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Abstract

We present in this paper controllability results for quantum sys-
tems interacting with lasers. A negative result for infinite dimensional
spaces serves as a starting point for a finite dimensional analysis. We
show that under physically reasonable hypothesis in such systems we
can control the population of the eigenstates. Applications are given
for a five-level system.

1 Introduction

Controlling chemical reactions at the quantum level was a long-lasting goal
for the Chemists (cf. [4], [8], [9], [11], [12], [13], [15]) from the very beginning
of the laser technology. Indeed, due to the subtle nature of the interactions
involved, this kind of manipulation is expected to allow on the one hand for
much efficient and finer control than classical tools (temperature, pressure,
catalyzers ...) and on the other hand for new reactions and/or products to
be obtained.

The first experiments have shown that designing the laser pulse able to
steer the system to the desired target state is a rather difficult task that
physical intuition alone cannot accomplish. It is only recently that tools
coming from the control theory began to give satisfactory results in some
particular cases; finding the optimal electric field is now treated by numerical
methods and new models are sought after that be also reliable and cheap from
a computational point of view.

A legitimate question arises in this context: what quantum states can be
attained using such an external field 7 Some answers are given below.



2 Infinite dimensional controllability

Our purpose is to control the equations that govern the time evolution of
quantum systems. Let consider such a system (isolated from the outer world
for the moment) whose internal Hamiltonian is H, that is prepared in the
initial state Wy(z); its dynamics obeys the Time Dependent Schrodinger
Equation. Denoting by ¥(z,t) the state at the time t one can write the
evolution equations for the free system:

ih 2V (z,t) = Hy¥(z,t) 0

\II(ZL‘,t = 0) = \Ifo(ZL‘), ||\I]0||L2(R’V) =1

In the presence of external interactions that for us will be an electric field
created by a laser and modeled by a laser intensity €(t) € R and by a cer-
tain time independent dipole moment operator! B the (controlled) dynamical
equations reads:

W2V (z,t) = HyU(z,t) — e(t)BY(z,t) = HV(z, t) @)
U (z,t =0)=Ty(x)

The goal is to find (if any) a final time 7" and a finite energy laser pulse
e(t), e(t) € L*([0,T]) able to steer the system from ¥y(z) to some predefined
target Ve (z,T) = Wigrget ().

Note that W, (z,t) is evolving on the unit sphere S(0,1) of L*(R?):

S(0,1) = {f € L*®R"); [|f 2wy = 1}

Indeed one can easily prove that the L? norm of ¥, is conserved throughout
the evolution:
1We(2, D)2 = [WollL2w), VE > 0. (3)

Let us point out some simple (but important) remarks before carrying on
the analysis of these equations. Firstly in what the target state is concerned
it follows by the incertitude principle that one will never be able to experi-
mentally verify, neither exploit, the exact controllability. In fact even if one
method gives exactly the desired target state W44 the free evolution (i.e.
when laser is switched off €(¢) = 0,¢ > T') of the quantum system instanta-
neously modifies this state (by a time dependent phase factor if Wyqpg¢; is
an eigenfunction of Hy and by the (1) formula in general).

LOf course, depending on the problem at hand, one may sometime choose to go beyond
this first-order, bilinear term when describing the interaction between the laser and the
system, cf. [5], [6].



In this context a first negative controllability result is therefore not really
restrictive. In fact using compacity arguments as those in [1] we can prove
the following?:

Theorem 1 Let B be a bounded operator from H:(RY) to itself and let Hy
generate a C° semigroup of bounded linear operators on H:(RY). Denote by
U (z,t) the solution of (2). Then the set of attainable states from ¥, defined
by

AS = Urso{ Pz, T); e(t) € L*([0,T1)} (4)

is contained in a countable union of compact subsets of H2(R?). In particular
its complement with respect to S(0,1): N = S(0,1) \ AS is everywhere
dense on S(0,1). The same holds true for the complement with respect to
S(0,1) N HA(RY).

Proof. To prove the first part of the theorem one applies Thm. 3.6 from [1]
on the space H2(R) for the operators —iHy and —iB3 (and restricts €(t) to
L? functions).

Note that for any compact subset K of X

0,n]-K={rf;0<r<n,f € K}

is also compact. Applying this to the compact components K of AS one
notes that
UTZ()’I“AS = UnEN* [0, TL] . AS

is also a countable union of compacts subsets of H2(R"). It follows by the
Baire category theorem that U,>orAS has dense complement in H2(R?); in
particular the complement of AS with respect to S(0,1) N H2(R”) has to be
everywhere dense on S(0,1) N HZ(RY).

Given this result one may either study the controllability with respect to
a finite number of moments or the controllability of the corresponding finite
dimensional system. Is the second analysis that we chose to pursue in this

paper.

2We refer to [7] for a different view on this issue. Let us point out however that their
analysis is done on piecewise constant functions which may not always carry physical
meaning for our problem; in particular one may prove controllability in this class but
realize (by the theorem we present here) that this controllability requires infinite L? norm
and therefore infinite laser energy.



3 Finite dimensional controllability

Let then D = {¥;(z);i = 1,.., N} be an orthonormal basis for a finite dimen-
sional sub-space of L*(R”) that we are interested in® and A and B be the
matrices of the operators Hy and B respectively, with respect to this base?.
Let us denote by C' = (¢;)Y, the coefficients of ¥;(x) in the formula of
the evolving state W(t,z) = S~ ¢;(t)¥;(z); then the equations (2) reads

{m%q = AC. — €(t)BC. 5

C.(t =0) = C,
Co= (COi)i]\;p Co; = /m VoW;dx (6)

The controllability of (5) has been dealt with in the literature (cf. [10])
by reducing the problem to the controllability of a system posed on the space
of the unitary matrices of dimension N. This approach has the benefit of
granting us access to the general tools and results on bilinear controllability
on Lie groups. However it does not correspond to a physical necessity and
therefore gives criterions not so easy to verify; moreover all the results one
can obtain this way give only sufficient conditions for exact controllability
(due to the reduction above which is restrictive). Finally there exists a class
of simple quantum systems controllable (in a sense to be defined further on)
that do not verify the criteria emerging from the Lie group analysis.

We have therefore judged instructive to study this issue taking into ac-
count the specificity of the quantum framework; we were thus lead into iden-
tifying necessary and sufficient conditions for the finite dimensional con-
trollability.

In the case of our modeling® * the A matrix is diagonal and B is sym-
metrical and has null diagonal elements®. Let us denote by \;, i = 1,.., N
the diagonal elements of A (the energies of the states ;).

Before presenting our controllability results we have to introduce the first
elements required to explain our controllability concept. As it was previ-
ously seen the system evolves on the unit sphere of L2(R?) which in finite
dimensional representation reads:

N

> lea®)* =1, ¥t >0 (7)

=1

3 This space is given by our model and the functions ¥;(x) are usually the first eigen-
functions of Hy constructed by a prior computation or by a modeling based on observations.

4 We suppose in the begining that B is such that B; = 0 ,i = 1,.., N; for the general
case see the appendix.

Ssee the appendix for the general case



From (5) one notices that when the system is evolving freely ((5) with
€(t) = 0) the (relative) phases of the coefficients c;(t) change but not the
populations of the eigenstates. We will therefore study only the population
transfer between eigenstates i.e. only changes in |¢;(¢)]?. We call population
distribution for the system (5) any N-tuple d € RY such that

N
di=1,d;>0,i=1,...N (8)
i=1

We will also say that we can reach the population distribution d from the
initial state Cy if for any n > 0 there exists a final time T; > 0 and an electric

field e(t) € L*([0, Ty]) such that the solution of (5) satisfy ||ce,(Ty)|* —d2| < 7.

If this is also true for n = 0 then we say that we can ezactly reach the

population distribution d from the initial state Cy.

4 Transfer graph and necessary conditions

According to the physical intuition that we will support in the following by
mathematical arguments, the B matrix describes the population flow among
different eigenstates of the system. In order to formalize this idea we associate
to the system some graph G = (V, E) called the transfer graph. We define the
set V' of vertices as the set of eigenstates W; and the set of edges E as the set
of all pairs of eigenstates coupled by the matrix B. Since B is symmetrical
we can consider G' non-oriented:

Let us decompose this graph into connected components G, = (Vg, Ey),
a = 1,.., K. Note that this decomposition corresponds to a bloc-diagonal
structure of the matrix B (modulo some permutations on the indices). Using
this decomposition one can write new conservation laws for each connected
component:

Y eg()])? = constant, Yt >0, a=1,.., K (10)
{iW;€Va )

In order to justify (10) one checks by the definition of G' and using equa-
tions (5) that for all =1, .., K:
D ,
oY Jealdl? =0 (11)

ot {5;¥;€Va}

This allows us to give necessary conditions for controllability:

5



Lemma 1 If one can reach the population distribution d from the initial
configuration Cy then

Yol = Y. &, a=1,.K (12)

{5;0;€Va} {5;0;€Va}

Definition 1 We say that the population distribution of the system
(5) is controllable if for any initial state Cy and any population distribu-
tion d that satisfy (12) it is possible to reach d from the initial configuration
Cy.

5 Controllability results

Denote wy; = A\, — A, k, 0 =1,..., N. To ease the notations we will be working
in atomic units (7 = 1). Let us introduce the following hypothesis:

H The components G,, a = 1,.., K of G remain connected after elimina-
tion of all edge pairs (¥;, ¥;), (¥,, ¥;) such that w;; = wg, (degenerate
transitions).

5.1 Local exact controllability

Theorem 2 Let dy be the population distribution associated to the initial
state Cy: dy = (|coi|)iz1,..n- Suppose dy; # 0, ¢ = 1,...,N and that the
hypothesis (H) is verified. Then there exists an open neighborhood D of dy
on the surface of RN given by the necessary conditions (12) endowed with the
canonical topology such that one can exactly reach any population distribution

d in D from Cy.

Remark 1 The conditions do; # 0, 1 =1, ..., N are just technicalities needed
in the proof. Note that if some dy; = 0 one have to take care when choosing
the good target set to expect exact controllability into, since there is no rea-
son to hope in (exactly) reaching population “distributions” having strictly
negative population in some eigenstates. This is indeed the part that makes
things more involved.

Proof. In order to better highlight the key elements of the proof we treat
only the case w;; # wap, V(i,7) # (a,b), the general case bearing no new

concepts. Let us denote A = —iA and B = —iB. Then (5) become:

(13)



Denote by c(e, Co, t) = (cq(€, Co, t))N_; the solution at the time ¢ of (13)
for the initial (¢ = 0) data C and electric field €(t).
We define the application M : L*(R) x R — R" given by

M (e,t) = (Jeale, Co, 1)) (14)

a=1

Note that by the necessary conditions (12) the range of M is a subset of

{(xl)z]\;l S RN§ Z T; = Z |C()i|2, a=1,.,K}

{5;¥;€Va} {5;9;€Va}

The system (13) can be written in the integral form:

_ t _
c(t) = e*e(0) +/ eA=9¢(s)Be(s)ds (15)
0
which gives us (cf. also [1]) the formula of the (Fréchet) derivative
D.c(e, Cy, t) of c(e, Cy, t) with respect to € computed at €(t) = 0:
¢ o
Dec(e,Co, t)]ec - € = / eAt=9)¢(5)Bec(0)ds (16)
0

Denoting by w(t) the free evolution of the system (w,(t) = ¢,(0,Cy,t)
and w(t) = ¢(0,Cy,t)) and using the canonical base {ej,...,exy} of RY we
can write:

D M(€,)]ezo - € = (Dewq(t) - € wa(t) + wa(t) Dewa(t) - €)X,
= [2Re(Dw,(t) - € wa(t))]Y

a=1
. —\N
= [2Re(< Dw(t) - €, €4 > wa(t))],_;
Since _ _ ' '
(eA(t_s)g(s)EeAs)ab = e_“\“(t_s)g(s)(—i)Babe_”"’s (17)
and taking into account the explicit formula for w,(t)
wy(t) = e, (0), a=1,..,N (18)

one obtains first
N ot . -
DM (1) |eco & = RRe(—i Y [ €7 By ot (s, (0)wy (B1ds)],
p=1"9

and then

D M(€,t)| =g - € = 2Re(—i Y / t wy(0)we (0) Baye™ (=9 &(s)ds)|Y_, (19)

a=1
p=170




Armed with this formula we are ready to tackle with the local controlla-
bility problem. This is in fact a particular surjectivity property of M(e,t).
We will fix t =T # 0 and will prove that D M has the surjectivity property
we desire; by the implicit function theorem the conclusion will follow then
for M itself.

We prove that D M (e, T) is onto the linear manifold (P) (product of
hyper-planes of Reardinality(Sa) = o, =1, . K):

{@)X, eRY; Y 2,=0,a=1,.,K}

{606 Va }
whose M (0, T')-translation is tangent in (0,7") to the range of M.
Denote by f,, a =1,..., N the components of D M:
DM (e,t)|ezo € = (< far € >p2)Y | (20)

Due to the finite dimensionality of our setting we just have to show that
the range of D M (e, t)|.—o has a null orthogonal with respect to (P), that is
any vector k = (k,)Y_; € R" such that

> k=0, a=1,.,K (21)
{5;W:€Va}
N
> ki < fi,€ >12=0, VE € L*([0,T]) (22)

i=1
is necessary the null vector.

The relation (22) can also be written >,_; k; - fi(s) =0, V0 < s < T or,
in full format,

N
3" koBap - 2Reliwy (0)w, (0)e =T =0, V0 < s <T (23)

a,b=1

Grouping together similar terms one gets for all 0 < s < T

(b = ka0 (0) B - 2Reli i G0 =0 (21

It suffices now to notice that since in {wqy;a < b} there are no repeti-
tions, the functions of s are all incommensurable and of null sum. Therefore
coefficients are all zero:

(ka — k3)|wa(0)[]ws(0)| By = 0, a,b=1,...N, a <b (25)

Working on connected components of the transfer graph if follows that
k, = const, for all a such that ¥, € V,,, a = 1,.., K which together with
(21) implies that k is the null vector, q.e.d.
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Remark 2 One can view this local controllability theorem as an encouraging
argument when designing numerical algorithms. Indeed one is sure that a well
designed algorithm will at least be able to improve the initial guess €(t) = 0.
It s however the next result that positively informs us about the possibility of
solving such a control problem.

Remark 3 There is a interesting property of the control solutions that this
result highlights: the possibility of synchronous control. The theorem states
that when working with several independent quantum systems (each modeled
by a connected component of the transfer graph G) one can control one of
them without interfering with the others (or controlling at the same time the
others also); this may give an indication about when control in liquid phase or
in other cases of miztures of systems (one of them being “principal”) may be
possible: when the systems have different spectral signatures (non-degenerate
transitions); this may eventually allow us to choose the right “secondary”
systems to accompany our target.

Remark 4 The fact that there will always be (at least locally) control solu-
tions that may be chosen to solve (finitely many) other control problems at
the same time with our main control problem is suggesting that there is a rich
diversity (and hence multiplicity) among the control solutions; therefore for
a particular solution €(t) only a part of all the information contained in €(t)
i1s useful for reaching the target, all the rest being only some sort of noise.
One illustration of how little information (N — 1 Fourier coefficients) may
take to reach a population distribution is given in the proof of the next result.

5.2 Global controllability

Theorem 3 Under the hypothesis [H] the population distribution of the sys-
tem (5) is controllable.

Proof. Let us use the variable substitution w,(t) = e**'c.,(t), k =1,..,N.

Then the equations (5) become:

iGiwek(t) = Y €)' MM B (), k=1,.,N (26)
Wer(t=0)=copr, k=1,..,N

Since |weg(t)] = |cex(t)], Y& > 0 studying the controllability of (5) is
equivalent to studying the controllability of (26). Regarding our definition of
the controllability we understand that the goal is in fact to “rearrange” the
population distributions inside each connected component of G i.e. to trans-
fer population among vertices belonging to the same connected component.



Let us define an elementary population transfer of y units between the
eigenstate U, and the eigenstate ¥; by the final conditions

|wer (T)[* = |wei (0)[* —
)P = [wea(0)[* + p (27)
|w6i(T)|2 = |wei(0)|27 Vi 7£ kal

Then it is easy to see that our problem can be decomposed into elementary
population transfers between the eigenstates. In fact one can choose these
transfers to happen between edges of the graph G® i.e. between states Uy
and ¥, such that By, # 0. Of course these population transfers need only be
(arbitrary precise but) approximate.

Let us choose €(t) of the form e(t) = %rklcos(wklt) = %rklw.

Then (26) can be written in the form:

0 .
ia—wea(t) =Y e(t)e ' Bywe(t), a=1,.,N, (28)
¢ b#a
0 eiwaptwrn)t | pi(wap—wii)t
atwea Z Tszab 5 we(t) a=1,..,N (29)

b;ﬁa

One can see that the only terms that do contain non-oscillatory functions
are 2w (t) and i2we(t) since in this case one gets in the second term
quantities like Q(LZWM = % or w = % We will show that in the
limit p — oo for the final time pT (T=fixed) all other (oscillatory) terms can
be neglected. Indeed let us replace we,(t), a =1,...., N by Uy(t), a=1,...., N
given by:

Uk(t) = % e 2kalBk1t

Ui(t) we(t we:(t) . eizpTh Brt (30)
U (t) = weg(t ), a=1,...N, a#kl

Then the evolution system is now

.0 1
ZaUa(t) = 1;5rleabfab(t)Ub(t) (31)

where the functions f,, are sums of exponentials e'? with ¢ having one of the
forms Wab — Wk, Wab + Wkl kal, Wak — Wg + Tlekla ... What is important

6Since each G, is connected it contains at least a tree; one can prove recursively that
in fact at most N — 1 such operations are needed. Moreover since each G, remains con-
nected after having eliminated all degenerate transitions one can suppose the transitions
correspond to edges which have not been eliminated.

10



about the frequencies ¢ is that we are able to bound their absolute values by
two constants ¢y, ¢y > 0 that do not depend of p as soon as p is large enough:
0<c <l|g <c <0,

We will now show that for p large enough |U,(pT) — U,(0)|, a =1,...,N
is as small as we want (T is fixed). Let us denote gqp = riBapfas(t). Denote
also by G4(t) the primitive of g, that is zero for ¢ = 0. From the form of the
functions f,, we see that there exists a constant Cjy independent of p such
that |Gab(t)| < Cy,VteR. Then

. . 0
iU, (pT) = iU, (0) +/ iZ U, (t)dt = +/ > gabUb
0 ot b#a P
0
= +Z Gar(pPT)Us(pT) +7,/ Z Gan(t atUb( )t
b;éap b;éa
= iU,(0) + Z Gab (pT)Uy(pT) + /0 Z Gap(t) gbc Uc(t)dt
b#£a b,c=1

Using the fact that G, g and U,(t) are bounded functions on R it follows
that for each 7 > 0 we can choose p large enough such that |iU,(pT) —
U,(0)] < n. After having replaced back the U, in the system we conclude
that for p large enough the solutions of the system (29) computed in t = pT
are as close as we want to the solutions of

igwea(t) = €(t)e™ ' Bywe, (32)
i%wm(t):& a=1,..,N, a#k,l

A straightforward analysis of the case N = 2 proves now that one can realize
any desired population transfer by tuning the coefficient r, depending on

how many “population units” are to be transfered between the eigenstates
\Ifk and \Ifl.

Remark 5 The hypothesis (H) is verified in a large class of practical cases
(see [10]). Moreover there are examples where the absence of this hypothesis
makes the system not controllable. One can consider for instance the case
of a system made up by two identical and independent sub-systems. It is
obvious that using the same laser pulse one cannot obtain different results
for the components. The hypothesis (H) is here to prevent such correlations
induced by the similarities in the spectral signatures to go unnoticed.

Remark 6 FEven if our approach is constructive it is not entirely optimal;
one can see that there are simple ways to reduce the time required to reach

11



the target by constructing simultaneously elementary transfers. In order to
formalize this one should optimize a distributed transport problem” on the
graph G. On the other side numerical results suggest us to conjecture that
the L* norm of the field €(t) realizing the transfer remains constant.

As an improvement of the result above one can prove the following

Theorem 4 Let dy be the population distribution associated to the initial
state Cy: dy = (|coil)i=1,...,.n. Under the hypothesis [H] any population dis-
tribution d = (d;)X., such that d; > 0, i = 1,...,N and that verifies the
necessary conditions (12) can be exactly reached.

Proof. The proof combines the global approximate controllability with a
slightly stronger form of the local controllability result. In order to sim-
plify the presentation let us denote for any state C' by d(C) its associated
population distribution: d(C) = (|C;|)Y,. We will first assume the following

Lemma 2 Let C; be an initial state and d; = d(C}). Suppose dj; > 0, i =
1,...,N and that the hypothesis [H] is verified. Then there exists an open
neighborhood Dy of d; (on the surface of RN given by the necessary con-
ditions (12) endowed with the canonical topology) such that any population
distribution d in D; can be exactly reached from from any initial state C; with

d(CZ) e D,.

In order to prove the theorem one applies the lemma above for d and
obtains an open neighborhood D. By the global result there exists a field that
drives the system from the initial state Cy to some state Cy with d(C}) € D.
Since d is obviously in any of its open neighborhoods (and in particular in
D) it follows that there exists a field that drives C; to d. All that remains
to be done is to “glue” those two parts together, obtaining thus an field that
allows to exactly reach d starting from Cj (and passing by d;).

Let us now prove the lemma (2). Note first that the local controllability
result is uniform with respect to the initial state. Indeed, with the same
notations as in the proof of theorem (2), note that c(e, C,T) is of C" class
with respect to C. Moreover we have proved that the (Fréchet) derivative
of (6,C,T) — (|ca(e, C,t)|?)2, with respect to e computed at (0,C,T) is
surjective. This allows us to apply the implicit function theorem and con-
clude that there exists a neighborhood D¢ of C' and a neighborhood (for the
topology cited above) D of d such that from any initial state C; € D¢ one
can exactly reach any population distribution in D.

Tsee [3]

12



Suppose now that the lemma (2) is not true. Then there exists a sequence
of states C,, (with d,, = d(C,,)) and a sequence of distributions d! such that
dp, — d, d’, — d and d', cannot be exactly reached from C,. Each C, is
characterized by the set of phase factors (that can be safely supposed to be
in [0, 27]") and population distribution d,,. Since the set [0, 27]" is compact
one can extract from the sequence of phase factors one sub-sequence that is
converging; toghether with d,, — d it follows that one can find a sub-sequence
of C,, that is converging to some state C' with d(C') = d. In conclusion there
exists a sequence Cy, — C(k — o00) of states and a sequence d;, — d of
population distributions such that one cannot exactly reach dflk from C,,
for any k£ > 1. This is obviously contradicting the uniform properties of the
local result, q.e.d.

6 Application to a five level system

As an application of the results above we will study a five-level system pre-
sented in [14]. It will be seen that the controllability is easy to check by
our method; we will take advantage of the constructive side of the theory to
support the theoretical results in numerical simulations.

The matrix representation of the operators involved are:

1.0 0 0 O 0 0 0 0 1 1
0 1.2 0 0 0 0 0 011
A= 0 0 13 0 0 |,B=(0 0 0 1 1 (33)
0 0 0 20 O 111 0 0
0 0o 0 0 215 111 0 0
(34)

Since G is obviously connected and since the hypothesis (H) is also verified
it follows that the population distribution of this system is controllable. We
present some numerical examples of population transfer, drawing in each case

13



the evolution of the populations (|c;(t)|?, # = 1,..,5) in the corresponding
viewgraphs.

In the first case we want to transfer population from state 1 directly to
state 5. We write this control problem formally (1,0,0,0,0) — (0,0,0,0,1).
Using a laser field of the form €(t) = Bcos((A1—As)t) one obtains the following
population evolution:

Uy Cyf

I S0 100 150

In the second example the target is the state 2 and we use state 4 as
intermediary: (1,0,0,0,0) — (0,1,0,0,0). The laser takes now the form
€(t) = Preos((A1 — A\a)t) + Pacos((Ag — A2)1).

03 G Gy
0§
04
02 G
0

g 100 200 300

The last case is a cooperative control example where population is flowing

to target state 4 from states 1 and 2: (%, %, 0,0,0) — (0,0,0,1,0). The laser

14



has the same general form.

o o

g0 50 {00 150

Remark 7 The transfer speed is essentially given by the matriz B. Studying
the time needed for the three experiments one notes that for controls of the
same order in L norm the second is two times slower since the population
has to go from ¥y to W, and then from Wy to Wy, that could be also realized
by two simulation of the first type.

Remark 8 With values in O(1) in the B matriz in order to obtain a pre-
cision of 1072 our method require heuristically a ”p” of order O(10%) which
is consistent (and of the same order of magnitude) with the time usually
obtained in the literature (see [14]).

7 Conclusions

Controllability of the bilinear quantum systems has been studied in the infi-
nite and finite dimensional settings. The infinite dimensional case has been
seen to exhibit hidden restrictions due to some compacity properties of the
equations involved. For the finite dimensional case and as long as one is
interested in the populations of the eigenstates, positive results have been
obtained for exact local and for global controllability. Easy to check and in-
tuitively simple to understand necessary and sufficient conditions have been
obtained to characterize the attainable set. Numerical simulations for a five
level system are also presented.
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8 Appendix

Even if the physical interpretation for |¢;(¢)|*,i = 1,..., N as populations is
valid only in the case of a diagonal hamiltonian our results can be extended
for general auto-adjoint internal hamiltonian matrix Hy and dipole operator
B.

Indeed since Hy is auto-adjoint there exists a (N x N) unitary transform
U such that UHyU" be diagonal. It is then straightforward to state the above
results for the system so transformed.

What may be more interesting to notice is that B;; need not be zero in
order for the controllability results to remain true. This is easy to prove for
the local controllability result: the set of formulae (25) remains the same
since for a = b the term in the formula (23) becomes:

kaBaaQRe[iwa(O)Wa(o)e_iwaas] = kaBaa2Re[i|wa(0)|2] =0

For the global controllability result one has to work with a modified vari-
able substitution we,(t) = €' Fe®Brtc (t) k = 1,..,N. Since the L*
norm of €(¢) is to be chosen small enough later in the proof, one realizes that
in fact the uniform (in p and ¢) boundeness of the gu;(t), Gap(t) still holds
true, which is enough to obtain the conclusion of the theorem.
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