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Abstract

We define Letac-Wesolowski-Matsumoto-Yor (LWMY) functions as decreasing
functions from (0,∞) onto (0,∞) with the following property: there exist indepen-
dent, positive random variables X and Y such that the variables f(X + Y ) and
f(X) − f(X + Y ) are independent. We prove that, under additional assumptions,
there are essentially four such functions. The first one is f(x) = 1/x. In this case,
referred to in the literature as the Matsumoto-Yor property, the law of X is gener-
alized inverse Gaussian while Y is gamma-distributed. In the three other cases, the
associated densities are provided. As a consequence, we obtain a new relation of
convolution involving gamma distributions and Kummer distributions of type 2.

Keywords: Gamma distribution; generalized inverse Gaussian distribution; Matsumoto-
Yor property; Kummer distribution.

Introduction

A lot of papers have been devoted to the generalized inverse Gaussian (GIG) distributions
since their definition by Good (1953)(see for instance Barndorff-Nielsen and Halgreen
(1977), Letac and Seshadri (1983), Vallois (1989), Vallois (1991)).
The GIG distribution with parameters µ ∈ R, a, b > 0 is the probability measure :

GIG(µ, a, b)(dx) =

(

b

a

)µ
xµ−1

2Kµ(ab)
e−

1

2
(a2x−1+b2x)1(0,∞)(x)dx (0.1)

where Kµ is the classical McDonald special function.
GIG distributions can also be defined as probability measures on the set of positive

definite matrices (Letac and Wesolowski, 2000). Here, we only deal with one-dimensional
GIG distributions.

1) Let us stress the close links between GIG, gamma distributions and the function
f0(x) = 1/x (x > 0).

a) The family of GIG distributions is invariant under f0: we can easily deduce from
(0.1) that the image of GIG(µ, a, b) by f0 is GIG(−µ, b, a).
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b) Barndorff-Nielsen and Halgreen (1977) proved:

GIG(−µ, a, b) ∗ γ(µ,
b2

2
) = GIG(µ, a, b), µ, a, b > 0 (0.2)

where γ(µ, b2/2)(dx) = b2µ

2µΓ(µ)
xµ−1 exp− b2

2
x1(0,∞)(x)dx.

Therefore if X > 0 and Y ∼ γ(λ, a2/2) are independent r.v.’s and X ∼ GIG(−λ, a, a)
then

X
(d)
= f0(X + Y ). (0.3)

Letac and Seshadri (1983) proved that (0.3) characterizes GIG distributions of the
type GIG(−λ, a, a). Namely, if X and Y are positive r.v.’s such that Y ∼ γ(λ, a2/2)
and (0.3) holds then X ∼ GIG(−λ, a, a). The authors have also obtained a similar
characterization of GIG(−λ, a, b) but the formulation is more complicated.

c) Since relation (0.2) is only formulated in terms of probability measures, we can ask
whenever it admits an almost sure realization. That consists in giving a triplet of
r.v.’s X, Y , Z such that Z = X +Y , X and Y are independent, X ∼ GIG(−µ, a, b)
and Y ∼ γ(µ, b2/2). Almost sure realizations have been given by Bhattacharya
and Waymire (1990) in the case µ = 1

2
and Vallois (1991) for any µ > 0. The

authors have considered a family of transient diffusions (Dν(t), t ≥ 0) on [0,∞)
which depends on a parameter ν. It has been proved that there exist x0 > 0 and ν0

such that Dν0(0) = x0 and

T0 := inf{t ≥ 0, Dν0(t) = 0} ∼ GIG(−µ, a, b)

L0 := sup{t ≥ 0, Dν0(t + T0) = 0} ∼ γ(µ, b2/2).

The strong Markov property at time T0 implies that X = T0 and Y = L0 are inde-
pendent and Z = X + Y = sup{t ≥ 0, Dν0(t) = 0}.
In Madan, Roynette and Yor (2008), the Black-Scholes formula in finance is ex-
pressed in terms of the distribution function of GIG variables (see Equations (25),
(29), (30) in this reference).

Let (ξ1(t), t ≥ 0) and (ξ2(t), t ≥ 0) be two Lévy processes such that ξ1(t) ∼
γ(t, β2

1/2) and ξ2(t) ∼ γ(t, β2
2/2) for any t > 0, where β1, β2 > 0. Recall that

for i = 1, 2 the process (ξi(t)) is a subordinator and consequently t 7→ ξi(t) is non
decreasing. Let us define the random time

N = inf {n ≥ 0; ξ1(α1 + n − 1)ξ2(α2 + n − 1) ≤ 1 < ξ1(α1 + n)ξ2(α2 + n − 1)}
= inf {n ≥ 0; ξ1(α1 + n − 1) ≤ f0(ξ2(α2 + n − 1)) < ξ1(α1 + n)} (0.4)

where α1, α2 > 0 and by convention inf ∅ = +∞.

Then, it has been proved in Vallois (1989, theorem on p.446) that, conditionally on
{N < ∞}, the r.v.’s

X := ξ2(α2 + N − 1), Y := ξ2(α1 + N − 1) − ξ2(α2 + N − 1) (0.5)
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are independent and their laws are GIG(−µ, β1, β2) and respectively γ(µ, β2
2/2),

where µ = α1 − α2. This yields a second almost sure realization of (0.2). Further-
more, the r.v.’s

U :=
1

X + Y
= ξ2(α1+N−1), V :=

1

X
− 1

X + Y
=

1

ξ2(α2 + N − 1)
− 1

ξ2(α1 + N − 1)

are independent.

2) We now focus on the Matsumoto-Yor property involving the GIG and gamma dis-
tributions on the one hand and the function f0 on the second hand . Let X and Y be two
independent r.v.’s such that

X ∼ GIG(−µ, a, b), Y ∼ γ(µ, b2/2), (µ, a, b > 0). (0.6)

Then

U :=
1

X + Y
= f0(X + Y ), V :=

1

X
− 1

X + Y
= f0(X) − f0(X + Y ) (0.7)

are independent and
U ∼ GIG(−µ, b, a), V ∼ γ(µ, a2/2). (0.8)

The case a = b was proved by Matsumoto and Yor (2001) and a nice interpretation of
this property via Brownian motion was given by Matsumoto and Yor (2003). The case
µ = −1

2
of the Matsumoto-Yor property can be retrieved from an independence property

established by Barndorff-Nielsen and Koudou (1998) (see Koudou, 2006).
Note that the r.v.’s X and Y introduced in (0.5) satisfy the Matsumoto-Yor property.

Letac and Wesolowski (2000) proved that the Matsumoto-Yor property holds for any
µ, a, b > 0 and characterizes the GIG distributions. More precisely, consider two inde-
pendent and non-Dirac positive r.v.’s X and Y such that U and V defined by (0.7) are
independent, then there exist µ, a, b > 0 such that (0.6) holds. Obviously this property is
similar to the one given by Letac and Seshadri (1983).
Massam and Wesolowski (2004) derived a tree-version of the Matsumoto-Yor property.

3) The origin of this paper is to understand the link between the function f0 : x 7→ 1/x
and the GIG distributions in the Matsumoto-Yor property. It is convenient to intro-
duce the following transformation Tf associated with a decreasing function f : (0,∞) →
(0,∞) :

Tf : (0,∞)2 → (0,∞)2

(x, y) 7→ (f(x + y), f(x) − f(x + y)).

Suppose that f is one-to-one, then Tf is bijective and (Tf )
−1 = Tf−1 . Let (U, V ) =

Tf (X, Y ) where X and Y are positive r.v.’s, namely

U = f(X + Y ), V = f(X) − f(X + Y ). (0.9)

We can recover X and Y from (U, V ):

X = f−1(U + V ), Y = f−1(U) − f−1(U + V ). (0.10)
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Considering f = f0 and independent r.v.’s X and Y , the Matsumoto-Yor property asserts
that the r.v.’s f0(X + Y ) and f0(X) − f0(X + Y ) are independent as soon as X ∼
GIG(−µ, a, b) and Y ∼ γ(µ, b2/2) for some µ, a, b > 0.

Obviously, the Matsumoto-Yor property can be reexpressed as follows: the image of
the probability measure (on R

2
+) GIG(−µ, a, b) ⊗ γ(µ, b2/2) by the transformation Tf0

is
the probability measure GIG(−µ, b, a) ⊗ γ(µ, a2/2). This formulation of the Matsumoto-
Yor property joined with the Letac and Wesolowski result lead us to determine the triplets
(µX , µY , f) such that

1. µX , µY are probability measures on (0,∞),

2. f : (0,∞) → (0,∞) is bijective and decreasing,

3. if X and Y are independent r.v.’s such that X ∼ µX and Y ∼ µY then the r.v.’s U
and V defined by (0.9) are independent.

Unfortunately we have not been able to solve this question without restriction. Our
method can be applied supposing that f is smooth and µX and µY have smooth density
functions (see Theorem 2.1 for details). After long and sometimes tedious calculations
we prove (cf Theorem 1.2) that there are only four classes F1, . . . ,F4 of functions f such
that Tf keeps the independence property. The first class F1 = {α/x; α > 0} corresponds
to f = f0. In Appendix 6.1 we prove that the only possible distributions for X and Y are
GIG and gamma respectively. Thus, we recover the result of Letac and Wesolowski under
stronger assumptions. The proof of Letac and Wesolowski is completely different since
the authors made use of Laplace transforms and a characterization of the GIG laws as the
distribution of a continued fraction with gamma entries (a property close to (0.3)). We
have not been able to develop a proof as elegant as theirs. The reason is that, with f = f0

we have algebraic properties (for instance continued fractions), while these properties are
lost if we start with a general function f .

Then, for any f ∈ Fi, 1 ≤ i ≤ 4 we have been able to give the corresponding distri-
butions of X and Y and the related laws of U and V (see Theorem 1.4, Remark 1.5 and
Theorem 1.14).

It is worth pointing out that one interesting feature of our analysis is an original
characterization of the families of distributions {βα(a, b, c); a, b, α > 0,, c ∈ R} and the
Kummer distributions {K(2)(a, b, c); a, c > 0,, b ∈ R} (see (1.18) and (1.33) respectively).
The Kummer distributions appear as the law of some random continued fractions (see
Marklov et al, 2008, p.3393 mentioning a work by Dyson (1953) in the setting of random
matrices).

As by-products of our study we obtain new relations of convolution. For simplicity we
only detail the case of Kummer distributions. The Kummer distributions of type 2 and
the gamma distributions are closely connected since:

K(2)(a, b, c) ∗ γ(b, c) = K(2)(a + b,−b, c). (0.11)

Obviously, this relation is similar to (0.2).
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Inspired by the result of Letac and Wesolowski (2000) and Theorem 1.6, we can ask
if a characterization of Kummer distributions could be obtained (cf Remark 1.8).

As recalled in the above item c), there are various almost sure realizations of convolu-
tion identities involving GIG distributions (see (0.2) and the convolution coming from the
Matsumoto-Yor property. One interesting open question derived from our study would
be to determine a r.v. Z with distribution K(2)(a + b,−b, c) which can be decomposed as
the sum of two explicit independent r.v.’s X and Y such that X ∼ K(2)(a + b,−b, c) and
Y ∼ γ(b, c).

The paper is organized as follows. We state our main results in Section 1. In Section
2 we give, under smoothness assumptions, a key differential equation involving f and the
log densities of the independent r.v.’s X and Y such that f(X +Y ) and f(X)−f(X +Y )
are independent (cf Theorem 2.1). Based on this result we prove in Section 3 (cf Theorem
3.8) that there are only four classes F1, . . . ,F4 of such functions f . The theorems stated
in Section 2 are proved in Section 4. Some technical proofs have been postponed in
Appendix 5.

1 Main results

Definition 1.1 Let f : (0,∞) → (0,∞) be a decreasing and bijective function.

1. Associated with f let us consider the transformation

Tf : (0,∞)2 → (0,∞)2

(x, y) 7→ (f(x + y), f(x) − f(x + y)). (1.12)

The transformation Tf is one-to-one and if f−1 is the inverse of f , then

(Tf)
−1 = Tf−1 . (1.13)

2. Let X and Y be two independent and positive random variables. Let us define

(U, V ) = Tf (X, Y ) = (f(X + Y ), f(X) − f(X + Y )). (1.14)

f is said to be a LWMY function with respect to (X, Y ) if the random variables U
and V are independent.
f is said to be a LWMY function if it is a LWMY function with respect to some
random vector (X, Y ).

One aim of this paper is to characterize LWMY functions.
Let us introduce

f1(x) =
1

ex − 1
, x > 0, (1.15)

g1(x) = f−1
1 (x) = ln

(

1 + x

x

)

, x > 0 (1.16)

and, for δ > 0,

f ∗
δ (x) = log

(

ex + δ − 1

ex − 1

)

, x > 0. (1.17)
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Theorem 1.2 Let f : (0,∞) → (0,∞) be decreasing and bijective. Under some addi-
tional assumptions (see Theorem 2.1 and Equation (3.3) ), f is a LWMY function if and
only if, either f(x) = α

x
or f(x) = 1

α
f1(βx) or f(x) = 1

α
g1(βx) or f(x) = 1

α
f ∗

δ (βx) for
some α, β, δ > 0.

Remark 1.3

1. The four classes of LWMY functions are

F1 = {α/x; α > 0}, F2 = { 1

α
f1(βx); α, β > 0},

F3 = { 1

α
g1(βx); α, β > 0}, F4 = { 1

α
f ∗

δ (βx); α, β > 0}.

2. It is clear that if f is a LWMY function, then the functions f−1 and x 7→ 1
α
f(βx), α, β >

0 are LWMY functions. Consequently, x 7→ 1
α
f1(βx) is a LWMY function if and

only if x 7→ 1
α
g1(βx) is a LWMY function.

3. Note that x 7→ α/x and f ∗
δ are self-reciprocal.

The first case corresponds to the one studied by Matsumoto-Yor (2001) and Letac-
Wesolowski (2000). The two last authors proved that if x 7→ 1/x is a LWMY function
with respect to (X, Y ), then the laws of X and Y are GIG and gamma distributions
respectively (we partially recover this case in Appendix 5.1). Therefore, in the sequel we
will focus on the three new cases : either f = f1 or f = g1 or f = f ∗

δ and in each case we
determine the laws of the related random variables.

1.1 The cases f = g1 and f = f1

a) Consider the gamma distribution

γ(λ, c)(dx) =
cλ

Γ(λ)
xλ−1e−cx1(0,∞)(x)dx, (λ, c > 0)

and the beta distribution

Beta(a, b)(dx) =
Γ(a + b)

Γ(a)Γ(b)
xa−1(1 − x)b−11{0<x<1}dx, (a, b > 0).

Consider (see for instance Ng and Kotz, 1995, or Nagar and Gupta, 2002 and references
therein) the Kummer distribution of type 2 :

K(2)(a, b, c) := α(a, b, c)xa−1(1 + x)−a−be−cx1(0,∞)(x)dx, a, c > 0, b ∈ R (1.18)

where α(a, b, c) is a normalizing constant.
Associated with a couple (X, Y ) of positive r.v.’s consider

(U, V ) := Tf1
(X, Y ) =

(

1

eX+Y − 1
,

1

eX − 1
− 1

eX+Y − 1

)

. (1.19)
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In Theorems 1.4 and 1.6 below we suppose that all r.v.’s have positive and twice
differentiable densities.

First we consider the case f = f1. We determine the distributions of X and Y such
that f1 is a LWMY function associated to (X, Y ).

Theorem 1.4 1. Consider two positive and independent random variables X and Y .
The random variables U and V defined by (1.19) are independent if and only if the
densities of Y and X are respectively

pY (y) =
Γ(a + b)

Γ(a)Γ(b)
(1 − e−y)b−1e−ay1{y>0} (1.20)

pX(x) = α(a + b, c,−a)e−(a+b)x(1 − e−x)−b−1

exp

(

−c
e−x

1 − e−x

)

1{x>0}. (1.21)

where a, b and c are constants such that a, b, c > 0 and α(a+b, c,−a) is the constant
of Equation (1.18). Thus the law of Y is the image of the Beta(a, b) distribution
by the transformation z ∈ (0, 1) 7→ − log z ∈ (0,∞), while the law of the variable
f1(X) is K(2)(a + b,−b, c) (cf Equation (1.18)).

2. If 1. holds then U ∼ K(2)(a, b, c) and V ∼ γ(b, c).

The proof of Theorem 1.4 will be given in Section 4.

Remark 1.5 Since g1 = f−1
1 , item 2. of Remark 1.3 and Theorem 1.4 imply that the

r.v.’s associated with the LWMY function g1 are the r.v.’s U and V distributed as in item
2. of Theorem 1.4.

b) As suggest identities (1.20) and (1.21) it is actually possible to simplify Theorem
1.4.

Since Tg1
= T−1

f1
, then

(X, Y ) = Tg1
(U, V ) =

(

log

(

1 + U + V

U + V

)

, log

(

1 + U

U

)

− log

(

1 + U + V

U + V

))

. (1.22)

As shows (1.22) it is useful to introduce

(U ′, V ′) =

(

1 + 1
U+V

1 + 1
U

, U + V

)

. (1.23)

Obviously the correspondence (U, V ) 7→ (U ′, V ′) is one-to one:

(U, V ) =

(

U ′V ′

V ′ + 1 − U ′V ′
,

V ′(V ′ + 1)(1 − U ′)

V ′ + 1 − U ′V ′

)

. (1.24)

Furthermore, (X, Y ) can be easily expressed in terms of (U ′, V ′):

X = log(1 + 1/V ′) and Y = − log U ′. (1.25)

Since it is easy to determine the density function of φ(ξ) where φ is differentiable and
bijective, then Theorem 1.4 and its analogue related to f = g1 (cf Remark 1.5) are
equivalent to Theorem 1.6 below.
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Theorem 1.6 a) Let U ′ and V ′ be two positive and independent random variables. The
r.v.’s U and V defined by (1.24) are independent if only if there exist some constants a,
b, c such that

U ′ ∼ Beta(a, b) and V ′ ∼ K(2)(a + b,−b, c). (1.26)

b) Let U and V be two positive and independent random variables. The r.v.’s U ′ and
V ′ defined by (1.23) are independent if only if there exist some constants a, b, c such that

U ∼ K(2)(a, b, c) and V ∼ γ(b, c). (1.27)

Under (1.27), U ′ ∼ Beta(a, b) and V ′ ∼ K(2)(a + b,−b, c).
c) If one of these equivalent conditions holds, then U ∼ K(2)(a, b, p) and V ∼ γ(b, c).

Let us formulate an easy consequence of Theorem 1.6.

Theorem 1.7 For any a, b, c > 0, the transformation (u, v) 7→ (
1+ 1

u+v

1+ 1

u

, u + v) maps the

probability measure K(2)(a, b, c) ⊗ γ(b, c) to the probability measure Beta(a, b) ⊗ K(2)(a +
b,−b, c). In particular:

K(2)(a, b, c) ∗ γ(b, c) = K(2)(a + b,−b, c). (1.28)

Remark 1.8

1. Note that (1.28) may be regarded as an analogue of (0.2).

2. Theorem 1.6 and the results of Letac and Wesolowski (2000) suggest to ask whether
it is possible to have an ”algebraic” proof of the following part of either item a) or
item b) of Theorem 1.6: if U and V , U ′ and V ′ are independent, then (1.26) and
(1.27) hold.

1.2 The case f = f ∗
δ

Recall that f ∗
δ has been defined by (1.17). Due to the form of f ∗

δ , a change of variables
allows to simplify the search of independent r.v.’s X and Y such that the two components
of Tf∗

δ
(X, Y ) are independent.

For any decreasing and bijective function f : (0,∞) → (0,∞) we define

f(x) = exp{−f(− log x)}, x ∈ (0, 1), (1.29)

Tm
f (x, y) =

(

f(xy),
f(x)

f(xy)

)

, x, y ∈ (0, 1). (1.30)

Observe that f is one-to-one from (0, 1) onto (0, 1), Tm
f is one-to-one from (0, 1)2 onto

(0, 1)2 and
(

Tm
f

)−1
= Tm

f−1 . (1.31)



Independence properties of the Matsumoto-Yor type 9

Definition 1.9 Let X and Y be two independent and (0, 1)-valued random variables.
We say that a decreasing and bijective function f : (0, 1) → (0, 1) is a multiplicative

LWMY function with respect to (X, Y ) if the r.v.’s Um := f(XY ) and V m := f(X)
f(XY )

are
independent.

Remark 1.10 For any random vector (X, Y ) in (0,∞)2 we consider

X ′ = e−X , Y ′ = e−Y .

Then f is a LWMY function with respect to (X, Y ) if and only if f is a multiplicative
LWMY function with respect to (X ′, Y ′).

The change of variable x′ = e−x is very convenient since the function

φδ(x) := f ∗
δ (x) =

1 − x

1 + (δ − 1)x
, x ∈ (0, 1) (1.32)

is homographic.
Note that f ∗

δ : (0, 1) → (0, 1) is bijective, decreasing and self-reciprocal.
First, let us determine the distribution of the couple (X ′, Y ′) of r.v.’s such that φδ is a
multiplicative LWMY function with respect to (X ′, Y ′).

For a, b, α > 0 and c ∈ R consider the probability measure

βα(a, b; c)(dx) = kα(a, b; c)xa−1(1 − x)b−1(αx + 1 − x)c1(0,1)(x)dx. (1.33)

Note that if c = 0, then βα(a, b; c) = Beta(a, b).

Theorem 1.11 Let X ′ and Y ′ be two independent random variables valued in (0, 1).
Consider

(Um, V m) = Tm
φδ

(X ′, Y ′) =

(

1 − X ′Y ′

1 + (δ − 1)X ′Y ′
,

1 − X ′

1 + (δ − 1)X ′

1 + (δ − 1)X ′Y ′

1 − X ′Y ′

)

for fixed δ > 0.
Then, Um and V m are independent if and only if there exist a, b, λ > 0 such that

X ′ ∼ βδ(a + b, λ;−λ − b), Y ′ ∼ Beta(a, b). (1.34)

If this condition holds, then

Um ∼ βδ(λ + b, a;−a − b), V m ∼ Beta(λ, b). (1.35)

In the case δ = 1, Theorem 1.11 takes a very simple form.

Proposition 1.12 Let X ′ and Y ′ be two independent random variables valued in (0, 1).
Then

Um = 1 − X ′Y ′, V m =
1 − X ′

1 − X ′Y ′

are independent if and only if there exist a, b, λ > 0 such that

X ′ ∼ Beta(a + b, λ) and Y ′ ∼ Beta(a, b).

If one of these conditions holds, then

Um ∼ Beta(λ + b, a), and V m ∼ Beta(λ, b).
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Remark 1.13 When X ′ ∼ Beta(a + b, λ) and Y ′ ∼ Beta(a, b) it can be proved that Um

and V m are independent using the well-known property: if Z and Z ′ are independent,
Z ∼ γ(a, 1) and Z ′ ∼ γ(b, 1) then R := Z

Z+Z′
and Z + Z ′ are independent and R ∼

Beta(a, b) and Z + Z ′ ∼ γ(a + b, 1) (see for instance Yor, 1989).

According to Remark 1.10, f ∗
δ is a LWMY function with respect to (X, Y ) if and only if

φδ is a multiplicative LWMY function with respect to (X ′, Y ′) = (e−X , e−Y ). Therefore, a
classical change of variables allows to deduce that Theorem 1.11 is equivalent to Theorem
1.14 below:

Theorem 1.14 1. Consider two positive and independent random variables X and Y .
The random variables U = f ∗

δ (X + Y ), V = f ∗
δ (X)− f ∗

δ (X + Y ) are independent if
and only if the densities of Y and X are respectively

pY (y) =
Γ(a + b)

Γ(a)Γ(b)
(1 − e−y)b−1e−ay1{y>0} (1.36)

pX(x) = kδ(a + b, λ,−λ − b)e−(a+b)x(δe−x + 1 − e−x)−λ−b

×(1 − e−x)λ−11x>0 (1.37)

where a, b > 0 , λ ∈ R and kδ(a + b, λ,−λ− b) is the normalizing factor (cf (1.33)).
Thus e−Y is Beta(a, b) distributed and e−X is βδ(a + b, λ,−λ − b) distributed.

2. If 1. holds then the densities of U and V are respectively

pU(u) = kδ(λ + b, a;−a − b)e−u(λ+b)(1 − e−u)a−1

×(1 + (δ − 1)e−u)−a−b1u>0, (1.38)

pV (v) = e−λv(1 − e−v)b−1 1v>0. (1.39)

The proof of Theorem 1.14 is similar to that of Theorem 1.4 and has been postponed to
Appendix 5.3.

2 A necessary and sufficient condition for LWMY

functions and related densities

Theorem 2.1 Let X and Y be two independent and positive random variables whose
densities pX and pY are positive and twice differentiable. Define φX = log pX and φY =
log pY . Consider a decreasing function f : (0,∞) 7→ (0,∞), three times differentiable.
Then f is a LWMY function with respect to (X, Y ) if and only if

φ′′
X(x) − φ′

X(x)
f ′′(x)

f ′(x)
+ φ′′

Y (y)f ′(x)

(

1

f ′(x)
− 1

f ′(x + y)

)

+φ′
Y (y)

f ′′(x)

f ′(x)
+

2(f ′′(x))2 − f ′′′(x)f ′(x)

f ′(x)2
= 0, x, y > 0. (2.1)
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Proof :
1) Consider the transformation Tf : (0,∞)2 → (0,∞)2; (x, y) 7→ (f(x + y), f(x) −

f(x + y)). Let g = f−1 and (U, V ) = Tf (X, Y ). By formula (1.13), (X, Y ) = Tg(U, V ). X
and Y being independent, the density of (U, V ) is

p(U,V )(u, v) = pX(g(u + v)) pY (g(u) − g(u + v)) |J(u, v)|1u,v>0 (2.2)

where J is the Jacobian of the transformation Tf . Since x = g(u+v) and y = g(u)−g(u+v)
we have

J(u, v) = det

(

g′(u + v) g′(u + v)
g′(u) − g′(u + v) −g′(u + v)

)

= −g′(u + v)g′(u).

g being monotone we have |J(u, v)| = g′(u + v)g′(u), so that

p(U,V )(u, v) = pX(g(u + v)) pY (g(u) − g(u + v)) g′(u + v)g′(u). (2.3)

2) Let H : (0,∞)2 → R be a function having second partial derivatives. It is easy to
prove that the function H decomposes as

H(u, v) = h1(u) + h2(v), u, v > 0,

if and only if ∂2H
∂u∂v

= 0.
3) According to the former item, the variables U and V are independent if and only

if the function H = log p(U,V ) satisfies ∂2H
∂u∂v

= 0. By Equation (2.3) we have

∂H

∂v
= φ′

X(g(u + v)) g′(u + v) − φ′
Y (g(u) − g(u + v)) g′(u + v) +

g′′

g′
(u + v),

∂2H

∂u∂v
= φ′′

X(g(u + v)) (g′(u + v))2 + φ′
X(g(u + v)) g′′(u + v)

−φ′′
Y (g(u)− g(u + v)) g′(u + v) [g′(u) − g′(u + v)]

−φ′
Y (g(u)− g(u + v)) g′′(u + v) +

g′′′g′ − (g′′)2

(g′)2
(u + v).

Writing x = g(u + v) and y = g(u)− g(u + v), we have u = f(x + y), v = f(x)− f(x + y)
and

∂2H

∂u∂v
= φ′′

X(x)[g′(f(x))]2 + φ′
X(x)g′′(f(x))

−φ′′
Y (y)g′(f(x)) [g′(f(x + y)) − g′(f(x))]

−φ′
Y (y)g′′(f(x)) +

g′′′g′ − (g′′)2

(g′)2
(f(x)) = 0. (2.4)

Differentiating twice the relation g(f(x)) = x, we obtain

g′(f(x)) =
1

f ′(x)
, (x > 0) (2.5)
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g′′(f(x)) = − f ′′(x)

f ′(x)3
(x > 0). (2.6)

A differentiation of the latter equality yields

g′′′(f(x)) = −f ′′′(x)f ′(x) − 3f ′′(x)2

f ′(x)5
.

Using this equality and (2.5) and (2.6) we have

g′′′g′ − (g′′)2

(g′)2
(f(x)) =

[

−
(

f ′′′(x)f ′(x) − 3f ′′(x)2

f ′(x)5

)

1

f ′(x)
− f ′′(x)2

f ′(x)6

]

f ′(x)2

=
2f ′′(x)2 − f ′′′(x)f ′(x)

f ′(x)4
. (2.7)

Plugging Equations (2.5), (2.6) and (2.7) into Equation (2.4) one gets

∂2H

∂u∂v
=

φ′′
X(x)

f ′(x)2
− φ′

X(x)f ′′(x)

f ′(x)3
− φ′′

Y (y)

f ′(x)

(

1

f ′(x + y)
− 1

f ′(x)

)

+
φ′

Y (y)f ′′(x)

f ′(x)3
+

2f ′′(x)2 − f ′′′(x)f ′(x)

f ′(x)4

and (2.1) follows by multiplying the above identity by f ′(x)2.

�

3 The set of all possible “smooth” LWMY functions

We restrict ourselves to smooth LWMY functions f , i.e. satisfying

f : (0,∞) → (0,∞) is bijective and decreasing, (3.1)

f is three times differentiable, (3.2)

F (x) =
∑

n≥1

anx
n, ∀x > 0. (3.3)

where F := 1/f ′.
According to (3.1), f ′(0+) = −∞. This implies F (0+) = 0 and explains why the series in
(3.3) starts with n = 1.

The goal of this section is to prove half of Theorem 1.2: if f is a smooth LWMY
function, then f belongs to one of the four classes F1, . . . ,F4 introduced in Remark 1.3.
First, we characterize in Theorem 3.1 all possible functions F . Second, we determine the
associated functions f (see Theorem 3.8).

Theorem 3.1 Suppose that f is a smooth LWMY function and that the assumptions of
Theorem 2.1 are satisfied.
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1. If F ′(0+) = 0, then a2 < 0 and

F (x) =

{

a2
2

6a4

(

cosh
(

x
√

12a4

a2

)

− 1
)

if a4 < 0

a2x
2 otherwise.

(3.4)

2. If F ′(0+) 6= 0, then

F (x) =

{

a1a2

3a3

[

cosh
(

x
√

6a3

a1

)

− 1
]

+ a1

√

a1

6a3
sinh

(

x
√

6a3

a1

)

if a1a3 > 0

a1x + a2x
2 otherwise.

(3.5)

Remark 3.2 Unsurprisingly, the case F (x) = a2x
2 corresponds to f(x) = − 1

a2

1
x
, i.e. the

case considered by Matsumoto-Yor and Letac-Wesolowski.

Throughout this subsection we suppose that f satisfies (3.1), (3.2), (3.3) and that the
assumptions of Theorem 2.1 are fulfilled. For simplicity of statement of results below we
do not repeat these conditions.

Recall that φY is the logarithm of the density of Y . Let us introduce

h := φ′
Y (3.6)

Lemma 3.3 1. There exists a function λ : (0,∞) → R such that

F (x + y) =
λ(x) − h(y)F ′(x)

h′(y)
+ F (x). (3.7)

2. F satisfies

F (y) =
λ(0+) − h(y)F ′(0+)

h′(y)
. (3.8)

Remark 3.4 Suppose that we have been able to determine F . Then, h = φ′
Y solves the

linear ordinary differential equation (3.8) and can therefore be determined. The remaining
function φX is obtained by solving Equation (2.1).

Proof of Lemma 3.3 :
Using ( 3.6) and F = 1/f ′ in Equation (2.1), we obtain

c(x) = h(y)
F ′(x)

F (x)
+ h′(y)

1

F (x)
(F (x + y) − F (x))

where c(x) depends only on x. Multiplying both sides by F (x) and taking the y-derivative
leads to

0 = F ′(x)h′(y) + [F (x + y) − F (x)]h′′(y) + h′(y)F ′(x + y).

Fix x > 0. Then θ(y) := F (x + y) is a solution of the differential equation in y:
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0 = F ′(x)h′(y) + (θ(y) − F (x))h′′(y) + h′(y)θ′(y). (3.9)

A solution of the related homogeneous equation in y is ρ
h′(y)

where ρ is a constant. It is

easy to prove that y 7→ −F ′(x)h(y) + F (x)h′(y) solves (3.9). Thus, the general solution
of (3.9) is

θ(y) =
1

h′(y)
[λ(x) − F ′(x)h(y) + F (x)h′(y)] .

Since θ(y) = F (x + y), (3.7) follows.
According to (3.3), F (0+) and F ′(0+) exist. Therefore, taking the limit x → 0+ in

(3.7) implies both the existence of λ(0+) and relation (3.8).

�

The following lemma shows that the function F (and thus f) solves a self-contained
equation in which h, and thereby the densities of X and Y , are not involved.

Lemma 3.5 F solves the delay equations :

F (x + y) =
F (y)[λ(x) − h(y)F ′(x)]

λ(0+) − h(y)F ′(0+)
+ F (x) (x, y > 0) (3.10)

F ′(x + y) =
F ′(y) + F ′(0+)

F (y)
[F (x + y) − F (x)] − F ′(x) (x, y > 0). (3.11)

Proof:
By (3.8) we have

h′(y) =
λ(0+) − h(y)F ′(0+)

F (y)
.

Equation (3.10) then follows by rewriting Equation (3.7) and replacing h′(y) with the
expression above.
We differentiate (3.10) in y and use the fact that λ(0+) − h(y)F ′(0+) = h′(y)F (y) to
obtain :

F ′(x + y) = [F ′(y) + F ′(0+)]
λ(x) − h(y)F ′(x)

F (y)h′(y)
− F ′(x).

By (3.7) we have
λ(x) − h(y)F ′(x)

F (y)h′(y)
=

F (x + y) − F (x)

F (y)

and this gives (3.11).

�

Remark 3.6 We can see (3.11) as a scalar neutral delay differential equation. Indeed,
set t = x + y and consider y > 0 as a fixed parameter. Then (3.11) becomes:

F ′(t) = a(F (t) − F (t − y)) − F ′(t − y), t ≥ y, (3.12)
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where a := F ′(y)+F ′(0+)
F (y)

.

Replacing F (t) in (3.12) with eatG(t) leads to:

G′(t) + e−ayG′(t − y) + 2ae−ayG(t − y) = 0, t ≥ y. (3.13)

Equation (3.13) is called a neutral delay differential equation (cf for instance, Section 6.1,
in Györi and Ladas, 1991). These equations have been intensively studied but the authors
only focused on the asymptotic behaviour of the solution as t → ∞. Unfortunately, these
results give no help to solve explicitly either (3.11) or (3.13).

Lemma 3.7 For all integers k ≥ 0 and l ≥ 1, we have

l−1
∑

m=0

(l − 2m + 1)Ck
l−m+1+kal−m+1+kam = (l − 2)(k + 1)ak+1al + a1al+kC

k
l+k, (3.14)

Ck
k+3ak+3a1 = (k + 1)ak+1a3, (3.15)

2Ck
k+4ak+4a1 + Ck

k+3ak+3a2 − Ck
k+2ak+2a3 − 2(k + 1)ak+1a4 = 0, (3.16)

where Cp
n = n!

(n−p)!p!
.

Proof:
Obviously Equation (3.11) is equivalent to:

F ′(x+ y)F (y) = F ′(y)F (x+ y)−F ′(y)F (x)−F (y)F ′(x)+F ′(0+)F (x+ y)−F ′(0+)F (x).
(3.17)

Using the asymptotic expansion (3.3) of F we can develop each term in (3.17) as a series
with respect to x and y. Then, identifying the series on the right-hand side and the
left-hand side we get (3.14)-(3.16). Since this approach only needs usual skill in analysis
the details are provided in Appendix 6.2.

�

Proof of part 1. of Theorem 3.1
We suppose that F ′(0+) = 0.

Since a1 = F ′(0+) = 0, we necessarily have a2 6= 0. Indeed, if a2 = 0 then, by (3.16) with
k = 1, we would have −3a2

3 − 4a2a4 = 0, i.e. a3 = 0, and using again (3.16) with k = 3
would imply a4 = 0 and finally ak = 0 for every k ≥ 0, which is a contradiction because,
by definition, F = 1/f ′ does not vanish.

So, we have a1 = 0 and a2 6= 0. Equation (3.15) with k = 1 reads 4a4a1 = 2a2a3,
which implies a3 = 0. Applying (3.15) to k = 2n provides, by induction on n, a2n+1 = 0
for every n ≥ 0.

Therefore, Equation (3.16) reduces to

(k + 3)(k + 2)(k + 1)ak+3a2 = 12(k + 1)ak+1a4, (k ≥ 0)
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i.e.

ak+3 =
12a4

a2

1

(k + 3)(k + 2)
ak+1.

This leads to

a2k =

(

12a4

a2

)k−1
2

(2k)!
a2, k ≥ 1. (3.18)

Then, F (x) = a2x
2 if a4 = 0 and if a4 6= 0 we have

F (x) =
∑

k≥1

(

12a4

a2

)k−1
2

(2k)!
a2x

2k.

If a4a2 < 0, then

F (x) =
a2

2

6a4

[

cos

(

x

√

−12a4

a2

)

− 1

]

.

This implies F (2π
√

−12a4

a2
) = 0 which is impossible since F (x) = 1/f ′(x) < 0. Conse-

quently,

F (x) =
a2

2

6a4

[

cosh

(

x

√

12a4

a2

)

− 1

]

.

�

Proof of part 2. of Theorem 3.1
Using Equation (3.15) we have, for all k ≥ 0, (k + 3)(k + 2)ak+3a1 = 6ak+1a3. Since

a1 6= 0, Equation (3.15) is equivalent to

ak+3 =
6a3

a1

1

(k + 3)(k + 2)
ak+1.

As a result,

a2k+1 =

(

6a3

a1

)k
1

(2k + 1)!
a1, (k ≥ 0),

a2k =

(

6a3

a1

)k−1
2

(2k)!
a2, (k ≥ 1).

As a consequence,

F (x) =
∑

k≥1

(

6a3

a1

)k−1
2

(2k)!
a2x

2k +
∑

k≥0

(

6a3

a1

)k
1

(2k + 1)!
a1x

2k+1.

If a3 = 0 then it follows from Equation (3.15) that ak = 0 for every k ≥ 3. If a3 6= 0
and a1a3 > 0 we have

∑

k≥1

(

6a3

a1

)k−1
2

(2k)!
a2x

2k =
a2a1

3a3

[

cosh

(

x

√

6a3

a1

)

− 1

]
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and
∑

k≥0

(

6a3

a1

)k
1

(2k + 1)!
a1x

2k+1 = a1

√

a1

6a3
sinh

(

x

√

6a3

a1

)

.

If a1a3 < 0 then

F (x) = a1

(

a2

3a3

[

cos

(

x

√

−6a3

a1

)

− 1

]

+

√

−a1

6a3
sin

(

x

√

−6a3

a1

))

.

In particular, F (2π
√

−a1

6a3
) = 0. This is impossible since F (x) = 1/f ′(x) < 0.

�

Now, in each case of Theorem 3.1 we compute the corresponding f associated with
F via the relation F = 1/f ′. Recall that we restrict ourselves to functions f satisfying
(3.1)-(3.3) and work under the assumptions of Theorem 2.1.

Theorem 3.8 1. If F (x) = a2x
2 then f(x) = 1

a2x
.

2. If F (x) = α(cosh βx − 1), α, β > 0, then f(x) = 2
αβ

f1(βx).

3. If F (x) = a1x + a2x
2 then f(x) = − 1

a1
g1(

a2

a1
x).

4. If F (x) =
a1a2

3a3

[

cosh

(

x

√

6a3

a1

)

− 1

]

+ a1

√

a1

6a3

sinh

(

x

√

6a3

a1

)

then

f(x) = − 1

βγ
log

(

eβx + δ − 1

eβx − 1

)

,

where α = a1a2

3a3
, β =

√

6a3

a1
and γ = a1

√

a1

6a3
.

Proof:
1) The first case is obvious.
2) We have

f ′(x) =
1

F (x)
= − 1

α(cosh βx − 1)
, x > 0, β > 0, α > 0.

Since f(0+) = +∞ and f(+∞) = 0+, integrating the previous identity gives

f(x) =
2

αβ

1

eβx − 1
=

2

αβ
f1(βx),

where f1(x) = 1
ex−1

.

3) Recall (cf (1.16)) that g1 = f−1
1 . Since g′

1(x) = − 1
x(x+1)

, it can be easily proved that
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the associated LWMY function is f(x) = − 1
a1

g1(
a2

a1
x).

4) Due to our choice of α, β and γ we have

f ′(x) =
1

F (x)

=
1

α(cosh βx − 1) + γ sinh βx
(3.19)

=
eβx

γ(eβx − 1)
− (α + γ)eβx

γ[(α + γ)eβx − α + γ]
.

As a consequence, by integration,

f(x) =
1

βγ
log(eβx − 1) − 1

βγ
log |(α + γ)eβx − α + γ| + C

where C is a constant.
Using (3.19) we have : f ′(x) ∼ 1

αβ
1
x

asx → 0+, f ′(x) ∼ 2
α+γ

e−βx asx → +∞. This implies

that γ < 0 and α + γ < 0. Setting δ =
2γ

α + γ
we have δ > 0,

γ − α

α + γ
= δ − 1 and

f(x) = − 1

βγ
log

(

eβx + δ − 1

eβx − 1

)

+ C ′.

Since f(∞) = 0 we have C ′ = 0. As a result, f(x) = − 1
βγ

f ∗
δ (βx).

�

4 Proof of Theorem 1.4

Recall that f1, g1 and f ∗
δ have been defined by equations (1.15), (1.16) and (1.17)

respectively. In Theorem 3.8 we have proved that if f is a LWMY function, then
f ∈ F1 ∪F2 ∪F3 ∪F4, where these four classes have been introduced in Remark 1.3. The
class F1 corresponds to the Matsumoto-Yor property. Indeed, we prove in Subsection 6.1
that x 7→ 1/x is a LWMY function associated to GIG and gamma distributions. The re-
sult has been already obtained by Letac and Wesolowski (2001) under weaker assumptions
than ours.

Recall that φY = log pY , h = φ′
Y and F ′(0+) = 0. It is easy to deduce from (3.8) that

there exist constants λ and c1 such that

h(y) = λf(y) + c1

=
λ

ey − 1
+ c1

=
λey

ey − 1
+ c1 − λ.

This implies the existence of a constant d such that

φY (y) = λ log(ey − 1) + (c1 − λ)y + d.
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Setting M = ed, we have by integration, for all y > 0,

pY (y) = M(ey − 1)λe(c1−λ)y

= M(1 − e−y)λec1y. (4.1)

To give more information on the normalizing constant M , one observes, for a = −c1 and
b = λ + 1, that

∫ ∞

0

M(1 − e−y)b−1e−ay dy = M

∫ 1

0

(1 − u)b−1ua−1 du

which implies that a > 0, b > 0 and

M =
Γ(a + b)

Γ(a)Γ(b)
.

This proves (1.20).
To find the density of X we come back to Equation (2.1) and compute each of its

terms.
We have f ′(x) = −ex

(ex−1)2
, f ′′(x) = e2x+ex

(ex−1)3
, f ′′′(x) = −e3x+4e2x+ex

(ex−1)4
, so that f ′(x)

f ′(x+y)
=

e−y(ex+y−1)2

(ex−1)2
and f ′′(x)

f ′(x)
= −ex+1

ex−1
. Calculations yield

2(f ′′(x))2 − f ′′′(x)f ′(x)

f ′(x)2
=

e2x + 1

(ex − 1)2
. (4.2)

Moreover,

−φ′
Y (y)

f ′′(x)

f ′(x)
+ φ′′

Y (y)

(

f ′(x)

f ′(x + y)
− 1

)

=

(

λ

ey − 1
+ c1

)

ex + 1

ex − 1

− λey

(ey − 1)2

(

e−y(ex+y − 1)2

(ex − 1)2
− 1

)

=
(c1 − λ)e2x − c1

(ex − 1)2
. (4.3)

Equation (2.1) can then be writen, using (4.2) and (4.3):

φ′′
X(x) +

ex + 1

ex − 1
φ′

X(x) = − e2x + 1

(ex − 1)2
+

(c1 − λ)e2x − c1

(ex − 1)2

=
(c1 − λ − 1)e2x − c1 − 1

(ex − 1)2
.

Then h0 := φ′
X solves

h′
0(x) +

ex + 1

ex − 1
h0(x) =

(c1 − λ − 1)e2x − c1 − 1

(ex − 1)2
. (4.4)
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Note that x 7→ K
4 sinh2(x/2)

solves (4.4) with the right-hand side equal to 0, and x 7→
(c1−λ−1)ex+(c1+1)e−x

4 sinh2(x/2)
is a particular solution of (4.4). Therefore, the solution of (4.4) is

h(x) =
(c1 − λ − 1)ex + (c1 + 1)e−x + K

4 sinh2(x
2
)

for some constant K. This implies

φ′
X(x) =

(c1 − λ − 1)ex + (c1 + 1)e−x + K

ex + e−x − 2

=
(c1 − λ − 1)e2x + c1 + 1 + Kex

(ex − 1)2

= c1 + 1 +
(2c1 − λ + K)ex

(ex − 1)2
− (λ + 2)ex

ex − 1
.

As a consequence, there exists a constant δ such that

φX(x) = (c1 + 1)x − (2c1 − λ + K)ex

ex − 1
− (λ + 2) log(ex − 1) + δ.

Thus pX(x) = Ne(c1+1)x(ex − 1)−λ−2 exp
(

−2c1−λ+K
ex−1

)

1{x>0}. Recall that a = −c1 and
b = λ + 1. With c = 2c1 − λ + K one gets (1.21). More information on the constant N is
obtained by observing that if we set V ′ = f1(X) = 1

eX−1
, then the density of V ′ is

fV ′(w) = N(w + 1)−awa+b−1 exp{−cw}1{w>0},

i.e. the law of V ′ is K(2)(a + b,−b, c) (cf Equation (1.18)).
We have

g′
1(u) = − 1

u(u + 1)
.

Equation (2.3), together with (1.20) and (1.21), imply, for u, v > 0,

p(U,V )(u, v) = pX

(

log

[

u + v + 1

u + v

])

pY

(

log

[

(u + 1)(u + v)

u(u + v + 1)

])

× 1

u(u + 1)(u + v)(u + v + 1)
.

Then we get that p(U,V )(u, v) is the product of a function of u and a function of v and
this gives item 2. of Theorem 1.4.

�
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5 Appendix

5.1 Another proof of the result by Letac and Wesolowski under

stronger assumptions

Proposition 5.1 Consider two independent and positive random variables X and Y hav-
ing positive and twice differentiable densities.
If the random variables U = (X + Y )−1 and V = X−1 − (X + Y )−1 are independent then
there exist µ > 0, a > 0 and b > 0 such that the law of X is GIG(−µ, a, b) and Y follows
the gamma distribution γ(µ, b2

2
).

Proof : We keep the notation introduced in Section 1. The densities of X and Y are
respectively denoted by pX and pY . Let φX = log pX and φY = log pY . Theorem 2.1 with
f : x 7→ 1/x asserts that the variables U and V are independent if and only if, for all
x, y > 0,

φ′′
X(x) +

2

x
φ′

X(x) + φ′′
Y (y)

1

x2
(x2 − (x + y)2) − 2

x
φ′

Y (y) +
2

x2
= 0. (5.5)

Let us first compute the density of Y .
Equation (5.5) implies that, for fixed x > 0, the function φ′

Y = h is a solution of the
ordinary linear differential equation

2

x
h(y) + h′(y)

y2 + 2xy

x2
= c(x), y > 0, (5.6)

where c(x) does not depend on y. The solutions of h′(y) + 2x
y2+2xy

h(y) = 0 are of the type

h(y) = k(x)
y + 2x

y
.

Note that y 7→ −c(x)x2

y
is a particular solution of (5.6), consequently h solves (5.6) iff:

h(y) = −c(x)
x2

y
+ k(x)

y + 2x

y
, y > 0.

Recall that φ′
Y = h, then we have φ′

Y (y) = 1
y
(−c(x)x2 + 2xk(x) + yk(x)). But φ′

Y is a

function of y only. As a consequence, the expressions −c(x)x2 +2xk(x) and k(x) actually
do not depend on x. We denote them respectively by δ and λ, so that

φ′
Y (y) =

1

y
(δ + λy), y > 0,

which implies the existence of a constant d ∈ R such that

φY (y) = δ ln y + λy + d, y > 0.
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But φY = log pY , so the density of Y is

pY (y) = θyδeλy, y > 0. (5.7)

where θ = ed is a positive constant. Since pY is, as a density, integrable, we have neces-
sarily λ < 0 and δ > −1 and defining

µ := δ + 1, b =
√
−2λ, (5.8)

formula (5.7) shows that the law of Y is γ(µ, b2/2).
We now compute the density of X.

We rewrite Equation (5.5) by replacing φ′
Y (y) with 1

y
(δ + λy) and φ′′

Y (y) with −δ
y2 . This

gives

φ′′
X(x) +

2

x
φ′

X(x) +
δ + 2

x2
− 2λ

x
= 0.

So φ′
X is a solution of the ordinary linear differential equation:

κ′(x) +
2

x
κ(x) +

δ + 2

x2
− 2λ

x
= 0. (5.9)

The solution of the corresponding homogeneous differential equation κ′(x) + 2
x
κ(x) = 0 is

κ(x) = η
x2 , for some constant η (x > 0). Note that x 7→ (−2−δ)x+λx2

x2 solves (5.9), then κ

solves (5.9) iff for some η, κ(x) = (−2−δ)x+λx2+η
x2 . Since κ = φ′

X we have

φ′
X(x) =

−2 − δ

x
+ λ +

η

x2
.

As a consequence, there exists a constant τ ∈ R such that

φX(x) = (−2 − δ) lnx + λx − η

x
+ τ.

Since φX = log pX , we have

pX(x) = x−2−δ(exp τ) exp(λx − η

x
)

which proves that X follows the law GIG(−µ, a, b) with µ := δ + 1, b =
√
−2λ (cf (5.8))

and a =
√

2η (observe that the integrability of pY implies η > 0) .

�

5.2 Proof of Lemma 3.7

We have

F ′(x + y)F (y) =
∑

n,m≥0

anamn(x + y)n−1ym

=
∑

n,m≥0

anamnym

(

n−1
∑

k=0

Ck
n−1x

kyn−1−k

)

=
∑

k≥0

xk
∑

m≥0,n≥1+k

nanamCk
n−1y

n+m−1−k.



Independence properties of the Matsumoto-Yor type 23

Setting l = m + n − 1 − k for fixed m gives

F ′(x + y)F (y) =
∑

k≥0,l≥0

xkyl
l
∑

m=0

(l − m + 1 + k)Ck
l−m+kal−m+1+kam. (5.10)

F ′(y)F (x + y) =
∑

n,m≥0

manam(x + y)nym−1

=
∑

n,m≥0

manamym

(

n
∑

k=0

Ck
nxkyn−k

)

ym−1

=
∑

k≥0

xk
∑

m≥0,n≥k

manamCk
nyn+m−1−k.

We set again l = m + n − 1 − k for fixed k :

F ′(y)F (x + y) =
∑

k≥0,l≥0

xkyl

(

l+1
∑

m=0

mCk
l−m+k+1al−m+1+kam

)

(5.11)

F ′(y)F (x) =
∑

k≥0,l≥0

akal+1(l + 1)xkyl (5.12)

F ′(x)F (y) =
∑

k≥0,l≥0

ak+1al(k + 1)xkyl (5.13)

F ′(0+)F (x + y) = a1

∑

n≥0

an(x + y)n

= a1

∑

n≥0

an

(

n
∑

k=0

Ck
nxkyn−k

)

= a1

∑

k≥0

xk
∑

n≥k

anC
k
nyn−k

= a1

∑

k,l≥0

al+kC
k
l+kx

kyl. (5.14)

F ′(0+)F (x) = a1

∑

k≥0

akx
k. (5.15)

Identifying the coefficient of xkyl in (3.17) and using (5.10) to (5.15) we have, for k ≥ 0
and l ≥ 0:

l
∑

m=0

(l − m + 1 + k)Ck
l−m+kal−m+1+kam = −(l + 1)akal+1 − (k + 1)ak+1al

+

l+1
∑

m=0

mCk
l−m+k+1al−m+1+kam

+a1al+kC
k
l+k − a1ak1l=0. (5.16)
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Note that if l = 0, both sides of (5.16) vanish, therefore we may suppose in the sequel
that l ≥ 1.
For m = l + 1 we have mCk

l−m+k+1al−m+1+kam = (l + 1)akal+1. Thus, Equation (5.16)
reads

l
∑

m=0

(l − m + 1 + k)Ck
l−m+kal−m+1+kam = −(k + 1)ak+1al +

l
∑

m=0

mCk
l−m+k+1al−m+1+kam

+a1al+kC
k
l+k. (5.17)

But one finds by a calculation using the definition that

(l − m + 1 + k)Ck
l−m+k − mCk

l−m+1+k = (l − 2m + 1)Ck
l−m+1+k,

so that Equation (5.17) is equivalent to

l
∑

m=0

(l − 2m + 1)Ck
l−m+1+kal−m+1+kam = −(k + 1)ak+1al + a1al+kC

k
l+k. (5.18)

For m = l we have (l − 2m + 1)Ck
l−m+1+kal−m+1+kam = (1 − l)(k + 1)ak+1al. Conse-

quently Equation (5.18) may be written as follows:

l−1
∑

m=0

(l−2m+1)Ck
l−m+1+kal−m+1+kam − (l−1)(k +1)ak+1al = −(k +1)ak+1al +a1al+kC

l
l+k

which implies (3.14).
(3.15) and (3.16) follow by applying (3.14) to l = 3 and l = 4 respectively.

�

5.3 Proof of Theorem 1.14

Throughout this proof we write for simplicity f instead of f ∗
δ . Starting with f(x) =

log(ex + δ − 1) − log(ex − 1) we have

f ′(x) = − δex

(ex + δ − 1)(ex − 1)
=

−δ

ex + δ − 2 + (1 − δ)e−x
(5.19)

which implies F (x) = 1/f ′(x) = −1
δ
(ex + δ − 2 + (1− δ)e−x) and F ′(0) = −1. Therefore,

again with h = φ′
Y , Equation (3.8) is equivalent to

−h′(y)

δ
(ey + δ − 2 + (1 − δ)e−y) − h(y) = λ,

whose solution is found to be, again by the method of variation of constants :

h(y) = c +
δ(c + λ)e−y

1 − e−y
. (5.20)
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Thus, there exists a constant d′ such that φY (y) = cy + δ(c + λ) log(1− e−y) + d′ and this
proves that pY (y) = d(1 − e−y)(c+λ)δecy 1y>0. We set

a = −c, b = δ(c + λ) + 1 (5.21)

to obtain (1.36).
¿From (5.19) one has

f ′′(x) =
δ(ex + (δ − 1)e−x)

(ex + δ − 2 + (1 − δ)e−x)2
,

f ′′′(x) = δ
−e2x + (δ − 2)ex − 6δ + 6 + (δ − 1)(2 − δ)e−x − (δ − 1)2e−2x

(ex + δ − 2 + (1 − δ)e−x)3
,

2(f ′′(x))2 − f ′′′(x)f ′(x)

f ′(x)2
=

ex − (δ − 1)e−x

(ex + δ − 1)(1 − e−x)
,

−φ′
Y (y)

f ′′(x)

f ′(x)
− φ′′

Y (y)f ′(x)

(

1

f ′(x)
− 1

f ′(x + y)

)

= −(a + b − 1)ex + a(δ − 1)e−x

(ex + δ − 1)(1 − e−x)
.

Equation (2.1) is then equivalent to :

φ′′
X(x) +

ex + (δ − 1)e−x

(ex + δ − 1)(1 − e−x)
φ′

X(x) =
(δ − 1)(1 − a)e−x − (a + b)ex

(ex + δ − 1)(1 − e−x)
.

Solving this differential equation by similar calculations gives

φ′
X(x) =

K + (a − 1)(δ − 1)e−x − (a + b)ex

(ex + δ − 1)(1 − e−x)

where K is a constant. This can be written

φ′
X(x) = A +

Be−x

1 + (δ − 1)e−x
+

Ce−x

1 − e−x

where

A = −a − b, B =
(δ − 1)(K + 1 − a + (a + b)(δ − 1))

δ
, C =

K − a − b + (a − 1)(δ − 1)

δ
.

This implies φX(x) = Ax − B
δ−1

log(1 + (δ − 1)e−x) + C log(1 − e−x) + κ where κ is a
constant. Thus one obtains

pX(x) = De−(a+b)x(1 + (δ − 1)e−x)−λ−b(1 − e−x)λ−11x>0

with λ = C + 1 = B
δ−1

− b = K+1−b−2a+aδ
δ

. This proves (1.37).
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To compute the density of (U, V ) we note that f = f ∗
δ is self-reciprocal. Then, by

(2.3), the density of (U, V ) is

p(U,V )(u, v) = pX(f(u + v)) pY (f(u) − f(u + v)) f ′(u + v)f ′(u)

= pX

(

log

[

eu+v + δ − 1

eu+v − 1

])

pY

(

log

[

(eu + δ − 1)(eu+v − 1)

(eu − 1)(eu+v + δ − 1)

])

× δ2

(eu+v + δ − 1)(1 − e−u−v)(eu + δ − 1)(1 − e−u)
.

Using the expressions of pX and pY , one gets (1.38) and (1.39).

�
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