
HAL Id: hal-00536604
https://hal.science/hal-00536604v1

Submitted on 16 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Indexing Personal Image Collections: A Flexible,
Scalable Solution

Eduardo Valle, Matthieu Cord, Sylvie Philipp-Foliguet, David Gorisse

To cite this version:
Eduardo Valle, Matthieu Cord, Sylvie Philipp-Foliguet, David Gorisse. Indexing Personal Image
Collections: A Flexible, Scalable Solution. IEEE Transactions on Consumer Electronics, 2010, 56 (3),
pp.1167-1175. �10.1109/tce.2010.5606242�. �hal-00536604�

https://hal.science/hal-00536604v1
https://hal.archives-ouvertes.fr

Indexing Personal Image Collections: A Flexible,

Scalable Solution
Eduardo Valle, Matthieu Cord, Sylvie Philipp-Foliguet, and David Gorisse

Abstract — The growth of personal image collections has

boosted the creation of many applications, many of which

depend on the existence of fast schemes to match similar im-

age descriptors. In this paper we present multicurves, a new

indexing method for multimedia descriptors, able to handle

high dimensionalities (100 dimensions and over) and large

databases (millions of descriptors). The technique allows a

fast implementation of approximate kNN search, and deals

easily with data updating (insertions and deletions). The index

is based on the simultaneous use of several moderate-

dimensional space-filling curves. The combined effect of hav-

ing more than one curve, and reducing the dimensionality of

each individual curve allows to overcome undesirable boun-

dary effects. In empirical evaluations, the method compares

favorably with state-of-the-art methods, especially when the

constraints of secondary storage are considered.
1
.

Index Terms — Descriptor indexing, High-dimensional, Image

collections, Consumer images, Near-duplicate detection.

I. INTRODUCTION

Personal multimedia devices like digital cameras and mul-

timedia-enabled cell-phones have allowed consumers to gather

large image collections, sometimes reaching tens of thousands

of items. Many tools have been created to deal with those

personal collections, providing services like online sharing,

photo collage creation, album organization, image identifica-

tion, etc. [1]–[4]. Those applications often face the challenge

of automatically matching and classifying large amounts of

visual data. Descriptors are used to summarize data content.

The descriptors are a more compact and — hopefully — se-

mantically richer representation than the raw image pixels.

They are usually high-dimensional and often proliferate at the

rate of hundreds per document.

A basic operation needed by those applications is the fast

matching of similar descriptors. This can be provided by in-

dexing schemes, but descriptor indexing is challenging from

both the theoretical and the technical points-of-view, since the

well-known ―curse of dimensionality‖ makes it inherently

inefficient. Furthermore, the memory hierarchy brings addi-

tional constraints to the implementation.

Many high-dimensional indexing methods have been pro-

1 E. Valle was supported by a CAPES/COFECUB, and a FAPESP Grant.
Eduardo Valle is with Computing Institute, UNICAMP, São Paulo, Brazil.

(e-mail: mail@eduardovalle.com).

S. Philipp-Foliguet and D. Gorisse are with Équipes Traitement de

l’Information et Systèmes, 95014 Cergy-Pontoise France. (e-mails:

sylvie.philipp@ensea.fr, david.gorisse@ensea.fr).

M. Cord is with the LIP6 lab., UPMC -- Paris VI, France (e-mail:
matthieu.cord@lip6.fr).

posed [5], but few are able to address the practical concerns of

very large, very high-dimensional descriptor databases. To be

successful, two basic ideas are usually considered: on one

hand, querying simultaneously multiple subindexes; on the

other hand, reducing drastically the dimensionality of each

subindex [6]–[8].

In this paper we propose multicurves, an index able to han-

dle high-dimensional image descriptors. Multicurves is based

on space-filling curves — a technique which has attracted

substantial attention on the field for its ability to create a ―vi-

cinity-sensitive‖ total order on the data, and thus allows the

adaptation of the efficient one-dimensional indexing tech-

niques to multidimensional data. The originality of multi-

curves is to integrate those curves into a very effective struc-

ture, where a careful combination of multiple moderate-

dimensional curves leads to a large precision improvement.

The paper is structured as following: in § II.A, we discuss

the subject of image descriptor indexing, exploring some gen-

eral issues and then reviewing the state of the art in § II.B. In

§ III we describe multicurves, introducing the method and

detailing the algorithms for construction and search. In § IV,

we show the empirical evaluation of multicurves, comparing it

to other state-of-the-art high-dimensional indexing techniques.

In § 0 we show an interesting application of the method to the

task of image identification, i.e., the matching of an original

image and its (distorted) copies.

II. INDEXING MULTIMEDIA DESCRIPTORS

A. Image Descriptor Databases

The challenge of multimedia retrieval comes, in great part,

from the large semantic gap between how the data are coded

and what they represent. Multimedia retrieval seldom uses the

raw representation of data, and is instead mediated by the use

of descriptors. A descriptor is a compact and semantically

richer representation, which may appear in a large variety of

forms: color and texture histograms, invariant moments,

Fourier coefficients, local jets, gradient maps, etc. They are

often of vector nature, and frequently, high-dimensional.

Besides their elevated dimensionality, multimedia databases

are usually very large and the scenario has worsened by the

use of local descriptors, which (as we discuss in § 0) prolife-

rate at the rate of hundreds per document.

B. Large Scale High-dimensional Indexing

Descriptor matching is usually performed by an operation

called kNN search (or k nearest neighbors search), which

finds, in the database, the descriptors most similar to the query

descriptor. The simplest solution to kNN search is sequential

processing. Unfortunately, this brute-force solution is accepta-

ble only for the smallest of databases, being unfeasible in most

contexts. The alternative is to use indexing, in order to accele-

rate the search. However, the performance of indexing de-

pends greatly on the dimensionality of the data. Search time

can be made to grow only logarithmically with the size of the

base, but at the expense of introducing a hidden constant,

which grows exponentially with dimensionality [5][9].

This phenomenon is known as ―curse of dimensionality‖

and expresses the difficulty in partitioning the data or the

space in an efficient way when dimensionality is very high

[10]. Basically, as dimensionality grows, several counter-

intuitive phenomena take form, all of them detrimental to the

working of indexes [9]. As far as we know, for over a dozen

dimensions, no method can reliably perform exact matching

faster than a simple sequential search. This poses a challenge,

since descriptors with hundreds of dimensions are usual.

To solve this dilemma, the methods can trade-off exactness

for speed. This means that they will find the matching descrip-

tor with good probability, but not for sure. In order to be of

practical interest in the context of large-scale multimedia, the

scheme must:

 perform well for high-dimensional data, presenting a

good trade-off between exactness and speed;

 adapt well to secondary memory, which in practice

means that few random accesses must be performed;

 be dynamic, i.e., allow easy data insertion/ deletion,

without significant performance degradation.

Despite the abundant literature on multidimensional index-

ing (for an in-depth account of the bibliography see [5]), sur-

prisingly few methods are able to accomplish those require-

ments: many assume implementation in main memory (and

thus, cheap random access throughout the index), other have

prohibitive building times, and so on.

A class of methods which does achieve those goals tries to

transform the n-dimensional indexing problem into a one-

dimensional indexing problem by using space-filling curves.

C. Indexing using Space-Filling Curves

Space-filling curves are fractal curves whose Hausdorff di-

mension is to that of the dimension in which they are embed-

ded. They are thus able to provide a continuous mappings

from the unit interval [0; 1] to any unit hypercube [0; 1]
d
.

They were introduced by Peano [11] and Hilbert [12]. Most

space-filling curves are constructed by a recursive procedure,

in which the space is progressively divided into smaller cells,

which are then traversed by the curve. In the limit, the curve

fills the entire space (Fig. 1).

Though the study of those curves and of their surprising

properties is fascinating in itself, what concerns us here is their

ability of inducing a ―vicinity-sensitive‖ total order to the data.

What we mean by that is that the curve gives the multidimen-

sional data a total order which, locally and with high-

probability, preserves the neighborhood relations of the space

(putting near in the curve data which are near in the space).

 1
st
 order 2

nd
 order 3

rd
 order

a)

Fig. 1. The recursive space-filling Hilbert curve. Three iterations are

shown: the actual space-filling curve is the infinite limit of those itera-

tions. The curve allows mapping a n-dimensional space onto a 1-

dimensional line in a way which, locally, preserves the neighborhood

relations.

The use of space-filling curves to perform the kNN search

in multidimensional spaces is not new. Apparently Faloutsos

[13] was the first to explicitly refer to the concept of curves,

though earlier authors already used the idea of bit shuffling, bit

interlacing or bit interleaving. There is a space-filling curve

concept ―hidden‖ in bit shuffling techniques, because inter-

leaving the bits of the individual spatial coordinates induces

the appearance of a fractal curve known as ―Z-order curve‖.

Faloutsos and Roseman were the first to suggest that other

curves could perform better than the Z-order, first proposing

the Gray-code curve and then the Hilbert curve [14].

All those pioneering methods were conceptually very sim-

ple; they mapped the high-dimensional elements in the curve

and then performed a straightforward similarity search using

their one-dimensional position in the curve.

A good heuristic is to take the nearest elements in the curve

as the nearest elements in the space. The hypothesis is that

points that are near to each other in the curve always corres-

pond to points that are near to each other in the space. Unfor-

tunately, the converse is not true, in the sense that near points

in the space are not always near in the curve. This is because

of the boundary effects, which tend to put very far apart points

in certain regions of the curve. The matter is seriously aggra-

vated as the dimensionality increases (Fig. 2).

Fig. 2. The problem with boundary effects on the space-filling curves. The

points in the centre of the space are further apart in the curve than the

points in the lower-left quadrant. On those circumstances, the “neighbor-

hood-preserving” property of the mapping is violated.

In order to conquer the boundary effects, Megiddo and

Shaft suggest the use of several curves at once, hoping that,

for any given query, at least one of them will not pose boun-

dary problems. They present the idea in a very general way,

without describing which curves should be used and how they

should be made different [15]. Shepherd et al. develop on this

idea, by specifically recommending the use of several identical

Hilbert curves where different copies of the data elements are

mapped, after random transformations (rotations and transla-

tions) [6]. Whether or not the set of transformations could be

optimized, is left unanswered.

Finally, Liao et al. solve the problem of choosing the trans-

formations, by devising the necessary number of curves and

the optimal set of translations to obtain a bounded approxima-

tion error in the kNN search [7].

A departure from those methods was suggested recently by

Mainar-Ruiz and Pérez-Cortés [16]. Instead of using multiple

curves, they propose using multiple instances of the same

element in only one curve. Before inserting those instances in

the curve, the algorithm disturbs their position, to give them

the opportunity of falling into different regions of the curve. In

that way even if the query falls in a problematic region,

chances are it will be reasonably near to at least one of the

instances. This has two advantages: first, a single sorted list

structure has to be managed; second, at search time, a single

random access is performed. The main drawback is the diffi-

culty in controlling the optimal number of instances per ele-

ment: the method ignores that some regions in the curve are

much more problematic than others, and simply associates

each element to the same number of instances.

III. THE MULTICURVES INDEX

A. Introduction

As we have seen in § II.C, the greatest problem of the use of

space-filling curves comes from boundary effects brought by

the existence of ―zones of discontinuity‖ in the curves, where

the quasi-order-preserving qualities of the mapping are bro-

ken. Different methods propose different solutions, usually

through the simultaneous use of multiple curves.

Multicurves is also based on the use of multiple curves, but

with the important improvement that each curve is only re-

sponsible for a subset of the dimensions.

The dimensionality-reduction makes for an efficient imple-

mentation of the subindex, reducing the effects of the ―curse

of dimensionality‖. Because of the exponential nature of the

―curse‖ it is more efficient to process several low or moderate-

dimensional indexes than a single high-dimensional one. This

is explained by the fact that not only we gain the intrinsic

advantages of using multiple curves (i.e., elements that are

incorrectly separated in one curve will probably stay together

in another), but also, we lower the boundary effects inside

each one of the curves.

Multicurves index creation is simple: one subindex (a sorted

list data structure) is created for each subspace of the data. The

data points are inserted in all subindexes. For each subindex,

first the data point is projected on the associated subspace;

then the projection is mapped onto a one-dimensional ex-

tended-key using the space-filling curve; finally a pair <ex-

tended-key, data> is inserted into the list, which is sorted by

extended-key.

The search is done the same way: the query is decomposed

into several projections (corresponding to the dimensions

associated to each subindex) and each projection has its ex-

tended-key computed. Then, for each subindex, we explore the

elements whose extended-keys are the nearest to the corres-

ponding query extended-key (Fig. 5).

This scheme presents several advantages:

 the sorted list is the mainly used data structure, and it can

be handled efficiently (by a B-tree, for example), result-

ing in a disk friendly method;

 for the same reason, insertions and deletions can be han-

dled easily;

 the offline pre-processing for index construction is rea-

sonable, consisting mainly of sorting operations;

 almost all access to the data in the sorted lists are sequen-

tial, resulting in savings in disk operations, where ran-

dom access is expensive.

Before detailing the algorithms, a few definitions (Fig. 3):

 d: the dimensionality of the data elements;

 c: the number of curves to be used in the index;

 d[i]: the dimensionality of the i
th

 curve with d[i] = d;

 A: an association between the dimensions of the data and

dimensions of the curves, such that the value on A[i][j]

indicates which data dimension corresponds to the j
th

 di-

mension of the i
th

 curve. E.g., if A[2][3] = 10, it means

that the 3
rd

 dimension of the 2
nd

 curve is in fact the 10
th

dimension of the data space (Fig. 3);

 m: the number of bits needed to represent each dimension

of the data elements, which will correspond to the order

of the curve to be generated;

space of database1 2 ... d

subspaces of

subindexes

d [1] d [i] d [c]

A

Fig. 3. A sample parameterization of the multicurves showing how the

parameters c, d[i], and the association A determine the dimensions consi-

dered by each subindex.

B. Building the Index

The construction algorithm for multicurves (shown in

Fig. 4) is relatively simple, since the underlying structure of

the index is just a set of sorted lists, one for each curve.

Each data element is decomposed into c projections, accor-

dingly to the association of dimensions A. Those projections

are used to compute the extended-key in each curve. The pairs

<extended-key, element> are inserted in the curves.

The complexity of the construction depends on the underly-

ing structure used to implement the sorted lists. The computa-

tion of the projections of each element in steps 7–9 takes, at

worst, O(d) operations. The computation of the extended-key

on line 10 takes O(md) bit operations (see § 0). Assuming an

efficient sorted list structure, insertions will take O(log n)

steps, where n is the number of elements in the database. Since

we are building c lists, algorithm should take at worst,

O(c (nmd + n log n)) steps.

C. Searching

The search algorithm is also simple (Fig. 5). We choose, be-

forehand, the number of elements to examine in each subindex

(which is called probe depth). Then we project the query onto

the same c subspaces used to build the index. We find, on each

subindex, the elements nearest to the corresponding projec-

tion, and keep the k nearest to the query.

The complexity analysis of the search comparison is easy: the

construction of the extended-key takes O(md) bit operations

(see § 0). The time spent looking for the values the nearest to

the extended-key depends on the underlying data

structure, but generally it can be assumed to take at most

O(log n) steps, where n is the number of elements in the data-

base. This step is prone to be expensive, for here we are forced

to make at least one random access to the data. The complexi-

ty of steps 9–15 is known beforehand and grows linearly with

the number of elements to be examined. The expensive opera-

tion here is the computation of the distances, which takes O(d)

arithmetic operations, for the p-norm distances (like the Eucli-

dean distance).

The dimensionality has also a ―hidden‖ influence, in that it

increases linearly the amount of data which must be trans-

ferred by the algorithm. This is non-negligible when we use

secondary storage.

The whole operation (steps 2–16) is repeated once for every

subindex, which means a linear growth with this parameter.

In summary, the time spent on the search grows linearly

with the number of elements to be examined in each index, the

The symbols are explained in § II.A
points is the list of data elements

point[i] is the value of the ith dimension of point

A[][] is an association between the dimensions of the data space and the
subindexes space as explained in Fig.3 .

 curves[] is an array of c sorted lists

projection[] is the projection of point[] onto the subspace of the curve
GetExtendedKey() is a function which gives the extended-key in the space-

filling curve from the coordinates in the space

BuildMulticurves(c, d[], A[][], m, points)

 → Returns array of sorted lists

1. For curve ← 1 to c do
2. curves[curve] ←

 new empty sorted list of pairs <extended_key, point>

 sorted by extended_key
3. Next

4. For each point in points do

5. For curve ← 1 to c do
6. projection[] ← new array with d[curve] elements

7. For dimension ← 1 to d[curve] do

8. projection[dimension] ←
 point[A[curve][dimension]]

9. Next

10. extended_key ←
 GetExtendedKey(projection)

11. Put the pair <extended_key, point> into

 the list curves[curve]
12. Next

13. Next

14. Return curves[]

Fig. 4. The construction algorithm for multicurves. The algorithm de-

composes each database point in a set of projections. Each projection is

inserted into a sorted list, accordingly to its extended key on a space

filling curve.

The symbols are explained in § II.A and Fig. 4
probe_depth is the number of data items to examine in each curve

query[i] is the value of the ith dimension of query

SearchMulticurves (c, d[], A[][], m, curves[], probe_depth, k, query)

 → Returns a list of k nearest neighbours

1. best ← new empty sorted list of pairs <distance, point>

 sorted by distance
2. For curve ← 1 to c do

3. projection[] ←new array with d[curve] elements

4. For dimension ← 1 to d[curve] do
5. projection[dimension] ← query[A[curve][dimension]]

6. Next

7. extended_key ←
 GetExtendedKey(projection)

8. candidates ←

 list with the probe_depth points the nearest to extended_key in
 the sorted list curves[curve]

9. For each candidate in candidates do

10. distance ← distance from candidate to query
11. If distance < last distance in best then

12. Put pair <distance, candidate> in best

13. If best has more than k entries then
14. Remove last entry in best

15. Next

16. Next

17 Return best

Fig. 5. The search algorithm for multicurves. The query point is decom-

posed into a set o projections. Each projection is used to gather a number

of candidates on the sorted list corresponding to the space filling curve

associated to that subspace. At the end, the best candidates are returned.

number of subindexes and the number of dimensions of the

data space. It also grows logarithmically with the number of

elements in the database.

D. Discussion

The dimensionality reduction in each subindex is crucial for

the performance of multicurves. Not only it serves the prag-

matic purpose of making the index implementation more effi-

cient, but it also allows for better comparison of data in high-

dimensional spaces.

On those spaces, it is counterproductive to take all dimen-

sions into account all the time because at every local cluster,

some dimensions act as outliers. In a nutshell this means that

we cannot assume that all dimensions ―make sense‖ through-

out the space. This somewhat surprising property of high di-

mensional data had already been observed in the field of data

mining [17]. By putting different dimensions on different

subindexes, multicurves introduces the possibility of ignoring

the outlier dimensions.

Any recursive space-filling curve could theoretically be

used, but in our implementation we have used the Hilbert

curve, which in comparison with other space-filling curves,

like the Z-order curve or the Gray-code curve, has better clus-

tering properties, mostly because of the absence of distant

jumps. Compared to those curves, however, the mapping be-

tween the hyperdimensional coordinates and the extended-key

is much more complex. Fortunately, there is an efficient algo-

rithm which uses little memory and can map any curve using

only O(md) bit operations [18].

It is not necessary to compute the arbitrary-precision ver-

sion of the curve. If the data coordinates are quantized in m

bits, a recursive approximation of order m is enough to guar-

antee no loss of precision.

Any adequate data structure can be used to store the sorted

lists, the choice being based on practical considerations. Nor-

mally some flavor of B-tree should be the best solution for

most database applications. In our test implementations, for

the sake of simplicity, we have chosen a two-level indexing,

with the first level fitting entirely in main memory.

Once the index is built, updating consists simply in insert-

ing and removing data from the lists. The ability to do it with-

out degrading the index performance depends, of course, on

the underlying data structure used to implement the lists, but,

if B-trees are used, the index will be completely dynamic.

IV. EMPIRICAL EVALUATION

In this section, we present the empirical performance evalu-

ation of multicurves, including the comparison with other

state-of-art methods.

A. Experimental Setup

A standardized experimental setup, accepted by the com-

munity, is still lacking for the evaluation of high-dimensional

indexing. Therefore, one of the main challenges researchers on

the subject face is the choice of their databases, queries,

ground truth and metrics.

Though early works tended to use synthetic data, following

a uniform random distribution, it is now generally accepted

that this is unrealistic and leads to overpessimistic results.

Therefore, recent works are usually evaluated on real data.

We have chosen to use databases of SIFT descriptors [19],

which serve well to our evaluation purposes: they are high-

dimensional (128 dimensions in their standard version), can be

embedded in a Euclidean space, and, due to their effective-

ness, are very well established, having been used extensively

in both research and industrial applications.

We have created two databases. The Small Database is

composed by the SIFT descriptors generated from image

transformations of a selection of 100 original images. Each

image suffered three rotations, four scale changes, four non-

linear photometric changes (gamma corrections), two smooth-

ings and two shearings — a total of 15 transformations. Each

transformed image had its SIFT descriptors calculated and

aggregated into a database of 2 871 300 descriptors. The que-

ries are the SIFT descriptors calculated from the original im-

ages, amounting to 263 968 descriptors.

The Large Database is composed by SIFT descriptors gen-

erated from about 10 000 original images and amounts to

21 591 483 descriptors. The queries are the SIFT descriptors

calculated from originals selected at random and then trans-

formed. One hundred images were selected, of which, 20 were

rotated, 20 were resized, 20 suffered a gamma correction, 20

were sheared and 20 suffered a dithering (halftoning) —

summing up to 166 315 query descriptors.

The ground truth is the set of the correct nearest neighbors

for all query descriptors, according to the Euclidean distance.

It was computed using the sequential search, a slow method,

but which guarantees exact results.

Performance is measured in two axes: effectiveness (the ca-

pability of the method to return the correct results) and effi-

ciency (the capability of the method to use as little resources

as possible).

To measure the effectiveness we use a classic metric: the

precision (which measures the fraction of relevant answers

found). From the point of view of the user, the most critical

efficiency metric is the wall time spent on the search, but using

it to compare the methods is misleading, since it depends

heavily on the machine, the operating system, the current load

(concurrent tasks) at the time the experiment is performed and

even on the degree of fine-tuning spent on implementation.

We have chosen, therefore, to compare the methods by count-

ing, for each method, how many database descriptors were

accessed per query descriptor.

Since we are mainly interested in large-scale (thus, disk-

based) contexts, a critical metric is the number of random

accesses needed to perform the query. Since this operation

involves the physical relocation of the i/o heads of the disk, it

incurs in severe performance penalties and must be kept at

very small values.

B. Evaluated Methods

We have implemented and tested four methods. We have

compared multicurves (explained in § III) with the state-of-

the-art of methods based on space-filling curves by Liao et al.

[7] and by Mainar-Ruiz and Pérez-Cortés [16] (both methods

are explained on § II.C). All methods were implemented in

Java, using the Java Platform, Standard Edition v. 1.6.

For the sake of completeness, we have also compared our

method with the improved version of LSH (Locality Sensitive

Hashing) of Datar et al. [8]. This version of LSH is also based

on the use of multiple subindexes, implemented as hash tables.

Each subindex takes into account just a subset of the dimen-

sions of the data, by a clever use of a series of ―locality sensi-

tive‖ hash functions based on the projection of the data onto

straight lines. The method is complex, and the user is referred

to the cited article for additional details.

We have used E2LSH version 0.1, the publicly available

implementation by Andoni, written in C [20]. Unfortunately,

this LSH implementation is based on main memory, and re-

writing it to disk would demand a very laborious adaptation.

We have opted instead to keep it on main memory and to

measure the number of points accessed, and the number of

different tables accessed per query (corresponding to the num-

ber of random accesses). All other methods performed on disk.

C. Parameterization

An important parameter for all methods is the number of

subindexes (the number of curves for multicurves and the

method of Liao et al., the number of hash tables for LSH). The

equivalent notion in the method of Mainar-Ruiz et al. (which

uses a single curve) is the number of representative instances

each database descriptor will have in the index. This decision

has an impact on the time spent building the index and on the

space it occupies, but chiefly, it influences the number of

descriptors accessed and the number of random accesses.

18

20

22
25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

256 512 1 024 2 048 4 096 8 192 16 384 32 768

P
re

ci
si

o
n

 (e
ff

ec
ti

ve
n

es
s)

Points visited (efficiency) — logarithmic scale

LSH R=290, L=2

LSH R=290, L=4

LSH R=290, L=6

LSH R=290, L=8

LSH R=290, L=10

Fig. 6. The compromise between the number of hash tables (L) and the

size of the hash key (K, grows from right to left for each data series, from

18 to 25). Experiments performed on the Small database.

TABLE I

IMPACT OF NUMBER OF CURVES ON PERFORMANCE FOR MULTICURVES

of Curves
Points Visited

(Efficiency)

Precision

(Effectiveness)

2 1024 0.39
4 2048 0.50

8 4096 0.52

16 8192 0.51

Experiments on the Small Database with Probe Depth = 512.

TABLE II

IMPACT OF PROBE DEPTH ON PERFORMANCE FOR MULTICURVES

Probe Depth

(Per Curve)

Points Visited

(Efficiency)

Precision

(Effectiveness)

512 4096 0.52
1024 8192 0.58

2048 16384 0.65

Experiments on the Small Database with 8 curves.

The other essential parameter, for the space-filling methods

is the probe depth, i.e., how far to explore each one of the

subindexes. The compromise here is that the more we explore

the subindexes, the more we improve the precision, but at the

expense of effectiveness. For LSH, there is not a number of

elements to explore a priori; the number of elements visited is

a consequence of two parameters — the selectiveness of the

index, and the radius of analysis (a radius that indicates that all

potential matches beyond that distance may be safely dis-

carded).

A parameter which affects the evaluation as a whole, is the

number of neighbors sought (the k in kNN), since the first

neighbors (i.e., the nearest) are easier to find. For the Small

database, in which each query image had potentially several

matches in the database, we have set k = 20, a margin large

enough to fetch the descriptors which will have the most

matches. For the Large database, in which each query image

had only one match in the database, we have only evaluated

the ability of the method to recover the first neighbor.

We have performed our parameterization tests of LSH, on

the Small database and covered a large spectrum of its para-

meters. Three parameters must be set on the version of the

LSH we have tested. The number of hash tables, the size of

the key used for hashing (which is related to the selectivity —

the larger the key, the more selective the hash functions), and

the radius of analysis (which can be interpreted as a distance

from the query beyond which LSH is allowed to ignore any

candidate solution).

The effectiveness × efficiency plot in Fig. 6 shows what

happens when we set the radius of analysis (R) and vary the

size of the key (K) and the number of hash tables (L). The two

latter parameters have inverse effects on the selectivity of

LSH: a larger key tends to make each individual hash table

very stringent, which can be compensated by introducing more

tables. The sweet spot of this compromise is where one ob-

tains the highest precision without visiting a lot of elements

(towards the upper-left corner of the graph).

As the plot clearly shows, if one wants to obtain an im-

provement in precision, the growth in the number of elements

visited is much steeper if K diminishes than if L grows, and

this is the main reason the parameterization of LSH for main

memory tends to use very large values of L, in order to keep K

also large. Since this implies a prohibitive number of random

accesses, parameterizations intended for disk tend to choose

smaller values for both parameters.

The radius of analysis has also an impact on the performance

of LSH, but while still sizable, it is not as dramatic. A small

radius improves the selectivity of the index, granting a better

efficiency, but with the risk of ignoring potential solutions if

they lie beyond the radius. We have tested a range of different

radiuses, obtaining the best performance at R = 290.

For the comparison with the other methods we retained the

series with R = 290 and K = 22.

Compared to LSH, the parameterization of multicurves is

more straightforward. Just two parameters have to be set: the

number of curves, at construction time, and the probe depth

(number of elements examined in each curve), at search time.

Table I shows the plot of effectiveness × efficiency as the

number of curves grows. Effectiveness reaches a maximum at

8 curves, where the compromise between the number of sub-

indexes and the representativeness of each subindex is the

best. For efficiency reasons, we have to keep the number of

subindexes fairly low (10 being a upper limit in practice),

because not only the number of points visited is directly pro-

portional to the number of subindexes, but also (and most

important) each subindex implies a random access.

The probe depth also has a considerable effect on the effec-

tiveness, since the further we travel in a subindex, the better

the chances we compensate for the lesser, local, boundary

effects of the space-filling mapping (Table II).

D. Method Comparison

We start by comparing the performance of all methods

(multicurves, LSH, Mainar-Ruiz et al. and Liao et al.) as the

number of subindexes changes (for Mainar-Ruiz, which al-

ways uses a single subindex, we varied the number of repre-

sentants assigned to each data point). This comparison is

shown in Fig. 7.

The superiority of multicurves and LSH over the other me-

thods is immediately apparent, as they reach a considerably

better compromise between efficiency and effectiveness. The

―sweet spot‖ for both methods is in the region around 1000–

2000 points visited and precision of 0.4–0.5.

Nevertheless the advantage of multicurves only becomes

unambiguous when one takes into consideration the number of

random accesses performed. In fact, for the parameterization

in the ―sweet spot‖ mentioned, multicurves performs half the

number of those expensive operations (indicated in the small

numbers next to the data points).

To see how the methods behave in a larger scale context,

we performed a comparison in the Large Database, including

multicurves, Mainar-Ruiz et al. and Liao et al. (as we have

explained in § IV.B, the available LSH implementation is

RAM-based, and thus, cannot deal with a database so large).

This time, we have kept the number of subindexes (repre-

sentants, for Mainar-Ruiz et al.) fixed at 8, and varied the

probe depth. The results (Fig. 8) confirm the superiority of

multicurves among the space-filling curve based methods.

V. NEAR-DUPLICATES IN PERSONAL IMAGE COLLECTIONS

Several applications have been recently proposed to deal

with consumers image collections, including autosummariza-

tions and collages [1], organization of photo albums [2][3],

identification of locations and point of view of photos [3]. We

have chosen the problem of near-duplicate image identifica-

tion [4]. Near-duplicate detection is useful for many tasks:

retrieving lost metadata, finding intersections between sub-

collections, removing duplicate removal in retrieval results,

finding the relative importance of a scene in summarizations,

saving disk space , etc. It is also a good application in which it

illustrates well the gains provided by the fast matching of

high-dimensional descriptors.

A. Image Identification and Copy Detection

Document identification or copy detection consists in taking

a query document and finding the original from where it de-

rives, together with any relevant metadata, such as titles, dates,

etc. It is an important operation both to institutions and to

single users possessing large documental collections.

The task is challenging for visual documents, since we are

interested in recovering more than exact pixel-by-pixel copies:

even if the document has been subjected to a series of defor-

mations, we still want to identify them. The set of transforma-

tions varies from application to application but usually in-

cludes translations, rotations, scale changes, photometric and

colorimetric transformations, cropping and occlusions, noise

of several kinds, and any combination of those.

Image identification systems are a specialization of content-

based image retrieval (CBIR) systems, proposed to solve the

problem of copy detection. Like all CBIR systems, they use

descriptors to establish the similarity between the images. But

instead of stimulating generalization, exploration and trial-

and-error, typical goals of semantic-oriented CBIR systems,

they are tuned to emphasize the exactness of image identifica-

tion and to tolerate transformations which completely disrupt

the appearance of the image (such as conversion to grayscale

or dithering).

The images may be described either by one descriptor or a

set of descriptors. When a single descriptor must capture the

information of the image, we say it is a global descriptor.

When the descriptors are associated to different features of the

image (regions, edges or small patches around points of inter-

est), they are called local descriptors.

2

4
8 16

2

4

6

8

10

1

1

1

4

8

16

0.00

0.10

0.20

0.30

0.40

0.50

0.60

512 1 024 2 048 4 096 8 192 16 384

P
re

ci
si

o
n

 (e
ff

ie
ct

iv
e

n
e

ss
)

Points visited (efficiency) — logarithmic scale

Multicurves

LSH R=290, K=22

Mainar-Ruiz et al.

Liao et al.

Fig. 7. Comparison of all methods in the Small database. Multicurves and

LSH have the best efficiency × effectiveness compromise, but Multicurves

performs considerably less random accesses (small numbers).

8
8

8

1
1

1

8
8

8

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 048 4 096 8 192 16 384 32 768

P
re

ci
si

o
n

 (E
ff

e
ct

iv
e

ne
ss

)

Points visited (efficency) — logarithmic scale

Multicurves

Mainar-Ruiz et al.

Liao et al.

Fig. 8. Comparison of the space-filling based methods in the Large data-

base. Multicurves has the best efficiency × effectiveness compromise.

Systems based on local descriptors adopt a criterion of vote

count: each query descriptor matches with its most similar

descriptors stored in the database (using a simple distance, like

the Euclidean distance). Each matched descriptor gives one

vote to the image to which it belongs. The number of votes is

used as a criterion of similarity.

Local descriptor based systems are unsurprisingly much

more robust. Because the descriptors are many, if some get

lost due to occlusions or cropping, enough will remain to

guarantee good results. Even if some descriptors are matched

incorrectly, giving votes for the wrong images, only a correct-

ly identified image will receive a significant amount of votes.

Unfortunately, the multiplicity of descriptors brings also a

performance penalty, since hundreds, even thousands of

matches must be found in order to identify a single image.

Systems based on global descriptors have not shown

enough precision on the task of image identification, except

for slight transformations. In all comparisons, local-descriptor

methods have performed better [4][24][25].

Local-descriptor image and video identification are applica-

tion scenarios where multicurves shows all its advantages.

Because of the high number of query descriptors, query times

must be low. Furthermore, the approximation of the results

induced by the index is not serious, because the loss of a few

matches is unlikely to affect the final results. Finally, the large

size of the databases demands a scalable, disk-friendly and

easy to update indexing technique.

B. Evaluation

We have tested multicurves in an image identification con-

text, for the Large Database, containing over 10 thousand

images. The system architecture follows a classic scheme: we

compute the descriptors for every image in the database, and

then stock and index those descriptors. When a query image is

presented, its descriptors are computed and matched to the 10

nearest descriptors in the database. To get rid of false positives

and improve the solution, we apply a geometric consistency

step (using a robust model fitting technique [26]), discard all

inconsistent matches and then count the votes. The images are

ranked by number of votes and presented to the user. The

descriptor used is SIFT [19], which has a dimensionality of

128.

One hundred images were selected and suffered intense

transformations, which included rotation, size reduction,

gamma correction, shearing and dithering. The task consisted

in using those images as queries to locate their originals.

First, we have run the system using the exact sequential

search to match the descriptors. Since our query images have a

large number of descriptors, it is unsurprising that we obtain

perfect results (the original is always found), since at least a

few dozens of descriptors (and typically, much more) are

guaranteed to be correctly matched between query and target.

Then, we have run the system using multicurves with 8 sub-

indexes and examining 512 descriptors per subindex to match

the descriptors. Each correctly identified image has lost, on

average, about 20% of its votes, but those were so many to

begin with, that this did not result in changes in the final rank-

ing, which was still perfect. Running time, however, was be-

tween 20 and 25 times shorter.

These results are a testimony of both the robustness of the

local-descriptor architecture, and the potential efficiency gains

provided by multicurves in those architectures.

VI. CONCLUSION

When the database is small enough to fit in main memory, it

is reasonable to assume that random access is cheap. In that

context, the time spent on descriptor matching is often domi-

nated by the computation of distance functions. The break-

through of methods like LSH is the ability to dramatically

reduce the number of elements examined (and thus, distances

computed), saving much CPU time. They introduce, however,

the cost of performing a large number of random accesses,

making their adaptation to disks very challenging.

In a secondary memory context, it is critical to reduce those

accesses, since they involve the physical relocation of the hard

disk i/o head, an operation which takes the time equivalent to

millions of CPU cycles. In this context, the advantage of mul-

ticurves becomes clear, since it provides good precision with a

small number of subindexes, and thus, avoids making many

random accesses.

Multicurves possesses all desiderata to thrive in a large

scale database context: besides being disk-friendly, it is simple

to implement and easily accepts updates (due to the fact it is

backed by simple sorted lists), and it has a good compromise

between precision and speed.

As future work, we would like to explore alternative ways

to distribute the dimensions among the subindexes (other than

a simple partitioning) and to provide a theoretical model of the

approximation properties of multicurves.

REFERENCES

[1] C. Rother, L. Bordeaux, Y. Hamadi, A. Blake. ―AutoCollage‖ in Proc.
33rd Int. Conf. and Exhib. on Comp. Graph. and Interactive Techniques

(SIGGRAPH 2006). Boston – MA, USA, 2006.

[2] N. Snavely, S. Seitz, R. Szeliski. ―Photo Tourism: Exploring Photo
Collections in 3D‖ in Proc. 33rd Int. Conf. and Exhib. on Comp. Graph.

and Interactive Techniques (SIGGRAPH 2006). Boston – MA, USA,

2006.
[3] P. Corcoran, G. Costache. ―Automated Sorting of Consumer Image

Collections using Face and Peripheral Region Image Classifiers,‖ IEEE

Trans. on Consumer Electronics, v. 51, n.3, 2005.
[4] Y. Ke, R. Sukthankar, and L. Huston, ―An efficient parts-based near-

duplicate and sub-image retrieval system,‖ Proc. 12th ACM Int. Conf. on
Multimedia, New York, NY, USA, 2004.

[5] H. Samet, Foundations of Multidimensional and Metric Data Structures

(The Morgan Kaufmann Series in Computer Graphics). San Francisco,
CA: Morgan Kaufman, 2006.

[6] J. Shepherd, X. Zhu and N. Megiddo, ―A fast indexing method for

multidimensional nearest neighbor search,‖ in SPIE Conf. on Storage
and Retrieval for Image and Video Databases VII. San Jose, CA, 1999.

[7] S. Liao, M. Lopez and S. Leutenegger, ―High Dimensional Similarity

Search With Space Filling Curves,‖ in Proc. IEEE Int. Conf. on Data
Eng. Heidelberg, Germany, 2001.

[8] M. Datar, N. Immorlica, P. Indyk and V. Mirrokni, ―Locality-sensitive

hashing scheme based on p-stable distributions,‖ in Proc. 12th Annual
Symp. on Computational Geometry. Brooklyn – NY, 2004.

[9] C. Böhm, S. Berchtold and D. Keim, ―Searching in high-dimensional

spaces: Index structures for improving the performance of multimedia
databases,‖ ACM Computing Surveys (CSUR), vol. 33, n. 3, pp. 322–

373, Sept. 2001.

[10] R. Bellman, Adaptive Control Processes: a guided tour. Princeton, NJ:
Princeton University Press. 1961.

[11] G. Peano, ―Sur une courbe, qui remplit toute une aire plane,‖ Mathema-

tische Ann., vol. 36, n. 1, pp. 157-160, 1890.

[12] D. Hilbert, ―Über die stetige Abbildung einer Line auf ein Flächen-

stück,‖ Mathematische Ann., vol. 38, n. 3, pp. 459-460, 1891.

[13] C. Faloutsos, ―Gray Codes for Partial Match and Range Queries,‖ IEEE
Trans. on Soft. Eng., vol. 14, pp. 1381–1393, Oct. 1988.

[14] C. Faloutsos and S. Roseman, ―Fractals for secondary key retrieval,‖ in

Proc. 8th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Da-
tabase Syst. Philadelphia, PA, 1989.

[15] N. Megiddo and U. Shaft, Efficient nearest neighbor indexing based on

a collection of space filling curves. IBM Almaden, San Jose, CA, Re-
search Report RJ 10093, 1997.

[16] G. Mainar-Ruiz and J-C. Pérez-Cortés, ―Approximate Nearest Neighbor

Search using a Single Space-filling Curve and Multiple Representations
of the Data Points,‖ in Proc. 18th Int. Conf. on Pattern Recognition.

Wan Chai, Hong Kong, 2006, pp. 502–505.

[17] C. Aggarwal, ―Redesigning distance functions and distance-based
applications for high dimensional data,‖ ACM SIGMOD Record, vol. 30,

n. 1, pp. 13–18, 2001.

[18] A. Butz, ―Alternative Algorithm for Hilbert's Space-Filling Curve,‖

IEEE Trans. on Computers, vol. C-20, 1971.

[19] D. Lowe, ―Distinctive Image Features from Scale-Invariant Keypoints,‖

Int. J. of Computer Vision, vol. 60, n. 2, pp. 91–110, 2004.
[20] A. Andoni and P. Indyk, E2LSH v. 0.1 User Manual. June 2005.

[21] E. Valle, M. Cord and S. Philipp-Foliguet, ―High-dimensional descriptor

indexing for large multimedia databases,‖ in Proc. 17th ACM Int. Conf.
on Inform. and Knowledge Manage. Napa, CA, 2008, pp. 739-748.

[22] G. Shakhnarovich, T. Darrell and P. Indyk, (eds.), Nearest-Neighbor
Methods in Learning and Vision: theory and practice. Cambridge, MA:

The MIT Press, 2005.

[23] E. Valle, M. Cord, and S. Philipp-Foliguet, ―Fast Identification of Visual
Documents Using Local Descriptors,‖ in Proc. 8th ACM Symp. on Doc-

ument Eng. São Paulo, SP, Brazil, 2008, pp. 173–176.

[24] P-A. Moëllic and C. Fluhr, ―ImagEVAL Official Results,‖ in ImagEVAL
Workshop. Amsterdam, Netherlands, 2007.

[25] E. Valle, M. Cord, and S. Philipp-Foliguet, ―Content-Based Retrieval of

Images for Cultural Institutions Using Local Descriptors,‖ in Geometric
Modeling and Imaging — New Trends. London, UK, 2006, pp. 177–182.

[26] M. Fischler and R. Bolles, ―Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated carto-
graphy,‖ Communications of the ACM, vol. 24, n. 6, pp. 381–395, 1981.

Eduardo Valle is a B.Sc. and a M.Sc. in Computer Sciences by the Federal
University of Minas Gerais (UFMG) and a Ph.D. in Computer Sciences by the

University of Cergy-Pontoise. Currently he is post-doctorate researcher at the

Computing Institute of the State University of Campinas UNICAMP, working
on scalability issues of machine learning and content-based retrieval. He is

particularly interested in the applications related to cultural heritage.

Matthieu Cord obtained his Ph.D. degree in Image Processing in 1998 at the
University of Cergy-Pontoise, France, and was a post-doc in 1999 at the

Katholieke Universiteit Leuven, Belgium. He has joined the ETIS labs in

France to create the image indexing research group. In 2004, he has joined the
University of Paris 6, where he is a full professor position. He has been re-

cently nominated to the highly selective French Research Institute (IUF). His

research interests include computer vision, image processing, machine learn-
ing and applications to multimedia information retrieval and multimedia

processing.

Sylvie Philipp-Foliguet is a full professor at the National School of Electron-
ics (ENSEA) of Cergy-Pontoise, France, since 1988. She manages the MIDI

(Multimedia Indexing and Data Integration) team of the ETIS labs (Informa-

tion Processing and Systems). Her research domains are image segmentation
and interpretation. She has developed a fuzzy segmentation method, methods

for inexact graph matching and statistical learning, and worked on applica-

tions concerning indexing and retrieval of images, videos and 3D objects.

David Gorisse is a M.Sc in Computer Sciences by the University of Cergy-

Pontoise and M.Sc in electrical engineering and telecommunications by ISEN.

Currently he is a Ph.D. Student in Computer Sciences in MIDI team of ETIS

at the University of Cergy-Pontoise.

