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Product Approximations for Solutions to a Class of Evolution Equations in Hilbert Space

In this article we prove approximation formulae for a class of unitary evolution operators U (t; s) s;t2[0;T ] associated with linear non-autonomous evolution equations of Schrödinger type de…ned in a Hilbert space H. An important feature of the equations we consider is that both the corresponding self-adjoint generators and their domains may depend explicitly on time, whereas the associated quadratic form domains may not. Furthermore the evolution operators we are interested in satisfy the equations in a weak sense. Under such conditions the approximation formulae we prove for U (t; s) involve weak operator limits of products of suitable approximating functions taking values in L(H), the algebra of all linear bounded operators on H. Our results may be relevant to the numerical analysis of U (t; s) and we illustrate them by considering two evolution problems in quantum mechanics.

Introduction and Outline

Let H be an arbitrary complex Hilbert space and let L(H) be the algebra of all bounded linear operators de…ned on H. Our purpose in this article is to prove approximation formulae for the solutions to initial-value problems of the form i du(t) dt = H(t)u(t); 0 s < t T;

u(s) = v; (1) 
where the H(t)'s are given self-adjoint and positive operators in H, with T 2 (0; +1) arbitrary. More speci…cally, assuming there exists a unitary evolution system U H (t; s) s;t2[0;T ] on H that solves (1) in a suitably weak sense, we display a large one-parameter family of functions F t : R + 7 ! L(H) such that formulae of the form

U H (t; s) = lim n!+1 0 Y =n 1 F s+ n (t s) t s n (2) 
hold in the weak operator topology of L(H) for all s; t 2 [0; T ] with t s. We carry this out under hypotheses that allow the explicit time dependence of the domains of the H(t)'s, whereas the associated quadratic form domains remain time-independent. The conditions we impose are more general than those used previously by various authors in the context of Schrödinger equations, who typically assume that the domains of the H(t)'s are time-independent (see for instance [START_REF] Faris | Product Formulas for Perturbations of Linear Propagators[END_REF], [START_REF] Reed | Methods of Modern Mathematical Physics[END_REF], and also [START_REF] Yosida | Functional Analysis, Classics in Mathematics Series[END_REF] along with the references therein for the analysis of more general evolution equations). They are, in fact, related to the classic results of [START_REF] Kisy Ński | Sur les Opérateurs de Green des Problèmes de Cauchy Abstraits[END_REF] and [START_REF] Simon | Quantum Mechanics for Hamiltonians De…ned as Quadratic Forms[END_REF], which play a signi…cant rôle in the sequel regarding the existence and various properties of unitary evolution systems U (t; s) s;t2[0;T ] . An important consequence of the theorem we state below is that among all the admissible functions F t there are the resolvent operators R t ( ) := (I+i H(t)) 1 [START_REF] Chernoff | Note on Product Formulas for Operator Semigroups[END_REF] where I stands for the identity in L(H), and the C 0 -unitary semigroup

S t ( ) := exp [ i H(t)] : (4) 
This establishes the validity of the formulae

U H (t; s) = lim n!+1 0 Y =n 1 I+i t s n H s + n (t s) 1 = lim n!+1 0 Y =n 1 exp i t s n H s + n (t s) (5) 
under very general conditions. Furthermore, formulae such as [START_REF] Albeverio | Solvable Models in Quantum Mechanics[END_REF] with the largest possible class of F t 's are also very useful in view of many applications since they constitute the theoretical basis of numerical algorithms intended to compute solutions to various di¤erential problems, a theme thoroughly discussed in [START_REF] Chorin | Product Formulas and Numerical Algorithms[END_REF]. In particular, the resolvent approximation in [START_REF] Chernoff | Product Formulas, Nonlinear Semigroups, and Addition of Unbounded Operators[END_REF] is typically related to the so-called Euler backward di¤erence scheme. We shall organize the remaining part of this article in the following way: in Section 2 we state our main result, which holds under three main hypotheses. In the …rst one we describe the topological and metric properties of the quadratic form domains we need to carry out our estimates, while in the other two we specify the class of unitary evolutions and of approximating functions for which (2) holds. In that section we also state a corollary where we establish the validity of ( 2) and ( 5) when H(t) splits as

H(t) = H 0 _ +V (t) (6) 
in the sense of quadratic forms, with H 0 and V (t) self-adjoint operators in H, H 0 positive and time-independent and V (t) subordinated to H 0 in some sense. This is of course one of the typical situations encountered in the realm of quantum mechanics, and the existence of the unitary evolution U H0+V (t; s) s;t2[0;T ] we need there is garanteed by some of the results in [START_REF] Kisy Ński | Sur les Opérateurs de Green des Problèmes de Cauchy Abstraits[END_REF] and [START_REF] Simon | Quantum Mechanics for Hamiltonians De…ned as Quadratic Forms[END_REF]. In this last case we also note that [START_REF] Chernoff | Product Formulas, Nonlinear Semigroups, and Addition of Unbounded Operators[END_REF] does not take the form of the usual Trotter product formulae in spite of the decomposition ( 6), a point we shall brie ‡y discuss at the end of Sections 2 and 3. We devote Section 3 to the proofs of our results, which rest on duality arguments involving the quadratic form domains associated with the H(t)'s, and on a natural generalization of the methods we developed in [START_REF] Vuillermot | A General Trotter-Kato Formula for a Class of Evolution Operators[END_REF] and [START_REF] Vuillermot | A Generalization of Cherno¤ 's Product Formula for Time-Dependent Operators[END_REF] for the investigation of parabolic evolution equations. In Section 4 we illustrate our results by means of two examples. The …rst one relates to the evolution of a particle in one space dimension under the in ‡uence of a …nite number of time-dependent point interactions, a special case of a model originally introduced in [START_REF] Dell'antonio | The Schrödinger Equation with Moving Point Interactions in Three Dimensions[END_REF] and recently revisited in [START_REF] Neidhardt | Linear Non-Autonomous Cauchy Problems and Evolution Semigroups[END_REF] and [START_REF] Posilicano | The Schrödinger Equation with a Moving Point Interaction in Three Dimensions[END_REF], while the second one describes the motion of a quantum particle in three-dimensional Euclidean space subjected to a so-called time-dependent Rollnik potential.

Statement of the Results

In the sequel we write (:; :) for the inner product in H and k:k for the corresponding induced norm. We also denote by k:k 1 the usual supremum-norm in L(H).

For an arbitrary T 2 (0; +1) and for each t 2 [0; T ] we consider initialvalue problems of the form [START_REF] Adams | Sobolev Spaces[END_REF], where the H(t)'s are self-adjoint and positive operators de…ned on dense domains D(H(t)) which may depend explicitly on t. Let Q(t) t2[0;T ] be the one-parameter family of closed and Hermitian sesquilinear forms associated with the H(t)'s through the second representation theorem for quadratic forms, densely de…ned on the domain

D Q := D H(t) 1 2
(see, for instance, [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF] for a discussion of this theorem). In what follows we assume that D Q is independent of t and that Q(t) satis…es the positivity condition

Q(t) [v; v] c kvk 2 (7)
for some constant c 2 (0; +1) uniformly in t for every v 2 D Q . As is well known, this allows one to endow D Q with the natural unitary structure de…ned from the inner products

(v; w) Q;t := Q(t) [v; w] = H(t) 1 2 v; H(t) 1 2 w ( 8 
)
and we write H Q;t for the corresponding Hilbert spaces equipped with the induced norms kvk Q;t := H(t)

1 2 v : (9) 
Let H Q;t be the adjoint space of H Q;t endowed with the usual norm

kwk Q;t; := sup 06 =v2H Q;t jhw; vi j kvk Q;t ; (10) 
where h:; :i stands for the duality bracket between H Q;t and H Q;t . We infer from ( 7), ( 9) and ( 10) that the continuous embeddings

H Q;t 7 ! H 7 ! H Q;t (11) 
hold provided we identify H with its adjoint space in the usual manner by means of Riesz's lemma. In this setting the vector space D Q is dense in H Q;t with respect to [START_REF] Faris | The Product Formula for Semigroups de…ned by Friedrichs Extensions[END_REF] (see, for instance, [START_REF] Kisy Ński | Sur les Opérateurs de Green des Problèmes de Cauchy Abstraits[END_REF], [START_REF] Lions | Équations Di¤ érentielles Opérationnelles et Problèmes aux Limites[END_REF] and [START_REF] Tanabe | Equations of Evolution[END_REF] for other typical constructions of this kind). Moreover, the two embedding constants relative to [START_REF] Faris | Product Formulas for Perturbations of Linear Propagators[END_REF] are independent of t and furthermore we may write [START_REF] Faris | The Product Formula for Semigroups de…ned by Friedrichs Extensions[END_REF] as

kwk Q;t; = H(t) 1 2 w ; (12) 
where H(t)

1 2
is the extension by continuity to H Q;t of the corresponding operator on H. Thus, the H Q;t 's inherit a Hilbert space structure as well with respect to the inner products

(v; w) Q;t; := H(t) 1 2 v; H(t) 1 2 w .
It is worth recalling here that for all s; t 2 [0; T ] the norms k:k Q;s and k:k Q;t are mutually equivalent since the linear operators H(s)

1 2 H(t) 1 2
are bounded on H, a simple consequence of ( 7), the time-independence of D Q and the closed graph theorem. This implies in particular that the spaces H Q;t are all algebraically and topologically identical, as are the spaces H Q;t . Therefore, from now on we write H Q and H Q for these spaces, respectively, whenever their metric properties are not directly involved.

In view of the applications of Section 4 we have now to impose more stringent conditions on the family Q(t) t2[0;T ] . Indeed, we assume that the following hypothesis is valid: (Q) There exist an additional, …xed norm k:k + on H Q and a constant c 2 [1; +1) such that the inequalities

c 1 kvk 2 + Q(t) [v; v] c kvk 2 + (13)
hold for each t 2 [0; T ] and every v 2 H Q . Moreover, there exists a constant c 2 (0; +1) such that the Lipschitz continuity estimate 

jQ(t) [v; v] Q(s) [v; v]j c
for each t 2 [0; T ] and every w 2 H Q by virtue of [START_REF] Kato | Trotter's Product Formula for an Arbitrary Pair of Self-Adjoint Contraction Semigroups[END_REF].

Next, we consider an evolution system U H (t; s) s;t2[0;T ] on H consisting of a two-parameter family of linear unitary operators satisfying the usual strong continuity properties and composition laws, as for instance in [START_REF] Simon | Quantum Mechanics for Hamiltonians De…ned as Quadratic Forms[END_REF] or [START_REF] Tanabe | Equations of Evolution[END_REF], along with a class of approximating functions F t : R + 7 ! L(H) which satisfy the following hypothesis: For instance, it is plain that both (3) and ( 4) satisfy these conditions with c = 0. That is, since S t ( ) commutes with H(t) follows immediately by writing R t ( ) as the Laplace transform of S t ( ). However, we remark that in general [START_REF] Neidhardt | Linear Non-Autonomous Cauchy Problems and Evolution Semigroups[END_REF] is not a consequence of [START_REF] Neidhardt | Trotter-Kato Product Formula and Operator-Norm Convergence[END_REF], nor is (17) a consequence of [START_REF] Neidhardt | Linear Non-Autonomous Cauchy Problems and Evolution Semigroups[END_REF]. Now let L(H Q ; H Q ) be the space of all linear bounded operators from H Q into H Q . In order to formulate our requirements regarding U H (t; s), we introduce the unique operator H(t) 2 L(H Q ; H Q ) characterized by the relation

(F) We have F t (0) = I
Q(t) [v; w] = hH(t)v; wi (19) 
for every t 2 [0; T ] and all v; w 2 H Q . It is known that for each such t the operator H(t) is an extension of the self-adjoint generator H(t), and that

D(H(t)) = fv 2 H Q : H(t)v 2 Hg
(see for instance [START_REF] Lions | Équations Di¤ érentielles Opérationnelles et Problèmes aux Limites[END_REF]). Our hypothesis concerning U H (t; s) then consists of the following three parts:

(U) We have U H (t; s) (H Q ) H Q for all s; t 2 [0; T ] with t s, that is, U H (t; s) leaves H Q invariant. Moreover the following conditions are satis…ed: (a) For every v 2 H Q the relation lim !0+ sup t2[s;T ] F t ( ) I U H (t; s)v + iH(t)U H (t; s)v = 0 (20) 
holds.

(b) For all v; w 2 H Q the function t 7 ! hU H (t; s)v; wi is di¤erentiable on [0; T ] and we have

i d dt hU H (t; s)v; wi = hH(t)U H (t; s)v; wi (21) 
for all s; t 2 [0; T ] with t > s.

(c) For every v 2 H Q the function t 7 ! H(t)U H (t; s)v is continuous on [0; T ] in the strong topology of H Q .
What [START_REF] Reed | Methods of Modern Mathematical Physics[END_REF] does is to identify the right-derivative of 7 ! F t ( ) at the origin with the operator iH(t) in the strong topology of H Q , while ( 21) is interpreted as the weak form of (1) we alluded to earlier, with u(t) = U H (t; s)v.

Under the above conditions our main result is the following.

Theorem. Assume that Hypotheses (Q), (F) and (U) hold. Then for all s; t 2 [0; T ] with t s we have

U H (t; s) = lim n!+1 0 Y =n 1 F s+ n (t s) t s n ( 22 
)
in the weak operator topology of L(H). In particular, if the F t ( )'s are also unitary, then [START_REF] Tanabe | Equations of Evolution[END_REF] holds in the strong operator topology of L(H).

Remark. Since the U H (t; s)'s are unitary we have

U H (t; s) = U H (s; t)
for all s; t 2 [0; T ], where U H (s; t) denotes the adjoint of U H (s; t) in L(H). Consequently, from [START_REF] Tanabe | Equations of Evolution[END_REF] we immediately obtain

U H (t; s) = lim n!+1 n 1 Y =0 F t+ n (s t) s t n
for all s; t 2 [0; T ] with t s in the weak operator topology of L(H). Therefore, in the sequel we shall formulate our results only for the case t s.

In view of the applications to quantum mechanics, a particularly interesting illustration of this theorem obtains when the operators H(t) are of the form

H(t) = H 0 _ +V (t) (23) 
where H 0 is a time-independent, self-adjoint, positive operator and V (t) t2[0;T ] a one-parameter family of self-adjoint operators on H, the meaning of ( 23) being that of a quadratic form sum.

In order to display our result in this case we need to rephrase slightly the hypotheses of Corollary II.28 in [START_REF] Simon | Quantum Mechanics for Hamiltonians De…ned as Quadratic Forms[END_REF]. Let Q 0 be the closed, Hermitian and positive sesquilinear form associated with H 0 and let Q V (t) t2[0;T ] be the oneparameter family of closed and Hermitian sesquilinear forms associated with the V (t)'s. We assume that Q V (t) is relatively bounded with respect to Q 0

uniformly in t. Writing H 0 := D H 1 2 0
for the domain of Q 0 , this means that the domain of Q V (t) contains H 0 for every t 2 [0; T ] and that the following hypothesis is valid (see, for instance, [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF] for a discussion of this notion):

(V) There exist constants a 2 [0; 1) and b 2 R such that the inequality

jQ V (t) [v; v]j aQ 0 [v; v] + b kvk 2 (24)
holds for each t 2 [0; T ] and every v 2 H 0 .

In order to realize [START_REF] Trotter | On the Product of Semigroups of Operators[END_REF] as a form sum we write

Q(t) = Q 0 + Q V (t) (25) 
for every t 2 [0; T ]. Thus we have H 0 = H Q and the preceding assumptions imply the existence of unique operators

H(t), H 0 , V(t) 2 L(H Q ; H Q ) satisfying (19) and the relations Q 0 [v; w] = hH 0 v; wi ; (26) 
Q V (t) [v; w] = hV(t)v; wi (27) 
for every t 2 [0; T ] and all v; w 2 H Q , respectively. Consequently [START_REF] Vuillermot | A General Trotter-Kato Formula for a Class of Evolution Operators[END_REF] reads

jhV(t)v; vi j a hH 0 v; vi + b kvk 2
and the combination of ( 25), ( 26) and ( 27) gives

H(t) = H 0 + V(t) (28) 
as an equality in L(H Q ; H Q ), which is indeed the meaning of ( 23).

The second relevant hypothesis is the following:

(V 0 ) The L(H Q ; H Q )-valued function t 7 ! V(t) is strongly di¤erentiable on [0; T ] and its derivative V 0 (t) 2 L(H Q ; H Q ) satis…es jhV 0 (t)v; vi j a hH 0 v; vi + b kvk 2 (29)
for each t 2 [0; T ] and every v 2 H Q , where a and b are as in [START_REF] Vuillermot | A General Trotter-Kato Formula for a Class of Evolution Operators[END_REF].

The implication of Corollary II.28 in [START_REF] Simon | Quantum Mechanics for Hamiltonians De…ned as Quadratic Forms[END_REF] is then that there exists a unitary evolution system U H0+V (t; s) s;t2[0;T ] on H satisfying parts (b) and (c) of Hypothesis (U), where H(t) is given by ( 28). What we wish to display here are important ways in which we can approximate U H0+V (t; s).

Corollary. Assume that Hypotheses (V),(V 0 ) and (F) hold. Assume furthermore that (20) is valid. Then the conclusion of the theorem holds true for U H0+V (t; s). In particular, for all s; t 2 [0; T ] with t s we have

U H0+V (t; s) = lim n!+1 0 Y =n 1 I+i t s n H s + n (t s) 1 ( 30 
)
in the weak operator topology of L(H). Moreover, we also have

U H0+V (t; s) = lim n!+1 0 Y =n 1 exp i t s n H s + n (t s) (31)
in the strong operator topology of L(H).

Remarks.

(1) The above results can all be modi…ed in a straightforward manner to cover the case where the H(t)'s are self-adjoint operators uniformly bounded from below. Thus, everywhere in the sequel we shall only consider positive generators, a restriction that we will also apply to the two examples of Section 4.

(2) A relation similar to (31) was derived in Appendix B of [START_REF] Dimock | P (') 2 -Models with Variable Coe¢ cients[END_REF] in a more speci…c context and on the basis of a technique di¤erent from the one we develop in the next section, which provides a simple and natural framework for the proofs of our general results.

(3) On the right-hand side of (30) and (31) the operator H(t) appears as a whole, although it splits as in [START_REF] Trotter | On the Product of Semigroups of Operators[END_REF]. A natural question is thus whether formulae such as

U H0+V (t; s) = lim n!+1 0 Y =n 1 I+i t s n H 0 1 I+i t s n V s + n (t s) 1 (32) 
and

U H0+V (t; s) = lim n!+1 0 Y =n 1 exp i t s n H 0 exp i t s n V s + n (t s) (33) 
are also true under our general conditions. It turns out that this problem remains open, although there have been numerous extensions of Trotter's original work [START_REF] Trotter | On the Product of Semigroups of Operators[END_REF] over the years concerning the linear autonomous case, including those appearing in [START_REF] Chernoff | Note on Product Formulas for Operator Semigroups[END_REF]- [START_REF] Chernoff | Product Formulas, Nonlinear Semigroups, and Addition of Unbounded Operators[END_REF], [START_REF] Faris | The Product Formula for Semigroups de…ned by Friedrichs Extensions[END_REF], [START_REF] Ichinose | Error Estimate in Operator Norm of Exponential Product Formulas for Propagators of Parabolic Evolution Equations[END_REF], [START_REF] Kato | Trotter's Product Formula for an Arbitrary Pair of Self-Adjoint Contraction Semigroups[END_REF] and [START_REF] Neidhardt | Trotter-Kato Product Formula and Operator-Norm Convergence[END_REF] (see, for instance, [START_REF] Davies | One-Parameter Semigroups[END_REF] for a comprehensive analysis of some of these works). The linear non-autonomous case is more di¢ cult, unless the domains of the H(t)'s are independent of time and the evolution equations satis…ed in a classical sense, as in [START_REF] Faris | Product Formulas for Perturbations of Linear Propagators[END_REF].

We shall dwell a bit more on this at the end of the next section, by pointing out where the di¢ culties are.

Proof of the Results

In what follows we write c for all the irrelevant constants that occur in the various estimates unless we specify these constants otherwise. We …rst draw an elementary but important consequence from the Lipschitz continuity estimate [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF].

Lemma 1. Assume that Hypothesis (Q) is valid. Then there exists a constant c 2 (0; +1) such that the inequality

kwk Q;t; exp [c jt sj] kwk Q;s; (34) 
holds for all s; t 2 [0; T ] and every w 2 H Q .

Proof. From ( 13) and ( 14) we have

kvk 2 Q;t = Q(t) [v; v] (1 + c jt sj) Q(s) [v; v] exp [c jt sj] kvk 2 Q;s
for every v 2 H Q , and by symmetry

kvk 2 Q;s exp [c jt sj] kvk 2 
Q;t :
Therefore we obtain

sup 06 =v2H Q hw; vi Q; kvk Q;t exp [c jt sj] sup 06 =v2H Q hw; vi Q; kvk Q;s ;
which is (34) by changing the value of c if necessary.

Without restricting the generality we now assume that s < t < T and set h = t s n for n su¢ ciently large. The preceding lemma then allows us to prove the following result.

Lemma 2. Assume that Hypothesis (Q) and ( 18) are valid. Then there exists a constant c 2 (0; +1) such that the estimate

+1 Y =n F s+( 1)h (h)v c kvk ( 35 
)
holds for each 2 f1; :::; n 1g and every v 2 H.

Proof. According to [START_REF] Lions | Équations Di¤ érentielles Opérationnelles et Problèmes aux Limites[END_REF] this is equivalent to proving that

+1 Y =n F s+( 1)h (h)v Q;t; c kvk Q;t;
: For this we apply (34) and ( 18) alternatingly. After 2(n ) 1 steps we obtain

+1 Y =n F s+( 1)h (h)v Q;t; exp [c (2(n ) 1) h] F t (n )h (h)v Q;t (n )h; (36) 
since nh = t s. Furthermore, we can estimate the last factor in (36) as

F t (n )h (h)v Q;t (n )h; exp [ch] kvk Q;t (n )h; exp [c (n + 1) h] kvk Q;t; (37) 
by …rst applying [START_REF] Neidhardt | Linear Non-Autonomous Cauchy Problems and Evolution Semigroups[END_REF] and then (34). Consequently, the substitution of (37) into (36) leads to the inequality

+1 Y =n F s+( 1)h (h)v Q;t; exp [3c (n ) h] kvk Q;t; exp [3cnh] kvk Q;t; ;
which gives the desired result since nh = t s T .

We now de…ne the sequence (P n (t; s)) L(H) by

P n (t; s) := U H (t; s) 1 Y =n F s+( 1)h (h) (38) 
and establish the following useful preliminary estimate for it.

Lemma 3. Assume that Hypothesis (Q) and ( 18) hold. Then we have the inequality

kP n (t; s)vk cn sup r2[s;t] kU H (r + h; s)v F r (h) U H (r; s)vk ( 39 
)
for every v 2 H.

Proof. From the basic composition laws for the U H (t; s)'s, (38), and remembering that t = s + nh we …rst get

P n (t; s) = 1 Y =n U H (s + h; s + ( 1) h) 1 Y =n F s+( 1)h (h) = 2 Y =n F s+( 1)h (h) (U H (s + h; s) F s (h)) + n 1 X =2 +1 Y =n F s+( 1)h (h) U H (s + h; s + ( 1) h) F s+( 1)h (h) 1 Y = 1 U H (s + h; s + ( 1) h) + (U H (t; t h) F t h (h)) 1 Y =n 1 U H (s + h; s + ( 1) h) (40) 
where the second equality follows from the cancellation of all but the two relevant terms in the expression on its right-hand side. Furthermore, by repeated applications of the composition laws we have

1 Y = 1 U H (s + h; s + ( 1) h) = U H (s + ( 1)h; s) (41) 
and

1 Y =n 1 U H (s + h; s + ( 1) h) = U H (t h; s) (42) 
for the two products that appear on the right-hand side of (40). Substituting (41) and ( 42) into (40), multiplying out and regrouping terms we then get

P n (t; s)v = n 1 X =1 +1 Y =n F s+( 1)h (h) U H (s + h; s) F s+( 1)h (h) U H (s + ( 1)h; s) v + (U H (t; s) F t h (h) U H (t h; s)) v (43) 
for every v 2 H since U H (s; s) = I. We now proceed by estimating the norm of the …rst term on the right-hand side of (43) by means of (35); we obtain

n 1 X =1 +1 Y =n F s+( 1)h (h) U H (s + h; s) F s+( 1)h (h) U H (s + ( 1)h; s) v c n 1 X =1 U H (s + h; s)v F s+( 1)h (h) U H (s + ( 1)h; s)v ; (44) 
so that the combination of ( 43) and ( 44 

U H (r + h; s)v F r (h) U H (r ; s)v cn sup r2[s;t h] kU H (r + h; s)v F r (h) U H (r; s)vk ;
which indeed leads to (39).

In order to estimate (39) further we now introduce two linear operators de…ned on H Q , namely,

L(h; r) := h 1 (I F r (h)) iH(r) (45) 
and

M (h; r) := h 1 (I U H (r + h; r)) iH(r) (46) 
where H(r) stands for the operator de…ned by [START_REF] Posilicano | The Schrödinger Equation with a Moving Point Interaction in Three Dimensions[END_REF]. We can then express the right-hand side of (39) somewhat di¤erently as in the following result, albeit now with the additional but harmless restriction v 2 H Q .

Lemma 4. Assume that Hypothesis (Q) and ( 18) hold, along with the invariance part of Hypothesis (U). Then we have the inequality

kP n (t; s)vk c sup r2[s;t] kL(h; r)U H (r; s)v M (h; r)U H (r; s)vk ( 47 
)
for every v 2 H Q .

Proof. From (45) and (46) we obtain

hL(h; r)U H (r; s)v = U H (r; s)v F r (h)U H (r; s)v ihH(r)U H (r; s)v (48) 
and

hM (h; r)U H (r; s)v = U H (r; s)v U H (r + h; s)v ihH(r)U H (r; s)v; (49) 
respectively, where we have used the composition laws to establish (49). By subtracting (49) from (48) we then get

hL(h; r)U H (r; s)v hM (h; r)U H (r; s)v = U H (r + h; s)v F r (h)U H (r; s)v;
so that (47) indeed follows from (39) since nh = t s T .

We are now ready for the following.

Proof of the theorem. We …rst show that 

lim n!+1
h 1 (U H (r; s)v F r (h)U H (r; s)v) iH(r)U H (r; s)v = 0
for every v 2 H Q , which is an immediate consequence of [START_REF] Reed | Methods of Modern Mathematical Physics[END_REF].

As for the proof of (52) we start from the relation which is equivalent to (52). Consequently (50) holds, which implies that

hM (h; r)U H (r; s)v; wi = ih 1 Z r+h r dk hH(k)U H (k; s)v H(r)U H (r; s)v; wi ( 
(U H (t; s)v; w) = lim n!+1 0 Y =n 1 F s+ n (t s) t s n v; w ! ( 55 
)
for all v; w 2 H Q according to ( 15) and ( 38), since h:; :i and (:; :) are interchangeable on H.

In order to prove [START_REF] Tanabe | Equations of Evolution[END_REF], it thus remains to extend (55) to all v; w 2 H. On the one hand, as a vector subspace H Q is dense in H relative to the strong topology of this latter space. On the other hand, arguing as in the proof of Lemma 2 we infer from ( 17) that the estimate

0 Y =n 1 F s+ n (t s) t s n v c kvk
holds for every v 2 H for some c 2 (0; +1) independent of n. Therefore, the fact that (55) holds for all v; w 2 H follows from a standard density argument. The very last statement of the theorem is obvious since the weak and strong topologies of H coincide on the unitary group in L(H).

We now turn to the proof of the corollary, which …rst requires the veri…cation of Hypothesis (Q).

Lemma 5. Assume that Hypotheses (V) and (V 0 ) are valid. Then relations ( 13) and ( 14) hold relative to the …xed norm

kvk + := H 1 2 0 v (56) on H Q .
Proof. From ( 24), ( 25) and (56) we get

(1 a) kvk 2 + b kvk 2 Q (t) [v; v] (1 + a) kvk 2 + + b kvk 2
for each t 2 [0; T ] and every v 2 H Q , which leads to (13) by virtue of ( 7) and the …rst embedding in [START_REF] Faris | Product Formulas for Perturbations of Linear Propagators[END_REF].

The starting point for the proof of ( 14) is the relation

Q (t) [v; v] Q (s) [v; v] = Z t s d hV 0 ( )v; vi ;
which follows from ( 25), ( 27) and the di¤erentiability of V. We then obtain the desired estimate

jQ (t) [v; v] Q (s) [v; v]j Z t s d jhV 0 ( )v; vi j c jt sj kvk 2 +
for all s; t 2 [0; T ] and every v 2 H Q , as a consequence of ( 29), ( 56) and the …rst embedding in [START_REF] Faris | Product Formulas for Perturbations of Linear Propagators[END_REF] once again.

Remark. It is also possible to obtain the …rst inequality in ( 13) from ( 24) and the condition

Q 0 [v; v] kvk 2 (57)
for a su¢ ciently large positive , instead of invoking [START_REF] Davies | One-Parameter Semigroups[END_REF]. This is particularly useful when [START_REF] Davies | One-Parameter Semigroups[END_REF] cannot easily be proved directly, as will be the case in the second example of Section 4.

Since we know from Corollary II.28 and its proof in [START_REF] Simon | Quantum Mechanics for Hamiltonians De…ned as Quadratic Forms[END_REF] that U H0+V (t; s) satis…es parts (b) and (c) of Hypothesis (U), the preceding lemma and the theorem imply the …rst statement of the corollary. Moreover, we have already noted that the resolvent operators (3) and the unitary semigroup (4) satisfy Hypothesis (F) in a trivial way. Therefore, in order to prove (30) and (31) it remains to verify part (a) of Hypothesis (U) for ( 3) and ( 4). For this it is necessary to consider the C 0 -semigroup on H Q given by

S t ( ) := exp [ i H(t)] ; (58) 
namely, the extension by continuity of (4) to the whole of H Q . It is easily veri…ed that (58) is unitary with respect to the norm [START_REF] Ichinose | Error Estimate in Operator Norm of Exponential Product Formulas for Propagators of Parabolic Evolution Equations[END_REF], and that its in…nitesimal generator is indeed iH(t), considered this time as an unbounded operator in H Q de…ned on the dense subspace H Q where H(t) is self-adjoint. We begin with the following intermediary result, valid quite generally and independently of (28). Lemma 6. Assume that (13) of Hypothesis (Q) holds. Then we have

lim !0+ sup t2[0;T ] k(exp [ i H(t)] I) vk = 0 (59) 
for every v 2 H Q . Moreover, for any compact set

K H Q the limit (59) is uniform in v 2 K.
Proof. Relation (13) implies [START_REF] Lions | Équations Di¤ érentielles Opérationnelles et Problèmes aux Limites[END_REF]. Consequently, from the properties of exp [ i H(t)] and from the fact that H Q is dense in H Q as a vector subspace, it is su¢ cient to prove the relation

lim !0+ sup t2[0;T ] k(exp [ i H(t)] I) vk = 0 (60) 
for every v 2 H Q . We …rst show that the identity

hexp [ i H(t)] v v; wi = i Z 0 d exp [ i H(t)] H 1 2 (t)v; H 1 2 (t)w (61) 
holds for each 2 [0; +1), every t 2 [0; T ] and all v; w 2 H Q . Indeed, from a classic property of C 0 -semigroups we may write

hexp [ i H(t)] v v; wi = i Z 0 d (exp [ i H(t)] H(t)v; w)
for each v 2 D(H(t)) and every w 2 H Q . But v 2 D(H(t)) if, and only if,

H 1 2 (t)v 2 H Q ; furthermore H 1 2 (t) commutes with exp [ i H(t)] on H Q and is self-adjoint in H, so that (61) holds for each 2 [0; +1) and all t 2 [0; T ], v 2 D(H(t)), w 2 H Q .
Therefore, in order to show the validity of (61) for all v 2 H Q it su¢ ces to prove that D(H(t)) is dense in H Q . On the one hand, the restriction of exp [ i H(t)] to H Q de…nes a C 0 -semigroup there, the generator of which being consequently densely de…ned in H Q . On the other hand, the domain of that generator is contained in D(H(t)) by virtue of the …rst embedding in [START_REF] Faris | Product Formulas for Perturbations of Linear Propagators[END_REF]. We can then conclude that D(H(t)) is a fortiori dense in H Q , so that (61) holds for all v 2 H Q .

It is now easy to derive (60) from (61), since Schwarz inequality and the fact that exp [ i H(t)] is unitary in H lead to the estimate

jhexp [ i H(t)] v v; wi j H 1 2 (t)v H 1 2 (t)w c kvk + kwk +
as a consequence of ( 9) and ( 13), where c is independent of t. Thus we get

sup t2[0;T ] sup 06 =w2H Q jhexp [ i H(t)] v v; wi j kwk + c kvk + ! 0 as ! 0 + , which is the desired result.
As for the very last assertion of the lemma, we remark that the operator

norm of exp [ i H(t)] I in L(H Q ) satis…es sup 2[0;+1) sup t2[0;T ] kexp [ i H(t)] Ik L(H Q ) < +1;
(62) so that the statement follows for instance from Lemma 3 in [START_REF] Vuillermot | A General Trotter-Kato Formula for a Class of Evolution Operators[END_REF].

The preceding considerations now allow us to prove the desired assertions.

Proof of the Corollary. As already observed it remains to verify part (a) of Hypothesis (U) for the approximating functions (3) and (4). Since the former is the Laplace transform of the latter, we begin with (4). This means that we must have 

lim !0+ sup t2[0;T ] exp [ i H(t)] I U H0+V (t; s)v + iH(t)U H0+V (t; s)v = 0 (
Furthermore, from the proof of Corollary II.28 of [START_REF] Simon | Quantum Mechanics for Hamiltonians De…ned as Quadratic Forms[END_REF] we already know that the function t 7 ! H(t)U H0+V (t; s)v is continuous on [0; T ] in the strong topology of H Q for each v 2 H Q , so that the set

K := w 2 H Q : w = H(t)U H0+V (t; s)v; t 2 [0; T ]
is compact in H Q . Relation (63) then follows from (65) and the very last statement of Lemma 6. The proof of the analogous property for (3) follows from (63) through a Laplace transform argument and dominated convergence. Indeed we have

(I+i H(t)) 1 v = Z +1 0 d exp [ ] exp [ i H(t)] v
for each 2 (0; +1) and every v 2 H as an improper H-valued Riemann integral, so that

(I+i H(t)) 1 I U H0+V (t; s)v + iH(t)U H0+V (t; s)v = Z +1 0 d exp [ ] exp [ i H(t)] I U H0+V (t; s)v + iH(t)U H0+V (t; s)v since Z +1 0 d exp [ ] = Z +1 0 d exp [ ] = 1:
Consequently we get

sup t2[0;T ] (I+i H(t)) 1 I U H0+V (t; s)v + iH(t)U H0+V (t; s)v Z +1 0 d exp [ ] A( ; ) (66) 
where we have introduced the auxiliary function (I+i H(t))

1 I U H0+V (t; s)v + iH(t)U H0+V (t; s)v = 0
for each v 2 H Q and every s 2 [0; T ], as desired.

Remark. Whereas the methods of this article are relevant to prove (30) and (31) where the operator H(t) appears as a whole, they are not quite appropriate to derive formulae such as (32) and (33). Indeed, the natural choice of approximating functions in this case is

F t ( ) = (I+i H 0 ) 1 (I+i V (t)) 1 (69) 
and

F t ( ) = exp [ i H 0 ] exp [ i V (t)] ; (70) 
respectively. In either case the problem then lies in the veri…cation of Hypothesis (F): whereas (17) trivially holds for both (69) and (70) with c = 0, (18) can seldom be valid. For instance, in the case of (70) and by virtue of [START_REF] Lions | Équations Di¤ érentielles Opérationnelles et Problèmes aux Limites[END_REF] with

kwk := H 1 2 0 w
we have successively with c 2 [1; +1), instead of [START_REF] Neidhardt | Linear Non-Autonomous Cauchy Problems and Evolution Semigroups[END_REF]. But then, it is impossible to derive the crucial uniform estimate (35) since the number of factors in that product depends explicitly on n.

kF t ( )vk 2 Q;t; c H 1 2 0 exp [ i V (t)] v 2 c 2 kexp [ i V (t)] vk 2 
We devote the last section to the illustration of our results.

Two Examples

In what follows we use the standard notations for the usual spaces of Lebesgue integrable functions and for the corresponding Sobolev spaces of functions de-…ned on Euclidean space (see, for instance, [START_REF] Adams | Sobolev Spaces[END_REF]). All the functions are complexvalued unless stated otherwise.

Example 1. We consider the initial-value problem in one space dimension i @u(x; t) @t = 1 2

@ @x 1 m(x) @ @x + V (x) + N X k=1 s k (t) x k ! u(x; t); (x; t) 2 R (s; T ] ; u(x; s) = v(x); x 2 R; (71) 
corresponding to a particle with variable mass m moving in a potential V perturbed by time-dependent point interactions supported by a discrete set fx 1 ; :::; x N g, where N 2 N + is …xed and arbitrary (see, for instance, [START_REF] Dell'antonio | The Schrödinger Equation with Moving Point Interactions in Three Dimensions[END_REF] and its references for a physical interpretation of related models).

In this case we view (71) as an evolution problem of the form (1) in H = L 2 (R), with the operator H(t) formally given by

H(t) := 1 2 @ @x 1 m(x) @ @x + V (x) + N X k=1 s k (t) x k : (72) 
Furthermore we impose the following hypotheses:

(MV) We have 0 < 1 m + m 2 L 1 (R) and 0 V 2 L 1 (R).
(S) The strengths of the point interactions s k : [0; T ] 7 ! [0; +1) are positive and Lipschitz continuous for every k 2 f1; :::; N g. Under these conditions there exists a self-adjoint realization of (72) in L 2 (R) as a positive operator on some time-dependent domain D(H(t)), corresponding to the closed and Hermitian sesquilinear form

Q(t) [v; w] = Z R dx 1 2m(x) v 0 (x)w 0 (x) + V (x)v(x)w(x) + N X k=1 s k (t)v(x k )w(x k ) (73)
de…ned for all v; w 2 D H(t)

1 2
= W 1;2 (R) (see [START_REF] Albeverio | Solvable Models in Quantum Mechanics[END_REF] for a variety of constructions of this kind, based on von Neumann's theory of self-adjoint extensions for symmetric operators); furthermore inequality [START_REF] Davies | One-Parameter Semigroups[END_REF] holds. We then have the following result.

Proposition 1. Assume that Hypotheses (MV), (S), (F) and ( 20) are valid. Then there exists a unique unitary evolution system U H (t; s) s;t2[0;T ] on L 2 (R) associated with the above realization of (72), for which the conclusion of the theorem holds true. In particular, U H (t; s) can be approximated as in (30) and (31) of the corollary. 

Proof. For the …xed norm on H

Q = W 1;2 (R) we choose kvk + = Z R dx jv 0 (x)j

:

Conditions (MV) and (S) together with standard one-dimensional Sobolev theory then imply that Hypothesis (Q) holds. Moreover, (MV) and (S) also guarantee the existence of a unique unitary evolution system U H (t; s) s;t2[0;T ] on L 2 (R), which leaves W 1;2 (R) invariant and satis…es parts (b) and (c) of Hypothesis (U) according to Theorem 6.1 in [START_REF] Neidhardt | Linear Non-Autonomous Cauchy Problems and Evolution Semigroups[END_REF] and its proof. Since (F) and ( 20) are assumed to hold, the conclusion of the theorem follows in this case. The proofs of (30) and (31) are identical to those given at the very end of Section 3.

Example 2. We now consider the initial-value problem i @u(x; t) @t = ( 4 x + + V (x; t)) u(x; t); (x; t) 2 R 3 (s; T ] ; u(x; s) = v(x); x 2 R 3 ;

(74) describing the motion of a quantum particle with constant mass in R 3 , subjected to a time-dependent potential V , measurable in (x; t) and satisfying Rollnik's condition Z for every t 2 [0; T ] (see [START_REF] Simon | Quantum Mechanics for Hamiltonians De…ned as Quadratic Forms[END_REF] for a systematic analysis of Rollnik potentials and the rôle of these in quantum mechanics). Here we consider (74) as an evolution problem of the form (1) in H = L 2 (R 3 ), with H(t) := 4 x + + V (x; t) (76) 20 realized as a self-adjoint operator on some time-dependent domain D(H(t)).

As is well-known, this is made possible by an application of the Kato-Rellich theorem for forms, provided we de…ne H 0 := 4 x + as the self-adjoint, positive operator on the domain D (H 0 ) = W 2;2 (R 3 );

in which case we have H Q = W 1;2 (R 3 ) (see, for instance, [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF] or [START_REF] Simon | Quantum Mechanics for Hamiltonians De…ned as Quadratic Forms[END_REF]). Here we choose positive and su¢ ciently large, in relation to our remark immediately following the proof of Lemma 5 in Section 3.

In order to illustrate our theory with this example we need additional requirements on V that ensure some kind of uniformity in t. For instance, we can impose the following two hypotheses:

(R) We have Z

R 3 R 3 dxdy M(x)M(y) jx yj 2 < +1
where M(x) := sup t2[0;T ] jV (x; t)j.

(R 0 ) The function t 7 ! V (x; t) is di¤erentiable on [0; T ] for almost every x and we have Z

R 3 R 3 dxdy N(x)N(y) jx yj 2 < +1
where N(x) := sup t2[0;T ] @V (x;t) @t .

Under these conditions we have indeed the following result.

Proposition 2. Assume that Hypotheses (R), (R 0 ), (F) and (20) are valid. Then there exists a unique unitary evolution system U H0+V (t; s) s;t2[0;T ] on L 2 (R 3 ) associated with the above realization of (76), for which all the conclusions of the corollary hold true.

Proof. Here we choose the Sobolev norm

kvk + = Z R 3 dx jrv(x)j 2 1 2
for the …xed norm on H Q = W 1;2 (R 3 ), while we have H Q = W 1;2 (R 3 ) for the corresponding adjoint space. Relation (57) is then valid for the Hermitian sesquilinear form Q 0 associated with H 0 = 4 x + , so that it is su¢ cient to prove that (V) and (V 0 ) hold. From a simple adaptation of the proof of Theorem I.21 in [START_REF] Simon | Quantum Mechanics for Hamiltonians De…ned as Quadratic Forms[END_REF] to the time-dependent case we can …rst infer that Hypothesis (R) implies (V), where Q V (t) is the Hermitian sesquilinear form associated with the self-adjoint operator in L 2 (R 3 ) corresponding to the multiplication by V (x; t). The crucial point of this part of the argument is that the assumed uniformity in t implies the time independence of the constants in (V).

2

 2 

R 3 R 3 dxdy

 3 jV (x; t)j jV (y;

  jt sj kvk

	which satis…es	c 1 kwk 2	kwk	2 Q;t;	c kwk 2
					2 +	(14)
	holds for all s; t 2 [0; T ] and every v 2 H Q .	
	The existence of k:k + on H Q implies the existence of an additional …xed norm k:k on H Q , namely,
		kwk := sup 06 =v2H Q	jhw; vi j kvk +	(15)

  63) for each v 2 H Q and every s 2 [0; T ], where H(t) is given by (28). Remembering that exp [ i H(t)] and exp [ i H(t)] coincide on H Q we may write exp [ i H(t)] I U H0+V (t; s)v + iH(t)U H0+V (t; s)v and every v 2 H Q , since iH(t) is the in…nitesimal generator of exp [ i H(t)] in H Q , and since the invariance property of Hypothesis (U) holds in this case. Therefore we obtain

	=	i	Z 0	d (exp [ i H(t)] I) H(t)U H0+V (t; s)v	(64)
	for each 2 (0; +1) exp [ i H(t)] I U H0+V (t; s)v + iH(t)U H0+V (t; s)v	
	sup			
	2[0; ]			

k(exp [ i H(t)] I) H(t)U H0+V (t; s)vk :
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In a similar way we claim that Hypothesis (R 0 ) implies (V 0 ). Indeed, since

for all v; w 2 W 1;2 (R 3 ) where h:; :i denotes the duality bracket between W 1;2 (R 3 ) and W 1;2 (R 3 ), we conclude from (R 0 ) and dominated convergence that the function t 7 ! hV(t)v; wi is di¤erentiable on [0; T ] with

. Moreover, as is the case for V(t) the operator V 0 (t) is linear and bounded from W 1;2 (R 3 ) into W 1;2 (R 3 ) and satis…es (29). Therefore, there does exist a unique unitary evolution system U H0+V (t; s) s;t2[0;T ] on L 2 (R 3 ) such that all the stated conclusions hold true.

Remarks.

(1) It is plain that any kind of conditions other than (R) and (R 0 ) which imply the validity of (V) and (V 0 ) will lead to the same statement as that of the proposition.

(2) Since the operators U H0+V (t; s) are related to the operators U 4+V (t; s) associated with the solution to the initial-value problem i @u(x; t) @t = ( 4 x + V (x; t)) u(x; t); (x; t) 2 R 3 (s; T ] ; u(x; s) = v(x); x 2 R 3 ; by U H0+V (t; s) = e i (t s) U 4+V (t; s); it is immediate that a result similar to that of Proposition 2 holds for U 4+V (t; s). The corresponding approximating functions simply di¤er by at most a trivial factor of modulus one.