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ABSTRACT

We describe an alternative to standard nonnegative matrix factori-
sation (NMF) for nonnegative dictionary learning. NMF withthe
Kullback-Leibler divergence can be seen as maximisation ofthe
joint likelihood of the dictionary and the expansion coefficients un-
der Poisson observation noise. This approach lacks optimality be-
cause the number of parameters (which include the expansioncoeffi-
cients) grows with the number of observations. As such, we describe
a variational EM algorithm for optimisation of themarginal likeli-
hood, i.e., the likelihood of the dictionary where the expansioncoef-
ficients have been integrated out (given a Gamma conjugate prior).
We compare the output of both maximum joint likelihood estima-
tion (i.e., standard NMF) and maximum marginal likelihood estima-
tion (MMLE) on real and synthetical data. The MMLE approach is
shown to embed automatic model order selection, similar to auto-
matic relevance determination.

Index Terms— Nonnegative matrix factorisation, variational
EM, model order selection, automatic relevance determination,
sparse coding.

1. INTRODUCTION

Nonnegative matrix factorisation (NMF) [1] is a popular method for
nonnegative dictionary learning based on matrix decomposition. The
goal is to approximate aF ×N nonnegative matrixV as the product
of two nonnegative matrices,W andH, of sizesF×K andK×N ,
respectively. These two matrices can be estimated via minimising a
measure of fit betweenV andWH. One such popular measure is
the (generalized) Kullback-Leibler (KL) divergence

DKL(A|B) =
F
∑

f=1

N
∑

n=1

(

afn log
afn

bfn
+ afn − bfn

)

, (1)

which is always nonnegative, convex with respect to (w.r.t)each fac-
tor (but not w.r.t both factors jointly) and is equal to zero if and only
if A = B. Minimisation of the fit w.r.t the factors can be carried
out with a fast, iterative algorithm based on multiplicative updates
as described in [1]. This approach also coincides with the maximum
likelihood estimation ofW andH whenV is assumed generated
by a Poisson observation model, as will be later recalled. A criticism
of NMF for nonnegative dictionary learning is that little can be said
about the asymptotical optimality of the learnt dictionaryW . This
is because the total number of parametersFK+KN considered for
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maximum likelihood estimation grows with the number of observa-
tionsN . As such, in this paper we seek to optimise the marginal
likelihood ofW given by

p(V |W ) =

∫

H

p(V |W ,H)p(H) dH , (2)

wherep(H) is an assumed prior distribution of the expansion co-
efficients. Our approach is similar in spirit to independentcompo-
nent analysis (ICA) [2, 3], where the likelihood of the “mixing ma-
trix” is obtained through marginalisation of the latent independent
components. This paper describe a variational EM algorithmfor
(approximate) maximum likelihood estimation on the marginal like-
lihood (2). We concentrate on the Poisson observation modeland
assume a conjugate Gamma prior forH, but our approach can be
extended to other statistical models employed in NMF, such as addi-
tive Gaussian or multiplicative Gamma observation models [4, 5, 6].

The rest of this paper is organised as follows. Section 2 describes
the generative data model, Section 3 presents the two dictionary es-
timators considered in this paper and Section 4 describes algorithms.
Section 5 reports results on real and synthetical data and inpartic-
ular illustrates a very desirable feature of the marginal likelihood
approach: automatic order selection. Section 6 concludes.

2. MODEL

The generative model assumed for the observationsvfn = [V ]fn is

vfn ∼ P(vfn|
∑

k

wfkhkn) , (3)

whereP denotes the Poisson distribution, defined byP(x|λ) =
exp(−λ)λx/x!, x = 0, 1, 2, . . . The data is assumed independently
distributed conditionally uponW andH. Using the superposition
property of the Poisson distribution, the generative modelcan equiv-
alently be written as acomposite modelsuch that

vfn =

K
∑

k=1

ck,fn, ck,fn ∼ P(ck,fn|wfkhkn) , (4)

where the componentsck,fn act aslatent variablesthat will be used
in the variational EM algorithm described in Section 4.2.

We further take the expansion coefficientshkn to be random
variables with Gamma prior, such thathkn ∼ G(hkn|αk, βk), where
G(x|α, β) = βα/Γ(α) xα−1 exp(−β x), x ≥ 0. The Gamma dis-
tribution is a prior of choice for its conjugacy with the Poisson dis-
tribution, and this will facilitate some algorithm derivations to be
presented next. Under these assumptions our model coincides with



the GaP model of [7] which has been used in text analysis. In the
rest of the paper the shape parametersαk are fixed (in particular, we
will use the valueαk = 1 in the experiments, corresponding to the
sparse-inducing exponential distribution). The scale parameters are
also fixed, so as to remedy the scale ambivalence between columnk
of W and rowk of H. No constraint is imposed onW , which is in
our setting a free deterministic parameter.

3. ESTIMATORS

Given the model introduced in Section 2, we are interested inthe
following two estimators.

3.1. Maximum joint likelihood estimation (MJLE)

The joint (penalised) log-likelihood likelihood ofW andH writes

CJL(V |W ,H)
def
= log p(V |W ,H) + log p(H) . (5)

The log-likelihood termlog p(V |W ,H) is up to irrelevant con-
stants equal to−DKL(V |WH) so that MJLE is equivalent to pe-
nalised KL-NMF [6]. A majorisation-minimisation (MM) algorithm
for minimisation ofCJL(V |W ,H) is presented in Section 4.1.

3.2. Maximum marginal likelihood estimation (MMLE)

The marginal log-likelihood ofW writes

CML(V |W )
def
= log

∫

p(V |W ,H)p(H) dH .

This integral is intractable, i.e., it is not possible to obtain the
marginal model analytically. Note that in Bayesian estimation the
term marginal likelihoodis sometimes used as a synonym for the
model evidence, which would be the likelihood of data given the
model, i.e., where all random parameters (includingW ) have been
marginalised. This approach has been for example been considered
in [8] and [4] for the Poisson and Gaussian additive noise models,
respectively. Let us emphasize again that in our settingW is taken
as a deterministic parameter and that the term “marginal likelihood”
here refers to the likelihood ofW whereH has been integrated out.

4. ALGORITHMS

4.1. Majorisation-minimisation (MM) for MJLE

We describe an iterative algorithm which sequentially updatesW
givenH and vice versa. The update ofW is the standard multi-
plicative rule derived from MM [1]. The penalty term inH can
easily be handled in the same framework. Under our assumptions,
criterionCJL is separable in the columns ofH so that its maximi-
sation is essentially reduced to the minimisation of

C(h) = DKL(v|Wh) + L(h) , (6)

whereL(h)
def
=

∑

k
βkhk − (αk − 1) log hk corresponds to the

Gamma prior contribution. By convexity of the KL divergence
dKL(x|y) w.r.t y and using Jensen’s inequality, the functional

G(h|h̃) =
∑

k

λ̃kf d

(

vf |
wfkhk

λ̃kf

)

+ L(h) , (7)

where λ̃kf = wfkh̃k/[Wh̃]f , is anauxiliary function for C(h)

(i.e., G(h,h) = C(h) andG(h, h̃) ≥ C(h)). Hence, iterative

minimisation ofG(h|h̃) leads to the following algorithm, which en-
sures nonnegativity of the expansion coefficients providedpositive
initialisation andαk ≥ 1:

hkn ←
hkn

∑

f wfkvfn/[WH]fn + (αk − 1)
∑

f
wfk + βk

. (8)

This algorithm is also given in [7], though derived in a different way.

4.2. Variational EM for MMLE

We propose a variational EM algorithm [9] for the maximisation of
CML(V |W ). The dataV is “augmented” with the latent variables
H andC and the algorithm is based on the iterative estimation and
maximisation of the following functional:

Q(W |W̃ )
def
=

∫

log p(V ,C,H |W )p(C,H |V , W̃ ) dC dH

Unfortunately, the computation of the functional (E-step)is in-
tractable, in particular because the analytical form of thelatent
data posterior is itself intractable. As such, we resort to avaria-
tional approximation ofp(C,H |V , W̃ ) that renders all derivations
tractable, though at the cost of approximate inference. Thetwo steps
of the variational EM are described next.

E-step: A variational approximationq(C,H) of the exact pos-
terior p(C,H|V , W̃ ) is computed at every iteration of the EM
algorithm and plugged inQ(W |W̃ ). Note that the computation
of q(C,H) requires a few subiterations itself. As fundamen-
tal to variational approximations, the computation ofq(C,H) re-
lies on the minimisation of the KL divergence (in distribution) be-
tweenq(C,H) andp(C,H|V ,W ), given a parametric form of
q(C,H). The variational objective function may be decomposed as

KL [q(C,H)|p(C,H |V ,W )] =

log p(V |W ) + KL [q(C,H)|p(V ,C,H|W )] . (9)

Because the marginal likelihoodlog p(V |W ) is independent
of q(C,H), the minimisation of the variational objective may
be replaced by the (simpler) maximisation of L[q(C,H)] =
−KL [q(C,H)|p(V ,C,H|W )], which forms a lower bound of
the marginal likelihoodlog p(V |W ) (thanks to nonnegativity of
the KL divergence). It can be shown that, given the expression of
p(V ,C,H|W ), the following form of variational distribution ap-
pears as a natural choice (in particular for tractability) :

q(C,H) =
F
∏

f=1

N
∏

n=1

q(cfn)
K
∏

k=1

N
∏

n=1

q(hkn) , (10)

wherecfn denotes the vector[c1,fn, c2,fn, . . . , cK,fn]
T , q(cfn) is

multinomial with probabilitiespk,fn andq(hkn) is a Gamma dis-
tribution with shape and scale parametersakn andbkn. The factors
q(hkn) andq(cfn) can be shown to satisfy the following fixed point
equations [9]:

log q(hkn)
c
= 〈log p(V ,C,H|W )〉q(H

−kn)q(C) (11)

log q(cfn)
c
= 〈log p(V ,C,H|W )〉q(H)q(C

−fn) , (12)

where〈.〉π denotes expectation under probability distributionπ and
A

−ij refers to the set of coefficients ofA excludingaij . The fixed



point equations translate into the following parameter updates:

akn ← αkn +
∑

f
〈ck,fn〉

bkn ← (1/βkn +
∑

f
wfk)

−1

pk,fn ←
wfk exp(〈log hkn〉)

∑

l
wfl exp(〈log hln〉)

,

where〈.〉 denotes expactation w.r.t the variational distribution.

M-step: Given the W̃ -dependent variational distribution
q(C,H) obtained in the E-step, it can be shown that the evaluation
and maximisation ofQ(W |W̃ ) lead to the following multiplicative
update

wfk ← wfk

∑

n
exp(〈log hkn〉)vfn/[W exp(〈logH〉)]fn

∑

n
〈hkn〉

5. EXPERIMENTS

Next we study the performances of MJLE and MMLE on real and
synthetical data. The prior hyperparameters are fixed toαk = 1 (ex-
ponential distribution) andβk = 1, i.e., hkn ∼ exp(−hkn). We
used 5000 algorithm iterations and nonnegative random initialisa-
tions in all cases.

5.1. A piano excerpt

We consider the piano data used in [5]. It is a toy audio sequence
recorded in real conditions, consisting of four notes played all to-
gether in the first measure and in all possible pairs in the subsequent
measures. A magnitude spectrogram of the data was computed,lead-
ing toF = 513 frequency bins andN = 676 time frames. We ran
the MM algorithm (for MJLE) and variational EM (for MMLE) for
K = 1 . . . 10 and the joint and marginal log-likelihood end values
(after the 5000 iterations) are displayed in Fig. 1. The marginal log-
likelihood is here approximated by its lower bound, as described in
Section 4.2.1
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Fig. 1. Joint likelihoodCJL (left) and marginal likelihoodCML

(right) versus number of componentsK.

The likelihood values increase with the number of components,
as expected from nested models. However, and very interestingly,
the marginal likelihood stagnates afterK = 6. Manual inspection
reveals that passed this value ofK, the extra columns ofW are

1Let us mention that we checked the validity of the approximation by sep-
arately running Chib’s method [10] for stochastic approximation ofp(V |W )
and the results, not shown here, confirmed the accuracy of thebound.

pruned to zero, leaving the criterion unchanged. Hence, MMLE ap-
pears to embed automatic order selection, similar to automatic rele-
vance determination [11, 12]. This is illustrated in Fig. 2 which dis-
plays the dictionary columns estimated by MJLE and MMLE with
K = 10. Reconstruction of the time-domain components associated
with the MMLE decomposition reveals that the 6 components corre-
spond to individual notes, note attacks and residual noise,which is
the expected result, see [5] for more details about the experimental
setup. These components also appear in the reconstruction obtained
from MJLE, but less accurately and duplicates appear whenK > 6.
With K = 10, 5000 iterations of the MM and variational EM al-
gorithms take 92 and 142 seconds of CPU time, respectively, on an
average computer.

W
MJLE

100 200 300 400 500

W
MMLE

100 200 300 400 500

Fig. 2. Dictionaries learnt from the piano excerpt withK = 10.
The values (y-axis) are in log scale and thex-axis corresponds to the
frequency bins.

5.2. Swimmer dataset

To further investigate the automatic model order selectionfeature
of MMLE, we consider the syntheticalSwimmer dataset [13], for
which a ground truth can be defined. The dataset is composed of
256 images of size32 × 32, representing a swimmer built of an
invariant torso and 4 limbs. Each of the 4 limbs can be in one of
4 positions and the dataset is formed of all combinations (see some
samples in Fig. 3). Hence, the ground truth dictionary corresponds
to the collection of individual limb positions. As explained in [13]
the torso is an unidentifiable component that can be paired with any
of the limbs, or even split among the limbs.

The dictionaries learnt from MJLE and MMLE withK = 20
components are shown in Fig. 4. As can be seen from Fig. 4 (a),
MJLE produces spurious or duplicated components. In contrast, the
ground truth is perfectly recovered with MMLE.

6. CONCLUSIONS

In this paper we have challenged the standard NMF approach to
nonnegative dictionary learning, based on maximumjoint likeli-
hood estimation, with a better-posed approach consisting in maxi-
mummarginal likelihood estimation. The proposed algorithm based
on variational inference has comparable computational complexity
to standard NMF. Experiments on real and synthetical data have



Fig. 3. Sample images from theSwimmer dataset.

(a)WMJLE

(b)WMMLE

Fig. 4. Dictionaries learnt from the swimmer dataset withK = 20.

brought up a very attractive feature of MMLE, the self-ability of
discarding “irrelevant” columns from the dictionary, i.e., performing
automatic model order selection. This property results in more ac-
curate and interpretable components. In contrast with other model

selection approaches in fully Bayesian settings, e.g., [8,4], based on
the evaluation of the model evidence for every candidate value ofK,
our approach only requires to setK to a sufficiently large value and
run the variational EM algorithm once.

As for perspective we intend to confront MMLE with other sta-
tistical models, such as the Gaussian composite variance model of
[5], which underlies Itakura-Saito NMF and was shown to provide a
more natural generative model of audio spectrograms than KL-NMF.

7. REFERENCES

[1] D. D. Lee and H. S. Seung, “Learning the parts of objects by
non-negative matrix factorization,”Nature, vol. 401, pp. 788–
791, 1999.

[2] D. J. C. MacKay, “Maximum likelihood and covariant algo-
rithms for independent component analysis,”http://www.
inference.phy.cam.ac.uk/mackay/ica.pdf,
1996, Unpublished.

[3] M. S. Lewicki and T. J. Sejnowski, “Learning overcomplete
representations,”Neural Computation, vol. 12, pp. 337–365,
2000.

[4] M. N. Schmidt, O. Winther, and L. K. Hansen, “Bayesian non-
negative matrix factorization,” inProc. 8th International Con-
ference on Independent Component Analysis and Signal Sepa-
ration (ICA’09), Paraty, Brazil, Mar. 2009.

[5] C. Févotte, N. Bertin, and J.-L. Durrieu, “Nonnegativematrix
factorization with the Itakura-Saito divergence. With applica-
tion to music analysis,”Neural Computation, vol. 21, no. 3,
pp. 793–830, Mar. 2009.

[6] C. Févotte and A. T. Cemgil, “Nonnegative matrix fac-
torisations as probabilistic inference in composite models,”
in Proc. 17th European Signal Processing Conference (EU-
SIPCO’09), Glasgow, Scotland, Aug. 2009, pp. 1913–1917.

[7] J. F. Canny, “GaP: A factor model for discrete data,” inProc.
of the 27th ACM international Conference on Research and
Development of Information Retrieval (SIGIR), 2004, pp. 122–
129.

[8] A. T. Cemgil, “Bayesian inference for nonnegative matrix
factorisation models,”Computational Intelligence and Neuro-
science, vol. 2009, no. Article ID 785152, pp. 17 pages, 2009,
doi:10.1155/2009/785152.

[9] M. J. Beal and Z. Ghahramani, “The variational Bayesian
EM algorithm for incomplete data: with application to scor-
ing graphical model structures,” inBAYESIAN STATISTICS 7,
Oxford University Press, 2003.

[10] S. Chib, “Marginal likelihood from the Gibbs output,”Journal
of the American Statistical Association, vol. 90, no. 432, pp.
1313–1321, 1995.

[11] D. J. C. MacKay, “Probable networks and plausible predictions
– a review of practical Bayesian models for supervised neural
networks,” Network: Computation in Neural Systems, vol. 6,
no. 3, pp. 469–505, 1995.

[12] C. M. Bishop, “Bayesian PCA,” inAdvances in Neural Infor-
mation Processing Systems (NIPS), pp. 382–388, 1999.

[13] D. Donoho and V. Stodden, “When does non-negative ma-
trix factorization give a correct decomposition into parts?,” in
Advances in Neural Information Processing Systems (NIPS),
2004.


