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ABSTRACT maximum likelihood estimation grows with the number of alvae
tions N. As such, in this paper we seek to optimise the marginal

We describe an alternative to standard nonnegative matctorfi-  jivelinood of W given by

sation (NMF) for nonnegative dictionary learning. NMF witte

Kullback-Leibler divergence can be seen as maximisatiothef

joint likelihood of the dictionary and the expansion coefficients un- p(VIW) = /H

der Poisson observation noise. This approach lacks optynizd-

cause the number of parameters (which include the expaosiffi-  wherep(H)) is an assumed prior distribution of the expansion co-

cients) grows with the number of observations. As such, werilee  efficients. Our approach is similar in spirit to independeornpo-

a variational EM algorithm for optimisation of thmarginal likeli- nent analysis (ICA) [2, 3], where the likelihood of the “mig ma-

hood i.e., the likelihood of the dictionary where the expansioef-  trix” is obtained through marginalisation of the latent épeéndent

ficients have been integrated out (given a Gamma conjugats.pr components. This paper describe a variational EM algoritbm

We compare the output of both maximum joint likelihood estim (approximate) maximum likelihood estimation on the maagjlike-

tion (i.e., standard NMF) and maximum marginal likelihostima-  lihood (2). We concentrate on the Poisson observation maaie!

tion (MMLE) on real and synthetical data. The MMLE approash i assume a conjugate Gamma prior #r, but our approach can be

shown to embed automatic model order selection, similauto-a extended to other statistical models employed in NMF, sscioali-

matic relevance determination. tive Gaussian or multiplicative Gamma observation modg|$] 6].
The rest of this paper is organised as follows. Section 2ritesc

the generative data model, Section 3 presents the two diofices-

timators considered in this paper and Section 4 descripesitims.

Section 5 reports results on real and synthetical data apdriic-

ular illustrates a very desirable feature of the marginkglihood

1. INTRODUCTION approach: automatic order selection. Section 6 concludes.

p(VIW,H)p(H)dH , )

Index Terms— Nonnegative matrix factorisation, variational
EM, model order selection, automatic relevance deterrianat
sparse coding.

Nonnegative matrix factorisation (NMF) [1] is a popular imed for 2 MODEL
nonnegative dictionary learning based on matrix decontiposiThe
goal is to approximate & x IV nonnegative matri¥” as the product  The generative model assumed for the observatigns= [V] ., is
of two nonnegative matricey andH, of sizesF' x K andK x N,
respectively. These two matrices can be estimated via risimma Vpn ~ P(vfn| Z Wikhin) , A3)
measure of fit betweel” andW H. One such popular measure is .
the (generalized) Kullback-Leibler (KL) divergence
where P denotes the Poisson distribution, defined Byz|)\) =
XN exp(—A) \*/z!, . = 0,1,2,... The data is assumed independently
Dkr(AIB) =) _>" <afn log Zﬂ +am — bfn) ; 1) distribut)ed ({onditionally upo™ and H. Using the superposition
f=1n=1 fn property of the Poisson distribution, the generative modalequiv-

L . . alently be written as aomposite modeduch that
which is always nonnegative, convex with respect to (weabh fac- y P

tor (but not w.r.t both factors jointly) and is equal to zefrand only K
if A = B. Minimisation of the fit w.r.t the factors can be carried Vin = ch’fm Ch,fn ~ P(ck, fr|wrrhin) 4
out with a fast, iterative algorithm based on multiplicatiypdates k=1

as described in [1]. This approach also coincides with theimmam . )
likelihood estimation o and H when V' is assumed generated WWhere the components, ;, act adatent variableshat will be used
by a Poisson observation model, as will be later recallediticism N the variational EM algorithm described in Section 4.2.

of NMF for nonnegative dictionary learning is that littlerche said ‘We further take the expansion coefficierits, to be random
about the asymptotical optimality of the learnt dictiona#. This  Vvariables with Gamma prior, such thag, ~ G(hyn|o, Bk ), where

[e% a—1 .
is because the total number of parameféfs + i N considered for  9(zla, 8) = %/T'(a) 2" exp(—f z), x > 0. The Gamma dis-
tribution is a prior of choice for its conjugacy with the Pz dis-

This work in supported by project ANR-09-JCJC-0073-01 TARR  tribution, and this will facilitate some algorithm derii@ts to be
INE (Theory and applications of nonnegative matrix factation). presented next. Under these assumptions our model comnwide




the GaP model of [7] which has been used in text analysis. én thminimisation ofG(h|B) leads to the following algorithm, which en-
rest of the paper the shape parametersare fixed (in particular, we  sures nonnegativity of the expansion coefficients providesitive
will use the valuen;, = 1 in the experiments, corresponding to the initialisation ando, > 1:

sparse-inducing exponential distribution). The scalapeters are
also fixed, so as to remedy the scale ambivalence betweemigélu
of W and rowk of H. No constraint is imposed W, which is in
our setting a free deterministic parameter.

hien D2 wikvgn /W H] pn + (o — 1)
Zf Wk + Pr '

This algorithm is also given in [7], though derived in a difat way.

3. ESTIMATORS

4.2. Variational EM for MMLE

Given the model introduced in Section 2, we are interestetthén

following two estimators. We propose a variational EM algorithm [9] for the maximisatof
Cuvr(V|W). The dataV is “augmented” with the latent variables

3.1. Maximum joint likelihood estimation (MJLE) H andC and the algorithm is based on the iterative estimation and
maximisation of the following functional:

The joint (penalised) log-likelihood likelihood 3V and H writes

def

Qw W) %! / log p(V',C, HIW)p(C, H|V, W) dC dH
Ci(VIW,H) = logp(VIW,H)+logp(H). (5)

The log-likelihood termlog p(V W, H) is up to irrelevant con- Unfortunately, the computation of the functional (E-step)in-
stants equal te- Dk, (V|W H) so that MILE is equivalent to pe- tractable, in particular because the analytical form of ldent
nalised KL-NMF [6]. A majorisation-minimisation (MM) algithm  data posterior is itself intractable. As such, we resort ta@a-

for minimisation ofC ;. (V|W, H) is presented in Section 4.1. tional approximation op(C, H|V, W) that renders all derivations
tractable, though at the cost of approximate inference.tWbesteps
3.2. Maximum marginal likelihood estimation (MMLE) of the variational EM are described next.
The marginal log-likelihood of% writes E-step: A variational approximatio(C, H) of the exact pos-
terior p(C,H|V,W) is computgzd at every iteration of the EM
Cur(VIW) d:eﬁog/p(wW,H)p(H) dH . algorithm and plugged iQ(W|W). Note that the computation
of ¢(C, H) requires a few subiterations itself. As fundamen-

This integral is intractable, i.e., it is not possible to aibtthe tal to variational approximations, the computationg¢C, H) re-
marginal model analytically. Note that in Bayesian estiorathe lies on the minimisation of the KL divergence (in distritart) be-
term marginal likelihoodis sometimes used as a synonym for thetweenq(C, H) andp(C, H|V, W), given a parametric form of
model evidengewhich would be the likelihood of data given the 4(C,H). The variational objective function may be decomposed as
model, i.e., where all random parameters (includi®d have been

marginalised. This approach has been for example beendewasli KL[¢(C, H)|p(C,H|V,W)] =

in [8] and [4] for the Poisson and Gaussian additive noiseefsd log p(V|W) + KL[¢(C, H)|p(V,C, H|W)]. (9)
respectively. Let us emphasize again that in our sef¥igs taken
as a deterministic parameter and that the term “margineliikod”  Because the marginal likelihoodog p(V|W) is independent

here refers to the likelihood a% where H has been integrated out. of ¢(C, H), the minimisation of the variational objective may
be replaced by the (simpler) maximisation of¢(C, H)] =

4. ALGORITHMS —KL[¢(C, H)|p(V,C, H/W)], which forms a lower bound of
the marginal likelihoodlog p(V'|W) (thanks to nonnegativity of
4.1. Majorisation-minimisation (MM) for MJLE the KL divergence). It can be shown that, given the expressfo

p(V,C, H/W), the following form of variational distribution ap-

We describe an iterative algorithm which sequentially ugsi®”  ,o4rs a5 a natural choice (in particular for tractability) :

given H and vice versa. The update ¥ is the standard multi-

plicative rule derived from MM [1]. The penalty term iH can F N K N
easily be handled in the same framework. Under our assunsptio q(C,H) = H H q(csn) H H q(hin) (10)
criterionC; 1, is separable in the columns &1 so that its maximi- F=1n=1 k=1n=1
sation is essentially reduced to the minimisation of .
wherecy,, denotes the vectdt: fn, 2, fny-- - Cr, )" ¢(Cpn) IS
C(h) = Dxr(v|Wh) + L(h), ) mulinomial with probabilitigs,okjjfn and q(hien) isfa] Gar$1r{1a)dis-
def tribution with shape and scale parametets andby,. The factors

where L(h) =" 3., Bxhx — (o — 1)log hy corresponds to the  ;(p, ) andg(c;.,) can be shown to satisfy the following fixed point
Gamma prior contribution. By convexity of the KL divergence gquations [9]:

dkr(z|y) w.rty and using Jensen’s inequality, the functional
) ) 10g g(hin) < (log p(V,C, HIW ))y(rr_,pac)  (12)
Glli) = 3= Au d (og| £ ) 4w, ™ . V(T
5 Akf log g(crn) = (logp(V,C, H|W ) y(rryq(c_ ;) 5 (12)

whereXi; = wyihi/[Wh]y, is anauxiliary functionfor C(h)  where(.) denotes expectation under probability distributioand
(i.e., G(h,h) = C(h) andG(h,h) > C(h)). Hence, iterative A_;; refers to the set of coefficients &f excludinga;;. The fixed



point equations translate into the following parameteratest pruned to zero, leaving the criterion unchanged. Hence, MMp-
pears to embed automatic order selection, similar to autorrele-

Qkn — Qtkn, + Z (Ck.fn) vance determination [11, 12]. This is illustrated in Fig. Bigh dis-
f plays the dictionary columns estimated by MJLE and MMLE with
bin — (1/Bkn + Z wfk)*l K = 10. Reconstruction of the time-domain components associated

f with the MMLE decomposition reveals that the 6 componentseco

i e exP({108 hin)) spond to individual notes, note attacks and residual neiséh is

- > wrrexp({log hin)) the expected result, see [5] for more details about the erpetal

setup. These components also appear in the reconstruttiamed
where(.) denotes expactation w.r.t the variational distribution. from MJLE, but less accurately and duplicates appear whtien 6.

With K = 10, 5000 iterations of the MM and variational EM al-

M-step: Given the W-dependent variational distribution gqrithms take 92 and 142 seconds of CPU time, respectivelgno
q(C, H) obtained in the E-step, it can be shown that the evaluatloréwerage computer.

and maximisation of)(W |W) lead to the following multiplicative
update WMJLE WMMLE

> n exp({log hin))vpn/[W exp(({log H))| [T VTV iy ' TV TV VYV
S (hen) s e— N | VTV PP

5. EXPERIMENTS ﬂ"!M n [ 1 1 f

Next we study the performances of MILE and MMLE on real anc | /i \ ik A s (T S

synthetical data. The prior hyperparameters are fixed;te= 1 (ex-

ponential distribution) ang, = 1, i.e., hkn, ~ exp(—hin). We MMM&MMM “ ----nner'”‘“’_\J

used 5000 algorithm iterations and nonnegative randoraliisi- Dmn"m ‘ ‘

tions in all cases. ‘ ‘
|
|

Wrk < Wrk

i

5.1. A piano excerpt

|

We consider the piano data used in [5]. It is a toy audio secpien
recorded in real conditions, consisting of four notes plagé to-
gether in the first measure and in all possible pairs in theeylent . - . . .
measures. A magnitude spectrogram of the data was comeeeld, Fig. 2. chtlonques Ie_arnt from the piano e_xcerpt Wit = 10.
ing to F' — 513 frequency bins andV = 676 time frames. We ran The valuesj{-ams) are in log scale and theaxis corresponds to the
the MM algorithm (for MJILE) and variational EM (for MMLE) for ~frequency bins.

K = 1...10 and the joint and marginal log-likelihood end values

(after the 5000 iterations) are displayed in Fig. 1. The nimaidog-

likelihood is here approximated by its lower bound, as dbedrin ~ 5.2. Swimmer dataset

Section 4.2

100 200 300 400 500 100 200 300 400 50C

To further investigate the automatic model order selectéeaiure
MLE it VBEM of MMLE, we consider the synthetic&w mer dataset [13], for
- which a ground truth can be defined. The dataset is composed of
e e 256 images of siz&2 x 32, representing a swimmer built of an
- invariant torso and 4 limbs. Each of the 4 limbs can be in one of
52 4 positions and the dataset is formed of all combinations ¢eene
54 samples in Fig. 3). Hence, the ground truth dictionary cpoads
to the collection of individual limb positions. As explathé [13]
the torso is an unidentifiable component that can be pairddamy
of the limbs, or even split among the limbs.
tozor 4 s s T8 0w Tozo3 4 s e T8 e The dictionaries learnt from MJLE and MMLE withh = 20
components are shown in Fig. 4. As can be seen from Fig. 4 (a),
Fig. 1. Joint likelihoodC;, (left) and marginal likelihoodCs,;, ~ MJILE produces spurious or duplicated components. In cshtiize
(right) versus number of componerfts ground truth is perfectly recovered with MMLE.

MJLE with MU

3
L
C,, (lower bound)

The likelihood values increase with the number of companent 6. CONCLUSIONS
as expected from nested models. However, and very integhgti
the marginal likelihood stagnates aft&r = 6. Manual inspection
reveals that passed this value Bf, the extra columns oW are

In this paper we have challenged the standard NMF approach to
nonnegative dictionary learning, based on maximjomt likeli-
hood estimation, with a better-posed approach consistingaxi-

1| et us mention that we checked the validity of the approxiomaby sep- ~ Mummarginallikelinood estimation. The proposed algorithm based

arately running Chib’s method [10] for stochastic appraadion ofp(V|W) on variational inference has comparable computationalpbexity
and the results, not shown here, confirmed the accuracy dfdthied. to standard NMF. Experiments on real and synthetical dat@ ha
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Fig. 3. Sample images from thgwi mrer dataset.
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Fig. 4. Dictionaries learnt from the swimmer dataset with= 20.

brought up a very attractive feature of MMLE, the self-afilof
discarding “irrelevant” columns from the dictionary, j.performing
automatic model order selection. This property results anevac-
curate and interpretable components. In contrast withrotiazlel

selection approaches in fully Bayesian settings, e.g4][&ased on
the evaluation of the model evidence for every candidateevaf K,
our approach only requires to sktto a sufficiently large value and
run the variational EM algorithm once.

As for perspective we intend to confront MMLE with other sta-
tistical models, such as the Gaussian composite variancielnod
[5], which underlies Itakura-Saito NMF and was shown to mteva
more natural generative model of audio spectrograms thahlKIE.
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