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Abstract: Off-line robot dynamic identification methods are mostly based on the use of the inverse dynamic model, 

which is linear with respect to the dynamic parameters. This model is sampled while the robot is tracking reference 

trajectories that excite the system dynamics. This allows using linear least-squares techniques to estimate the 

parameters. This method requires the joint force/torque and position measurements and the estimate of the joint 

velocity and acceleration, through the bandpass filtering of the joint position at high sampling rates. A new method 

called DIDIM has been proposed and validated on a 2 degree-of-freedom robot. DIDIM method requires only the 

joint force/torque measurement. It is based on a closed-loop simulation of the robot using the direct dynamic model, 

the same structure of the control law, and the same reference trajectory for both the actual and the simulated robot. 

The optimal parameters minimize the 2-norm of the error between the actual force/torque and the simulated 

force/torque. A validation experiment on a 6 dof Staubli TX40 robot shows that DIDIM method is very efficient on 

industrial robots. 



1. INTRODUCTION 

The usual identification method based on the Inverse 

Dynamic Identification Model (IDIM) and least-squares (LS) 

technique has been successfully applied to identify inertial 

and friction parameters of several robotic prototypes and 

industrial robots (M. Gautier 1986)(Ha et al. 1989) (M. 

Gautier 1997)(Swevers et al. 2007)(Wisama Khalil & 

Dombre 2002),  amongst others. Good results can be 

obtained provided a well-tuned derivative bandpass filtering 

of joint position to calculate the joint velocities and 

accelerations is used. 

The Direct and Inverse Dynamic Identification Model 

(DIDIM) method needs only the joint force/torque 

measurements (M Gautier et al. 2008). It is based on a 

closed-loop simulation using the direct dynamic model while 

the optimal parameters minimize the 2-norm of the error 

between the actual force/torque and the simulated 

force/torque, assuming the same control law. This non-linear 

least-squares problem is dramatically simplified using the 

inverse dynamic model to formulate the simulated 

force/torque as an algebraic function linear in relation to the 

parameters. This paper recalls the DIDIM method and gives 

new experimental results obtained using a 6 dof robot. 

The paper is organized as follows: section 2 reviews the usual 

identification technique of the dynamic parameters of the 

robot. Section 3 presents the DIDIM method. The modelling 

of the TX40 industrial robot is presented in section 4. The 

experimental results are given in section 5. Finally, section 6 

is the conclusion. 

2. IDIM: INVERSE DYNAMIC IDENTIFICATION 

MODEL TECHNIQUE 

The inverse dynamic model (IDM) of a rigid robot composed 

of n  moving links calculates the motor torque vector 
idm
τ , as 

a function of the generalized coordinates and their 

derivatives. It can be obtained from the Newton-Euler or the 

Lagrangian equations (Wisama Khalil & Dombre 2002). It is 

given by: 

= ( )  + ( , )
idm
τ M q q N q q    (1) 

Where q , q  and q  are respectively the  x1n  vectors of 

generalized joint positions, velocities and accelerations, 

( )M q is the  xn n robot inertia matrix, and ( , )N q q  is the 

 x1n vector of centrifugal, Coriolis, gravitational and 

friction forces/torques. The modified Denavit and Hartenberg 

notation allows to obtain a dynamic model that is linear in 

relation to a set of standard dynamic parameters, 
st

χ  (M. 

Gautier 1986): 

 idm st st
τ IDM q,q,q χ    (2) 

Where  st
IDM q,q,q   is the  x

s
n N

 
jacobian matrix of 

idm
τ , 

with respect to the  x1
s

N  vector 
st

χ  of the standard 

parameters given by
T

T T T
  ... 

1 2 n

st st st st
    

 
: 

T

j

j

st j j j j j j j j j j j j j off
  XX XY XZ YY YZ ZZ M X M Y M Z M Ia Fv Fc    
 

(3) 

where:      
j j j j j j

XX , XY , XZ , YY , YZ , ZZ
 

are the six 

components of the inertia matrix of link j  at the origin of 

frame j .   
j j j

MX , MY , MZ   are the components of the first 

moment of link j . 
j

M  is the mass of link j , 
j

Ia  is a total 

inertia moment for rotor and gears of actuator j . 
j

Fv , 

j
Fc are the viscous and Coulomb friction parameters of joint 

j . 
j

off
 is an offset parameter. 

The base parameters are the minimum number of dynamic 

parameters from which the dynamic model can be calculated. 

They are obtained from the standard inertial parameters by 
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regrouping some of them by means of linear relations (M 

Gautier 1991).  The minimal inverse dynamic model can be 

written as: 

 idm
τ IDM q,q,q χ    (4) 

 IDM q,q,q   is the  xn b matrix of the minimal set of basis 

functions of the rigid body dynamics, (5) 

χ   is the  xb 1  vector of the b  base parameters. 

Because of perturbations due to noise measurement and 

modeling errors, the actual force/torque   differs from 
idm
τ  

by an error, e , such that: 

 idm
τ e IDM q,q,q χ e       (6) 

Equation (6) represents the Inverse Dynamic Identification 

Model (IDIM).  We consider the off-line identification of the 

base dynamic parameters χ, given measured or estimated off-

line data for τ and    q, q, q  , collected while the robot is 

tracking some planned trajectories. 

   q, q, q   in (6) are estimated with    ˆ ˆq̂, q, q  , respectively, 

obtained by bandpass filtering the measure of q (M. Gautier 

1997).  

The actual force/torque, τ is calculated by : 

τ = gτ vτ (7) 

where v


 is the  xn 1  control signal vector calculated 

according to the control law and g


, is the  xnn  diagonal 

matrix of the drive gains. 

The inverse dynamic identification model (IDIM) (6) is 

sampled at a frequency measurement 
m

f , at different times 

k
t , 

m
k 1,...,n , while the robot is tracking a reference 

trajectory  r r r
q ,q ,q  , during the time length 

obs
T , of the 

trajectory. 

We obtain an over determined linear system of  * * 
obs m

n T f
 

equations and b  unknowns such that: 

   fm fm fm

ˆ ˆˆY τ W q,q,q χ ρ    (8) 

In order to window the identification frequency range into the 

model dynamics, a parallel decimation procedure lowpass 

filters in parallel 
fm

Y  and each column of  
fm

W  and 

resamples them at a lower rate, keeping one sample over 
d

n . 

We obtain: 

    ˆ ˆˆY τ W q,q,q χ ρ    (9) 

where:  Y τ  is the (rx1) vector of  measurements, built from 

the actual force/torque τ.  ˆ ˆˆW q,q,q   is the (rxb) observation 

matrix, built from the estimated values  ˆ ˆq̂ ,q,q   of    q, q, q  . 

ρ is the (rx1) vector of errors. r=n*nm/nd   is the number of 

rows in (9). In Y and W, the equations of each joint are 

grouped together such that: 

       
T T

T T T T
1 n 1 n

Y Y ... Y ,W W ... W
   

 
      

 (10) 

Y
j
 and W

j
 represent the nm/nd equations of joint j. The 

ordinary LS (OLS) solution χ̂  minimizes ρ

. Using the 

base parameters and tracking “exciting” reference trajectories 

(M. Gautier & W. Khalil 1992), we get a well conditioned 

matrix W. The LS solution χ̂  is given by: 

  
1

T T
χ̂ W W W Y W Y




   (11) 

Standard deviations 
i

̂
 , are estimated under the assumptions 

that W is a deterministic matrix  and ρ, is a zero-mean 

additive independent Gaussian noise, with a covariance 

matrix Cρρ, such that: 
T 2

ρρ ρ r
( ) σC E ρρ I   (12) 

E is the expectation operator and Ir, the rxr identity matrix.  

An unbiased estimation of the standard deviation 


  is: 

22

ρ
σ (r b )ˆ ˆY Wχ    (13) 

The covariance matrix of the estimation error is given by: 
T 2 T 1

χχ ρ
[( )( ) ] σ ( )ˆ ˆ

ˆˆ ˆC E χ χ χ χ W W


     (14) 

i

2

χ χχ
σ C ( )ˆ ˆ ˆ i ,i  is the i

th
 diagonal coefficient of 

χχˆ ˆ
C . The 

relative standard deviation 
ri

χ
% σ ˆ  is given by: 

ri i
χ χ i

% σ 100 σ χˆ ˆ
ˆ , for 

i
χ̂ ≠ 0 (15) 

The OLS can be improved by taking into account different 

standard deviations on joint j  equations errors (M. Gautier 

1997). Each equation of joint j  in (9), (10), is weighted with 

the inverse of the standard deviation of the error calculated 

from OLS solution of  the equations of joint j  , given by: 

    j j j j

j

ˆ ˆˆY τ W IDM q ,q ,q χ ρ    (16) 

This identification method is illustrated in Fig. 1. 

Robot

 

Inverse D ynam ic 

Identification M odel

ID IM

ˆ ˆˆID M q ,q ,q 
ˆ ˆˆ , , q q q  fm

ˆ ˆˆW IDM q ,q ,q 

Linear LS

2
ˆ min -Y W


   ˆ ˆˆ( ),  , ,  Y W IDM q q q  

 q t( )t
Control law

̂

 r r r
q ,q ,q 

obs
T

sampling ( )

 bandpass 

filtering

fm



lowpass filtering 

+ downsampling

sam pling(fm )

 fm
Y τ

 
Fig. 1. IDIM LS identification scheme. 

3. DIDIM: DIRECT AND INVERSE DYNAMIC 

IDENTIFICATION MODEL TECHNIQUE 

3.1 Theoretical approach 

DIDIM (M Gautier et al. 2008) is a closed loop output error 

(CLOE) method    which does not require joint position data. 
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The output, y=τ, is the actual joint force/torque τ, and the 

simulated output ys=τddm, is the simulated joint force/torque. 

τddm, is the force/torque input of the Direct Dynamic Model 

(DDM) which can be obtained by writing the IDM equation 

(1), as following: 

( , )  =  - ( , , )
ddm ddm ddm ddm ddm

M q q τ N q q    (17) 

Where ( , )
ddm

M q   and ( , , )
ddm ddm

N q q   depend on an 

estimation of the base parameters χ. 

The signal qddm(t, χ), is the result of the integration of the 

linear implicit differential equation. The optimal solution, ̂ , 

minimizes the quadratic criterion, J(χ) = ||Ys–Y||
2
.  

 Y τ  and   S ddm
Y τ are vectors obtained by filtering and 

downsampling the vectors of samples of the actual 

force/torque τ, and of the simulated force/torque τddm, 

respectively. 

This non-linear LS problem is solved by the Gauss-Newton 

regression. It is based on a Taylor series expansion of ys, at a 

current estimate k
χ̂ , of the parameters at iteration k: 

    +1 +1

k

k k k k

S S S
χ̂

ˆ ˆy ( χ ) y ( χ ) y ( χ ) / χ χ χ o       (18) 

   kS
χ̂

y ( χ ) / χ 
 

is the (nxb), jacobian matrix of ys, with 

respect to χ, evaluated at k
χ̂ . The input force/torque of the 

DDM, τddm, can be calculated with the analytical expression 

of the inverse dynamic model (4), such as: 

            s ddm idm ddm ddm ddm
y χ τ χ τ χ IDM q χ ,q χ ,q χ χ      (19) 

Then the jacobian matrix is given by: 

     

  

k k k

S ddm idm

ˆ ˆ ˆχ χ χ

k k k k

ddm ddm ddm

y

χ χ χ

ˆ ˆ ˆ ˆIDM q ( χ ),q ( χ ),q ( χ ) χ
χ

        
      

       
     





 

 (20) 

Because of the same closed loop control for the actual and for 

the simulated robot (see section B), the simulated position, 

velocity and acceleration have little dependence on χ .  Then 

   
k k k

ddm ddm ddm
ˆ ˆ ˆID M q ( χ ),q ( χ ),q ( χ ) IDM q ,q ,q     for any k

χ̂ , 

and the jacobian matrix (20) can be approximated by: 

 
 

k

S k k k

ddm ddm ddm

χ̂

y
ˆ ˆ ˆIDM q ( χ ),q ( χ ),q ( χ )

χ

 
 

 
 

   (21) 

Taking the approximation (21) of the jacobian matrix into the 

Taylor series expansion, it becomes: 

   
+1k k k k

ddm ddm ddm
ˆ ˆ ˆy ID M q ( χ ),q ( χ ),q ( χ ) χ o e      (22) 

This is the Inverse Dynamic Identification Model, IDIM, (6), 

where    q, q, q   are estimated with  ddm ddm ddm
q ,q ,q  , 

simulated from (17). At each iteration k, the IDIM method is 

applied as described in section 2. The sampling of (22) at a 

sampling rate fm, gives the over-determined linear system: 

   ,
k

fm fm ddm ddm ddm fm
ˆY τ W q ,q ,q χ ρ


    (23) 

The parallel decimation of (23) gives: 

   ,
k

ddm ddm ddm
ˆY τ W q ,q ,q χ χ ρ


    (24) 

The LS solution of  (24) calculates 
k 1

χ̂


 , at iteration k+1. 

This process is iterated until: 

 k 1 k k
tol

1
/  


   

tol1 is a value ideally chosen to be a small number to get fast 

convergence with good accuracy. 

  

r

r

r

q

q

q





 
 





Actual 

Robot

D irect D ynam ic M odel

 

  

k

ddm ddm

k

ddm ddm ddm

ˆM ( q , ) q

ˆN ( q , q , )



 









Linear LS

+1
min

2k
ˆ Y W




  

( )t

Control law

̂

  ˆ( ),  W , , ,
k

ddm ddm ddm
Y ID M q q q


  

obs
T

ddm


 q t

Control law

 

Inverse D ynamic 

Identification M odel

k

ddm ddm ddm
ˆID M q ,q ,q , 

 k

ddm ddm ddm
ˆID M q ,q ,q , 

( )t y 

ddm
q

Actual closed loop robot

Simulated closed loop robot

sampling ( )

lowpass filtering

downsampling

fm

 

Fig. 2. DIDIM, with the Gauss-Newton regression, 

identification scheme. 
 

Because this method uses both models DDM and IDIM, it is 

named the DIDIM method: Direct and Inverse Dynamic 

Identification Models technique. The DIDIM method with 

the Gauss-Newton regression is illustrated Fig. 2. 

3.2  Initialization of the algorithm 

A problem with non linear optimization algorithm is how to 

choose the initial values 0
χ̂ . We propose an algorithm not 

sensitive to the initial conditions, which assumes that the 

condition    ddm k ddm k ddm k
ˆ ˆ ˆq ( χ ),q ( χ ),q ( χ ) q ,q ,q    , is 

satisfied at any iteration k , starting with k=0. This is possible 

by taking the same control law structure for the actual robot 

and for the simulated one with the same performances given 

by the bandwidth, the stability margin or the closed-loop 

poles. Because the simulated robot parameters, k
χ̂ , change at 

each iteration k, the gains of the simulated control law must 

be updated according to k
χ̂ . 

For example, let us consider a PD control law for each joint j. 

The inverse dynamic model IDM (1) for the joint j, can be 

written as a decoupled double integrator perturbed by a 

coupling force/torque, such that: 

= ( ) 
j

j idm j , j j j
τ τ M q q p   (25) 

pj is considered as a perturbation given by: 

( )  ( , )

n

j j ,i i j

i j

p M q q N q q



      (26) 

Mj,i(q) which depends on q , is approximated by a constant 

inertia moment Jj, given by: 

 ( )
j j

j j a j , j j a
q

J ZZ I max M q ZZ I      (27) 
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Jj, is the maximum value, with respect to q, of the inertia 

moment around joint zj axis. This gives the smallest damping 

value and the smallest stability margin of the closed-loop 

second order transfer function, while q varies. It must be 

taken at least as ZZj + Iaj, which can be calculated from a 

priori CAD values. The joint j dynamic model is 

approximated by a double integrator, where pj, is a 

perturbation, as following: 

   ( )
j j j j , j j j j

q τ p / M q τ p / J     (28) 

Let us consider the joint j PD control of the actual robot 

which is illustrated Fig. 3: 

+
-

+
- j

a
g


jr
q

j

a

v
k

1

a

j
J

1

s

1

s
+

+

j

a

p
k

j
p

j

v
 j

q j
qj


j

qap

j

ap

j

J

g

 

Fig. 3. Joint PD control of the actual robot. 

The joint j , force/torque is given by: 

j j

a

j
g v
 

   (29) 

Where
 a

gtj is the actual drive gain, 
a
Jj is the actual value of Jj, 

ap
Jj

 
and 

ap
gtj are a priori values of  the actual unknown values 

a
Jj and 

a
gtj, respectively. 

If a priori values are equal to the actual ones, 
a
kpj and 

a
kvj are 

the PD control gains of the normalized double integrator 

system 1/s
2
. The closed-loop performances are chosen with 

the desired 2 poles of the second order closed-loop transfer 

function characterized by,  
d
ωnj, 

d
ζj, where 

d
ωnj is the desired 

natural frequency which characterizes the closed-loop 

bandwidth, 
d
ζj is the  desired damping coefficient which 

characterizes the closed-loop stability margin. It comes: 

2 
j

a d d

p nj j
k /    ,      

j

a d d

v j nj
k 2    (30) 

Now, let us consider the joint j PD control of the simulated 

robot which is illustrated Fig. 4.

 

+
-

+
- j

ap
g


jr
q

j

a

v
k

1

s

1

s
+

+

j

s

p
k

ddmj
pjddm

v


ddm j
q ddm j

qddmj


ddm j
qap

j

ap

j

J

g

1

k

j
Ĵ

k

j

ap

j

Ĵ

J

 

Fig. 4. Joint PD control of the simulated robot. 

The variables   ,   
j j j j j

ddm ddm ddm ddm ddm
v , q , q , q


   , in Fig. 4, are 

computed by numerical integration of  (17). The control law 

of the simulated robot has the same structure as the actual 

one, Fig. 3. It can be seen that the actual gain 
j

a ap ap

v j j
k J / g  

must be multiplied by 
k ap

j j
Ĵ / J in order to obtain the same 

normalized double integrator open-loop system 1/s
2
 and the 

same closed-loop transfer function. The proportional gain, 

j

s

p
k , does not depend at all on the parameters values, but the 

derivative gain in the simulator  must be updated with 
k

j
Ĵ , at 

each iteration k. This allows to keep 

   ddm k ddm k ddm k
ˆ ˆ ˆq ( χ ),q ( χ ),q ( χ ) q ,q ,q    , at each iteration k. 

We propose to take a regular inertia matrix 0
( , ) 

ddm
ˆM q  , in 

order to have a good initialization for the numerical 

integration of the DDM.  It can be obtained with: 

0
0̂  , except for, 0

1, 
j

Ia j 1,n   (31) 

The inertia of the rotor and gear of actuator j  is generally 

taken into account in the IDM model (1) as τ  
j

r j j
  Ia q  . 

Then, the initial inertia matrix becomes the identity matrix, 

which is the best regular matrix: 

0
( , ) =

ddm n
ˆM q I  (32) 

Another point is to choose the state initial condition of the 

state vector,  (0) (0)
ddm ddm

q ,q , in order to integrate the 

DDM. Because DIDIM doesn't need the joint position 

measurement, the actual values  (0) (0)q ,q , are supposed to 

be unknown and we choose, 

   (0) (0) (0) (0)
ddm ddm r r

q ,q q ,q  , which is close to
 

 (0) (0)q ,q . Because the closed-loop transient response due 

to different initial conditions differs between the actual and 

the simulated signals during a transient period of 

approximately, 5/
d
ωn, the corresponding joint force/torque 

samples are eliminated from the identification data in (23). 

4. CASE STUDY: MODELLING OF THE TX40 ROBOT 

The Stäubli TX-40 robot has a serial structure with six 

rotational joints. The robot kinematics is defined using the 

modified Denavit and Hartenberg notation (Fig. 5). 

The geometric parameters defining the robot frames are given 

in Table 1. The parameter j = 0, means that joint j is 

rotational, αj and dj give respectively the angle and distance 

between zj-1 and zj along xj-1, whereas j and rj give 

respectively the angle and distance between xj-1 and xj along 

zj. Since all the joints are rotational then j is the position 

variable of joint j.  

 
Fig. 5. Link frames of the TX-40 robot 
 

Table 1 Geometric parameters of the TX-40 robot 

j σj αj dj θj rj 

1 0 0 0 θ1 0 

2 0 -π/2 0 θ2 0 

3 0 0 d3 = 0.225m θ3 rl3 = 0.035m 

4 0 π/2 0 θ4 rl4 = 0.225m 

5 0 -π/2 0 θ5 0 

6 0 π/2 0 θ6 0 
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The TX40 robot is characterized by a coupling between the 

joints 5 and 6 such that 5 5

6 6

qr qK 5 0

qr qK 6 K 6

    
    
    

 

 
. Where 

j
qr is the 

velocity of the rotor of motor j, 
j

q is the velocity of joint  j, 

K5 is the transmission gain ratio of axis 5 and K6 is the 

transmission gain ratio of axis 6. Thus, the duality relation of 

force/torque gives 5 5

6 6

c r

c r

K 5 K 6

0 K 6

 

 

    
    

       

. Where, τcj is the 

motor's torque of joint j, taking into account the coupling 

effect, τrj is the electro-magnetic torque of the rotor of motor 

j. The coupling between joints 5 and 6, also adds to the effect 

of the inertia of rotor 6 and new viscous and Coulomb 

friction parameters fvm6 and fcm6 to both τc5 and τc6.  

We can write:    sign( )
5

c 5 6 6 6 6 6 6
Ia  q fvm  q fcm   q       and 

   sign( )
6

c 6 6 5 6 5 6 5
Ia  q fvm  q fcm   q       .  

Where τ5, τ6 already contain the terms 

  
j j j j j j

( Ia q fv q   fc sign( q ))    , for j=5 and 6 respectively, 

  
2 2

5 5 5 6 6
Ia K Ja K Ja   and 2

6 6 6
Ia K Ja  (33) 

Jaj is the moment of inertia of rotor j, fvm6, fcm6 are the friction 

parameters due to the coupling between joints 5 and 6. 

The TX40 has Ns=86, standard dynamic parameters given by 

the 14*6 usual standard parameters (3), plus  fvm6 and fcm6. 

For IDIM-LS method, we use the standard inverse dynamic 

model (2). The columns of the matrix  st
IDM q,q,q   in (2) 

can be obtained using the recursive algorithm of Newton-

Euler. We use the software SYMORO+ to automatically 

calculate the customized symbolic expressions of the models 

(Wisama Khalil & Dombre 2002). The base parameters χ and 

the minimal model (4) are automatically calculated using a 

QR numerical method (M Gautier 1991). The matrices 

( , )
ddm

M q   and ( , , )
ddm ddm

N q q   are numerically calculated 

using the IDM model (1), ( ,  
idm
τ q q , q )  , for special values of 

,  q q , q  . 

5.  EXPERIMENTAL RESULTS 

The identification of the dynamic parameters has been carried 

out using one trajectory using the controller CS8C of the 

Stäubli robots. The joint positions and torques are stored with 

a sampling frequency measurement fm=5KHz. The IDIM-LS 

off-line estimation is carried out with a filtered position q̂ , 

calculated with a 50Hz cut-off frequency forward and reverse 

Butterworth filter, and with the velocities q̂ , and the 

accelerations, q̂ , calculated with a central difference 

algorithm of q̂ .  The parallel decimation of Yfm
 
and Wfm, in 

(8), is carried out with a sample rate divided by a factor, 

nd=100, and a lowpass filter cut-off frequency equal to, 

0.8*fm/(2*nd)=20Hz. There are 60 base parameters which can 

be simplified to 23 well identified essential parameters with 

good relative standard deviation. 

The DIDIM method is initialized with all the standard 

parameters equal 0 except Iaj=1, j≠5and Ia5=2, due to the 

coupling effect (33). The simulation is carried out with the 

actual stored reference trajectory and the CS8C controller of 

the TX40, with updating the gains with k ap

j j
Ĵ / J , and using 

the simulink software.  

A step of DIDIM takes 7' on a 2008 working station PC 

computer.  The results are given in Table 2. 
Table 2: DIDIM Estimation after 2 step 

Parameter 1
̂  

r
χ

% σ ˆ  Parameter 1
̂  

r
χ

% σ ˆ  

ZZ1R 1.30 0.65 Fv3 2.37 1.2 

Fv1 8.71 0.8 Fc3 6.6 2.0 

Fc1 7.69 2.5 Ia4 0.029 5.0 

XX2R -0.53 3.6 Fv4 1.0 1.2 

XZ2R -0.16 7.2 Fc4 2.47 2.2 

ZZ2R 1.09 0.8 Ia5 0.053 12.0 

MX2R 2.11 0.4 Fv5 2.52 2.3 

Fv2 7 1.1 Fc5 2.77 5.0 

Fc2 7.74 1.7 Fv6 0.72 2.7 

ZZ3R 0.14 3.7 Fc6 0.9 8.0 

MY3R -0.64 1.8 fvm6 0.8 2.4 

Ia3 0.083 7.1 fcm6 1.6 4.4 

It needs only 1 step to obtain the optimal solution which is 

very close to the IDIM solution. Hence, the DIDIM method 

has a very fast convergence. A validation is plotted on Fig. 6, 

at the decimated frequency 50Hz. It shows that the actual 

joint torques, Y(τ), and the torques estimated with the 

identified model,  ,
1 1

e ddm ddm ddm
ˆ ˆY W q ,q ,q


    , as defined 

in (24) are very close. Both methods, IDIM-LS and DIDIM, 

give a small relative norm error, ˆY W / Y <3%, which 

shows a good accuracy for the model and for the identified 

value.
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Fig. 6. DIDIM, validation, red line: actual torque, blue line: estimated torque,  ,
1 1

e ddm ddm ddm
ˆ ˆY W q ,q ,q


    . 
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Fig. 7. Simulation of the TX_40 with simulink, red line: CS8C controller, black line: the direct dynamic model. 

6. CONCLUSION 

This paper deals with a new off-line identification technique 

of robot dynamic parameters, called DIDIM for Direct and 

Inverse Dynamic Identification Models technique. This 

method is a closed-loop Output Error approach, considering 

the output is the joint force/torque. The optimal parameters 

are the solution of a non-linear least-squares problem which 

is solved with a Gauss-Newton method. Each step of the 

iterative procedure of the Gauss-Newton regression is 

dramatically simplified to a linear regression which is solved 

with the Inverse Dynamic Identification Model technique 

(IDIM). In this paper we prove that DIDIM is very efficient 

on a 6 dof industrial robot, with a 1 step convergence starting 

with a regular initialization of the parameters. 
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