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Abstra
t

We present in this paper 
ontrollability results for quantum sys-

tems intera
ting with lasers. A negative result for in�nite dimensional

spa
es serves as a starting point for a �nite dimensional analysis. We

show that under physi
ally reasonable hypothesis in su
h systems we


an 
ontrol the population of the eigenstates. Appli
ations are given

for a �ve-level system.

1 Introdu
tion

Controlling 
hemi
al rea
tions at the quantum level was a long-lasting goal

for the Chemists (
f. [4℄, [8℄, [9℄, [11℄, [12℄, [13℄, [15℄) from the very beginning

of the laser te
hnology. Indeed, due to the subtle nature of the intera
tions

involved, this kind of manipulation is expe
ted to allow on the one hand for

mu
h eÆ
ient and �ner 
ontrol than 
lassi
al tools (temperature, pressure,


atalyzers ...) and on the other hand for new rea
tions and/or produ
ts to

be obtained.

The �rst experiments have shown that designing the laser pulse able to

steer the system to the desired target state is a rather diÆ
ult task that

physi
al intuition alone 
annot a

omplish. It is only re
ently that tools


oming from the 
ontrol theory began to give satisfa
tory results in some

parti
ular 
ases; �nding the optimal ele
tri
 �eld is now treated by numeri
al

methods and new models are sought after that be also reliable and 
heap from

a 
omputational point of view.

A legitimate question arises in this 
ontext: what quantum states 
an be

attained using su
h an external �eld ? Some answers are given below.
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2 In�nite dimensional 
ontrollability

Our purpose is to 
ontrol the equations that govern the time evolution of

quantum systems. Let 
onsider su
h a system (isolated from the outer world

for the moment) whose internal Hamiltonian is H

0

that is prepared in the

initial state 	

0

(x); its dynami
s obeys the Time Dependent S
hr�odinger

Equation. Denoting by 	(x; t) the state at the time t one 
an write the

evolution equations for the free system:

8

<

:

i�h

�

�t

	(x; t) = H

0

	(x; t)

	(x; t = 0) = 	

0

(x); k	

0

k

L

2

(R




)

= 1

(1)

In the presen
e of external intera
tions that for us will be an ele
tri
 �eld


reated by a laser and modeled by a laser intensity �(t) 2 R and by a 
er-

tain time independent dipole moment operator

1

B the (
ontrolled) dynami
al

equations reads:

8

<

:

i�h

�

�t

	

�

(x; t) = H

0

	

�

(x; t)� �(t)B	

�

(x; t) = H	

�

(x; t)

	

�

(x; t = 0) = 	

0

(x)

(2)

The goal is to �nd (if any) a �nal time T and a �nite energy laser pulse

�(t), �(t) 2 L

2

([0; T ℄) able to steer the system from 	

0

(x) to some prede�ned

target 	

�

(x; T ) = 	

target

(x).

Note that 	

�

(x; t) is evolving on the unit sphere S(0; 1) of L

2

(R




):

S(0; 1) = ff 2 L

2

(R




); kfk

L

2

(R




)

= 1g

Indeed one 
an easily prove that the L

2

norm of 	

�

is 
onserved throughout

the evolution:

k	

�

(x; t)k

L

2

x

(R




)

= k	

0

k

L

2

(R




)

; 8t > 0: (3)

Let us point out some simple (but important) remarks before 
arrying on

the analysis of these equations. Firstly in what the target state is 
on
erned

it follows by the in
ertitude prin
iple that one will never be able to experi-

mentally verify, neither exploit, the exa
t 
ontrollability. In fa
t even if one

method gives exa
tly the desired target state 	

target

the free evolution (i.e.

when laser is swit
hed o� �(t) = 0; t � T ) of the quantum system instanta-

neously modi�es this state (by a time dependent phase fa
tor if 	

target

is

an eigenfun
tion of H

0

and by the (1) formula in general).

1

Of 
ourse, depending on the problem at hand, one may sometime 
hoose to go beyond

this �rst-order, bilinear term when des
ribing the intera
tion between the laser and the

system, 
f. [5℄, [6℄.
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In this 
ontext a �rst negative 
ontrollability result is therefore not really

restri
tive. In fa
t using 
ompa
ity arguments as those in [1℄ we 
an prove

the following

2

:

Theorem 1 Let B be a bounded operator from H

2

x

(R




) to itself and let H

0

generate a C

0

semigroup of bounded linear operators on H

2

x

(R




). Denote by

	

�

(x; t) the solution of (2). Then the set of attainable states from 	

0

de�ned

by

AS = [

T>0

f	

�

(x; T ); �(t) 2 L

2

([0; T ℄)g (4)

is 
ontained in a 
ountable union of 
ompa
t subsets of H

2

x

(R




). In parti
ular

its 
omplement with respe
t to S(0; 1): N = S(0; 1) n AS is everywhere

dense on S(0; 1). The same holds true for the 
omplement with respe
t to

S(0; 1) \H

2

x

(R




).

Proof. To prove the �rst part of the theorem one applies Thm. 3.6 from [1℄

on the spa
e H

2

x

(R




) for the operators �iH

0

and �iB (and restri
ts �(t) to

L

2

fun
tions).

Note that for any 
ompa
t subset K of X

[0; n℄ �K = frf ; 0 � r � n; f 2 Kg

is also 
ompa
t. Applying this to the 
ompa
t 
omponents K of AS one

notes that

[

r�0

rAS = [

n2N

�

[0; n℄ � AS

is also a 
ountable union of 
ompa
ts subsets of H

2

x

(R




). It follows by the

Baire 
ategory theorem that [

r�0

rAS has dense 
omplement in H

2

x

(R




); in

parti
ular the 
omplement of AS with respe
t to S(0; 1)\H

2

x

(R




) has to be

everywhere dense on S(0; 1) \H

2

x

(R




).

Given this result one may either study the 
ontrollability with respe
t to

a �nite number of moments or the 
ontrollability of the 
orresponding �nite

dimensional system. Is the se
ond analysis that we 
hose to pursue in this

paper.

2

We refer to [7℄ for a di�erent view on this issue. Let us point out however that their

analysis is done on pie
ewise 
onstant fun
tions whi
h may not always 
arry physi
al

meaning for our problem; in parti
ular one may prove 
ontrollability in this 
lass but

realize (by the theorem we present here) that this 
ontrollability requires in�nite L

2

norm

and therefore in�nite laser energy.
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3 Finite dimensional 
ontrollability

Let then D = f	

i

(x); i = 1; ::; Ng be an orthonormal basis for a �nite dimen-

sional sub-spa
e of L

2

(R




) that we are interested in

3

and A and B be the

matri
es of the operators H

0

and B respe
tively, with respe
t to this base

4

.

Let us denote by C = (


i

)

N

i=1

the 
oeÆ
ients of 	

i

(x) in the formula of

the evolving state 	(t; x) =

P

N

i=1




i

(t)	

i

(x); then the equations (2) reads

8

<

:

i�h

�

�t

C

�

= AC

�

� �(t)BC

�

C

�

(t = 0) = C

0

(5)

C

0

= (


0i

)

N

i=1

; 


0i

=

Z

R




	

0

	

i

dx (6)

The 
ontrollability of (5) has been dealt with in the literature (
f. [10℄)

by redu
ing the problem to the 
ontrollability of a system posed on the spa
e

of the unitary matri
es of dimension N . This approa
h has the bene�t of

granting us a

ess to the general tools and results on bilinear 
ontrollability

on Lie groups. However it does not 
orrespond to a physi
al ne
essity and

therefore gives 
riterions not so easy to verify; moreover all the results one


an obtain this way give only suÆ
ient 
onditions for exa
t 
ontrollability

(due to the redu
tion above whi
h is restri
tive). Finally there exists a 
lass

of simple quantum systems 
ontrollable (in a sense to be de�ned further on)

that do not verify the 
riteria emerging from the Lie group analysis.

We have therefore judged instru
tive to study this issue taking into a
-


ount the spe
i�
ity of the quantum framework; we were thus lead into iden-

tifying ne
essary and suÆ
ient 
onditions for the �nite dimensional 
on-

trollability.

In the 
ase of our modeling

3 4

the A matrix is diagonal and B is sym-

metri
al and has null diagonal elements

5

. Let us denote by �

i

; i = 1; ::; N

the diagonal elements of A (the energies of the states 	

i

).

Before presenting our 
ontrollability results we have to introdu
e the �rst

elements required to explain our 
ontrollability 
on
ept. As it was previ-

ously seen the system evolves on the unit sphere of L

2

x

(R




) whi
h in �nite

dimensional representation reads:

N

X

i=1

j


�

i

(t)j

2

= 1; 8t � 0 (7)

3

This spa
e is given by our model and the fun
tions 	

i

(x) are usually the �rst eigen-

fun
tions ofH

0


onstru
ted by a prior 
omputation or by a modeling based on observations.

4

We suppose in the begining that B is su
h that B

ii

= 0 ; i = 1; ::; N ; for the general


ase see the appendix.

5

see the appendix for the general 
ase
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From (5) one noti
es that when the system is evolving freely ((5) with

�(t) = 0) the (relative) phases of the 
oeÆ
ients 


�

i

(t) 
hange but not the

populations of the eigenstates. We will therefore study only the population

transfer between eigenstates i.e. only 
hanges in j


i

(t)j

2

. We 
all population

distribution for the system (5) any N -tuple d 2 R

N

su
h that

N

X

i=1

d

2

i

= 1; d

i

� 0; i = 1; :::; N (8)

We will also say that we 
an rea
h the population distribution d from the

initial state C

0

if for any � > 0 there exists a �nal time T

d

> 0 and an ele
tri


�eld �(t) 2 L

2

([0; T

d

℄) su
h that the solution of (5) satisfy jj


�

k

(T

d

)j

2

�d

2

k

j < �.

If this is also true for � = 0 then we say that we 
an exa
tly rea
h the

population distribution d from the initial state C

0

.

4 Transfer graph and ne
essary 
onditions

A

ording to the physi
al intuition that we will support in the following by

mathemati
al arguments, the B matrix des
ribes the population 
ow among

di�erent eigenstates of the system. In order to formalize this idea we asso
iate

to the system some graph G = (V;E) 
alled the transfer graph. We de�ne the

set V of verti
es as the set of eigenstates 	

i

and the set of edges E as the set

of all pairs of eigenstates 
oupled by the matrix B. Sin
e B is symmetri
al

we 
an 
onsider G non-oriented:

G = (V;E) : V = f	

1

; :::;	

n

g E = f(	

i

;	

j

);B

ij

6= 0g (9)

Let us de
ompose this graph into 
onne
ted 
omponents G

�

= (V

�

; E

�

),

a = 1; ::; K. Note that this de
omposition 
orresponds to a blo
-diagonal

stru
ture of the matrix B (modulo some permutations on the indi
es). Using

this de
omposition one 
an write new 
onservation laws for ea
h 
onne
ted


omponent:

X

fi;	

i

2V

�

g

j


�

i

(t)j

2

= 
onstant; 8t > 0; � = 1; ::; K (10)

In order to justify (10) one 
he
ks by the de�nition of G and using equa-

tions (5) that for all � = 1; ::; K:

i�h

�

�t

X

fi;	

i

2V

�

g

j


�

i

(t)j

2

= 0 (11)

This allows us to give ne
essary 
onditions for 
ontrollability:
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Lemma 1 If one 
an rea
h the population distribution d from the initial


on�guration C

0

then

X

fi;	

i

2V

�

g

j


0i

j

2

=

X

fi;	

i

2V

�

g

d

2

i

; � = 1; ::; K (12)

De�nition 1 We say that the population distribution of the system

(5) is 
ontrollable if for any initial state C

0

and any population distribu-

tion d that satisfy (12) it is possible to rea
h d from the initial 
on�guration

C

0

.

5 Controllability results

Denote !

kl

= �

k

��

l

; k; l = 1; :::; N . To ease the notations we will be working

in atomi
 units (�h = 1). Let us introdu
e the following hypothesis:

H The 
omponents G

�

; � = 1; ::; K of G remain 
onne
ted after elimina-

tion of all edge pairs (	

i

;	

j

); (	

a

;	

b

) su
h that !

ij

= !

ab

(degenerate

transitions).

5.1 Lo
al exa
t 
ontrollability

Theorem 2 Let d

0

be the population distribution asso
iated to the initial

state C

0

: d

0

= (j


0i

j)

i=1;:::;N

. Suppose d

0i

6= 0; i = 1; :::; N and that the

hypothesis (H) is veri�ed. Then there exists an open neighborhood D of d

0

on the surfa
e of R

N

given by the ne
essary 
onditions (12) endowed with the


anoni
al topology su
h that one 
an exa
tly rea
h any population distribution

d in D from C

0

.

Remark 1 The 
onditions d

0i

6= 0; i = 1; :::; N are just te
hni
alities needed

in the proof. Note that if some d

0i

= 0 one have to take 
are when 
hoosing

the good target set to expe
t exa
t 
ontrollability into, sin
e there is no rea-

son to hope in (exa
tly) rea
hing population \distributions" having stri
tly

negative population in some eigenstates. This is indeed the part that makes

things more involved.

Proof. In order to better highlight the key elements of the proof we treat

only the 
ase !

ij

6= !

ab

; 8(i; j) 6= (a; b), the general 
ase bearing no new


on
epts. Let us denote A = �iA and B = �iB. Then (5) be
ome:

8

<

:

�

�t

C

�

= (A+ �(t)B)C

�

C

�

(t = 0) = C

0

(13)
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Denote by 
(�; C

0

; t) = (


a

(�; C

0

; t))

N

a=1

the solution at the time t of (13)

for the initial (t = 0) data C

0

and ele
tri
 �eld �(t).

We de�ne the appli
ation M : L

2

(R)�R! R

N

given by

M(�; t) = (j


a

(�; C

0

; t)j

2

)

N

a=1

(14)

Note that by the ne
essary 
onditions (12) the range of M is a subset of

f(x

i

)

N

i=1

2 R

N

;

X

fi;	

i

2V

�

g

x

i

=

X

fi;	

i

2V

�

g

j


0i

j

2

; � = 1; ::; Kg

The system (13) 
an be written in the integral form:


(t) = e

At


(0) +

Z

t

0

e

A(t�s)

�(s)B
(s)ds (15)

whi
h gives us (
f. also [1℄) the formula of the (Fr�e
het) derivative

D

�


(�; C

0

; t) of 
(�; C

0

; t) with respe
t to � 
omputed at �(t) � 0:

D

�


(�; C

0

; t)j

�=0

� ~� =

Z

t

0

e

A(t�s)

~�(s)Be

As


(0)ds (16)

Denoting by w(t) the free evolution of the system (w

a

(t) = 


a

(0; C

0

; t)

and w(t) = 
(0; C

0

; t)) and using the 
anoni
al base fe

1

; :::; e

N

g of R

N

we


an write:

D

�

M(�; t)j

�=0

� ~� = (D

�

w

a

(t) � ~� w

a

(t) + w

a

(t)D

�

w

a

(t) � ~�)

N

a=1

= [2Re(D

�

w

a

(t) � ~� w

a

(t))℄

N

a=1

= [2Re(< D

�

w(t) � ~�; e

a

> w

a

(t))℄

N

a=1

Sin
e

(e

A(t�s)

~�(s)Be

As

)

ab

= e

�i�

a

(t�s)

~�(s)(�i)B

ab

e

�i�

b

s

(17)

and taking into a

ount the expli
it formula for w

a

(t)

w

a

(t) = e

�i�

a

t

w

a

(0); a = 1; :::; N (18)

one obtains �rst

D

�

M(�; t)j

�=0

� ~� = [2Re(�i

N

X

b=1

Z

t

0

e

�i�

a

t

B

ab

e

i!

ab

s

~�(s)w

a

(0)w

b

(t)ds)℄

N

a=1

and then

D

�

M(�; t)j

�=0

� ~� = [2Re(�i

N

X

b=1

Z

t

0

w

b

(0)w

a

(0)B

ab

e

�i!

ab

(t�s)

~�(s)ds)℄

N

a=1

(19)
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Armed with this formula we are ready to ta
kle with the lo
al 
ontrolla-

bility problem. This is in fa
t a parti
ular surje
tivity property of M(�; t).

We will �x t = T 6= 0 and will prove that D

�

M has the surje
tivity property

we desire; by the impli
it fun
tion theorem the 
on
lusion will follow then

for M itself.

We prove that D

�

M(�; T ) is onto the linear manifold (P) (produ
t of

hyper-planes of R


ardinality(S

�

)

; � = 1; ::; K):

f(x

i

)

N

i=1

2 R

N

;

X

fi;	

i

2V

�

g

x

i

= 0; � = 1; ::; Kg

whose M(0; T )-translation is tangent in (0; T ) to the range of M .

Denote by f

a

; a = 1; :::; N the 
omponents of D

�

M :

D

�

M(�; t)j

�=0

� ~� = (< f

a

; ~� >

L

2

)

N

a=1

(20)

Due to the �nite dimensionality of our setting we just have to show that

the range of D

�

M(�; t)j

�=0

has a null orthogonal with respe
t to (P), that is

any ve
tor k = (k

a

)

N

a=1

2 R

N

su
h that

X

fi;	

i

2V

�

g

k

i

= 0; � = 1; ::; K (21)

N

X

i=1

k

i

� < f

i

; ~� >

L

2

= 0; 8~� 2 L

2

([0; T ℄) (22)

is ne
essary the null ve
tor.

The relation (22) 
an also be written

P

i=1

k

i

� f

i

(s) = 0; 80 � s � T or,

in full format,

N

X

a;b=1

k

a

B

ab

� 2Re[iw

b

(0)w

a

(0)e

�i!

ab

(T�s)

℄ � 0; 80 � s � T (23)

Grouping together similar terms one gets for all 0 � s � T

N

X

a<b

(k

a

� k

b

)jw

a

(0)jjw

b

(0)jB

ab

� 2Re[i

w

b

(0)

jw

b

(0)j

w

a

(0)

jw

a

(0)j

e

�i!

ab

(T�s)

℄ = 0 (24)

It suÆ
es now to noti
e that sin
e in f!

ab

; a < bg there are no repeti-

tions, the fun
tions of s are all in
ommensurable and of null sum. Therefore


oeÆ
ients are all zero:

(k

a

� k

b

)jw

a

(0)jjw

b

(0)jB

ab

= 0; a; b = 1; :::; N; a < b (25)

Working on 
onne
ted 
omponents of the transfer graph if follows that

k

a

= 
onst, for all a su
h that 	

a

2 V

�

; � = 1; ::; K whi
h together with

(21) implies that k is the null ve
tor, q.e.d.
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Remark 2 One 
an view this lo
al 
ontrollability theorem as an en
ouraging

argument when designing numeri
al algorithms. Indeed one is sure that a well

designed algorithm will at least be able to improve the initial guess �(t) � 0.

It is however the next result that positively informs us about the possibility of

solving su
h a 
ontrol problem.

Remark 3 There is a interesting property of the 
ontrol solutions that this

result highlights: the possibility of syn
hronous 
ontrol. The theorem states

that when working with several independent quantum systems (ea
h modeled

by a 
onne
ted 
omponent of the transfer graph G) one 
an 
ontrol one of

them without interfering with the others (or 
ontrolling at the same time the

others also); this may give an indi
ation about when 
ontrol in liquid phase or

in other 
ases of mixtures of systems (one of them being \prin
ipal") may be

possible: when the systems have di�erent spe
tral signatures (non-degenerate

transitions); this may eventually allow us to 
hoose the right \se
ondary"

systems to a

ompany our target.

Remark 4 The fa
t that there will always be (at least lo
ally) 
ontrol solu-

tions that may be 
hosen to solve (�nitely many) other 
ontrol problems at

the same time with our main 
ontrol problem is suggesting that there is a ri
h

diversity (and hen
e multipli
ity) among the 
ontrol solutions; therefore for

a parti
ular solution �(t) only a part of all the information 
ontained in �(t)

is useful for rea
hing the target, all the rest being only some sort of noise.

One illustration of how little information (N � 1 Fourier 
oeÆ
ients) may

take to rea
h a population distribution is given in the proof of the next result.

5.2 Global 
ontrollability

Theorem 3 Under the hypothesis [H℄ the population distribution of the sys-

tem (5) is 
ontrollable.

Proof. Let us use the variable substitution w

�

k

(t) = e

i�

k

t




�

k

(t); k = 1; ::; N .

Then the equations (5) be
ome:

8

<

:

i

�

�t

w

�

k

(t) =

P

l 6=k

�(t)e

i(�

k

��

l

)t

B

kl

w

�

l

(t); k = 1; ::; N

w

�

k

(t = 0) = 


0k

; k = 1; ::; N

(26)

Sin
e jw

�

k

(t)j = j


�

k

(t)j; 8t � 0 studying the 
ontrollability of (5) is

equivalent to studying the 
ontrollability of (26). Regarding our de�nition of

the 
ontrollability we understand that the goal is in fa
t to \rearrange" the

population distributions inside ea
h 
onne
ted 
omponent of G i.e. to trans-

fer population among verti
es belonging to the same 
onne
ted 
omponent.

9



Let us de�ne an elementary population transfer of � units between the

eigenstate 	

k

and the eigenstate 	

l

by the �nal 
onditions

8

>

>

<

>

>

:

jw

�

k

(T )j

2

= jw

�

k

(0)j

2

� �

jw

�

l

(T )j

2

= jw

�

l

(0)j

2

+ �

jw

�

i

(T )j

2

= jw

�

i

(0)j

2

; 8 i 6= k; l

(27)

Then it is easy to see that our problem 
an be de
omposed into elementary

population transfers between the eigenstates. In fa
t one 
an 
hoose these

transfers to happen between edges of the graph G

6

i.e. between states 	

k

and 	

l

su
h that B

kl

6= 0. Of 
ourse these population transfers need only be

(arbitrary pre
ise but) approximate.

Let us 
hoose �(t) of the form �(t) =

1

p

r

kl


os(!

kl

t) =

1

p

r

kl

e

i!

kl

t

+e

�i!

kl

t

2

.

Then (26) 
an be written in the form:

i

�

�t

w

�

a

(t) =

X

b6=a

�(t)e

i!

ab

t

B

ab

w

�

b

(t); a = 1; ::; N; (28)

i

�

�t

w

�

a

(t) =

X

b6=a

1

p

r

kl

B

ab

e

i(!

ab

+!

kl

)t

+ e

i(!

ab

�!

kl

)t

2

w

�

b

(t) a = 1; ::; N (29)

One 
an see that the only terms that do 
ontain non-os
illatory fun
tions

are i

�

�t

w

�

k

(t) and i

�

�t

w

�

l

(t) sin
e in this 
ase one gets in the se
ond term

quantities like

e

i(!

kl

�!

kl

)t

2

=

1

2

or

e

i(!

lk

+!

kl

)t

2

=

1

2

. We will show that in the

limit p!1 for the �nal time pT (T=�xed) all other (os
illatory) terms 
an

be negle
ted. Indeed let us repla
e w

�

a

(t); a = 1; :::; N by U

a

(t); a = 1; :::; N

given by:

8

>

>

>

<

>

>

>

:

U

k

(t) =

w

�

k

(t)+w

�

l

(t)

2

� e

i

1

2p

r

kl

B

kl

t

U

l

(t) =

w

�

k

(t)�w

�

l

(t)

2

� e

i

1

2p

r

kl

B

kl

t

U

a

(t) = w

�

a

(t); a = 1; :::; N; a 6= k; l

(30)

Then the evolution system is now

i

�

�t

U

a

(t) =

X

b6=a

1

p

r

kl

B

ab

f

ab

(t)U

b

(t) (31)

where the fun
tions f

ab

are sums of exponentials e

iqt

with q having one of the

forms !

ab

� !

kl

, !

ab

+ !

kl

, 2!

kl

, !

ak

� !

kl

+

1

2p

r

kl

B

kl

, ... What is important

6

Sin
e ea
h G

�

is 
onne
ted it 
ontains at least a tree; one 
an prove re
ursively that

in fa
t at most N � 1 su
h operations are needed. Moreover sin
e ea
h G

�

remains 
on-

ne
ted after having eliminated all degenerate transitions one 
an suppose the transitions


orrespond to edges whi
h have not been eliminated.
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about the frequen
ies q is that we are able to bound their absolute values by

two 
onstants 


1

; 


2

> 0 that do not depend of p as soon as p is large enough:

0 < 


1

< jqj < 


2

<1.

We will now show that for p large enough jU

a

(pT )� U

a

(0)j; a = 1; :::; N

is as small as we want (T is �xed). Let us denote g

ab

= r

kl

B

ab

f

ab

(t). Denote

also by G

ab

(t) the primitive of g

ab

that is zero for t = 0. From the form of the

fun
tions f

ab

we see that there exists a 
onstant C

0

independent of p su
h

that jG

ab

(t)j < C

0

; 8 t 2 R. Then

iU

a

(pT ) = iU

a

(0) +

Z

pT

0

i

�

�t

U

a

(t)dt = iU

a

(0) +

Z

pT

0

X

b6=a

1

p

g

ab

U

b

(t)dt

= iU

a

(0) +

X

b6=a

1

p

G

ab

(pT )U

b

(pT ) + i

Z

pT

0

X

b6=a

1

p

G

ab

(t)i

�

�t

U

b

(t)dt

= iU

a

(0) +

X

b6=a

1

p

G

ab

(pT )U

b

(pT ) +

i

p

Z

pT

0

N

X

b;
=1

G

ab

(t)

1

p

g

b


U




(t)dt

Using the fa
t that G

ab

, g

ab

and U

a

(t) are bounded fun
tions on R it follows

that for ea
h � > 0 we 
an 
hoose p large enough su
h that jiU

a

(pT ) �

iU

a

(0)j < �. After having repla
ed ba
k the U

a

in the system we 
on
lude

that for p large enough the solutions of the system (29) 
omputed in t = pT

are as 
lose as we want to the solutions of

8

>

>

<

>

>

:

i

�

�t

w

�

k

(t) = �(t)e

i!

kl

t

B

kl

w

�

l

i

�

�t

w

�

l

(t) = �(t)e

i!

lk

t

B

kl

w

�

k

i

�

�t

w

�

a

(t) = 0; a = 1; :::; N; a 6= k; l

(32)

A straightforward analysis of the 
ase N = 2 proves now that one 
an realize

any desired population transfer by tuning the 
oeÆ
ient r

kl

depending on

how many \population units" are to be transfered between the eigenstates

	

k

and 	

l

.

Remark 5 The hypothesis (H) is veri�ed in a large 
lass of pra
ti
al 
ases

(see [10℄). Moreover there are examples where the absen
e of this hypothesis

makes the system not 
ontrollable. One 
an 
onsider for instan
e the 
ase

of a system made up by two identi
al and independent sub-systems. It is

obvious that using the same laser pulse one 
annot obtain di�erent results

for the 
omponents. The hypothesis (H) is here to prevent su
h 
orrelations

indu
ed by the similarities in the spe
tral signatures to go unnoti
ed.

Remark 6 Even if our approa
h is 
onstru
tive it is not entirely optimal;

one 
an see that there are simple ways to redu
e the time required to rea
h

11



the target by 
onstru
ting simultaneously elementary transfers. In order to

formalize this one should optimize a distributed transport problem

7

on the

graph G. On the other side numeri
al results suggest us to 
onje
ture that

the L

2

norm of the �eld �(t) realizing the transfer remains 
onstant.

As an improvement of the result above one 
an prove the following

Theorem 4 Let d

0

be the population distribution asso
iated to the initial

state C

0

: d

0

= (j


0i

j)

i=1;:::;N

. Under the hypothesis [H℄ any population dis-

tribution d = (d

i

)

N

i=1

su
h that d

i

> 0; i = 1; :::; N and that veri�es the

ne
essary 
onditions (12) 
an be exa
tly rea
hed.

Proof. The proof 
ombines the global approximate 
ontrollability with a

slightly stronger form of the lo
al 
ontrollability result. In order to sim-

plify the presentation let us denote for any state C by d(C) its asso
iated

population distribution: d(C) = (jC

i

j)

N

i=1

. We will �rst assume the following

Lemma 2 Let C

l

be an initial state and d

l

= d(C

l

). Suppose d

li

> 0; i =

1; :::; N and that the hypothesis [H℄ is veri�ed. Then there exists an open

neighborhood D

l

of d

l

(on the surfa
e of R

N

given by the ne
essary 
on-

ditions (12) endowed with the 
anoni
al topology) su
h that any population

distribution d in D

l


an be exa
tly rea
hed from from any initial state C

i

with

d(C

i

) 2 D

l

.

In order to prove the theorem one applies the lemma above for d and

obtains an open neighborhoodD. By the global result there exists a �eld that

drives the system from the initial state C

0

to some state C

1

with d(C

1

) 2 D.

Sin
e d is obviously in any of its open neighborhoods (and in parti
ular in

D) it follows that there exists a �eld that drives C

1

to d. All that remains

to be done is to \glue" those two parts together, obtaining thus an �eld that

allows to exa
tly rea
h d starting from C

0

(and passing by d

1

).

Let us now prove the lemma (2). Note �rst that the lo
al 
ontrollability

result is uniform with respe
t to the initial state. Indeed, with the same

notations as in the proof of theorem (2), note that 
(�; C; T ) is of C

1


lass

with respe
t to C. Moreover we have proved that the (Fr�e
het) derivative

of (�; C; T ) ! (j


a

(�; C; t)j

2

)

N

a=1

with respe
t to � 
omputed at (0; C; T ) is

surje
tive. This allows us to apply the impli
it fun
tion theorem and 
on-


lude that there exists a neighborhood D

C

of C and a neighborhood (for the

topology 
ited above) D of d su
h that from any initial state C

i

2 D

C

one


an exa
tly rea
h any population distribution in D.

7

see [3℄
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Suppose now that the lemma (2) is not true. Then there exists a sequen
e

of states C

n

(with d

n

= d(C

n

)) and a sequen
e of distributions d

t

n

su
h that

d

n

! d, d

t

n

! d and d

t

n


annot be exa
tly rea
hed from C

n

. Ea
h C

n

is


hara
terized by the set of phase fa
tors (that 
an be safely supposed to be

in [0; 2�℄

N

) and population distribution d

n

. Sin
e the set [0; 2�℄

N

is 
ompa
t

one 
an extra
t from the sequen
e of phase fa
tors one sub-sequen
e that is


onverging; toghether with d

n

! d it follows that one 
an �nd a sub-sequen
e

of C

n

that is 
onverging to some state C with d(C) = d. In 
on
lusion there

exists a sequen
e C

n

k

! C(k ! 1) of states and a sequen
e d

t

n

k

! d of

population distributions su
h that one 
annot exa
tly rea
h d

t

n

k

from C

n

k

for any k � 1. This is obviously 
ontradi
ting the uniform properties of the

lo
al result, q.e.d.

6 Appli
ation to a �ve level system

As an appli
ation of the results above we will study a �ve-level system pre-

sented in [14℄. It will be seen that the 
ontrollability is easy to 
he
k by

our method; we will take advantage of the 
onstru
tive side of the theory to

support the theoreti
al results in numeri
al simulations.

The matrix representation of the operators involved are:

A =

0

B

B

B

B

B

�

1:0 0 0 0 0

0 1:2 0 0 0

0 0 1:3 0 0

0 0 0 2:0 0

0 0 0 0 2:15

1

C

C

C

C

C

A

; B =

0

B

B

B

B

B

�

0 0 0 1 1

0 0 0 1 1

0 0 0 1 1

1 1 1 0 0

1 1 1 0 0

1

C

C

C

C

C

A

(33)

One 
an dedu
e the following transfer graph G:

(34)

Sin
eG is obviously 
onne
ted and sin
e the hypothesis (H) is also veri�ed

it follows that the population distribution of this system is 
ontrollable. We

present some numeri
al examples of population transfer, drawing in ea
h 
ase
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the evolution of the populations (j


i

(t)j

2

; i = 1; ::; 5) in the 
orresponding

viewgraphs.

In the �rst 
ase we want to transfer population from state 1 dire
tly to

state 5. We write this 
ontrol problem formally (1; 0; 0; 0; 0)! (0; 0; 0; 0; 1).

Using a laser �eld of the form �(t) = �
os((�

1

��

5

)t) one obtains the following

population evolution:

In the se
ond example the target is the state 2 and we use state 4 as

intermediary: (1; 0; 0; 0; 0) ! (0; 1; 0; 0; 0). The laser takes now the form

�(t) = �

1


os((�

1

� �

4

)t) + �

2


os((�

4

� �

2

)t).

The last 
ase is a 
ooperative 
ontrol example where population is 
owing

to target state 4 from states 1 and 2: (

1

3

;

2

3

; 0; 0; 0)! (0; 0; 0; 1; 0). The laser

14



has the same general form.

Remark 7 The transfer speed is essentially given by the matrix B. Studying

the time needed for the three experiments one notes that for 
ontrols of the

same order in L

1

norm the se
ond is two times slower sin
e the population

has to go from 	

1

to 	

4

and then from 	

4

to 	

2

; that 
ould be also realized

by two simulation of the �rst type.

Remark 8 With values in O(1) in the B matrix in order to obtain a pre-


ision of 10

�2

our method require heuristi
ally a "p" of order O(10

2

) whi
h

is 
onsistent (and of the same order of magnitude) with the time usually

obtained in the literature (see [14℄).

7 Con
lusions

Controllability of the bilinear quantum systems has been studied in the in�-

nite and �nite dimensional settings. The in�nite dimensional 
ase has been

seen to exhibit hidden restri
tions due to some 
ompa
ity properties of the

equations involved. For the �nite dimensional 
ase and as long as one is

interested in the populations of the eigenstates, positive results have been

obtained for exa
t lo
al and for global 
ontrollability. Easy to 
he
k and in-

tuitively simple to understand ne
essary and suÆ
ient 
onditions have been

obtained to 
hara
terize the attainable set. Numeri
al simulations for a �ve

level system are also presented.
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8 Appendix

Even if the physi
al interpretation for j


i

(t)j

2

; i = 1; :::; N as populations is

valid only in the 
ase of a diagonal hamiltonian our results 
an be extended

for general auto-adjoint internal hamiltonian matrix H

0

and dipole operator

B.

Indeed sin
e H

0

is auto-adjoint there exists a (N �N) unitary transform

U su
h that UH

0

U

t

be diagonal. It is then straightforward to state the above

results for the system so transformed.

What may be more interesting to noti
e is that B

ii

need not be zero in

order for the 
ontrollability results to remain true. This is easy to prove for

the lo
al 
ontrollability result: the set of formulae (25) remains the same

sin
e for a = b the term in the formula (23) be
omes:

k

a

B

aa

2Re[iw

a

(0)w

a

(0)e

�i!

aa

s

℄ = k

a

B

aa

2Re[ijw

a

(0)j

2

℄ = 0

For the global 
ontrollability result one has to work with a modi�ed vari-

able substitution w

�

k

(t) = e

i (l

k

+�(t)B

kk

)t




�

k

(t); k = 1; ::; N . Sin
e the L

1

norm of �(t) is to be 
hosen small enough later in the proof, one realizes that

in fa
t the uniform (in p and t) boundeness of the g

ab

(t); G

ab

(t) still holds

true, whi
h is enough to obtain the 
on
lusion of the theorem.
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