Blaise Genest

Hugo Gimbert

Anca Muscholl

Igor Walukiewicz

Optimal Zielonka-Type Construction of Deterministic Asynchronous Automata

Asynchronous automata are parallel compositions of finitestate processes synchronizing over shared variables. A deep theorem due to Zielonka says that every regular trace language can be represented by a deterministic asynchronous automaton. In this paper we improve the construction, in that the size of the obtained asynchronous automaton is polynomial in the size of a given DFA and simply exponential in the number of processes. We show that our construction is optimal within the class of automata produced by Zielonka-type constructions. In particular, we provide the first non trivial lower bound on the size of asynchronous automata.

Introduction

Zielonka's asynchronous automata [START_REF] Zielonka | Notes on finite asynchronous automata[END_REF] is probably one of the simplest, and yet rich, models of distributed computation. This model has a solid theoretical foundation based on the theory of Mazurkiewicz traces [START_REF] Mazurkiewicz | Concurrent Program Schemes and their Interpretations[END_REF][START_REF] Diekert | The Book of Traces[END_REF]. The key property of asynchronous automata, known as Zielonka's theorem, is that every regular trace language can be represented by a deterministic asynchronous automaton [START_REF] Zielonka | Notes on finite asynchronous automata[END_REF]. This result is one of the central results on distributed systems and has been applied in many contexts. Its complex proof has been revisited on numerous occasions (see e.g. [START_REF] Cori | Asynchronous mappings and asynchronous cellular automata[END_REF][START_REF] Diekert | Construction of asynchronous automata[END_REF][START_REF] Mukund | Gossiping, Asynchronous Automata and Zielonka's Theorem[END_REF][START_REF] Mukund | Keeping Track of the Latest Gossip in a Distributed System[END_REF][START_REF] Genest | Constructing Exponential-Size Deterministic Zielonka Automata[END_REF] for a selection of such papers). In particular some significant complexity gains have been achieved since the original construction. This paper provides yet another such improvement, and moreover it shows that the presented construction is in some sense optimal.

The asynchronous automata model is basically a parallel composition of finite-state processes synchronizing over shared (state) variables. Zielonka's theorem has many interpretations, here we would like to consider it as a result about distributed synthesis: it gives a method to construct a deterministic asynchronous automaton from a given sequential one and a distribution of the actions over the set of processes. We remark that in this context it is essential that the construction gives a deterministic asynchronous automaton: for a controller it is the behaviour and not language acceptance that is important. The result has applications beyond the asynchronous automata model, for example it can be used to synthesize communicating automata with bounded communication channels [START_REF] Mukund | Synthesizing distributed finite-state systems from MSCs[END_REF][START_REF] Henriksen | A Theory of Regular MSC Languages[END_REF] or existentially-bounded channels [START_REF] Genest | A Kleene theorem and model checking algorithms for existentially bounded communicating automata[END_REF]. Despite these achievements, from the point of view of applications, the biggest problem of constructions of asynchronous automata is considered to be their high complexity. The best constructions give either automata of size doubly exponential in the number of processes, or exponential in the size of the sequential automaton. This paper proposes an improved construction of deterministic asynchronous automata. It offers the first algorithm that gives an automaton of size polynomial in the size of the sequential automaton and exponential only in the number of processes. We show that this is optimal for Zielonka-type constructions, namely constructions where each component has complete information about its history. For this we introduce the notion of locally rejecting asynchronous automaton and remark that all Zielonka-type constructions produce this kind of automata. To be locally rejecting means that a process should reject as soon as its history tells him that there is no accepting extension. We believe that a locally rejecting behavior is quite desirable for applications, such as monitoring or control. We show that when transforming a deterministic word automaton to a deterministic locally rejecting automaton, the exponential blow-up in the number of components is unavoidable. Thus, to improve our construction one would need to produce automata that are not locally rejecting.

For the upper bound we start from a deterministic (I-diamond) word automaton. We think that this is the best point of departure for a study of the complexity of constructing asynchronous automata: considering non deterministic automata would introduce costs related to determinization. The size of the deterministic asynchronous automaton obtained is measured as the sum of the sizes of the local states sets. It means that we do not take global accepting states into account. This is reasonable in our opinion, as it is hardly practical to list these states explicitly. From a deterministic I-diamond automaton A and a distributed alphabet with process set P, we construct a deterministic asynchronous automaton of size 4 |P| 4 • |A| |P| 2 . We believe that this complexity, although exponential in the number of processes, is interesting in practice: an implementation of such a device needs only memory of size logarithmic in |A| and polynomial in |P|. We also show that computing the next state on-the-fly can be done in time polynomial in both |A| and |P|.

Related work.

Besides general constructions of Zielonka type, there are a couple of different constructions, however they either apply to subclasses of regular trace languages, or they produce non deterministic automata (or both). The first category includes [START_REF] Métivier | An algorithm for computing asynchronous automata in the case of acyclic non-commutation graph[END_REF][START_REF] Diekert | Construction of asynchronous automata[END_REF], that provide deterministic asynchronous cellular automata from a given trace homomorphism in case that the dependence alphabet is acyclic and chordal, respectively. These constructions are quite simple and only polynomial in the size of the monoid (thus still exponential in the size of a DFA). In the second category we find [START_REF] Zielonka | Safe executions of recognizable trace languages by asynchronous automata[END_REF], who gives an inductive construction for non deterministic, deadlock-free asynchronous cellular automata. (A deadlock-free variant of Zielonka's construction was proposed in [START_REF] Stefanescu | Automatic synthesis of distributed transition systems[END_REF]). The paper [START_REF] Baudru | Distributed Asynchronous Automata[END_REF] proposes a construction of asynchronous automata of size exponential only in the number of processes (and polynomial in |A|) as our construction, but it yields non deterministic asynchronous automata (inappropriate for monitoring or control). Notice that while asynchronous automata can be determinized, there are cases where the blow-up is doubly exponential in the number of processes [START_REF] Klarlund | Determinizing Asynchronous Automata[END_REF].

Preliminaries

We fix a finite set P of processes and a finite alphabet Σ. Each letter a ∈ Σ is an action associated with the set of processes dom(a) ⊆ P involved in its execution. A pair (Σ, dom) is called distributed alphabet. A deterministic automaton over the alphabet Σ is a tuple A = Q, Σ, ∆, q 0 , F with a finite set of states Q, a set of final states F , an initial state q 0 and a transition function ∆ : Q × Σ → Q. As usual we extend ∆ to words in Σ * . The automaton accepts w ∈ Σ * if ∆(q 0 , w) ∈ F . We use L(A) to denote the language accepted by A. The size |A| of A is the number of its states.

Concurrent executions of systems with shared actions given by a distributed alphabet (Σ, dom), are readily modeled by Mazurkiewicz traces [START_REF] Mazurkiewicz | Concurrent Program Schemes and their Interpretations[END_REF]. The idea is that the distribution of the alphabet defines an independence relation among actions I ⊆ Σ × Σ, by setting (a, b) ∈ I if and only if dom(a) ∩ dom(b) = ∅. We call (Σ, I) an independence alphabet. The independence relation induces a congruence ∼ on Σ * by setting u ∼ v if there exist words u 1 , . . . , u n ∈ Σ * with u 1 = u, u n = v and such that for every i < n we have u i = xaby, u i+1 = xbay for some x, y ∈ Σ * and (a, b) ∈ I. An ∼-equivalence class is simply called a (Mazurkiewicz) trace. We denote by [u] the trace associated with the word u ∈ Σ * (for simplicity we do not refer to I, neither in ∼ nor in [u], as the independence alphabet is fixed). Trace prefixes and trace factors are defined as usual, with [p] a trace prefix (trace factor, resp.) of [u] if p is a word prefix (word factor, resp.) of some v ∼ u. As usual, we write ≤ for the prefix order. For two prefixes T 1 , T 2 of T , we let T 1 ∪ T 2 denote the smallest prefix T of T such that

T i ≤ T for i = 1, 2.
For several purposes it is convenient to represent traces by (labeled) pomsets. Formally, a trace T = [a 1 • • • a n] (a i ∈ Σ for all i) corresponds to a labeled pomset E, λ, ≤ defined as follows: E = {e 1 , . . . , e n } is a set of events (or nodes), one for each position in T . Event e i is labeled by λ(e i) = a i , for each i. The relation ≤ is the least partial order on E with e i ≤ e j whenever (a i , a j) / ∈ I and i ≤ j. In Figure 1 we give an example for the pomset of a trace T , depicted by its Hasse diagram. The labeling of a total order on E that is compatible with ≤ is called a linearization of T .

An automaton A is called I-diamond if for all (a, b) ∈ I, and s a state of A:

∆(s, ab) = ∆(s, ba). Note that the I-diamond property implies that the language of A is I-closed : that is, u ∈ L(A) if and only if v ∈ L(A) for every u ∼ v. This permits us to write ∆(s, T) where T is a trace, to denote the state reached by A from s on some linearization of T . Languages of I-diamond automata are called regular trace languages. -S p is the finite set of local states of a process p ∈ P, δ a : p∈dom(a) S p → p∈dom(a) S p is the local transition function associated with an action a ∈ Σ, s 0 ∈ p∈P S p is the global initial state, -Acc ⊆ p∈P S p is a set of global accepting states. We call p∈P S p the set of global states (whereas S p is the set of p-local states). In this paper the size of an asynchronous automaton B is the total number of local states p∈P |S p |. This definition is very conservative, as one may want to count also Acc or the transition functions (that can be exponential in |B|). We will see that our construction allows to compute both Acc and the transition functions in polynomial time.

With the asynchronous automaton B one can associate a global automaton

A B = Q, Σ, ∆, q 0 ,
Acc where:

-The set of states is the set of global states Q = p∈P S p of B, the initial and the accepting states are as in B.

-The transition function ∆ : Q×Σ → Q is defined by ∆((s p) p∈P , a) = (s p) p∈P with (s p) p∈dom(a) = δ a ((s p) p∈dom(a)) and s p = s p , for every p / ∈ dom(a). Clearly A B is a finite deterministic automaton with the I-diamond property.

Definition 2. The language of an asynchronous automaton B is the language of the associated global automaton A B .

We conclude this section by introducing some basic notations on traces. For a trace T , we denote by dom(T) = e∈E dom(λ(e)) the set of processes occurring in T . For a process p ∈ P, we denote by pref p (T) the minimal trace prefix of T containing all events of T on process p. Hence, pref p (T) has a unique maximal event that is the last (most recent) event of T on process p. This maximal event is denoted as last p (T). Intuitively, pref p (T) corresponds to the history of process p after executing T . We extend this notation to a set of processes P ⊆ P and denote by pref P (T) the minimal trace prefix containing all events of T on processes from P . By last(T) we denote the set of events {last p (T) | p ∈ P}. For example, in Figure 1 we have pref p (T) = [cbadcba] and last p (T) is the second a of the pomset. The set last(T) contains the second a and the third b.

Zielonka-type constructions: state of the art

All general constructions of deterministic asynchronous automata basically follow the main ideas of the original construction of Zielonka [START_REF] Zielonka | Notes on finite asynchronous automata[END_REF]. These constructions start with a regular, I-closed word language, that is given either by a homomorphism to a finite monoid, or by an I-diamond automaton. In most applications we are interested in the second case, where we start with a (possibly non deterministic) automaton. The general constructions yield either asynchronous automata as defined in the previous section, or asynchronous cellular automata, that correspond to a concurrent-read-owner-write model. Theorem 1. [START_REF] Zielonka | Notes on finite asynchronous automata[END_REF] Let A be an I-diamond automaton over the independence alphabet (Σ, I). A deterministic asynchronous automaton B can be effectively constructed with L(A) = L(B).

We now review the constructions of [START_REF] Cori | Asynchronous mappings and asynchronous cellular automata[END_REF][START_REF] Mukund | Gossiping, Asynchronous Automata and Zielonka's Theorem[END_REF][START_REF] Genest | Constructing Exponential-Size Deterministic Zielonka Automata[END_REF] and recall their complexities. It is well known that determinization of word automata requires an exponential blow-up, hence the complexity of going from a non deterministic I-diamond automaton A to a deterministic asynchronous automaton is at least exponential in |A|. In that case, [START_REF] Genest | Constructing Exponential-Size Deterministic Zielonka Automata[END_REF] gives an optimal construction as it is simply exponential in both parameters |A| and |P|. Since determinization has little to do with concurrency, we assume from now on that A is a deterministic automaton.

- [START_REF] Cori | Asynchronous mappings and asynchronous cellular automata[END_REF] Comparing our present construction with previous ones, we obtain asynchronous automata of size 4 |P| 4

• |A| |P| 2 . In all these constructions, the obtained automata are such that every process knows the state reached by A on its history. We abstract this property below, and show in the following section that our construction is optimal in this case. Definition 3. A deterministic asynchronous automaton B is called locally rejecting if for every process p, there is a set of states R p ⊆ S p such that for every trace T :

pref p (T) / ∈ pref(L(B)) iff the p-local state reached by B on T is in R p .
Notice that R p is a trap: if B reaches R p on trace T , then so it does on every extension T of T . Obviously, no reachable accepting global state of B has a component in R p . For these reasons we call states of R p rejecting.

Our interest in locally rejecting automata is motivated by observing that all general constructions [START_REF] Zielonka | Notes on finite asynchronous automata[END_REF][START_REF] Cori | Asynchronous mappings and asynchronous cellular automata[END_REF][START_REF] Diekert | Construction of asynchronous automata[END_REF][START_REF] Mukund | Keeping Track of the Latest Gossip in a Distributed System[END_REF][START_REF] Mukund | Gossiping, Asynchronous Automata and Zielonka's Theorem[END_REF][START_REF] Genest | Constructing Exponential-Size Deterministic Zielonka Automata[END_REF] of deterministic asynchronous automata produce such automata. Suppose that A is a (possibly non deterministic) Idiamond automaton, and B a deterministic asynchronous automaton produced by one of the constructions in [START_REF] Zielonka | Notes on finite asynchronous automata[END_REF][START_REF] Mukund | Keeping Track of the Latest Gossip in a Distributed System[END_REF][START_REF] Mukund | Gossiping, Asynchronous Automata and Zielonka's Theorem[END_REF][START_REF] Genest | Constructing Exponential-Size Deterministic Zielonka Automata[END_REF] (a similar statement applies to the asynchronous cellular automata in [START_REF] Cori | Asynchronous mappings and asynchronous cellular automata[END_REF][START_REF] Diekert | Construction of asynchronous automata[END_REF]). Then the local p-state s p reached by B after processing the trace T determines the set of states reached by A on pref p (T), for every process p. Thus, if no state in this set can reach a final state of A, then we put s p in R p . This makes B locally rejecting.

An exponential lower bound

In this section we present our lower bound result. We show that transforming an I-diamond deterministic automaton into a locally rejecting asynchronous automaton may induce an exponential blow-up in the number of processes. For this we define a family of languages Path n , such that the minimal sequential automaton for Path n has size O(n 2) but every locally rejecting asynchronous automaton recognizing Path n is of size at least 2 n/4 .

Let P = {1, . . . , n} be the set of processes. The letters of our alphabet are pairs of processes, two letters are dependent if they have a process in common. Formally, the distributed alphabet is Σ =

P 2
with dom({p, q}) = {p, q}. The language Path n is the set of traces [x 1 • • • x k] such that every two consecutive letters have a process in common:

x i ∩ x i+1 = ∅ for i = 1, . . . , k -1.
Observe that a deterministic sequential automaton recognizing this language simply needs to remember the last letter it has read. So it has less than |P| 2 states.

Theorem 2. Every locally rejecting asynchronous automaton recognizing Path n is of size at least 2 n/4 . Proof. Take a locally rejecting automaton recognizing Path n . Without loss of generality we suppose that n = 4k. To get a contradiction we suppose that process n of this automaton has less than 2 k (local) states.

We define for every integer 0 ≤ m < k two traces: a m = {4m, 4m + 1}{4m + 1, 4m+2}{4m+2, 4m+4} and b m = {4m, 4m+1}{4m, 4m+3}{4m+3, 4m+4}. To get some intuition, the reader may depict traces a 0 and b 0 and see that both a 0 and b 0 form a path from process 0 to process 4, the difference is that trace a 0 goes through process 2 while trace b 0 goes through process 3.

Consider the language L defined by the regular expression (a

0 + b 0)(a 1 + b 1) • • • (a k-1 + b k-1).
Clearly, language L is included in Path n and contains 2 k = 2 n/4 different traces. As we have assumed that process n has less than 2 k states, there are two different traces t 1 , t 2 from L such that process n is in the same state after t 1 and t 2 . For simplicity of presentation we assume that t 1 and t 2 differ on the first factor: t 1 starts with a 0 , and t 2 with b 0 . We can remark that processes 0 and n are in the same state after reading t 1 {0, 3} and t 2 . For process 0 it is clear as in both cases it sees the same trace {0, 1}{0, 3}. By our hypothesis, process n is in the same local state after traces t 1 and t 2 , therefore also after traces t 1 {0, 3} and t 2 .

Consider now the state s n reached by n after reading t 2 {0, n}. Since t 2 {0, n} ∈ Path n , the state s n is not in R n . By the above, the same state s n is also reached after reading t 1 {0, 3}{0, n}. Trace t 1 starts with a 0 = {0, 1}{1, 2}{2, 4} and continues with processes whose numbers are greater than 4, so {0, 3} commutes with all letters of t 1 except {0, 1}. Hence t 1 {0, 3} ∈ pref(Path n). Since trace t 1 ends with an action of process n, we have pref n (t 1 {0, 3}{0, n}) = t 1 {0, 3}{0, n} / ∈ pref(Path n). Since we have assumed that the automaton is locally rejecting, we should have s n ∈ R n . A contradiction. ✷

A matching upper bound

Our goal is to modify the construction from [START_REF] Genest | Constructing Exponential-Size Deterministic Zielonka Automata[END_REF] in order to make it polynomial with respect to the size of the sequential automaton. We give an overview of the new construction, first describing the objects the asynchronous automaton manipulates. Some details of the mechanics of the automaton will follow. Overall, although described in a different way, the present construction follows closely [START_REF] Genest | Constructing Exponential-Size Deterministic Zielonka Automata[END_REF].

The main difference is the state information computed on the zone decomposition of a trace. This state information becomes polynomial (instead of exponential), but its update is much more involved than in [START_REF] Genest | Constructing Exponential-Size Deterministic Zielonka Automata[END_REF].

We fix a set of processes P and a distributed alphabet (Σ, dom). Let A = Q, Σ, ∆, q 0 , F be a deterministic I-diamond automaton. A candidate for an equivalent asynchronous automaton B = (S p) p∈P , (δ a) a∈Σ , s 0 , Acc has a set of states for each process and a local transition function. The goal is to make B calculate the state reached by A after reading a linearization of a trace T . Let us examine how B can accomplish this task. After reading a trace T the local state of a component p of B depends only on pref p (T). Hence, B can try to calculate the state reached by A after reading (some linearization of) pref p (T). When a next action, say a, is executed, processes in dom(a) can see each others' states and make the changes accordingly. Intuitively, this means that these processes can now compose their information in order to calculate the state reached by A on pref dom(a) (T) a. To do so they will need some information about the structure of the trace. As usual, the tricky part of this process is to reconstruct the common view of pref dom(a) (T) from separate views of each process: pref p (T) for p ∈ dom(a). For the sake of example suppose that dom(a) = {p, q, r}, and we know the states s p , s q and s r , reached by A after reading pref p (T), pref q (T) and pref r (T), resp. We would like to know the state of A after reading pref {p,q,r} (T). This is possible if we can compute the contributions of pref q (T)\pref p (T) and pref r (T)\ pref {p,q} (T). The automaton B should be able to do this by looking at s p , s q , and s r , only. This remark points out the challenge of the construction: find the type information that allows to deduce the behaviour of A, and that at the same time is updatable by an asynchronous automaton.

General structure

Before introducing formal definitions it may be worth to say what is the general structure of the states of the automaton B. Every local state will be a triple (ts, ZO, ∆), where ts will be a time stamping information as in all general constructions of asynchronous automata; -ZO will be a zone order, a bounded size partial order on a partition of the trace; -∆ will be state information, recording the behavior of A on the partition given by ZO.

Roughly, we will use time stamping to compute zone orders, and zone orders to compute state information. The latter provides all the necessary information about the behaviour of A on (a linearization of) the trace.

Time stamping:

The goal of the time stamping function [START_REF] Zielonka | Notes on finite asynchronous automata[END_REF] is to determine for a set of processes P and a process q the set last(pref P (T)) ∩ last(pref q (T)). This set uniquely determines the intersection of pref P (T) and pref q (T) (for details see e.g. [START_REF] Mukund | Keeping Track of the Latest Gossip in a Distributed System[END_REF]). Computing such intersections is essential when composing information about pref p (T) for every p ∈ dom(a) into information about pref dom(a) (T). The main point is that there exists a deterministic asynchronous automaton that can accomplish this task: Theorem 3. [START_REF] Mukund | Keeping Track of the Latest Gossip in a Distributed System[END_REF] There exists a deterministic asynchronous automaton A TS = (S p) p∈P , (∆ a) a∈Σ , s 0 such that for every trace T and state s = ∆(s 0 , T) reached by A TS after reading T : for every P ⊆ P and q, r, r ∈ P, the set of local states {s p | p ∈ P ∪ {q}} allows to determine if last r (pref P (T)) = last r (pref q (T)).

Moreover, such an automaton can be effectively computed and its local states can be described using O(|P| 2 log(|P|)) bits.

For instance, if a new b is executed after T = [cbadcbad] in Figure 2, process r and processes p, q can determine that the intersection of their last-sets consists of the second b. Indeed, last(pref p,q (T)) is made of the second a (for last p = last q) and the second b (for last r). Also, last(pref r (T)) is made of the second d (for last r), the second b (for last q) and the first a (for last p).

Zone orders: Recall that one of our objectives is to calculate, for every p ∈ P, the state reached by A on pref p (T). As the discussion on page 7 pointed out, for this we may need to recover the transition function of A associated with pref q (T) \ pref P (T) for a process q and a set of processes P . Hence we need to store information about the behaviour of A on some relevant factors of T that are not prefixes. Zones are such relevant factors. They are defined in such a way that there is a bound on the number of zones in a trace. The other crucial property of zones is that for every extension T of T and every P ⊆ P, q ∈ P, if a zone of T intersects pref q (T) \ pref P (T) then it is entirely in this set. A zone order is an abstract representation of the decomposition of a trace into zones. There is a useful partial order on zones that we define now. Let Z, Z be two zones of some trace T . We write Z Z if Z = Z and e < e for some events e ∈ Z, e ∈ Z . It is easy to see that Z Z implies that L(Z) L(Z). Thanks to this property we can define the order on zones, denoted Z ≤ Z , as the smallest partial order containing the relation.

Lemma 1. A trace is partitioned in at most |P| 2 zones.
The lemma above gives a slightly better bound than [START_REF] Genest | Constructing Exponential-Size Deterministic Zielonka Automata[END_REF]. Moreover, it can be shown that its bound is asymptotically optimal. Figure 2 Definition 5. A zone order is a labeled partial order ZO = V, ≤, ξ : V → 2 P , where every element is labeled by a set of processes. We require that every two elements whose labels have non empty intersection are comparable:

ξ(v)∩ξ(v) = ∅ ⇒ (v ≤ v ∨ v ≤ v).
We say that such a zone order is the zone order of a trace T , if there is a bijection µ from V to zones of T preserving the order and satisfying ξ(v) = dom(µ(v)).

Lemma 2. The zone order of a trace can be stored in |P| 2 (|P| 2 + |P|) space. So there are at most 2 O(|P| 4) zone orders.

State information:

We describe now the state information for each zone of the trace. Let ZO = V, ≤, ξ : V → 2 P be the zone order of some trace T , via a bijection µ. For an element v ∈ V we denote by T v the factor of T consisting of zones up to µ(v): that is, the factor covering µ(v) for all v ≤ v. Observe that T v is a prefix of T . For instance, in Figure 2 the zone order of pref r (T) contains three vertices v 1 < v 2 < v 3 , and T v2 is the trace [bcadb]. Definition 6. We say that a function ∆ : V → Q is state information for the zone order ZO of a trace T if for every v we have ∆(v) = ∆(q 0 , T v), namely the state of A reached on a linearization of T v .

Observe that a zone order for a trace of the form pref p (T) has one maximal element v p : it corresponds to the last action of p. If ∆ is the state information for T , then the state reached by A on reading a linearization of pref p (T) is ∆(v p).

The construction of the asynchronous automaton

Let us come back to the description of the asynchronous automaton B. For every p ∈ P, a local state in S p will have the form (ts p , ZO p , ∆ p). The automaton will be defined in such a way that after reading a trace T the state s p reached at the component p will satisfy:

ts p is the time stamping information; -ZO p is the zone order of pref p (T); -∆ p is the state information for ZO p .

By [START_REF] Mukund | Keeping Track of the Latest Gossip in a Distributed System[END_REF] we know that B can update the ts p component. The proposition below says that B can update the ZO p and ∆ p components. Proposition 1. Let T be a trace and a ∈ Σ an action. Suppose that for every p ∈ dom(a) we have the time stamping information ts p and the zone order with state information (ZO p , ∆ p) of pref p (T). We can then calculate the zone order and the state information of pref p (T a), for every p ∈ dom(a).

We also need to define the sets of rejecting states R p and the global accepting states Acc of B. Observe that by Proposition 1, from the local state s p we can calculate ∆(q 0 , pref p (T)), namely the state of A reached after reading a linearization of pref p (T). This state is exactly the state associated to the unique maximal element of the zone order in s p . Hence, B can be made locally rejecting by letting s p ∈ R p if ∆(q 0 , pref p (T)) is not productive in A, i.e., no final state can be reached from it.

To define accepting tuples of states of B we use the following proposition:

Proposition 2. Let T be a trace. Given for every p ∈ P the time stamping ts p , and the zone order ZO p with state information ∆ p of pref p (T), we can calculate ∆(q 0 , T), the state reached by A on a linearization of T .

In the light of Proposition 2, a tuple of states of B is accepting if the state ∆(q 0 , T) of A is accepting. The two propositions give us:

Theorem 4. Let A be a deterministic I-diamond automaton over the distributed alphabet (Σ, dom). We can construct an equivalent deterministic, locally rejecting asynchronous automaton B with at most 4 |P| 4 • |A| |P| 2 states.

We now describe informally the main ingredients of the proof of Proposition 1 (Proposition 2 is proved along similar lines). The zone order ZO of pref P ∪{q} (T) is built in two steps from ZO P and ZO q : first we construct a so-called prezone order ZO by adding to ZO P the zones from pref q (T) \ pref P (T) [START_REF] Genest | Constructing Exponential-Size Deterministic Zielonka Automata[END_REF]. Then we quotient ZO in order to obtain ZO. The quotient operation amounts to merge zones. The difficulty compared to [START_REF] Genest | Constructing Exponential-Size Deterministic Zielonka Automata[END_REF] is posed by the update of the state information. Since the state information for the pre-zone ZO is inconsistent due to the merge, the crucial step is to compute this information on downward closed sets of zones: Lemma 3. Let ZO = V, ≤, ξ, ∆ be the zone order and state information for a trace T (via the bijection µ). For every downward closed B ⊆ V we can compute the state reached by A on a linearization of T B = {T v | v ∈ B}, using only ZO and ∆.

The proof of the lemma above is based on a nice observation about I-diamond automata A, taken from [START_REF] Cori | Asynchronous mappings and asynchronous cellular automata[END_REF]. It says that for every three traces T 0 , T 1 , T 2 with dom(T 1) ∩ dom(T 2) = ∅, the state reached by A on a linearization of T 0 T 1 T 2 can be computed from dom(T 1) and the states reached on (linearizations of) T 0 , T 0 T 1 , T 0 T 2 , respectively.

We now sketch the proof of the lemma. We first choose some linearization We show now how to compute inductively ∆(q 0 , T B i,k). Notice that the base case is trivial, as B 0,k = ∆(v k) for all k. Let i ≤ n. Suppose that for all k ≥ i -1, we know ∆(q 0 , T B i-1,k). In particular, note that the states q i-1 , q i reached on µ(v 1 • • • v i-1) and µ(v 1 • • • v i), respectively, are known (cases k = i -1 and k = i). We compute now ∆(q 0 , T B i,k), for all k > i. Two cases arise. If v i < v k then we apply the observation of [START_REF] Cori | Asynchronous mappings and asynchronous cellular automata[END_REF] to q i-1 , q i , ∆(q 0 , T B i-1,k), ξ(v i), which yields ∆(q 0 , T B i,k). If v i < v k , then B i-1,k = B i,k and the state ∆(q 0 , T B i,k) is already known. At the end of this polynomial time procedure, we have computed ∆(q 0 , T B) = ∆(q 0 , T Bn,n).

v 1 , . . . , v n of B. For each i, k with i ≤ k, let B i,k = {v 1 , . . . , v i } ∪ {v j | j > i, v j ≤ v k }.
Remark 1. The automaton B of Theorem 4 can be constructed on-the-fly, i.e., given the action a ∈ Σ and the local states s p of B, p ∈ dom(a), one can compute the successor states δ a ((s p) p∈dom(a)). The question is now how much time we need for this computation. The update of the time stamping and the update of zone orders take time polynomial in |P|. The update of state information can be done in time polynomial in |P| and linear in the number of transitions of |A|. So overall, we can compute transitions on-the-fly in polynomial time. Similarly, we can decide whether a global state is accepting in polynomial time.

Conclusion

In this paper we have presented an improved construction of asynchronous automata. Starting from a zone construction of [START_REF] Genest | Constructing Exponential-Size Deterministic Zielonka Automata[END_REF], we have shown how to keep just one state per zone instead of a transition table. This allows to obtain the first construction that is polynomial in the size of the sequential automaton and exponential only in the number of processes.

It is tempting to conjecture that our construction is optimal. Unfortunately, it is very difficult to provide lower bounds on sizes of asynchronous automata. We have given a matching lower bound for the subclass of locally rejecting automata. It is worth to recall that all general constructions in the literature produce automata of this kind. Moreover the concept of locally rejecting automaton is interesting on its own from the point of view of applications.

We conjecture that the translation from deterministic word automata to asynchronous automata must be exponential in the number of processes (where the size means the total number of local states).

Definition 1 .Fig. 1 .

 11 Fig. 1. The pomset associated with the trace T = [c b a d c b a d b], with dom(a) = {p, q}, dom(b) = {q, r}, dom(c) = {p}, dom(d) = {r}.

Definition 4 .Fig. 2 .

 42 Fig. 2. The three zones of pref r (T) (darker) are marked with solid lines. The two zones of pref {p,q} (T) (lighter) are represented by dotted lines.

 depicts the trace T = [cbadcbad]. Recall that last(pref r (T)) consists of the first a, the second b and the second d. There are three zones in pref r (T): Z 1 contains the first a, b and c, Z 2 the first d and the second b, and Z 3 the second d. We have Z 1 < Z 2 < Z 3 .

 For instance, if there are four zonesv 1 , v 2 , v 3 , v 4 with v 1 < v 2 < v 4 , v 1 < v 3 < v 4 , and ξ(v 2) ∩ ξ(v 3) = ∅, then B 1,2 = {v 1 , v 2 }, B 1,3 = {v 1 , v 3 }, and B 2,3 = {v 1 , v 2 , v 3 }.

 introduces asynchronous mappings and constructs asynchronous cellular automata of size |Σ| |Σ| 2 • |A| 2 |Σ| . -[12] constructs asynchronous automata of size |P| |P| 2 • |A| |A|•2 |P| . -[6] introduces zone decompositions and constructs asynchronous automata of size 2 3|P| 3 • |A| |A|•|P| 2 .