Strengthening of silica gels and aerogels by washing and aging processes
Abstract
Gels were prepared from a polyethoxydisiloxane precursor by using HF as a catalyst. During washing in water solution a significant increase in the permeability of the gels was observed, showing that dissolution-reprecipitation occurs. After washing, the gels were further soaked in a solution of polyethoxydisiloxane precursor to strengthen and stiffen the gel. As expected, a significant enhancement of the mechanical properties of the wet gels was observed. It is also interesting to note, however, that the permeability does not decrease below the value for the as-prepared gels. Hence, a promising process has been developed where both the stiffness and the strength have been increased as well as the permeability. The increase in permeability is of importance to facilitate the supercritical drying process. Reasonably successful scaling up of the supercritical drying of these gels to laboratory scale has been achieved, and monolithic and transparent gels are obtained. Optical properties have been measured on laboratory scale aerogels. The corresponding results have been correlated with structural characteristics measured by small-angle X-ray scattering (SAXS).