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Abstract

A symplectic, symmetric, second-order scheme is constructed for particle evolution in
a time-dependent field with a fixed spatial step. The scheme is implemented in one
space dimension and tested, showing excellent adequacy to experiment analysis.
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1. Introduction

Particle motion in a space-time dependent field is a classical fundamental problem of
dynamics. It is generally well solved in most settings under most kinds of requirements.
However, most solutions deal with formulations of the dynamics where the independent
variable is time, viz. they aim at computing a function y such that the motion reads
x = y(t). Yet in some settings one actually describes motion by the reciprocal function
7 =y, so that the motion reads t = 7(x).

One such instance is the propagation of electrons in a traveling wave tube, where
it is natural to record particles when they pass at a fixed probe location, instead
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of getting a snapshot of their locations at a given time. Similar physical contexts
are met in other particle beam devices, such as accelerators, klystrons, free electron
lasers, electronic tubes for wave amplification,...[[3] To some extent, this description
is somewhat analogous to Eulerian descriptions of flows in hydrodynamics.

For this purpose we reformulate in Section P the particle equations of motion, using
the streaming variable x as independent variable (see figure [). Since the original
particle dynamics is hamiltonian, we ensure that the new description be symplectic
by first expressing the action principle in terms of the timetable function 7. In the
corresponding hamiltonian picture, the variable conjugate to 7 is the energy (, and the
generator of motion is momentum P.

In Section B we construct a first order symplectic scheme for the particle motion.
The implicit part of the step can be performed either through algebraic solution of a
cubic equation, or through a Newton iteration : we compare both procedures. Next
we construct the adjoint, first order symplectic scheme, which also requires a Newton
iteration, and we check its accuracy. Finally, we combine the direct and adjoint schemes
to obtain a second order symmetric, symplectic, fixed Az scheme, which we compare
with the classical fixed At leapfrog scheme.

In Section fl we benchmark our algorithm by analysing the particle motion in the
field of a single harmonic wave, viz. we solve the pendulum motion in a galilean frame.
Numerical simulations for realistic beam data generate beam deformations shown in
Section .

Section [j focuses on the evolution of a beam launched in presence of two harmonic
waves. Simulations are confronted with experimental observations of the beam col-
lected at the device outlet. Special attention is paid to the reproduction of a devil
staircase structure, characteristic of the chaotic behaviour of the system, taking into
account the finiteness of the experimental device.

In summary, experimental data often relate to limited interaction times, while
numerical evidences and theoretical discussions of chaotic dynamics often deal with
trajectories followed for long times in a compact domain of phase space. The agreement
of our simulations with experimental evidence assesses the relevance of our algorithm
to such experimental settings.

2. Evolution with respect to space

Rewriting the equations of motion in hamiltonian form with respect to space is
straightforward in the symplectic formalism (see Section R.4). However one may wish
first a more pedestrian derivation, from the elementary action principle.



2.1. Lagrangian viewpoint

The action for a non-relativistic particle with mass m moving along a one-dimensional
axis Oz in a time dependent potential V' (x,t) reads

smhmmwﬂzfﬁwwwmww 1)

to

where y is a continuously differentiable function of time ¢ € [tg, ;] C R, subject to the
constraints y(ty) = o and y(t;) = x1, and the dot denotes derivative with respect to

t. The lagrangian is
2

L(z,v,t) = % —V(a,t). 2)

In the following we restrict all trajectories to the class of strictly monotone, increasing
functions, viz. infy, <4, y(t) > 0. For these functions the reciprocal function 7 :
(g, x1] — [to,t1] : © — 7(x) exists ; 7 is unique and also strictly monotone, increasing,
continuously differentiable with

~—
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where the prime denotes derivative with respect to x.
To rewrite ([l) as a space-integral, we introduce the new lagrangian

L(t,u,x) = L(z, i,t)u (4)

so that

S[7; w0, 11, t0, t1] 1= S[T 7 to, t1, 0, 71] :/ L(7(z), 7 (x),z)dx. (5)

zo

It is convenient to introduce the opposite to the (usual definition of) canonical mo-
mentum conjugate to 7,

oL

(=- (6)

and to perform the Legendre transform of —L, defining

P, t,x) := (1 + L(t, 7, x) (7)



so that in the new variables the canonical Hamilton equations read

dr oP
a¢ oP
&~ or ®)
For the classical lagrangian (B) the new variables read
m
¢ = o2t Viz,7(x)), (10)
P o= V2m(( = V(7). (11)

viz. the usual energy and linear momentum.

2.2. Hamiltonian viewpoint

The hamiltonian formulation of dynamics provides a direct path to the latter equa-
tions. Indeed it suffices to consider the symplectic 2-form

dw := dpdz — dHdt (12)

where p = my is conjugate to x and H = ( is conjugate to ¢, and to consider x as the
independent variable along trajectories instead of £. The minus sign we introduced in
(B)-([) ensures the usual signs in dw.
Of course, if the potential does not depend explicitly on time, ( is a first integral.
The above requirement, that y nowhere vanishes, will be strengthened below by
imposing P > puin > 0 for some pyi, to ensure appropriate numerical accuracy.

3. Discrete time canonical transformations

To preserve the symplectic structure while integrating ([[())-([[1]) we use a sequence
of canonical transformations. Note that ([) does not allow using a splitting method
(such as leapfrog), as it is not the sum of integrable generators. Given the fixed spatial
step Az, our first integrator Fa, : (7,(,x) — (7, Cox+ Ax) is generated by

F(1,{) = ¢+ P(1,(, x) Az (13)

so that
= (+0.P(r.¢,2)Ax (14)
F o= 7+ 0P(r,¢,x)Ax . (15)
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Figure 1: Sketch of the algorithm principle in (z,t) plot. The continued line is a trajectory. Crosses
are positions, obtained by leap-frog with constant time step, circles mark times obtained by our
approach with constant space step.

The first equation is implicit with respect to the energy Q: . For the special case of
momentum ([I]), it actually leads to a cubic equation,

C = (V4208 + (2VC + ) = V¢ = Z(0,V)?Aa” =0, (16)

which can be solved algebraically for 5 . Here V and 0,V are computed at (z, 7).
Equation (@) usually has three real solutions, two of which being Az-close to ¢ : the
appropriate root is such that (¢ — Q: )0,V > 0. However, it is numerically advantageous
to express ([4) in the form ¢ = ¢ + (( — V)o with

o=—a(l+o0)"'/? (17)

and
a=+m/2(¢—V)3?0,VAx (18)
calculated at (x,7). The fixed point equation ([[7) is easily solved by the Newton
method, which converges very fast and does not require many algebraic manipulations.
Analytically, this method stresses the small parameter a controlling the accuracy of
our scheme : it involves a balance of the potential evolution 0,V and the spatial step
Az against (¢ — V'), viz. against the particle velocity P/m. For small velocity, the
algorithm deteriorates — at worst it will miss turning points where P changes sign
(which is forbidden by our assumptions on trajectories in the action principle).
Let 28 ¢ (1.¢,x) = (r,{,x) and ZX_ : (7,¢,2) = (7,(, ) denote respectively
the cubic and Newton solvers. For perfectly accurate computations, they coincide and



Vin 5C 5Csimulation 57— 57—simulation
2510.16 | 6-1074 0.02 | 0.005
1.5]0.1119-107* |0.10 | 0.03

0.9 0.10 | 0.008 8 0.5
0620 |0.1 12 )
0413 0.3 70 16

Table 1: The largest single step error for five particles with different starting speed launched in the
field of a single wave with A =0.1, k =0.2, vg =1, ¢ = w/4.

may be denoted identically Za,. Note that Za, is not symplectic, as
det DZx,(7,¢,2) = [1+ 00 P(1, ¢, x)Ax] L. (19)

With the new energy ¢, ([3) provides immediately the new time, defining the map
Taz @ (1,¢,z) — (7,(,x). This map is not symplectic either, as

det DTa. (7, ¢, @) = 1 4 0:0,P(7,(, x) A . (20)

Finally, we advance position, with Za, : (7,{,x) — (7,(,z + Az). The resulting
integration schemes ]_-ggzc = Tp,0Taz0 28, and FSJEN = Ta,0Tar0 ZX, are symplectic
by construction, within the accuracy of the approximation to Za,. They are first order
only.

The variables advanced with ([[4) and ([[) are in the form

1
T2 r4+7Ax+ %AxQ +0(Az?) (21)
B "
¢ = CHArt AL +0(A), (22)

where 7" and ¢’ have been approximated with —0,P(r, ¢, x) and O P(T, ¢, x). It follows
that the most influential theoretical error, in every step of integration, is given by
7" Az/2 for 7 and ("Axz/2 for . Table [[ compares the upper estimated theoretical
errors, related to 7”7 and ¢”, and the maximum real simulation errors for five particle
initial velocities. Slow particles are found affected by larger errors as expected.

To obtain a second order, symmetric scheme, we consider the adjoint map [[I],
which is also symplectic, generated by the function

F*(7,() =7¢ = P(7,(,z + Ax)Ax (23)
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so that

T = T—0/P(7,(,x + Azx)Ax, (24)

¢ = (—0,P(7,¢,x+ Azx)Ax. (25)

For momentum ([L1]), both equations involve the potential V' (z + Az, 7), which implies
that one first solves (4) with respect to the new time 7 by a Newton algorithm, and
then computes the new energy ¢ by (B). This defines the symplectic map Z%, o Tz, o
Tno : (1,¢,x) = (7, + Az).

One easily checks that Za, is self-adjoint, while ZX, 0 Z_a, and 73, o T_a, reduce
to identity up to numerical tolerance.

Finally the composition

ffﬁ = Z70/2° Tazy2 © Law © Tazs2 © Zaa)2 (26)

is its own adjoint. It is thus symmetric and therefore second order [[L].

4. Validation : particle dynamics in a single wave

We test our schemes with the time dependent potential of a wave
V(z,t) = Acos(kx — kvt + ¢) (27)

where A, k,v, ¢ are respectively the amplitude, wavevector, phase velocity and phase
of the wave. Rescaling energy (and amplitude), space and time enables one to set
m, k and v to unity, and the choice of the origin of time or space eliminates ¢. Its
integrability makes this dynamics a good benchmark.

The accuracy of the determination of the adjoint map is checked by iterating first
Fag for Az = 0.01 from = = 0 to z = L = 300, and then F*,, from z = L to z = 0,
for five particles. Figures [J display the discrepancies A{ and A7 as functions of x for
each particle and confirm that F*,, o Fa, to numerical accuracy. The order of the
algorithms and their accuracy is further analysed in figure [J, comparing the first order
and second order schemes for the motion of a particle with initial velocity v;, = 1.5 in
the field of a wave with A =0.1,¢ =7,k = 0.2,v, = 1 over a length L = 100.

5. Beam dynamics in a single wave

A second accuracy check is provided by the Poincaré section of the beam by the
positions xmod L = 0. The return map for (7,() variables is symplectic. As the

7



Figure 2: Discrepancy, between direct evolution Fa, and backward evolution F* ., for energy and
arrival time as functions of position, for five particles in the field of a single wave with A = 0.1,
k=0.2,v4 =1, ¢ = . Particles injected at the origin at ¢ = 0 with velocities 0.6, 1.1, 1.5, 2 and 2.5.

erreur
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Figure 3: Numerical accuracy for the first order algorithm (red, upper lines) and second order (blue,
lower lines) versus calculation time per spatial unit length. Continued line for the Newton method
solution to the cubic equation, dashed line for Matlab built-in polynomial solver.
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Figure 4: (left) Poincaré section in (7, {) variables, of the return map after one wavelength L. Trajecto-
ries for five trapped particles injected with v;, = 1.8,1.85,2,2.1,2.25, for five untrapped particles with
vin = 1.4,1.5,1.6,1.7,2.3, and for one particle injected on each separatrix branch. Wave parameters
A =0.02,v5 =2,k =0.2,¢ = 7 ; particle mass m = 1. (right) Exact section lines (@)

particle motion is integrable (it reduces to the pendulum by a Galileo transformation
to the reference frame comoving with the wave), each orbit must generate section
points on lines satisfying the algebraic relation

(mv3 + H) -

(= — + v¢\/2mH —2mAcos(k(z — vyT) + @) (28)
where H is a constant. In particular, the motion on the wave separatrix corresponds to
H = A. For H > A, this relation defines two branches for all times 7, which correspond
to faster or slower circulating particles, while for H < A the relation defines the upper
and lower part of trapped motion inside the wave’s cat eye. Figure ] shows that
numerical trajectories perfectly reproduce these lines.

To assess the relevance of the algorithm to experiment we also follow the deforma-
tion of a beam of electrons injected in a single wave, e.g. in a traveling wave tube. As
particles are accelerated or decelerated by the wave, the beam velocity profile is de-
formed. We thus inject N particles at x = 0, equally distributed over one time period
of the wave, and plot the histogram of particle velocities as a function of abscissa .

In figure || a cold beam is made of particles injected resonantly with the wave
velocity, v, = vy, = 1, with m = k = 1. The wave amplitude, A = 0.002, determines
the bounce frequency w, = vVkA so that particle oscillations in the wave trough have a
spatial period Ly, = 27v,/wy, = 140.5. The particles bounce indeed and, in agreement
with the rotating bar approximation [[4], most of them reconvene every L /2. Only
the ones injected at times close to (¢ +2mn)/(kvy) (for integer n) enter the wave close
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Figure 5: Velocity distribution function of particles along the x axis, injected at the wave phase
velocity, vp = vy = 1, with m = k = 1 and wave amplitude A = 0.002.

Figure 6: Velocity distribution function of particles along the x axis, when injected at v, = 1.6 (upper
left), vp = 1.5 (upper right), v, = 1.4 (lower left) and v, = 1.3 (lower right), above the wave phase
velocity, vy = 1, with m = k = 1 and wave amplitude A = 0.04. White lines mark the cat’s eye
boundaries vg + 2v/A =14 and Vg — 2vA = 0.6.
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to the X point and follow closely the inner side of the cat eye separatrix. The time
these particles need to overcome half a wavelength can be arbitrarily long, so that they
mark the boundary of the wave resonant domain at velocities vy £ 24/ A/m.

For particles injected with a velocity outside the wave cat’s eye, the beam is mod-
ulated. A significant difference between (x,v) plots for propagating beams and the
more familiar (z,v) Poincaré sections of particle-in-wave dynamics (see e.g. [0, B, B])
is the asymmetry between faster and slower particles, obvious in Figure .

In particular, for particles injected with a velocity above the wave cat’s eye, the
beam is moderately asymmetric. But for a particle injection velocity within the capture
range [vy — 21/ A/m, vy + 24/ A/m], the picture gets strongly deformed, as part of the
beam is trapped as in figure ] while part of it moves outside the wave cat’s eye.

6. Particle dynamics in two waves : resonance overlap and chaos

The motion of a particle in the field of two waves is a paradigm of hamiltonian
chaos. In our formulation, Poincaré sections are given by z mod L = 0, and the return
map is symplectic, hence area-preserving in conjugate variables (7, (). Figure [] displays
this Poincaré section, showing the growth of the chaotic domain for increasing wave
amplitudes, and the destruction of KAM tori [I{].

The corresponding transition to large scale chaos by increasing the resonance over-
lap parameter s = 2(v/A; + v/A3)/(Juga — vg1|y/m) is also observed by recording the
particle velocities at a fixed traveled distance L, after being injected at a fixed velocity
Uip. As seen in figures ff, a cold beam injected in a wave cat’s eye spreads over the
velocity interval spanned by this cat eye, and if the beam is injected outside cat eyes
it remains confined between the velocities of KAM tori on either side. Beam velocity
spreading (also called heating) has been used to diagnose resonance overlap, and our
numerical scheme is compared with experimental data [[] in figure §.

Moreover, the transition to large scale chaos in phase space is known to occur step-
wise. For increasing wave amplitudes, successive KAM tori get destroyed, so that the
beam invades velocity domains resulting from the merging of capture regions corre-
sponding to “secondary” resonances [[(]. The accessible velocity interval for the beam
injected in one wave then grows like a devil’s staircase, the higher steps corresponding
to the merging with major secondary resonances. Figure [ compares these domains
obtained both numerically and experimentally [[3, B, f]. While experimental data
are blurred due to recording accuracy, numerical data have limited resolution due to
the large number of particles (here only 25000) needed for the sharp observation of a
threshold. Nevertheless, the agreement is quantitatively satisfactory.
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Figure 7: Poincaré section in (7, {) variables, of the return map after one wavelength L, for 15 particles,
with mass m = 1. Wave parameters are k1 = 1, ko = 1/2, vg1 = 1, vg2 = 2, ¢1 = ¢2 = w. Wave
amplitudes Ay = A, are chosen so that overlap parameter is s = 0.5 (top left), 0.66 (top right) and 1
(bottom).
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Figure 8: Velocities of particles after interaction with two waves, versus injection velocity. (top)
Experimental data with dotted lines marking cat eyes boundaries ; (bottom) numerical results. (left)
Non-overlapping cat eyes, s = 0.63 ; (right) overlapping trapping domains, s = 1.5.
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Figure 9: Velocities of particles after interaction with two waves, versus amplitude of waves A; = As.
Cold beam injected at phase velocity of one wave. (left) Numerical results for vy, = vg1 = 1.1487,
vp2 = 0.8609, k1 = 0.6529, ko = 1.7424. (right) Experimental data.
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7. Conclusion

The scheme has proved its relevance to describe accurately particle motion in a
given field, along a single space dimension. It also provides new pictures of known
behaviours, which complement more familiar, usually more symmetric plots in (z,v)
space.

Extending our approach to three space dimension is rather straightforward provided
the particles stream along a given coordinate, say x. More challenging is the issue
raised by the particle feedback on the wave field, calling for a self-consistent space-
based model of particles and waves evolution, in the spirit of models used for weak
plasma turbulence [§].

It will also be interesting to apply this scheme to model the many-waves regime of
weak plasma turbulence, where particle velocity undergoes a chaotic transport over a
wide range [B, [, B, [1], as the properties of this transport are still controversial.
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