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Abstract

We introduce a general class of traffic models derived as perturbations of
cell-transmission type models. These models use different dynamics in free-flow
and in congestion phases. They can be viewed as extensions to cell transmission
type models by considering the velocity to be a function not only of the density
but also of a second state variable describing perturbations. We present the
models in their discretized form under a new formulation similar to the classical
supply demand formulation used by the seminal Cell-Transmission Model. We
then show their equivalence to hydrodynamic models. We detail the proper-
ties of these so-called perturbed cell-transmission models and illustrate their
modeling capabilities on a simple benchmark case. It is shown that they en-
compass several well-known phenomena not captured by classical models, such
as forward moving disturbances occurring inside congestion phases. An imple-
mentation method is outlined which enables to extend the implementation of
a cell transmission model to a perturbed cell transmission model.
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, 1 Introduction

» Classical macroscopic models of traffic. The modeling of highway traffic at a
s macroscopic level is a well established field in the transportation engineering commu-
4+ nity, which goes back to the seminal work of Lighthill, Whitham [17] and Richards [23].
s Their work introduced to the traffic community the kinematic wave theory which en-
s ables one to reconstruct fundamental macroscopic features of traffic flow on highways
7 such as queues propagation. The so-called LWR model, based on conservation of
¢ vehicles, encompasses most of the non linear phenomena observed on highways in a
o computationally tractable framework.

10 In order to close the model, one needs to assume a relation between the velocity
u and density of vehicles. Greenshields [13] empirically measured a relation between the
12 density and the flow of vehicles, now known as the fundamental diagram, which led
13 to the formulation of the LWR problem as a single unknown state variable problem,
1 which could be solved by discretization techniques.

15 A way to approach the resolution of the discretization of the mass conservation
16 equation in a tractable manner was later proposed by Lebacque [15]. It was shown
7 that a discrete solution of the LWR equation could be constructed by considering
18 the local supply demand framework. In the case of concave fluxes, this solution is
19 equivalent to the one obtained using a classical numerical method in conservation
20 laws, the Godunov scheme [12].

21 The triangular model. Newell [18, 19, 20] introduced the triangular funda-
2 mental diagram, which is to this date one of the most standard models for queuing
23 phenomena observed at bottlenecks, and for highway traffic modeling in general. Da-
2 ganzo [7, 8] derived a discrete equivalent of the LWR equation in the case of the
s triangular fundamental diagram. This model known as the Cell-Transmission Model
s provided the transportation community with a meaningful modeling tool for highway
o7 traffic. One of the main assumptions of all the classical models is that the speed of
s vehicles is a single-valued function of the density.

2 Second order and perturbed models. Following hydrodynamic theory, at-
3 tempts at modeling highway traffic with a second conservation equation and a second
a1 state variable to augment the mass conservation equation led to the development of
2 so-called second order models, such as the Payne [22] and Whitham [25] model. Un-
1 fortunately, this model exhibited flaws pointed out by Daganzo [9], Del Castillo [10]
1 and Papageorgiou [21], including the possibility for vehicles to drive backwards along
s the highway. These flaws were corrected in a new generation of second order models
s proposed for instance by Aw and Rascle [3], Lebacque [16] and Zhang [28, 29]. By
s considering a second state variable, these models offer additional capabilities with
;s respect to classical models and for example enable the possibility to include velocity
» measurements such as the ones obtained from GPS cell phones [26].

40 The phase transition model Colombo [6] developed a phase transition traffic
s model with different dynamics for congestion and free-flow, to model fundamental di-
2 agrams observed in practice [1]. Like the work of Newell, this approach was motivated
s by the fundamentally different features of traffic in free-flow and in congestion [24].
w In particular, this model includes a set-valued congested part of the fundamental di-
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s agram and a single-valued free-flow part of the fundamental diagram. The set-valued
s congestion phase enables one to account for much more measurements in the con-
s gestion phase than the classical fundamental diagram does. Indeed, in the classical
i setting, a measurement falling outside of the fundamental diagram has to be discarded
s or approximated. Thus for any tasks involving real data, information is lost at the
so data processing step. In the setting proposed by the phase transition model and the
51 subsequent perturbed cell transmission model, a whole cloud of measurements can be
52 considered valid.

53 In part due to the complexity of practical implementation, Colombo’s model was
s« extended in [5], leading to a new class of models taking in account the perturbation
55 around the classical fundamental diagram known to exist in practice. Similar to the
s work of Zhang [28], an assumption is made that a classical fundamental diagram can
sv be viewed as an equilibrium (or average) of the highway traffic state in the perturbed
s model. In this article, we describe the physical approach developed in [5] and present
5o simple and meaningful local rules to implement a class of discrete perturbed models.
s We also provide a set of simple steps which can be followed to extend the well-known
s1 implementation of the cell-transmission model to an implementation of a perturbed
2 cell transmission model.

63 Outline. The outline of this work is as follows. In Section 2, we recall the classical
s framework for discrete macroscopic models, and introduce the discrete formulation of
s a class of phase transition models relying on physical consideration about traffic low
e properties. In particular we show that these models reduce to a set-valued version
o7 of the cell-transmission model in the case of a triangular flux. Section 3 provides
s some examples of the modeling abilities of the class of perturbed models derived, and
o illustrates the better performances of the class of perturbed models. Section 4 gives a
7 guidebook for perturbed model deployment. Conclusions and future research tracks
7 are outlined in Section 5.

» 2 Discrete formulation of macroscopic traffic flow
7 models

72 We consider the representation of a stretch of highway by N space cells Cy, 0 < s < N
s of size Ax and assume that representing time evolution by a discrete sequence of times
7 with a At step size yields a correct approximation for traffic flow modeling.

7 We make the usual assumption that there is no ramp on the link of interest, and
7s assume by considering a one-dimensional representation of the traffic conditions that
70 even on a multi-lanes highway, traffic phenomena can be accurately modeled as one
so lane highway. The results presented here can easily be generalized to networks, for
s example using the framework developed by Piccoli [11].

8 The following section presents the fundamental macroscopic traffic modeling equa-
g3 tion, i.e. the mass conservation.
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s« 2.1 Classical models
ss 2.1.1 Mass conservation equation

We call k! the density of vehicles in the space cell Cy at time ¢, and Qé_up (respectively

! qown) the flux upstream (respectively downstream) of cell s between time ¢t and
time t 4 1. The absence of ramp in cell s allows us to write the following conservation
equation for the density of vehicles in cell s:

S Ax — kL Az = QL At — QL goum At (1)

ss  which states that between two consecutive times the variation of the number of vehi-
s cles cell Cy is exactly equal to the difference between the number of vehicles having
ss entered the cell from upstream and the number of vehicles having exited the cell from
so downstream.
% Equation (1) which is the mass conservation from fluid dynamics (in a discrete
o setting) is widely used among the transportation engineering community and consid-
o ered as one of the most meaningful ways to model traffic flow on highways. Defining
i the fluxes Qs.down, @s-up between two cells is a more complex problem, which can be
w approached by considering a supply demand formulation.

s 2.1.2 The supply demand approach

o6 The supply demand approach [15] states that the flow of cars that can travel from
o7 an upstream cell to the next downstream cell depends on both the upstream density
e and the downstream density. If we define the demand function A(-) as a continu-
o ous increasing function of the density and the supply function 3(-) as a continuous
w0 decreasing function of the density, then the flux between two cells is given by the
01 minimum of the upstream demand and the downstream supply. The supply and de-
102 mand function are bounded above on each cell by the flow capacity of the cell. Using
103 the notations introduced above, the supply demand formulation reads:

cup = min(A(k,), B(k;)) (2)
z—down = m1n<A(k§)72(kz+l))

s The demand and supply functions are related to the fundamental diagram as follows.
s In free-flow the supply 3(-) is simply limited by the capacity of the cell whereas
ws in congestion, the supply is limited by current traffic conditions. In free-flow, the
w7 demand A(+) is limited by current traffic conditions whereas in congestion the demand
s is constrained by the capacity of the cell. Given a fundamental diagram Q(-), with a
100 unique maximum at the critical density k., the supply () and demand A(-) functions
uwo can thus be defined as:

A(k:)z{Q(k) £ ORske E(k;):{Q(kc) i ks ke
Q(k.) otherwise Q(k)  otherwise
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Figure 1: Supply demand. The supply curve (bold line) is an increasing function
of density and the demand curve (dashed line) is a decreasing function of density.

m When the fundamental diagram is triangular, the demand and supply functions are
2  piecewise affine as illustrated on Figure 1, and the supply demand approach is exactly
us  the cell-transmission model [7].

114 The supply demand approach enables one to define two types of traffic conditions;
us free-flow and congestion, which have fundamentally different features.

s 2.2 Two traffic phases

u7  The behavior of traffic depends on the relative values of supply and demand. When
us the supply is higher than the demand, traffic flow is said to be in free-flow, the flux is
uo  defined by the number of cars that can be sent from upstream (upstream demand).
20 On the opposite, when the demand is higher than the supply, the traffic is said to
121 be in congestion because the flux is defined by the number of cars that the road can
122 accept downstream (downstream supply).

123 These two dynamics exhibit at least one capital difference:

124 o In free-flow the flux is defined from upstream and information is moving forward,
125 whereas in congestion the flux is defined from downstream and information is
126 moving backwards.

12z One may note that the seminal Cell-Transmission Model considers this property as a
s required model feature, and thus can be viewed as a phase transition model. Figure 2
19 illustrates two typical sets of experimental measurements. Two distinct phases appear
130 characterized by:

131 e In free-flow, the speed is constant and the flux is uniquely determined by the
132 density of cars (straight line through the origin for low densities in Figure 2).
133 The knowledge of density or count seems to provide enough information to
134 represent the traffic state.

6
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Figure 2: Experimental flow-density relations over a one week-period at two locations
on a highway in Roma. Flow was directly measured and density was computed from
the measured flow and the measured speed. In free-flow the speed is constant. The

shape of the congestion phase changes for different locations.

135 e In congestion, a given density does not correspond to a unique speed, i.e. the
136 fundamental diagram is set-valued. A second variable must be introduced to
137 model the traffic state.

s The first observation is taken in account by the triangular model whereas the second
13 observation motivates the use of a phase transition model [5, 6] using different dynam-
ics for free-flow and congestion, and justify the introduction of a perturbed model in
w1 congestion to define the dynamics of two variables necessary to model the congested
w2 traffic state [24, 27]. We introduce in the following section a class of perturbed cell
13 transmission type models directly derived from classical models.

14

o

w 2.3 Perturbation of cell-transmission type models
us 2.3.1 A perturbed fundamental diagram

14

=)

We propose to describe traffic state on a link of highway by using a perturbed phase
w7 transition model. Assuming that the highway link is composed of the cells Cy for

us s=1,---, N, we define the speed of traffic in each cell as follows:
Ve if O, 1isin free-flow (3)
Vg =
V(ks)(14+¢q5) if Cs isin congestion

ue  where Vj is the free-flow speed and V'(-) is the velocity function of a classical model.
150 Application to the cell transmission model The velocity function for the
151 classical cell transmission model reads V (ky) = w(1—k;/k;s) where w is the backwards
2 speed propagation and k; is the jam density. Thus the perturbed speed reads:

1

1

TRB 2010 Annual Meeting CD-ROM Paper revised from original submittal.



153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

TRB 2010 Annual Meeting CD-ROM

Figure 3: Left: Perturbed triangular fundamental diagram (the equilibrium flux func-
tion is linear decreasing in congestion). Right: Perturbed Greenshields fundamental
diagram (the equilibrium flux function is parabolic decreasing in congestion). One
can note that the free-flow speed is constant in both models and the flux is set-valued
in congestion, i.e. to one density corresponds several values of the flux.

ve = V(k) (14 q) = w(l - ’,j—p (1+4.)

and yields the fundamental diagram from Figure 3 left.

In free-flow, we describe the speed to be constant as per the triangular model,
whereas in congestion we introduce a second variable ¢, modeling the fact that for
a given density ks the speed of cars is not uniquely determined by the density. The
multiplicative factor 1 + ¢; means that ¢, can be viewed as a perturbation around
the reference state of traffic which is given by the classical fundamental diagram. In
the following we call equilibrium speed the value of the speed for g, = 0 (which is
the speed of the classical model according to equation (3)). The state of traffic is

described by:
ks if
(ks qs) if

In free-flow the density k, completely describes the traffic state and the speed of
vehicles is constant equal to Vg. The flux of vehicles in the cell is the product of
the density of vehicles and their speed ks Vg. In congestion, the state of traffic is
described by the two variables density k; and perturbation g;. According to the
expression outlined in (3), the speed of vehicles is V' (ks) (1 + ¢s). The flux of vehicles
is the product of the density and the speed and is given by k, V (k) (1 + ¢5).

Cs
Cs

is in free-flow

is in congestion.

Remark 1. In the following, we assume that the equilibrium speed function in conges-
tion is continuous, decreasing, vanishes at the mazimal density, equals the free-flow
speed at the critical density, and that the equilibrium fluz is concave.
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m Remark 2. For the sake of mathematical and physical consistency, the size of the
w2 perturbation qs cannot be chosen arbitrarily and must satisfy the following constraints:

173 e The perturbed speed must be positive, i.e. q; > —1.

174 o The curves on which qs/ks is constant (see section 2.3.3 for a physical inter-
175 pretation of these curves) have a concavity with constant sign. This yields a
176 bound on the perturbation which can be analytically computed by writing that
177 the second derivative of the flux ks V (ks) (1 4 qs) with respect to the density ks
178 has a constant sign for a given value of qs/ks.

i 2.3.2 Conservation equations for traffic states

1o Having defined the state of traffic in congestion and in free-flow, we define the dy-
111 namics of these quantities as follows. The density k, is assumed to satisfy the mass
12 conservation given by equation (1). We assume that the macroscopic perturbation
183 (s A, is also conserved, and thus that ¢, satisfies the perturbation conservation equa-
184 tion:

¢ Ar— ¢ Av =R, At—R! At (4)

s-up s-down
1w where R{, (respectively R! j..) is the flow of macroscopic perturbation entering
s the cell C from upstream (respectively exiting from downstream). The dynamics

187 satisfied by the traffic states is:

KAV Az — KL Az = QF ) At — QF goum AT in free-flow
K Ax — KAz = QL At — QL goun At . (5)
1 . ; § In congestion
¢ Ax — ¢l Ax = R¢ o At — RL qoun At

e One must be careful that at any location, the flux of mass (s, and the flux of
1o perturbation Ry, are coupled by the relation (3) defining the speed and thus can not
wo be defined independently by two uncoupled supply demand relations similar to (2).
11 A coherent approach to the definition of the cell boundary fluxes is to consider the
12 microscopic meaning of the state variable ¢s.

13 2.3.3 From a macroscopic perturbed model to a behavioral driver model

e Equation (4) expresses the conservation of the macroscopic perturbation gs Ax. The
105 usual classical fundamental diagram corresponds to the equilibrium velocity function
s (i.e. at gs = 0), and for a given density this velocity function can take values above
17 or below the equilibrium velocity function depending on the sign of ¢s.

108 This variation of the velocity function around its equilibrium value leads us to
10 consider the state variable ¢, as characterizing the propension of an element of traffic
20 to move forward, in a very similar way to the driver’s ride impulse from [2]. Indeed,
20 in a cell Cy with a density of vehicles kg, high values of g, model aggressive drivers
22 who are eager to move forward and adopt high speed. Low values of ¢; model passive
203 drivers who adopt low values of speed.
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204 The speed v, of drivers and their average aggressiveness defined by the quantity
205 (s/ks will play a decisive role in the definition of the boundary fluxes.

26 Remark 3. One may note that it is not possible to measure the aggressiveness level of
a7 drivers. According to the definition of our class of model, this quantity is completely
28 determined by the knowledge of the speed and density. Thus measures of counts or
200 speeds can be combined with measures of density in order to compute values of the
20 aggressiveness level.

o 2.3.4 Traffic rules defining flow between cells

22 The supply demand formulation does not yield a simple formalism for perturbed
23 models. We choose to define the fluxes from equation (5) by other equivalent physical
2 considerations. We propose two different sets of rules depending on whether the traffic
215 state in the upstream cell is in free-flow or in congestion.

26 Congested upstream cell

27 We consider two neighboring cells Cy_; and C, with traffic states (k!_;, ¢! ;) and
xs (kL ql) such that the upstream cell is in a congested state. We define the following
20 two rules who will define the flux between these two cells between times ¢ and ¢ + 1:

220 e To enter the downstream cell, the vehicles from the upstream cell must modify
221 their speed from v%_; to the speed of the vehicles from the downstream cell v’.
2 e The vehicle from the upstream cell modify their speed according to their average
223 driving aggressiveness ¢s/ks.

24 These two rules imply that the vehicles which will exit the upstream cell Cs_; to enter
25 the downstream cell Cy will have speed v, and will have an average aggressiveness

26 (s/ks. Thus the flux between cell Cs_; and cell C correspond to a new traffic state

(kt+1/2 t+1/2

21 (ki) 4 /2) which can be defined by the system of equations:

qt+l/2

s—1/2  {s—1 t+1/2

TR and v ))H = v, (6)
s—1/2

) . . . t+1/2  t+1/2
2 where the second equation can be rewritten as an equation in (k' Jor ds_1 /2) us-

20 ing the expression from (3). This yields a system of two independent equations in

(kt+1/2 t+1/2 t+1/2

230 so1/20 Q51 /2). The corresponding speed v, | /o Can be computed from the expression

2 of kitllﬁ and qzig using equation (3). The mass flux and perturbation flux can be
2 then defined as:

¢ 12 412 t t1/2 t41/2
s—up_ks—1/2vs—1/2 and RS—up_qS_l/st_l/Q

10
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Free-flowing upstream cell

We consider two neighboring cells Cs_; and Cy with traffic states k._; (free-flow) and
(k' qt) (congestion). The boundary flux of vehicles between the upstream cell Cs_4
and the downstream cell C, falls into one of these two cases:

e If the upstream flow is lower than the downstream flow then traffic conditions
are imposed from upstream and the boundary flow is the upstream flow. This
leads to the boundary flow:

Lip =KV and Rl =5V

s-up
where qzig is the perturbation defined by V' (kL ;) (1 + qzig) =V.

o [f the upstream flow is higher than the downstream flow then traffic conditions
are imposed from downstream and we obtain similar conditions to the case of
two congested cells. Incoming vehicles will adapt their speed to the downstream
speed and adopt the lowest corresponding average level of aggressiveness allow-
able by the fundamental diagram. These two conditions yield the equations:

qt+1/2

s—1/2 _ Qmin t+1/2

W = k‘] and U8—1/2 = Vg (7)
s—1/2

where ¢uin, k; are the minimal density of perturbation and jam density (maximal
t41/2 t+1/2

density). If we note (k"5 ¢ ")) the solution of (7), the boundary fluxes are
given by:

t _ pttl/2 t+1/2 ¢ /2 t+1/2

sup ks—l/2 Us_1/2 and R, = Qs—1/2 Vs—1/2

3 Benchmark cases

3.1 Encounter of two flows with different properties
3.1.1 Perturbed model features

We consider the situation of two cells with congested flows. In the upstream cell the
traffic state is (ka, qa) with high density and low speed and in the downstream cell
the state is (kp, qp) with low density and high speed. These two traffic states are
represented by the points A and B on Figure 4 (right).

According to the rules described in section 2.3.4, the cars from the upstream cell
will increase their speed while keeping the same average aggressiveness level q4/ka.
Physically this means that the drivers from the traffic state A which is slower and
denser increase their speed when they reach the front end of the flow A, but do not
change their behavior.

11
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Bl
Al

Figure 4: Left: Classical model. A and B fall outside of the classical fundamental
diagram and are viewed as Al and B1; the resulting steady state is B1. Right: Per-
turbed model. A and B fall in the perturbed fundamental diagram; the resulting
steady state is C.

261 Thus the flow of cars moving from the upstream cell to the downstream cell will
%2 be in state C, defined by the intersection of two curves. The first curve is the straight
23 line defined by the speed being the speed of B, namely ve = V(kg, ¢g) according to
2 expression (3). The second curve is defined by the average aggressiveness of drivers
s being the average aggressiveness of drivers from state A, namely qc/kc = qa/ka.
26 One can note that this set of two equations is the one introduced at (6).

%7 3.1.2 Comparison of perturbed and classical model

%8  We compare the evolution predicted by a classical model and by its associate per-
x0 turbed model, for the two flows described in previous section. The evolution given
a0 by the perturbed model was described in previous section.

o The classical model can not take in account the states A and B as such because
a2 they fall outside of the classical fundamental diagram. Joint measurements of speed
o3 and density returning traffic states A and B would have to be approximated. They
o could be understood as states A1l and Bl if the density measurement were more
2 reliable.

276 The interaction of states A1 and B1 is described by the cell-transmission model as
o7 producing the steady state B1. One can note that this state is significatively different
s from the steady state C' predicted by the perturbed model.

x 3.2 Homogeneous in speed states

0 Traffic lows composed of various densities in which all the vehicles drive at the same
s speed are commonly observed but cannot be accounted for by classical models which
22 assume that for one given density, only one speed can occur.

283 Perturbed models allow traffic states with different densities to have the same

12
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2 speed, and can model the homogeneous in speed states observed by Kerner [14]. For
s instance, if we consider the encounter of two traffic flows with the same speed and
6 different densities such as the state B and C' from Figure 4, the model predicts that
s7 the difference in flows and densities between the two traffic states is such that the
xs  discontinuity propagates downstream at exactly the same speed. It is the similar
80 situation that is observed in free-flow for the triangular model. Indeed one could
20 imagine that the straight line of constant speed defined by v = v is the free-flow
2 part of a classical triangular fundamental diagram, in which case the same type of
22 propagation of the two states B and C' would be predicted by the cell-transmission
203 model.

» 4 Implementing a perturbed cell-transmission
205 mOdel

26 In this section we propose to give a brief outline of the way to implement a perturbed
207 cell-transmission model.

28 1 Define a classical fundamental diagram which fits the dataset best. Depending on
209 the implementation constraints, this can be done in a variety of methods, from a
300 visual agreement to an optimization routine [4]. In particular, identify the free-flow
301 speed Vg, the jam density k; and the critical density k.. This corresponds to the
302 classical implementation method for the CTM.

;3 2 Compute bounds on the perturbation according to the limitations expressed in
304 remark 2. This requires to compute the maximum and minimum of the second
305 derivative of the flux function along a curve of constant aggressiveness level.

ws 3 Given a traffic condition, i.e. a point (p,q), check that all the discrete congested
307 states fall into the fundamental diagram, otherwise use an approximation method
308 to map it back to the fundamental diagram, similarly to the case of the classical
300 fundamental diagram.

s 4 Evolve the model in time using the rules proposed in section 2.3.4.

311 This shows that implementing a perturbed cell-transmission model is almost as
sz simple as implementing the classical cell-transmission model. We illustrated in sec-
a3 tion 3 the added value of these models.

. o Conclusion
a5 In this article we propose a class of perturbed models which match empirical features
a6 of highway traffic more closely than classical models by incorporating a set-valued

siv fundamental diagram in congestion. We show that by considering a second state
a1is variable in congestion, this class of models has greater modeling capabilities.

13
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310 We follow the principles of the cell-transmission model which assumes that the two
20 phases of traffic, free-flow and congestion, have fundamentally different behaviors. We
s consider that the speed of traffic is constant in free-flow whereas in congestion it has a
s perturbed value around the equilibrium speed. The class of models introduced is cus-
13 tomizable in the sense that traffic engineers can select the most appropriate classical
24 fundamental diagram and perturb it according to experimental measurements.

35 We make the assumption that the state variable introduced satisfies a conserva-
26 tion equation, which is motivated by its physical interpretation. At the macroscopic
27 level, it can be considered as a perturbation of the traffic state around the classical
s fundamental diagram. At a microscopic level, this variable models the behavior of
29 drivers, who make different speed choices for the same observed density. We provide
10 simple meaningful rules to march the model forward in time.

331 Finally, we provide a simple way to implement this perturbed class of traffic
s models in the framework currently used by traffic engineers. We show that these
;3. models which result from an extension of usual cell-transmission type models can be
s derived in a straightforward manner.
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