	19.5%	42.4% 42.4%

Note that a solution to obtain directly the original base mesh is proposed in[21] 
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