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We consider the following 2 + 1-dimensional analog of the KdV equation (Novikov-Veselov equation):

∂ t v = 4Re 4∂ 3 z v + ∂ z (vw) -E∂ z w , ∂ z w = -3∂ z v, v = v, E ∈ R, v = v(x, t), w = w(x, t), x = (x 1 , x 2 ) ∈ R 2 , t ∈ R, (1.1)
where

∂ t = ∂ ∂t , ∂ z = 1 2 ∂ ∂x 1 -i ∂ ∂x 2 , ∂ z = 1 2 ∂ ∂x 1 + i ∂ ∂x 2 . (1.2)
We assume that v is sufficiently regular and has sufficient decay as |x| → ∞, w is decaying as |x| → ∞.

(1.3) Equation (1.1) is contained implicitly in the paper of S.V. Manakov [M] as an equation possessing the following representation:

∂(L -E) ∂t = [L -E, A] + B(L -E) (1.4) (Manakov L -A -B triple)
, where L = -∆ + v(x, t), ∆ = 4∂ z ∂ z , A and B are suitable differential operators of the third and zero order respectively. Equation (1.1) was written in an explicit form by S.P. Novikov and A.P.

Veselov in [START_REF] Novikov | Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formula and evolutions equations[END_REF], [START_REF] Novikov | Finite-zone, two-dimensional Schrödinger operators. Potential operators[END_REF], where higher analogs of (1.1) were also constructed. Note that both Kadomtsev-Petviashvili equations can be obtained from (1.1) by considering an appropriate limit E → ±∞ (see [ZS], [START_REF] Grinevich | The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed non-zero energy[END_REF]).

In the present article we are focused on a very interesting family of solutions for equation (1.1) for E = E f ix > 0 constructed by P.G. Grinevich and V.E. Zakharov, see [START_REF] Grinevich | Rational solitons of the Veselov-Novikov equation are reflectionless potentials at fixed energy[END_REF], [START_REF] Grinevich | The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed non-zero energy[END_REF] (containing also a reference to private communication from V.E. Zakharov). The solutions of this family are given by v(x, t) = -4∂ z ∂ z ln det A, w(x, t) = 12∂ 2 z ln det A,

(1.5)

where

A = (A lm ) is 4N × 4N-matrix, A ll = iE 1/2 2 z - z λ 2 l -3iE 3/2 t λ 2 l - 1 λ 4 l -γ l , A lm = 1 λ l -λ m for l = m,
(1.6)

E 1/2 > 0, z = x 1 + ix 2 , z = x 1 -ix 2 , ∂ z , ∂ z are defined in (1.
2), and λ 1 , . . . , λ 4N , γ 1 , . . . , γ 4N are complex numbers such that

λ j = 0, |λ j | = 1, j = 1, . . . , 4N, λ l = λ m for l = m, λ 2j = -λ 2j-1 , γ 2j-1 -γ 2j = 1 λ 2j-1 , j = 1, . . . , 2N, λ 4j-1 = 1 λ 4j-3 , γ 4j-1 = λ2 4j-3 γ4j-3 , j = 1, . . . , N.
(1.7)

The functions v, w of (1.5)-(1.7) satisfy the Novikov-Veselov equation (1.1) for positive E of (1.6) and have also, in particular, the following properties (see [START_REF] Grinevich | Rational solitons of the Veselov-Novikov equation are reflectionless potentials at fixed energy[END_REF], [START_REF] Grinevich | The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed non-zero energy[END_REF]):

v = v, w ∈ C ∞ (R 2 × R), v(x, t), w(x, t) are rational functions of x and t, v(x, t) = O |x| -2 , w(x, t) = O |x| -2 , |x| → ∞, for each t ∈ R;
(1.8) the Schrödinger equation Lψ = Eψ, where L = -∆ + v(x, t), has zero scattering amplitude for fixed E > 0 and t ∈ R.

(1.9)

Because of property (1.9) the potentials v of (1.5)-(1.7) are called transparent potentials.

Note that in many respects the solutions (1.5)-(1.7) of (1.1) are similar to related solutions of the KP1 equation, see [FA], [START_REF] Grinevich | Rational solitons of the Veselov-Novikov equation are reflectionless potentials at fixed energy[END_REF], [START_REF] Grinevich | The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed non-zero energy[END_REF].

Note that the potentials v of (1.5)-(1.7) play an important role in the direct and inverse scattering theory for the aforementioned Schrödinger equation Lψ = Eψ at fixed energy E > 0 and in the theory of integrable systems, see [START_REF] Grinevich | The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed non-zero energy[END_REF], [JS], [VW], [WY], [FN], [N] and references therein. However, the properties of these potentials were not yet studied sufficiently in the literature.

In order to formulate our results we use the following definition. We say that a solution (v, w) of (1.1) is a travel wave iff

v(x, t) = V (x -ct), w(x, t) = W (x -ct), x ∈ R 2 , t ∈ R,
(1.10) for some functions V , W on R 2 and some velocity c ∈ R 2 . In addition, we

identify c = (c 1 , c 2 ) ∈ R 2 with c = c 1 + ic 2 ∈ C.
The main results of the present note consist of the following:

(1) We show that (v, w) of the form (1.5)-(1.7) is a travel wave iff N = 1. See Lemma 2.1 of Section 2.

(2) We show that there are no travel waves of the form (1.5)-(1.7), N = 1, for c ∈ U E , and that there is an unique (modulo translations) travel wave of the form (1.5)-(1.7), N = 1, for c ∈ C\U E , where c denotes travel wave velocity and U E is defined by formula (2.2). In addition we show that there is one-to-one correspondence between permitted velocities c ∈ C\U E and λ-sets

{λ 1 , λ 2 , λ 3 , λ 4 } of (1.5)-(1.7), N = 1. See Lemma 2.2 of Section 2.
(3) We show that the large time asymptotics for the Grinevich-Zakharov potentials, that is for (v, w) defined by (1.5)-(1.7), is described by a sum of N localized travel waves propagating with different velocities. See Theorem 2.1 of Section 2. For KP1 equation a prototype of this result was given for the first time in [MZBIM].

Main results

The main results of this article consist of Lemmas 2.1, 2.2 and Theorem 2.1 presented below.

Lemma 2.1. Let (v, w) be defined by (1.5)-(1.7). Then (v, w) admits the representation (1.10) (and is a travel wave solution for (1.1)) if and only if N = 1. In addition,

c = 6E λ2 + 1 λ 2 + λ 2 λ 2 (2.1)
where c is the travel wave velocity and λ is any of λ j , j = 1, 2, 3, 4, which, in virtue of (1.7), determines uniquely the λ set {λ 1 , λ 2 , λ 3 , λ 4 } for E > 0.

Lemma 2.1 is proved in Section 3. Let (c) There is a one-to-one correspondence between c ∈ C\U E and the sets

U = {u ∈ C : u = re iϕ , r ≤ |6(2e -iϕ + e 2iϕ )|, ϕ ∈ [0, 2π]}, U E = {u ∈ C : u/E ∈ U}. (2.2) One can see that U 1 = U.
{λ 1 , λ 2 , λ 3 , λ 4 } satisfying (1.7).
The proof of this Lemma is given in Section 3 and is based principally on the following auxiliary lemma. This Lemma is a corollary of Lemma 3.1 from [KN].

Theorem 2.1. Let (v, w) be a solution of (1.1) constructed via (1.5)-(1.7).

Then the asymptotical behavior of (v, w) can be described as follows:

v ∼ N k=1 ν k (ξ k ), w ∼ N k=1 ω k (ξ k ) as t → ∞, (2.3)
where ξ k = zc 4k t and

c l = 6E λ2 l + 1 λ 2 l + λ 2 l λ 2 l
.

(2.4)

The functions ν k , ω k are defined by the formulas

ν k = -4∂ z ∂ z ln det A (k) , ω k = 12∂ 2 z ln det A (k) ,
(2.5)

where matrix A (k) is a 4×4 submatrix of matrix A, defined by formulas (1.6), such that

A (k) = {A lm } 4k l,m=4(k-1)+1 .
(2.6)

Remark. The relation (2.3) is understood in the following sense:

lim t→∞ v = lim t→∞ N k=1 ν k (ξ k ) for fixed ξ = z -ct, (2.7)
where

lim t→∞ ν k (ξ k ) = 0, for fixed ξ = z -ct, c = c 4k , ν k (ξ), for fixed ξ = z -c 4k t.
(2.8)

Theorem 2.1 is proved in Section 3. The scheme of the proof of this theorem follows principally the scheme of the derivation of the large time asymptotics for the multi-soliton solutions of the classic KdV equation (see, for example, [G]).

3 Proofs of Lemmas 2.1, 2.2 and Theorem 2.1

The text of the proofs presented below does not completely follow the order of statements in Section 2 as it was constructed to form a whole logical unit. However, we specify in due course which statement is being proved.

Proof of the sufficiency part of Lemma 2.1

Let us first consider the Grinevich-Zakharov potentials defined by (1.5)-(1.7) with N = 1. Then A is a 4 × 4 matrix and, in virtue of (1.7), the choice of any of λ j , j = 1, 2, 3, 4, uniquely determines the set {λ 1 , λ 2 , λ 3 , λ 4 }. Let us find c j such that A jj = A jj (zc j t). Such value c j is a solution of the following equation

i 2 E 1/2 z -ct - 1 λ 2 j (z -ct) = i 2 E 1/2 z - z λ 2 j -3iE 3/2 t λ 2 j - 1 λ 4 j .
(3.1) If |λ j | = 1, then this equation is uniquely solvable and its solution is given by

c j = 6E λ2 j + 1 λ 2 j + λ 2 j λ2 j . (3.2)
It is easy to see that due to (1.7)

c 1 = c 2 = c 3 = c 4 . Thus A = A(z -ct),
and the representation (1.10) with c defined by (2.1) holds. Thus sufficiency in Lemma 2.1 is proved.

Proof of Lemma 2.2

If c ∈ U E , then, as follows from item (a) of Lemma 2.3, c = c j , defined by (3.2), j = 1, 2, 3, 4 for any λ 1 , λ 2 , λ 3 , λ 4 satisfying the conditions indicated in (1.7) for N = 1. This and the sufficiency part of Lemma 2.1 imply item (a) of Lemma 2.2.

If c ∈ C\U E , then, as follows from item (b) of Lemma 2.3, it determines via (3.2) uniquely the set of λ 1 , λ 2 , λ 3 , λ 4 satisfying the conditions indicated in (1.7) for N = 1. Then the solution (v, w), constructed according to formulas (1.5)-(1.7) with N = 1, constitutes a travel wave solution of equation (1.1) with the given velocity c. In the construction procedure one of the parameters γ j can be chosen arbitrarily and it determines uniquely the whole set {γ 1 , . . . , γ 4 }.

One can see that the transform

z → z + ζ, t → t + τ
turns the potential (v, w) into another Grinevich-Zakharov potential (ṽ, w) with the parameters {λ 1 , . . . , λ 4 , γ1 , . . . , γ4 }, where

γ j -γj = iE 2 ζ - ζ λ 2 j -3iE 3/2 τ λ 2 j - 1 λ 4 j (3.3) for j = 1, 2, 3, 4.
On the other hand, if (ṽ, w) is a Grinevich-Zakharov potential with the set of parameters {λ 1 , . . . , λ 4 , γ1 , . . . , γ4 }, then it can be obtained from (v, w) by a translation, i.e. ṽ(z, t) = v(z + ζ, t + τ ), w(z, t) = w(z + ζ, t + τ ) for appropriate ζ ∈ C and t ∈ R such that (3.3) holds for some j (equations (3.3) are equivalent for j = 1, 2, 3, 4 in virtue of (1.7)). In addition, one can assume, for example, that τ = 0 in this translation.

Thus we have proved that any c ∈ C\U E determines uniquely, modulo translations, the solution of (1.1) of the form (1.5)-(1.7) with N = 1 and the given travel velocity c. This proves the point (b) of Lemma 2.2.

Item (c) of Lemma 2.2 follows immediately from Lemma 2.3. Lemma 2.2 is proved.

Proof of Theorem 2.1

Let us consider a more convenient representation of (v, w) defined by (1.5)-(1.7). For this purpose we first perform the differentiation with respect to z in the right-hand side of formula for v in (1.5):

v = -4∂ z (det A) -1 ∂ z (det A) = -4∂ z (det A) -1 4N i,j=1 ∂A ij ∂ z Âij , (3.4)
where Âij is the (i, j) cofactor of the matrix A. Similarly,

w = 12∂ z (det A) -1 4N i,j=1
∂A ij ∂z Âij .

(3.5)

In matrix A only diagonal elements depend on z, z, thus

v = -2iE 1/2 ∂ z (det A) -1 4N j=1 Âjj , w = -6iE 1/2 ∂ z (det A) -1 4N j=1 1 λ 2 j Âjj .
(3.6) Let us consider the following families V (j) and W (j) of systems of linear algebraic equations for functions ψ (3.9)

(j) k , η (j) k , j, k = 1, . . . 4N: V (j) : 4N k=1 A mk ψ (j) k = -2iE 1/2 δ mj , m = 1, . . . , 4N, (3.7) W (j) : 4N k=1 A mk η (j) k = -6iE 1/2 1 λ 2 j δ mj , m = 1, . . . , 4N 
In order to write a system of linear algebraic equations for

∂ψ (j) k ∂z = ψ (j) k z
, we differentiate (3.7) with respect to z:

4N k=1 (A mk ) z ψ (j) k + 4N k=1 A mk ψ (j) k z = 0, m = 1, . . . , 4N,
and thus obtain

4N k=1 A mk ψ (j) k z = iE 1/2 2λ 2 m ψ (j) m , m = 1, . . . , 4N. (3.10)
Now let us note that A jj can be represented in the form

A jj = iE 1/2 2 (z -cj t) - 1 λ 2 j (z -c j t) -γ j ,
where c j is given by formula (2.4). As follows from item (c) of Lemma 2.2 c j = c k iff ⌊(j -1)/4⌋ = ⌊(k -1)/4⌋, where ⌊x⌋ denotes the integer part of x. Now let us fix ξ = zct and find the limits ψ

(j) k t → ∞ ξ fixed , ψ (j) k z t → ∞ ξ fixed
. We note that

A jj = iE 1/2 2 { ξ + (c -cj )t} - 1 λ 2 j {ξ + (c -c j )t} . If c = c j , then A jj = iE 1/2 2 ξ -1 λ 2 j
ξ and is independent of t. Otherwise, |A jj | → ∞ as t → ∞ at fixed ξ. We substitute this into (3.7) and consider the leading term in the Cramer's formula for ψ 

(j) k t → ∞ ξ fixed = ψ(j) k (ξ), k, j : c k = c j = c, ψ (j) k t → ∞ ξ fixed = 0, k : c k = c or j : c j = c.
Here ψ(j) k (ξ) denotes some function of ξ independent of t at fixed ξ. Similarly, from (3.10) we obtain that

ψ (j) k z t → ∞ ξ fixed = ψ(j) k (ξ), k, j : c k = c j = c, ψ (j) k z t → ∞ ξ fixed = 0, k : c k = c or j : c j = c,
and, as previously, ψ(j) k (ξ) denotes some function of ξ independent of t at fixed ξ.

In addition, one can see that if there exists k such that c = c 4(k-1)+1 = . . . = c 4k , then

v| t → ∞ ξ fixed = 4k j=4(k-1)+1 ψ(j) j (ξ) = ν k (ξ), (3.11)
where ν k is defined by formula

ν k = -4∂ z ∂ z ln det A (k) , ( 3 
.12) matrix A (k) is a 4 × 4 submatrix of matrix A from (1.6), such that A (k) = {A lm } 4k l,m=4(k-1)+1 . Similarly, for the case of function w we have 

Proof of the necessity part of Lemma 2.1

From (3.15), taking into account (2.7)-(2.8), one can see that (v, w) can be a travel wave only if N = 1. This completes the proof of Lemma 2.1.

  Lemma 2.2. (a) Let c ∈ U E . Then there is no travel wave solution of (1.1) of the form (1.5)-(1.7) with N = 1 and the given travel wave velocity c. (b) Let c ∈ C\U E . Then there exists unique (modulo translations) solution of (1.1) of the form (1.5)-(1.7) with N = 1 and the given travel wave velocity c.

  Lemma 2.3. (a) Let c ∈ U E . Then equation (2.1) has no solution λ satisfying |λ| = 1. (b) Let c ∈ C\U E , then equation (2.1) has exactly four solutions λ 1 , λ 2 , λ 3 , λ 4 satisfying the conditions indicated in (1.7) for N = 1.
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  as t → ∞. Thus we obtain

  ψ

  k (ξ), k, j : c k = c j = c, η k : c k = c or j : c j = c,where ηj k (ξ), ηj k (ξ) are some functions of ξ independent of t at fixed ξ. If there exists k such that c = c 4(k-1)+1 = . . . = c 4k , thenw| t → ∞ ξ fixed = 4k j=4(k-1)+1 η(j) j (ξ) = ω k (ξ), (3.13)where ω k is defined by formulaω k = 12∂ 2 z ln det A (k) (3.14)and matrix A(k) is the same as in (3ξ k ), t → ∞.(3.15)Here ξ k = zc 4k t, ν k , ω k are defined by (2.5)-(2.6) and the meaning of the relation (3.15) is specified by (2.7)-(2.8). Theorem 2.1 is proved.