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Abstract

We are searching to associate, in a natural way, a hyperstructure to
a connected graph showing that in many relevant cases it is a join-space
(under the convention in [3]).

1. Let H be a nonempty set and P(H) = {A| AC H A # 0} (where
C stands for the non-strict inclusion). A hyperoperation on H is a function
(z,4) — zoy from H x H to P*(H). We will denote Ao B — Ulaob|ae
Ab € B} for A,B € P*(H).

A hyperoperation o is called associative if
(V)z,y,2 € H :(z0y)oz = zo(yoz).

In this case (H,0) will be referted to as a semi-hypergroup. The hyperoperation
o is called reproducible, if zoH = Hox — H for each z €H,

The semi-hypergroup (H, o) with ” o ” reproducible is called a hypergroup.
In this case we introduce for each a,b€EHafb={ceH|ac boc}.

A commutative hypergroup (H,0) which satisfies:

(J) ﬁc?_?n_&mmaunxvnn\n%sﬂﬂvncmjoon%s

is called a join-space (as in [3]).
If in addition the join-space (H,0) has the property (see [1], pag. 71):

roz={z}=z/zforallzc H

(H,0) is said to be a geometrical join-space. Otherwise it is called a non-
geometrical join-space.

2. Let G=(V,E) be a tree (from now on we suppose card (V) > 2).

(a) Ve € V,z0z = {2},

B) Ve, yeV,z £y zoy= [zy] = {z € V | 2 is a vertex on the elementary
path that joins z and y }. Note that because G is a tree, (b) is consistent and
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Proof. We notice for the beginning that o 1s noﬂ\:aﬁwwezw “ or = &/ {z}
eV for any z,y € V with z :
foreach z € V, and {z,y} Czoy, ‘ .
g mﬂ.o prove the associativity we start by showing that:

?.vnﬁw.mm_\,_ﬁao@vonmno@ouu. (1)

1 (zoz),
If z = y then (zoy)oz = zoz,zo(yoz) = ro(zoz) and since zoz C zo(zroz)

- mwzosm. denote by z = a1,@2,....,0n = Y the vm.n,a. [zy] that joins z and y,
maa_vﬂ MH.FF B, ..., Bk = z the path [yz]. Two situations occur:

i) zoyNyoz = {y}; then one can easily see that
=g= a3
ﬁuo@:o.uHsccCuouH?Tnu_:._nalﬁiurmﬁ e }

and also

ro(yoz)=z0{BBr .0 =2} = {01,000 = Y= Br, B2, . B = 2}

ality. : i | ere
50 s_au _..Hmumwma%o aw_,»waa common points different from y. As G is a tree, th
il . E

exists p € {1,...,n},q € {1,...,k} such that ¢ = max{i | f; Ezoy} ayp A
: = =y=
re HO@.H*QH”H_QMH._;QM.+~ “.inf.:ﬁv|_ﬁwn.9: v _.W.L.

yozr={fi=y=0aub= Qne1s s By = @py Byt1s s B = 2}

As a consequence of this,
zoz={z=01,0,..,0 = P, Be41, vy Bk
Finally one obtains

= z}(because G has no cycles).

(zoy)oz=zo(yoz)= mDu.:;Q:.Pii:.mL.
So far we proved (1), therefore we can write:
e C zo(xoy) = (zoy)oz.
ﬁuouvoum.soﬁuanuHﬁﬁonvoumm__onacuvlToavoel (

i i ion; therefore,
Now all the signs C can be replaced by = in this last relation; and there
the associativity of o is proved.

e Vg€
We noticed at the beginning that (V)z,y € V :y€zoy. So(V)yeV :y .

: = _ Hence o is reproducible
zoyC 2oV where from (V)y € V:y€zoV =Voz Hen

To finish the proof we must show that (J) holds. Let (a,b,c,d)e V4 such that
a/bNec/d # 0. This means (3)a € V,a € a/bne/d (hence a € bo a,c€doa).
We have two cases to analyze:

i)boaNdoa= {a}. Asaodnboc contains at least a.c,a (J) follows.

) boandoa # {e}. Let boa = {a; = by..,@i = @,...,0n = a},doa =
{8 =d, ~Bj =¢,..,Bm = a} and Bjo = max{k | fx € boa},a;, = g, =¢.

There are two possibilities for a: a € boe or a € eomand likewise for c:c€ doe
or c€ e oa. As we will see, in all cases (7) is valid:

a)ag€boe,c€ eoa;bocMNaod contains a,e.

b)a€boe,c €doe; we find a,c,e are in are in bocNaod.

¢){a€eca,c€coa}or{achoec €doe};thenecboenaod.

The proof is now complete.

Remark 1. Denote by He; the Join-space (Vo) associated to a tree G=(V,E)
like above. If Ty is the set of isomorphism classes of trees and G the set of
isomorphism classes of Join-spaces, then the function J : ' — G defined by
f(G) = Hg is injective (here T is the class of z). Indeed, the condition z o y —
{z,y} in Hg is equivalent to (2,y) being an edge in the tree G and so we can
construct in only one way the graph G starting from Hg.

3. Let G=(V.E) be a graph. We say that G is 2-connected if card(V) > 2,
G is connected and by removing a vertex one obtains a connected graph too. A
block in G is a maximal 2-connected subgraph of G.

Let G=(V,E) be a connected graph and denote by b,
struct the graph G* = (V*, E*) where V* = V' U {b;,
and only if one of the following cases occurs:

)z €V, y==b (for some i € {1,...,k} and z is a vertex of b, in (i (or
viceversay €V, z=5)

i) (2,y) € E and there is no elementary cycle passing through z and y.

Example 1, Let G as below (fig. 4), 8 = {6,7,8,9}, b5 = {2,3,4,5}. Then
G" is as in fig. 5.

Remark 2. G* is a tree. Indeed, G connected implies G* connected, and if
in G* there exists a cycle it contains at least two blocks b; and b; of G as points.
Then in G* are two paths from b; to b; and the same will be in G. But then b;
and b; are contained in the same block of G, contradiction.

Let G=(V,E) be a connected graph and G* its block-tree. We denote by Hg
the join space Hg. and we will shall say that Hg is the join-space associated to
G.

-+« bt its blocks. Con-
o, b )} and (z,y) € E* if

Remark 3. 1) If G is a tree then G is its own block-tree and so the definition
above extends the one we gave in 2.

ii) If we denote by I' the set of isomorphism classes of graphs then f* : ' - ¢
defined by f*(G) = Hg is (unlike in the case of f) not injective.
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iil) When G is 2-connected its block-tree is a star-shaped graph (there exists
a point b € V such that any edge in G* is of a form (b, @) or (a,b),a € V) and
the join -space associated to it

(V'0): V' =VU{b},zoy={z,y,b}foranyz,ye Ve £y

gives no information about the graph-structure of G. In fact Hg characterizes
the tree-structure of a graph; so it is natural to ask if there exists another hy-
perstructure construction for 2-connected graphs. An auswer is given in Section
5.

4. In Section 3 we associated a join-space to a connected graph using its
path-structure. A question arises: given a join-space (J,0) with card(J) < o0,
under which conditions upon J there exists a graph G (in fact a tree) such that
J=He?

In this section we suppose J is a finite set having at least two elements and
o is a hyperoperation on J. Let us consider the following conditions:

(A;) o is associative;

(A2) o is commutative;

(As) zoJ =Joz=J, VYzeJ;

(Ag) z0z =2z, Vz el

Proposition 1. If (A;) — (A4) and (J) are valid for (J,0), then for any
z,y,2 € J such that 2 € zoy and y € z 0 z one has y=z.

Proof. Indeed, z € roy > z€z/yand yc zfyand y€ 02 =z € y/z.
Then z/yNy/z #£0= yoyNzoz#B=>y=1=z

A join-space for which (A;) — (A4) and (J) hold, as well as
(G)Vz,yeJ, z#y:{z,y} Czoyiscalled a (g) - join space.

Proposition 2. Let (J,0) be a (g)-join-space. Then for each z € J there
ezisis y € J such that zoy = {z,y}.

Proof. Let y € J be an element of J\{z} for which card(z o y) is minimal.
By hypothesis (J, 0} is a (g)-join- space; so that card(zoy) > 2. If card(zoy) = 2
than (zoy) = {z,y}. If card(z 0 y) > 3 there exists z € z o y\{z,y}. Now,
z€zoygiveszo2 C zo(zoy) = (zoz)oy = zoy. The case zoz = zoy yields
y€zxozCzoy (where C stands for the strict inclusion) implies card(z 0 z) <
card(z o y), contradiction. This completes the proof.

Let (J,0) be a (g)-join-space. We define a relation ~ over J by:

H?EIAHﬁ@Nﬁ&HOE“*H_HMM,

[0]a | b e d [e
ala a,b abe |adelae
b | ab b b,e bed |[abe
¢ |abe | be ¢ e, d c,de
dlade|becd]cd d de
e | ae abe |c,d e de a.

O_S. can easily see that ~ is symmetrical whenever o is commutative. Any
(9)-join-space (J, o) which satisfies the condition:
(PYVkeN, (V) {z,,2s,... 2k} © J with 21 ~ 2, .. Tk-1 ~ T} then

mH_u.,.Hw‘* mﬂu Lol 4

is called a path join-space.

i, WQMWMM““ 1) From {z;,...,z;} being a set it follows ri#Fz;foralije
i) The above definition is not trivial. This is shown from the followin
example: Let (J,0),J = {a,b,¢c,d,e} be a (9)- join-space as below: ¥
Note .ﬁrpﬁ z oy is the minimal path that Jjoins z and y in the graph from
fig.6. This (g)-join-space is not a path join-space.

Theorem 2. Let (J,0) be a path join-space. Then i ; = 3
B el pace en there is a tree G=(V,E)

Proof. ‘—L.mn V=J E={z,y)€)? |z~ ¥}, G = (V,E). We shall
show that G is a tree and J = Hg. To prove there is no cycle in G suppose
by contradiction that there exists {#1,...,2%} C J such that Ty ~ U...L.u Ty ~
T30y Bkt ~ Tk, T ~ x1(k < 3). Then: 4

zy € 71 /zi(becausery ~ z,, I1~22 2 €Ezy01;)

Z2 € i [z (because &y ~ 24, 7 ~ Tkl .y T3~ T3 = 2} € Ty 0 23).

Hence z, /z, Nzi/zy # O where from z; 0 2, N2y oxg # 0, which is impossible.

Now suppose that G is not connected, i.e. there exist at least two connected
components in G. Let z; and z; be such that card(z; o z;) is minimal with the
property that z; and z; are not in the same component. It follows that z; &£ z;;
50 ﬁm.c» € z; o x;\{z;,2;}. We have seen that ;0 z C riozj, zox; Cz;o0 h,_
implies card(z; 0 2) < card(z; o z;), card(z o z;) < card(z; o x;). Since 2 .\%
are not in the same component at least one of the pairs (z;, va?.._ z) wmm:ﬂrm
same property, in contradiction with the minimality of card(z; o H“u‘ So far G
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s a tree. Let O be the hyperoperation associated to the tree-structure of G. By
is : _
condition (P), z0y Cz oy for each z,y € J. Suppose that

(x) Oy C 2oy (obviously z # y) for some 2,y € J,

and take (z,y) with the property that card(zoy) has Mwo HE_M._MnM “w”ﬁ WMH_H%
all the pairs which satisfy (*). Let z€ 20 y\z0y (o ao_.—MMM o _ﬁ.a_,&u e
z € zoyand z ¢ {z,y}, card(z o MV Mnaqﬁmﬁmwuu_ car

inimality, zt0z = zoz and z0y = z01. I,
gﬂ_%m MMwJMMMmSm 2Oy at least in one point (for example uv.ﬂﬂ MNNDMNW H
{z} we mzwws 2 € z0y, contradiction. It _.&_Q.au that wn_um AM uo ; wﬂa =
Let us choose t such that xOtNyOl = *5. Then t € ...... tCroz,
yields z € /2. Since z € zoy =2 € z/y it follows that:

N\eju\m#sh.wo«jnoe%suvnmuou.

18 yi 0Ot C
On the other hand we have in (; E. yOz = yOtu ..._ulu. .H.vsfﬂmimmﬂ mﬁm
yOz where from 2z € yOz, contradiction. Hence z0Oy = zoy, VZ,Y
consequently, H = Hg.

i d
Remark 5. The result above shows that - supposing we .rmﬁa s.nw mahnMn H__n‘
we make no difference among paths .wow.u.wum the same end-points - the ¢
tion in Section 2 is unique and is possible only for trees.

5. Let G=(V,E) be a 2-connected graph. i@.wﬂﬁm seen in Section W.M_WMM
in *s.mu case a new construction is needed. This is founded on w.ww M.M_“ " a._n-
definition of a 2-connected graph according to which for any .ni% e
ments z,y € V there is a cycle passing through x,y. Define a hyperop
0:VxV—=P(V) %Mw :
z={z}(¥) z €V,
w. MM = MN € Vlthere is a cycle through z,y,z}Vz, ¥y € __\ zEY .
Q being 9-connected o is well defined. It is easy to see that o is commu
and
1 SzEzTOY.
*%) if {z,y,2} CVthenz €yoz @ yYczoZ .
Mﬁ Mmﬁm.m.i. o wW not associative. This is shown by the following
Example 2. Let H = hnrau_ep_v?nfn?irEm_arau_nru& and the
raph (fig. 8). L
; meaﬁuwﬁnw that (a; oay)o by = ay o.o_ — H\{asz,b2} and ay o (a1 0 by)
ay o H\{az,b2} = H, s0 o is not associative.

Theorem 3. Let G= (V, E) be a 2-connecied m.;aur. and o be the wwﬂmﬂ....
operation just defined. Then o 1s associative if and only if zoy =V for eac
zyeV, z#y.

IR I8 Lrdld £ A00 8 W ALAAY TR ATEIE d Gdlhd A NS 4B NSNS A TANBI S ke Aar A AL BA an &ll

Proof. One can easily see that o is reproducible and so the implication =
is obvious. Conversely, assume that o is associative and let a,b,c € V with
b # . We will shall prove @ € boc. Suppose on the contrary a ¢ boc. If
there exists f € boc\{b,c} with f € aob then a # f (because a gboc). But
f€acb=a€bof hencea€bof Cbo(boc) = (bob)oe = boce, contradiction.
It follows aobboc = {b} (¢ € aob would imply a € boc). Similarly, we may
show that aocNboc = {c}. Suppose now that there exists z € aocNaoh, = # a.
Of course, if z = b then b € aoc, impossible. Hence z # b and in the same way
r#c Nowz €aoc, z#a,c=>a €cozandz €ach, z #a,b = b€aoz. So,

b€ (coz)or where from b € coz which in turn gives z € boc, in contradiction
with z € aoc. We therefore proved that:

no_._vjounu.?fnovnaonﬂﬁn?wonjnonu?w. (2)

In aob there is a path Py Joining a and b; let also P,, and P, be paths in
aoc and boc respectively. We obtain from (2) that P,y U Py U Py is a cycle
containing a,b.c; hence a € boc, contradiction. Summarizing up, a g boc leads
to a contradiction; so a € boc for any b,c € V, b # ¢, and the proof is complete.

Remark 6. i) The results above can be restated as: o is associative if and
only if for any three points in V there is a cycle containing them.

i) An interesting class of 2-connected graphs is the one consisting of all such
objects that contain a hamiltonian cycle. In this case o is associative but this

property is not sufficient for a 2-connected graph to have a hami

. Itonian cycle
as one can see from the example in fig. 9. _
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