N

N

Parallel-in-time molecular-dynamics simulations
Leonardo Baffico, Stéphane Bernard, Yvon Maday, Gabriel Turinici, Gilles
Zérah

» To cite this version:

Leonardo Baffico, Stéphane Bernard, Yvon Maday, Gabriel Turinici, Gilles Zérah. Parallel-in-time
molecular-dynamics simulations. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics,
2002, 66 (5), pp.057701. 10.1103/PhysRevE.66.057701 . hal-00536574

HAL Id: hal-00536574
https://hal.science/hal-00536574
Submitted on 5 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License


https://hal.science/hal-00536574
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

PHYSICAL REVIEW E 66, 057701 (2002
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While there have been many progress in the field of multiscale simulations in the space domain, in particu-
lar, due to efficient parallelization techniques, much less is known in the way to perform similar approaches in
the time domain. In this paper we show on two examples that, provided we can describe in a rough but still
accurate way the system under consideration, it is indeed possible to parallelize molecular dynamics simula-
tions in time by using the recently introducedrareal algorithm. The technique is most useful fab initio

simulations.
DOI: 10.1103/PhysReVvE.66.057701 PACS nuni)er83.10.Rs, 31.15.Qg
I. MOTIVATION reminiscent of the one followed in Ref8,4], in which they

minimize the action, and this variational formulation is the

Whereas microscopic simulations can be performed ofkey to their parallel implementation of the “stochastic differ-
larger and larger space scales, in particular, through the ugce equation” approadb].
of multiscale techniques and massively parallel computers
(for a general survey, see Réfl]) very few methods are Il. DESCRIPTION OF THE METHOD
available to achieve similar results in the time domain. Some ) ) ) ]
schemes have been put forward, for instance followdng To explain the technique, we first make askgtchy de_:scrlp-
Voter’s ideas, but they are specifically devoted to the samtion. Let us denote bylp, . .. .uy) the successive configu-
pling of transitions rates assuming that the system obeys rat&tions(position and velocity of the system we want to de-
transition theory. In such situations, attempts to cross th&cribe. If Atiis our time step, ané,, denotes the action of
barrier can be run in parallel, and one mainly gather statisticBroPagating one configuration for one time step, we have
from this many runs. This method is extremely efficient, naturally for O<n<N,
since it leads to linear scaling with the number of processors,
but it addresses quite a specific situation. Since for space, Uns1=Fai(un) @)
through the use of parallel computers, larger and larger . o . ) )
scales have become accessible in microscopic simulations, Yfith Uo, our initial condition. Propagating fdx time steps
could be seducing to transpose the same procedures in tHée |n|t|al_ configurationug is naturally a sequenual_opera—
time domain. Naturally, contrary to space, time is sequential®": TO introduce parallelism, suppose we are givere
and this precludea priori the straightforward implementa- method t_o .o.btaln these cpnflguratlons WI|| be described)ater
tion of a parallel approach. Here, we try tharareal[2] idea & get of |n(|)t|al conﬂgtg)ra’uons for each time step.denoted by
which relies on a technique for matching solution segment§Uo: - - - Un), Whereug=Uuo. We can propagate withi; for
in parallel. In practice, one uses two time propagators: on&ne time step all these configurations in parallel, and gener-
approximate, the so-called “coarse” propagator and the exaaite a new set of configurationg)y, . . . ,uy). We then have
one. As in any parallel implementation of a general problemfor 0<n<N,
there is an unavoidable sequential part which here is the
coarse propagation; on the contrary, tfmore expensive ul,  =F (W), 2)
exact propagator is run in parallel on portions of the trajec-
tory. More specifically, one starts with a first guess of the.hc’ by accident, we hadﬂ+1=f|2+1 for 0<n<N, our initial

trajectory, generated by the coarse propagator for a certaify,nfig ration would be exactly the trajectory we are looking

pumber of time s;eps. Each point O,f th|§ first guess trajector)(or’ and our problem would be solved. In general this will not

is used as a starting point for the “fine” integrator run on one . ~0

or more time steps. Naturally, these steps can be performé%le (t)he case and we shall define the errorﬂ&l—gnlﬂ

in parallel. Then, one can estimate the error and correct in Un+1 @nd try to generate a new Sethf conflguratu(l)mrs

parallel to generate the next trajectory. From this, one seedexed by the superscript) Xug, ... uy) such thatAg,,

that, if the coarse integrator is fast and the convergence to=u?, ,—u?,, is smaller thanA?, ;, or at least converge

ward the exact trajectory is rapid, the method will be effi-rapidly to zero when one iterates the procéss Fig. 1).

cient. The idea to work on segments of the trajectory, is To be more specific, we need to define how we construct
our first set of configurations, and how we correct it. The
most natural way to construct our first set of configurations is

*Corresponding author; email address: gilles.zerah@cea.fr to propagate sequentially f&f time steps, our configuration
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tions. Also, this error being dependent only kncan be
computed in parallel, while the first term, dependentkon
+1, introduce a sequential part in the algorithm. Let us call
gain of the parareal methothe ratiog between the wall
clock times, for the computation of the solution by the se-
quential algorithm, and the parareal method. In practice,
there is an optimal value of this gain that depends on the
system, its coarse approximation, the number of available

>

§ processors. Its expression reads

]

™ . 1 1) 1

& 9 =Keom F+N +Fv (6)

wherer stands for the ratio between the computing of the
fine and coarse integrators between 0 axif, and K¢y,

> being the number of iterations. One can also prove easily by
induction thatu,=F(uo), that is, the algorithm yields exact
convergence in at mo# iterations Kgon, <N).

Time steps

FIG. 1. Schematic presentation of the feedback process. A first 1. A SIMPLE ANALYSIS

trajectory is generated with the coarse force fiélthshed ling
Then, starting from all points of this trajectory, we advance them for,
one time step in parallel using the fine force fiékblid arrows.
The error is measured byﬂ. We then generate the corrected tra-

Consider for now a simple linear system, in which the
propagators are given by multiplication ofby certain op-
erators denoted by andG. The parareal formula now reads

jectory (long dashed lineusing the coarse field now shifted b)ﬁ. uktl=g u Fr—Gao)uk

It moves nearer to the exact trajectdspolid line). The first step is Un+1= a7 +(Far aT)Un:

exact. If F,r andG,7 commute, the solution is easily found to be
att=0 using another force field, much cheaper to compute n+1

than the original ondthe coarse force field, as opposed to  ukTi=F1tly— > (p" D (Far=GapPGht  Pu
the fine force field We will denote the propagator associated p=k+l
with it by G, and note that there exists a considerable freex
dom of choice for this field, based on physical conS|der—
ations. Thus our first trial trajectory is defined accordingly,

Naturally, smceF”“uo is the exact solution at timen(
+1)AT, and the second term of the right hand side is the
measure of the error. Back to the general nonlinear case of

Eq. (5), we directly state, without proof, an error estimate. If

=G,t(u
up+1=Gar(up), Ma¥ynenl|Far—Garl <CATe, then

0
= , 3 ~
Ho= o @ max ||uk—u(T,)||<Ce*e®T. (7)

O=n=N

for 0Osn<(N—-1).
To correct this trajectory, we use a feedback meCh"’m'sml'his formula, whose proof is rather technical and will be

If we note that our above definition af, is equivalent to presented elsewhere, shows the speed of convergence to-
AR=F41(up) — Gur(up), our feedback expression is simply wards the exact solution as a function of the difference of the

two propagators.
n+1 GAT(un)+An+1 (4)

In other words, we propagate our configurations by the same
coarse force field, starting with the same configuration at
=0 correctedby the errorA? ;. The process can be iterated,  In this section, we consider a simple asymmetric molecule
and this defines our successive trajectories, denoted nby A—A—B composed of three atoms of masg=1 andmg

IV. ONE TOY EXAMPLE OF MOLECULAR DYNAMICS
SIMULATIONS

wherek is the order of iteration, by =2. The bond lengths between atoms are denoted ay
andr 5z, and the anglé—A— B of the bonds is denoted as
= GAT(U 5+ Far(u ) GAT(U ), 6. This molecule evolves on the potential surfatgiven by
ug=Uo. 5 U(raa.rag, ) =Wraa) +W(rap) +£(6),

From this formula, one can see how the error in tﬂﬁdra- where V(r)=4¢[ (o, /r)2—(o,/r)®] is the Lennard-Jones
jectory (the last two terms in the right hand sjdis ac- potential and  f(8)=(\\2mo,)exd —(0—m)20,]
counted for nonlinearlyin general from iterations to itera- + u/sin(@#/2). Here, the coarse and fine propagators differ
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FIG. 2. Behavior of the anglé for moleculeA— A— B, solution
after two parareal iterations and exact solution. Here o, =0
=1, e=A=30. We have performed ttand 16 time steps, for,
respectively, the coarse and the fine time steps.

FIG. 3. Convergence of the trajectory of the first coordinate of
the first particle. The labels denote the value of the inkeXve
present here the 30 first time steps.

algorithm, which allows to propagate the positions and ve-
only by the time step used in the discretization of the differ-locities according to
ential equation. With a coarse propagator corresponding to a
time step of AT=10"3, we obtain the same accuracy as
obtained with a very small time step of order Qrequired
due to the stiffness of this systermafter onlyk,,, =6 itera-
tions of the parareal algorithm leading to a ggit 130 (see dt
Fig. 2. Un+1:Un+[F(Xn)+F(Xn+1)]?y 9

Here and in Refs[2,6], the coarse propagation operator

G, Is based on a large time step discretization of (Em".n wherex andv denotes the set of all coordinates and veloci-
what follows, we propose a different approach whérgris

. . e jes of all particles respectively.
rather based on a simpler, physically based, modelization o* In Fig. 3, we represent the first coordinate of one of the

2
Xn+1=Xptovpdt+ F(xn)T, (8)

our system. four particles, forN=30 time stepsiour time step isAT
=100 a.u.) for six parareal iteration steps. The first curve,
V. TWO EXAMPLES OF AB INITIO MOLECULAR labeled “coarse,” is the initial trajectory, and it deviates very

DYNAMICS SIMULATIONS rapidly from the correct one, _bL_Jt glready. the firs; it.eratg la-
beled “1,” is very good, while it is impossible to distinguish

Ab initio molecular dynamics simulations are an ideal testthe trajectories beyorkl=4, on the scale of the figure. Com-
bed for such approaches, in the sense that there are maputations with 16 plane waves take really a negligible
available coarse propagators at our disposal, which are mo-
tivated by physical insight. As a first approach, we consider 500 —T — T T 1
as a coarse propagator a reduced basis set description of o
system, and in the plane wave approach used inAthieit
packagd 7], this is tantamount to use a small cutoff.

We consider, in this case, a very small system consisting.
of four aluminum atoms in the liquid state, enclosed in a
cubic box at normal density, and using periodic boundary
conditions. We used the simulation program Abinit, and the
norm conserving pseudopotential of the Martin Trouilllier
type one can find in the site’s database, built with the Fritz &
Haber Institut pseudopotential package. The potential is
somewhat hard, and we need a cutoff of 26 Ha to converge
forces accurately. For the small cutoff, we took 1 Ha, which 0
yields 16 plane waves, and this is nearly the minimal value
we can consider for the 8 bands included in the simulation,
since we use a broadening 040 2 Ha and onek point.

To make the correspondence with the preceding section,  FIG. 4. Variation of the total energgkinetic+potentia) corre-
represents collectively the set of all coordinates and velocisponding touX for the five first values ok. For k=5, energy is
ties of all particles. As integrator, we used the velocity Verletconserved. We again present here the first 30 time steps.
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amount of time, and one could argue that the gain is 7.8rajectories together, and tested the method for longer times.
=30/4. However, as regarding molecular dynamics, a mor&Ve performed a 1000 time steps simulation this way, and did
pertinent and in our case more stringent criterion is energyot observe an energy trend. This is all the more surprising
conservation. In order to use it as a convergence test, wiat our algorithm is not time reversible, and this point would
show, in Fig. 4, the difference between the total energy correquire more extensive analysis to be definitevely assesed.
responding taiX and touJ as a function of time for different Naturally, very many other combinations of coarse and
parareal iterations. From this figure, it appears that after fivdéine integrators can be consideréjht binding andab ini-
parareal steps, the energy fluctuation is down to its residudlo, simple and complex classical potentials ) and we are
value due to the finite value of the time step in the Verletlimited only by our imagination to do so.

algorithm. Using a small cutoff approximation to the “exact”

dynamics is in no way the only option we are left with, and VI. CONCLUSION

for a long time physicists have searched for fast and accurate
approximations ofab initio force fields. In the case of alu-
minum, Ercolessi and Adani8] have published a force field
that derives from a potential of the “glue” typ@ery similar

to the embedded atom model potentials of Daw and Bask
[9]). The general form of this potential is

As a conclusion, we think that the way we introduce the
parareal algorithm in materials science simulations can be
very useful in the field of multiscale modeling, and open the

Qvay to new approaches in the time domain. Nevertheless,
some points remain to investigate before having at our dis-
position a completely efficient methdgih particular use of

1 previous time step solution and clarification of symplectic

U= EE ¢(|ri—rj|)+z_ F(pj), propertie. One should also note that situations where we

1] ! know of one expensive and accurate and one cheap and less
accurate description of a physical system are quite common,
pj= 2 p(ri— r,—I), (10) and extend beyond the limits of material science simulations.
i#]
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