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Abstrat

We present in this paper ontrollability results for quantum sys-

tems interating with lasers. A negative result for in�nite dimensional

spaes serves as a starting point for a �nite dimensional analysis. We

show that under physially reasonable hypothesis in suh systems we

an ontrol the population of the eigenstates. Appliations are given

for a �ve-level system.

1 Introdution

Controlling hemial reations at the quantum level was a long-lasting goal

for the Chemists (f. [4℄, [8℄, [9℄, [11℄, [12℄, [13℄, [15℄) from the very beginning

of the laser tehnology. Indeed, due to the subtle nature of the interations

involved, this kind of manipulation is expeted to allow on the one hand for

muh eÆient and �ner ontrol than lassial tools (temperature, pressure,

atalyzers ...) and on the other hand for new reations and/or produts to

be obtained.

The �rst experiments have shown that designing the laser pulse able to

steer the system to the desired target state is a rather diÆult task that

physial intuition alone annot aomplish. It is only reently that tools

oming from the ontrol theory began to give satisfatory results in some

partiular ases; �nding the optimal eletri �eld is now treated by numerial

methods and new models are sought after that be also reliable and heap from

a omputational point of view.

A legitimate question arises in this ontext: what quantum states an be

attained using suh an external �eld ? Some answers are given below.
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2 In�nite dimensional ontrollability

Our purpose is to ontrol the equations that govern the time evolution of

quantum systems. Let onsider suh a system (isolated from the outer world

for the moment) whose internal Hamiltonian is H

0

that is prepared in the

initial state 	

0

(x); its dynamis obeys the Time Dependent Shr�odinger

Equation. Denoting by 	(x; t) the state at the time t one an write the

evolution equations for the free system:

8

<

:

i�h

�

�t

	(x; t) = H

0

	(x; t)

	(x; t = 0) = 	

0

(x); k	

0

k

L

2

(R



)

= 1

(1)

In the presene of external interations that for us will be an eletri �eld

reated by a laser and modeled by a laser intensity �(t) 2 R and by a er-

tain time independent dipole moment operator

1

B the (ontrolled) dynamial

equations reads:

8

<

:

i�h

�

�t

	

�

(x; t) = H

0

	

�

(x; t)� �(t)B	

�

(x; t) = H	

�

(x; t)

	

�

(x; t = 0) = 	

0

(x)

(2)

The goal is to �nd (if any) a �nal time T and a �nite energy laser pulse

�(t), �(t) 2 L

2

([0; T ℄) able to steer the system from 	

0

(x) to some prede�ned

target 	

�

(x; T ) = 	

target

(x).

Note that 	

�

(x; t) is evolving on the unit sphere S(0; 1) of L

2

(R



):

S(0; 1) = ff 2 L

2

(R



); kfk

L

2

(R



)

= 1g

Indeed one an easily prove that the L

2

norm of 	

�

is onserved throughout

the evolution:

k	

�

(x; t)k

L

2

x

(R



)

= k	

0

k

L

2

(R



)

; 8t > 0: (3)

Let us point out some simple (but important) remarks before arrying on

the analysis of these equations. Firstly in what the target state is onerned

it follows by the inertitude priniple that one will never be able to experi-

mentally verify, neither exploit, the exat ontrollability. In fat even if one

method gives exatly the desired target state 	

target

the free evolution (i.e.

when laser is swithed o� �(t) = 0; t � T ) of the quantum system instanta-

neously modi�es this state (by a time dependent phase fator if 	

target

is

an eigenfuntion of H

0

and by the (1) formula in general).

1

Of ourse, depending on the problem at hand, one may sometime hoose to go beyond

this �rst-order, bilinear term when desribing the interation between the laser and the

system, f. [5℄, [6℄.
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In this ontext a �rst negative ontrollability result is therefore not really

restritive. In fat using ompaity arguments as those in [1℄ we an prove

the following

2

:

Theorem 1 Let B be a bounded operator from H

2

x

(R



) to itself and let H

0

generate a C

0

semigroup of bounded linear operators on H

2

x

(R



). Denote by

	

�

(x; t) the solution of (2). Then the set of attainable states from 	

0

de�ned

by

AS = [

T>0

f	

�

(x; T ); �(t) 2 L

2

([0; T ℄)g (4)

is ontained in a ountable union of ompat subsets of H

2

x

(R



). In partiular

its omplement with respet to S(0; 1): N = S(0; 1) n AS is everywhere

dense on S(0; 1). The same holds true for the omplement with respet to

S(0; 1) \H

2

x

(R



).

Proof. To prove the �rst part of the theorem one applies Thm. 3.6 from [1℄

on the spae H

2

x

(R



) for the operators �iH

0

and �iB (and restrits �(t) to

L

2

funtions).

Note that for any ompat subset K of X

[0; n℄ �K = frf ; 0 � r � n; f 2 Kg

is also ompat. Applying this to the ompat omponents K of AS one

notes that

[

r�0

rAS = [

n2N

�

[0; n℄ � AS

is also a ountable union of ompats subsets of H

2

x

(R



). It follows by the

Baire ategory theorem that [

r�0

rAS has dense omplement in H

2

x

(R



); in

partiular the omplement of AS with respet to S(0; 1)\H

2

x

(R



) has to be

everywhere dense on S(0; 1) \H

2

x

(R



).

Given this result one may either study the ontrollability with respet to

a �nite number of moments or the ontrollability of the orresponding �nite

dimensional system. Is the seond analysis that we hose to pursue in this

paper.

2

We refer to [7℄ for a di�erent view on this issue. Let us point out however that their

analysis is done on pieewise onstant funtions whih may not always arry physial

meaning for our problem; in partiular one may prove ontrollability in this lass but

realize (by the theorem we present here) that this ontrollability requires in�nite L

2

norm

and therefore in�nite laser energy.
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3 Finite dimensional ontrollability

Let then D = f	

i

(x); i = 1; ::; Ng be an orthonormal basis for a �nite dimen-

sional sub-spae of L

2

(R



) that we are interested in

3

and A and B be the

matries of the operators H

0

and B respetively, with respet to this base

4

.

Let us denote by C = (

i

)

N

i=1

the oeÆients of 	

i

(x) in the formula of

the evolving state 	(t; x) =

P

N

i=1



i

(t)	

i

(x); then the equations (2) reads

8

<

:

i�h

�

�t

C

�

= AC

�

� �(t)BC

�

C

�

(t = 0) = C

0

(5)

C

0

= (

0i

)

N

i=1

; 

0i

=

Z

R



	

0

	

i

dx (6)

The ontrollability of (5) has been dealt with in the literature (f. [10℄)

by reduing the problem to the ontrollability of a system posed on the spae

of the unitary matries of dimension N . This approah has the bene�t of

granting us aess to the general tools and results on bilinear ontrollability

on Lie groups. However it does not orrespond to a physial neessity and

therefore gives riterions not so easy to verify; moreover all the results one

an obtain this way give only suÆient onditions for exat ontrollability

(due to the redution above whih is restritive). Finally there exists a lass

of simple quantum systems ontrollable (in a sense to be de�ned further on)

that do not verify the riteria emerging from the Lie group analysis.

We have therefore judged instrutive to study this issue taking into a-

ount the spei�ity of the quantum framework; we were thus lead into iden-

tifying neessary and suÆient onditions for the �nite dimensional on-

trollability.

In the ase of our modeling

3 4

the A matrix is diagonal and B is sym-

metrial and has null diagonal elements

5

. Let us denote by �

i

; i = 1; ::; N

the diagonal elements of A (the energies of the states 	

i

).

Before presenting our ontrollability results we have to introdue the �rst

elements required to explain our ontrollability onept. As it was previ-

ously seen the system evolves on the unit sphere of L

2

x

(R



) whih in �nite

dimensional representation reads:

N

X

i=1

j

�

i

(t)j

2

= 1; 8t � 0 (7)

3

This spae is given by our model and the funtions 	

i

(x) are usually the �rst eigen-

funtions ofH

0

onstruted by a prior omputation or by a modeling based on observations.

4

We suppose in the begining that B is suh that B

ii

= 0 ; i = 1; ::; N ; for the general

ase see the appendix.

5

see the appendix for the general ase
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From (5) one noties that when the system is evolving freely ((5) with

�(t) = 0) the (relative) phases of the oeÆients 

�

i

(t) hange but not the

populations of the eigenstates. We will therefore study only the population

transfer between eigenstates i.e. only hanges in j

i

(t)j

2

. We all population

distribution for the system (5) any N -tuple d 2 R

N

suh that

N

X

i=1

d

2

i

= 1; d

i

� 0; i = 1; :::; N (8)

We will also say that we an reah the population distribution d from the

initial state C

0

if for any � > 0 there exists a �nal time T

d

> 0 and an eletri

�eld �(t) 2 L

2

([0; T

d

℄) suh that the solution of (5) satisfy jj

�

k

(T

d

)j

2

�d

2

k

j < �.

If this is also true for � = 0 then we say that we an exatly reah the

population distribution d from the initial state C

0

.

4 Transfer graph and neessary onditions

Aording to the physial intuition that we will support in the following by

mathematial arguments, the B matrix desribes the population ow among

di�erent eigenstates of the system. In order to formalize this idea we assoiate

to the system some graph G = (V;E) alled the transfer graph. We de�ne the

set V of verties as the set of eigenstates 	

i

and the set of edges E as the set

of all pairs of eigenstates oupled by the matrix B. Sine B is symmetrial

we an onsider G non-oriented:

G = (V;E) : V = f	

1

; :::;	

n

g E = f(	

i

;	

j

);B

ij

6= 0g (9)

Let us deompose this graph into onneted omponents G

�

= (V

�

; E

�

),

a = 1; ::; K. Note that this deomposition orresponds to a blo-diagonal

struture of the matrix B (modulo some permutations on the indies). Using

this deomposition one an write new onservation laws for eah onneted

omponent:

X

fi;	

i

2V

�

g

j

�

i

(t)j

2

= onstant; 8t > 0; � = 1; ::; K (10)

In order to justify (10) one heks by the de�nition of G and using equa-

tions (5) that for all � = 1; ::; K:

i�h

�

�t

X

fi;	

i

2V

�

g

j

�

i

(t)j

2

= 0 (11)

This allows us to give neessary onditions for ontrollability:
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Lemma 1 If one an reah the population distribution d from the initial

on�guration C

0

then

X

fi;	

i

2V

�

g

j

0i

j

2

=

X

fi;	

i

2V

�

g

d

2

i

; � = 1; ::; K (12)

De�nition 1 We say that the population distribution of the system

(5) is ontrollable if for any initial state C

0

and any population distribu-

tion d that satisfy (12) it is possible to reah d from the initial on�guration

C

0

.

5 Controllability results

Denote !

kl

= �

k

��

l

; k; l = 1; :::; N . To ease the notations we will be working

in atomi units (�h = 1). Let us introdue the following hypothesis:

H The omponents G

�

; � = 1; ::; K of G remain onneted after elimina-

tion of all edge pairs (	

i

;	

j

); (	

a

;	

b

) suh that !

ij

= !

ab

(degenerate

transitions).

5.1 Loal exat ontrollability

Theorem 2 Let d

0

be the population distribution assoiated to the initial

state C

0

: d

0

= (j

0i

j)

i=1;:::;N

. Suppose d

0i

6= 0; i = 1; :::; N and that the

hypothesis (H) is veri�ed. Then there exists an open neighborhood D of d

0

on the surfae of R

N

given by the neessary onditions (12) endowed with the

anonial topology suh that one an exatly reah any population distribution

d in D from C

0

.

Remark 1 The onditions d

0i

6= 0; i = 1; :::; N are just tehnialities needed

in the proof. Note that if some d

0i

= 0 one have to take are when hoosing

the good target set to expet exat ontrollability into, sine there is no rea-

son to hope in (exatly) reahing population \distributions" having stritly

negative population in some eigenstates. This is indeed the part that makes

things more involved.

Proof. In order to better highlight the key elements of the proof we treat

only the ase !

ij

6= !

ab

; 8(i; j) 6= (a; b), the general ase bearing no new

onepts. Let us denote A = �iA and B = �iB. Then (5) beome:

8

<

:

�

�t

C

�

= (A+ �(t)B)C

�

C

�

(t = 0) = C

0

(13)
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Denote by (�; C

0

; t) = (

a

(�; C

0

; t))

N

a=1

the solution at the time t of (13)

for the initial (t = 0) data C

0

and eletri �eld �(t).

We de�ne the appliation M : L

2

(R)�R! R

N

given by

M(�; t) = (j

a

(�; C

0

; t)j

2

)

N

a=1

(14)

Note that by the neessary onditions (12) the range of M is a subset of

f(x

i

)

N

i=1

2 R

N

;

X

fi;	

i

2V

�

g

x

i

=

X

fi;	

i

2V

�

g

j

0i

j

2

; � = 1; ::; Kg

The system (13) an be written in the integral form:

(t) = e

At

(0) +

Z

t

0

e

A(t�s)

�(s)B(s)ds (15)

whih gives us (f. also [1℄) the formula of the (Fr�ehet) derivative

D

�

(�; C

0

; t) of (�; C

0

; t) with respet to � omputed at �(t) � 0:

D

�

(�; C

0

; t)j

�=0

� ~� =

Z

t

0

e

A(t�s)

~�(s)Be

As

(0)ds (16)

Denoting by w(t) the free evolution of the system (w

a

(t) = 

a

(0; C

0

; t)

and w(t) = (0; C

0

; t)) and using the anonial base fe

1

; :::; e

N

g of R

N

we

an write:

D

�

M(�; t)j

�=0

� ~� = (D

�

w

a

(t) � ~� w

a

(t) + w

a

(t)D

�

w

a

(t) � ~�)

N

a=1

= [2Re(D

�

w

a

(t) � ~� w

a

(t))℄

N

a=1

= [2Re(< D

�

w(t) � ~�; e

a

> w

a

(t))℄

N

a=1

Sine

(e

A(t�s)

~�(s)Be

As

)

ab

= e

�i�

a

(t�s)

~�(s)(�i)B

ab

e

�i�

b

s

(17)

and taking into aount the expliit formula for w

a

(t)

w

a

(t) = e

�i�

a

t

w

a

(0); a = 1; :::; N (18)

one obtains �rst

D

�

M(�; t)j

�=0

� ~� = [2Re(�i

N

X

b=1

Z

t

0

e

�i�

a

t

B

ab

e

i!

ab

s

~�(s)w

a

(0)w

b

(t)ds)℄

N

a=1

and then

D

�

M(�; t)j

�=0

� ~� = [2Re(�i

N

X

b=1

Z

t

0

w

b

(0)w

a

(0)B

ab

e

�i!

ab

(t�s)

~�(s)ds)℄

N

a=1

(19)
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Armed with this formula we are ready to takle with the loal ontrolla-

bility problem. This is in fat a partiular surjetivity property of M(�; t).

We will �x t = T 6= 0 and will prove that D

�

M has the surjetivity property

we desire; by the impliit funtion theorem the onlusion will follow then

for M itself.

We prove that D

�

M(�; T ) is onto the linear manifold (P) (produt of

hyper-planes of R

ardinality(S

�

)

; � = 1; ::; K):

f(x

i

)

N

i=1

2 R

N

;

X

fi;	

i

2V

�

g

x

i

= 0; � = 1; ::; Kg

whose M(0; T )-translation is tangent in (0; T ) to the range of M .

Denote by f

a

; a = 1; :::; N the omponents of D

�

M :

D

�

M(�; t)j

�=0

� ~� = (< f

a

; ~� >

L

2

)

N

a=1

(20)

Due to the �nite dimensionality of our setting we just have to show that

the range of D

�

M(�; t)j

�=0

has a null orthogonal with respet to (P), that is

any vetor k = (k

a

)

N

a=1

2 R

N

suh that

X

fi;	

i

2V

�

g

k

i

= 0; � = 1; ::; K (21)

N

X

i=1

k

i

� < f

i

; ~� >

L

2

= 0; 8~� 2 L

2

([0; T ℄) (22)

is neessary the null vetor.

The relation (22) an also be written

P

i=1

k

i

� f

i

(s) = 0; 80 � s � T or,

in full format,

N

X

a;b=1

k

a

B

ab

� 2Re[iw

b

(0)w

a

(0)e

�i!

ab

(T�s)

℄ � 0; 80 � s � T (23)

Grouping together similar terms one gets for all 0 � s � T

N

X

a<b

(k

a

� k

b

)jw

a

(0)jjw

b

(0)jB

ab

� 2Re[i

w

b

(0)

jw

b

(0)j

w

a

(0)

jw

a

(0)j

e

�i!

ab

(T�s)

℄ = 0 (24)

It suÆes now to notie that sine in f!

ab

; a < bg there are no repeti-

tions, the funtions of s are all inommensurable and of null sum. Therefore

oeÆients are all zero:

(k

a

� k

b

)jw

a

(0)jjw

b

(0)jB

ab

= 0; a; b = 1; :::; N; a < b (25)

Working on onneted omponents of the transfer graph if follows that

k

a

= onst, for all a suh that 	

a

2 V

�

; � = 1; ::; K whih together with

(21) implies that k is the null vetor, q.e.d.
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Remark 2 One an view this loal ontrollability theorem as an enouraging

argument when designing numerial algorithms. Indeed one is sure that a well

designed algorithm will at least be able to improve the initial guess �(t) � 0.

It is however the next result that positively informs us about the possibility of

solving suh a ontrol problem.

Remark 3 There is a interesting property of the ontrol solutions that this

result highlights: the possibility of synhronous ontrol. The theorem states

that when working with several independent quantum systems (eah modeled

by a onneted omponent of the transfer graph G) one an ontrol one of

them without interfering with the others (or ontrolling at the same time the

others also); this may give an indiation about when ontrol in liquid phase or

in other ases of mixtures of systems (one of them being \prinipal") may be

possible: when the systems have di�erent spetral signatures (non-degenerate

transitions); this may eventually allow us to hoose the right \seondary"

systems to aompany our target.

Remark 4 The fat that there will always be (at least loally) ontrol solu-

tions that may be hosen to solve (�nitely many) other ontrol problems at

the same time with our main ontrol problem is suggesting that there is a rih

diversity (and hene multipliity) among the ontrol solutions; therefore for

a partiular solution �(t) only a part of all the information ontained in �(t)

is useful for reahing the target, all the rest being only some sort of noise.

One illustration of how little information (N � 1 Fourier oeÆients) may

take to reah a population distribution is given in the proof of the next result.

5.2 Global ontrollability

Theorem 3 Under the hypothesis [H℄ the population distribution of the sys-

tem (5) is ontrollable.

Proof. Let us use the variable substitution w

�

k

(t) = e

i�

k

t



�

k

(t); k = 1; ::; N .

Then the equations (5) beome:

8

<

:

i

�

�t

w

�

k

(t) =

P

l 6=k

�(t)e

i(�

k

��

l

)t

B

kl

w

�

l

(t); k = 1; ::; N

w

�

k

(t = 0) = 

0k

; k = 1; ::; N

(26)

Sine jw

�

k

(t)j = j

�

k

(t)j; 8t � 0 studying the ontrollability of (5) is

equivalent to studying the ontrollability of (26). Regarding our de�nition of

the ontrollability we understand that the goal is in fat to \rearrange" the

population distributions inside eah onneted omponent of G i.e. to trans-

fer population among verties belonging to the same onneted omponent.
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Let us de�ne an elementary population transfer of � units between the

eigenstate 	

k

and the eigenstate 	

l

by the �nal onditions

8

>

>

<

>

>

:

jw

�

k

(T )j

2

= jw

�

k

(0)j

2

� �

jw

�

l

(T )j

2

= jw

�

l

(0)j

2

+ �

jw

�

i

(T )j

2

= jw

�

i

(0)j

2

; 8 i 6= k; l

(27)

Then it is easy to see that our problem an be deomposed into elementary

population transfers between the eigenstates. In fat one an hoose these

transfers to happen between edges of the graph G

6

i.e. between states 	

k

and 	

l

suh that B

kl

6= 0. Of ourse these population transfers need only be

(arbitrary preise but) approximate.

Let us hoose �(t) of the form �(t) =

1

p

r

kl

os(!

kl

t) =

1

p

r

kl

e

i!

kl

t

+e

�i!

kl

t

2

.

Then (26) an be written in the form:

i

�

�t

w

�

a

(t) =

X

b6=a

�(t)e

i!

ab

t

B

ab

w

�

b

(t); a = 1; ::; N; (28)

i

�

�t

w

�

a

(t) =

X

b6=a

1

p

r

kl

B

ab

e

i(!

ab

+!

kl

)t

+ e

i(!

ab

�!

kl

)t

2

w

�

b

(t) a = 1; ::; N (29)

One an see that the only terms that do ontain non-osillatory funtions

are i

�

�t

w

�

k

(t) and i

�

�t

w

�

l

(t) sine in this ase one gets in the seond term

quantities like

e

i(!

kl

�!

kl

)t

2

=

1

2

or

e

i(!

lk

+!

kl

)t

2

=

1

2

. We will show that in the

limit p!1 for the �nal time pT (T=�xed) all other (osillatory) terms an

be negleted. Indeed let us replae w

�

a

(t); a = 1; :::; N by U

a

(t); a = 1; :::; N

given by:

8

>

>

>

<

>

>

>

:

U

k

(t) =

w

�

k

(t)+w

�

l

(t)

2

� e

i

1

2p

r

kl

B

kl

t

U

l

(t) =

w

�

k

(t)�w

�

l

(t)

2

� e

i

1

2p

r

kl

B

kl

t

U

a

(t) = w

�

a

(t); a = 1; :::; N; a 6= k; l

(30)

Then the evolution system is now

i

�

�t

U

a

(t) =

X

b6=a

1

p

r

kl

B

ab

f

ab

(t)U

b

(t) (31)

where the funtions f

ab

are sums of exponentials e

iqt

with q having one of the

forms !

ab

� !

kl

, !

ab

+ !

kl

, 2!

kl

, !

ak

� !

kl

+

1

2p

r

kl

B

kl

, ... What is important

6

Sine eah G

�

is onneted it ontains at least a tree; one an prove reursively that

in fat at most N � 1 suh operations are needed. Moreover sine eah G

�

remains on-

neted after having eliminated all degenerate transitions one an suppose the transitions

orrespond to edges whih have not been eliminated.

10



about the frequenies q is that we are able to bound their absolute values by

two onstants 

1

; 

2

> 0 that do not depend of p as soon as p is large enough:

0 < 

1

< jqj < 

2

<1.

We will now show that for p large enough jU

a

(pT )� U

a

(0)j; a = 1; :::; N

is as small as we want (T is �xed). Let us denote g

ab

= r

kl

B

ab

f

ab

(t). Denote

also by G

ab

(t) the primitive of g

ab

that is zero for t = 0. From the form of the

funtions f

ab

we see that there exists a onstant C

0

independent of p suh

that jG

ab

(t)j < C

0

; 8 t 2 R. Then

iU

a

(pT ) = iU

a

(0) +

Z

pT

0

i

�

�t

U

a

(t)dt = iU

a

(0) +

Z

pT

0

X

b6=a

1

p

g

ab

U

b

(t)dt

= iU

a

(0) +

X

b6=a

1

p

G

ab

(pT )U

b

(pT ) + i

Z

pT

0

X

b6=a

1

p

G

ab

(t)i

�

�t

U

b

(t)dt

= iU

a

(0) +

X

b6=a

1

p

G

ab

(pT )U

b

(pT ) +

i

p

Z

pT

0

N

X

b;=1

G

ab

(t)

1

p

g

b

U



(t)dt

Using the fat that G

ab

, g

ab

and U

a

(t) are bounded funtions on R it follows

that for eah � > 0 we an hoose p large enough suh that jiU

a

(pT ) �

iU

a

(0)j < �. After having replaed bak the U

a

in the system we onlude

that for p large enough the solutions of the system (29) omputed in t = pT

are as lose as we want to the solutions of

8

>

>

<

>

>

:

i

�

�t

w

�

k

(t) = �(t)e

i!

kl

t

B

kl

w

�

l

i

�

�t

w

�

l

(t) = �(t)e

i!

lk

t

B

kl

w

�

k

i

�

�t

w

�

a

(t) = 0; a = 1; :::; N; a 6= k; l

(32)

A straightforward analysis of the ase N = 2 proves now that one an realize

any desired population transfer by tuning the oeÆient r

kl

depending on

how many \population units" are to be transfered between the eigenstates

	

k

and 	

l

.

Remark 5 The hypothesis (H) is veri�ed in a large lass of pratial ases

(see [10℄). Moreover there are examples where the absene of this hypothesis

makes the system not ontrollable. One an onsider for instane the ase

of a system made up by two idential and independent sub-systems. It is

obvious that using the same laser pulse one annot obtain di�erent results

for the omponents. The hypothesis (H) is here to prevent suh orrelations

indued by the similarities in the spetral signatures to go unnotied.

Remark 6 Even if our approah is onstrutive it is not entirely optimal;

one an see that there are simple ways to redue the time required to reah

11



the target by onstruting simultaneously elementary transfers. In order to

formalize this one should optimize a distributed transport problem

7

on the

graph G. On the other side numerial results suggest us to onjeture that

the L

2

norm of the �eld �(t) realizing the transfer remains onstant.

As an improvement of the result above one an prove the following

Theorem 4 Let d

0

be the population distribution assoiated to the initial

state C

0

: d

0

= (j

0i

j)

i=1;:::;N

. Under the hypothesis [H℄ any population dis-

tribution d = (d

i

)

N

i=1

suh that d

i

> 0; i = 1; :::; N and that veri�es the

neessary onditions (12) an be exatly reahed.

Proof. The proof ombines the global approximate ontrollability with a

slightly stronger form of the loal ontrollability result. In order to sim-

plify the presentation let us denote for any state C by d(C) its assoiated

population distribution: d(C) = (jC

i

j)

N

i=1

. We will �rst assume the following

Lemma 2 Let C

l

be an initial state and d

l

= d(C

l

). Suppose d

li

> 0; i =

1; :::; N and that the hypothesis [H℄ is veri�ed. Then there exists an open

neighborhood D

l

of d

l

(on the surfae of R

N

given by the neessary on-

ditions (12) endowed with the anonial topology) suh that any population

distribution d in D

l

an be exatly reahed from from any initial state C

i

with

d(C

i

) 2 D

l

.

In order to prove the theorem one applies the lemma above for d and

obtains an open neighborhoodD. By the global result there exists a �eld that

drives the system from the initial state C

0

to some state C

1

with d(C

1

) 2 D.

Sine d is obviously in any of its open neighborhoods (and in partiular in

D) it follows that there exists a �eld that drives C

1

to d. All that remains

to be done is to \glue" those two parts together, obtaining thus an �eld that

allows to exatly reah d starting from C

0

(and passing by d

1

).

Let us now prove the lemma (2). Note �rst that the loal ontrollability

result is uniform with respet to the initial state. Indeed, with the same

notations as in the proof of theorem (2), note that (�; C; T ) is of C

1

lass

with respet to C. Moreover we have proved that the (Fr�ehet) derivative

of (�; C; T ) ! (j

a

(�; C; t)j

2

)

N

a=1

with respet to � omputed at (0; C; T ) is

surjetive. This allows us to apply the impliit funtion theorem and on-

lude that there exists a neighborhood D

C

of C and a neighborhood (for the

topology ited above) D of d suh that from any initial state C

i

2 D

C

one

an exatly reah any population distribution in D.

7

see [3℄

12



Suppose now that the lemma (2) is not true. Then there exists a sequene

of states C

n

(with d

n

= d(C

n

)) and a sequene of distributions d

t

n

suh that

d

n

! d, d

t

n

! d and d

t

n

annot be exatly reahed from C

n

. Eah C

n

is

haraterized by the set of phase fators (that an be safely supposed to be

in [0; 2�℄

N

) and population distribution d

n

. Sine the set [0; 2�℄

N

is ompat

one an extrat from the sequene of phase fators one sub-sequene that is

onverging; toghether with d

n

! d it follows that one an �nd a sub-sequene

of C

n

that is onverging to some state C with d(C) = d. In onlusion there

exists a sequene C

n

k

! C(k ! 1) of states and a sequene d

t

n

k

! d of

population distributions suh that one annot exatly reah d

t

n

k

from C

n

k

for any k � 1. This is obviously ontraditing the uniform properties of the

loal result, q.e.d.

6 Appliation to a �ve level system

As an appliation of the results above we will study a �ve-level system pre-

sented in [14℄. It will be seen that the ontrollability is easy to hek by

our method; we will take advantage of the onstrutive side of the theory to

support the theoretial results in numerial simulations.

The matrix representation of the operators involved are:

A =

0

B

B

B

B

B

�

1:0 0 0 0 0

0 1:2 0 0 0

0 0 1:3 0 0

0 0 0 2:0 0

0 0 0 0 2:15

1

C

C

C

C

C

A

; B =

0

B

B

B

B

B

�

0 0 0 1 1

0 0 0 1 1

0 0 0 1 1

1 1 1 0 0

1 1 1 0 0

1

C

C

C

C

C

A

(33)

One an dedue the following transfer graph G:

(34)

SineG is obviously onneted and sine the hypothesis (H) is also veri�ed

it follows that the population distribution of this system is ontrollable. We

present some numerial examples of population transfer, drawing in eah ase

13



the evolution of the populations (j

i

(t)j

2

; i = 1; ::; 5) in the orresponding

viewgraphs.

In the �rst ase we want to transfer population from state 1 diretly to

state 5. We write this ontrol problem formally (1; 0; 0; 0; 0)! (0; 0; 0; 0; 1).

Using a laser �eld of the form �(t) = �os((�

1

��

5

)t) one obtains the following

population evolution:

In the seond example the target is the state 2 and we use state 4 as

intermediary: (1; 0; 0; 0; 0) ! (0; 1; 0; 0; 0). The laser takes now the form

�(t) = �

1

os((�

1

� �

4

)t) + �

2

os((�

4

� �

2

)t).

The last ase is a ooperative ontrol example where population is owing

to target state 4 from states 1 and 2: (

1

3

;

2

3

; 0; 0; 0)! (0; 0; 0; 1; 0). The laser

14



has the same general form.

Remark 7 The transfer speed is essentially given by the matrix B. Studying

the time needed for the three experiments one notes that for ontrols of the

same order in L

1

norm the seond is two times slower sine the population

has to go from 	

1

to 	

4

and then from 	

4

to 	

2

; that ould be also realized

by two simulation of the �rst type.

Remark 8 With values in O(1) in the B matrix in order to obtain a pre-

ision of 10

�2

our method require heuristially a "p" of order O(10

2

) whih

is onsistent (and of the same order of magnitude) with the time usually

obtained in the literature (see [14℄).

7 Conlusions

Controllability of the bilinear quantum systems has been studied in the in�-

nite and �nite dimensional settings. The in�nite dimensional ase has been

seen to exhibit hidden restritions due to some ompaity properties of the

equations involved. For the �nite dimensional ase and as long as one is

interested in the populations of the eigenstates, positive results have been

obtained for exat loal and for global ontrollability. Easy to hek and in-

tuitively simple to understand neessary and suÆient onditions have been

obtained to haraterize the attainable set. Numerial simulations for a �ve

level system are also presented.
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8 Appendix

Even if the physial interpretation for j

i

(t)j

2

; i = 1; :::; N as populations is

valid only in the ase of a diagonal hamiltonian our results an be extended

for general auto-adjoint internal hamiltonian matrix H

0

and dipole operator

B.

Indeed sine H

0

is auto-adjoint there exists a (N �N) unitary transform

U suh that UH

0

U

t

be diagonal. It is then straightforward to state the above

results for the system so transformed.

What may be more interesting to notie is that B

ii

need not be zero in

order for the ontrollability results to remain true. This is easy to prove for

the loal ontrollability result: the set of formulae (25) remains the same

sine for a = b the term in the formula (23) beomes:

k

a

B

aa

2Re[iw

a

(0)w

a

(0)e

�i!

aa

s

℄ = k

a

B

aa

2Re[ijw

a

(0)j

2

℄ = 0

For the global ontrollability result one has to work with a modi�ed vari-

able substitution w

�

k

(t) = e

i (l

k

+�(t)B

kk

)t



�

k

(t); k = 1; ::; N . Sine the L

1

norm of �(t) is to be hosen small enough later in the proof, one realizes that

in fat the uniform (in p and t) boundeness of the g

ab

(t); G

ab

(t) still holds

true, whih is enough to obtain the onlusion of the theorem.
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