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CENTRAL LIMIT THEOREM FOR THE ROBUST LOG-REGRESSION

WAVELET ESTIMATION OF THE MEMORY PARAMETER IN THE

GAUSSIAN SEMI-PARAMETRIC CONTEXT

O. KOUAMO, C. LÉVY-LEDUC, AND E. MOULINES

Abstract. In this paper, we study robust estimators of the memory parameter d of a (possi-

bly) non stationary Gaussian time series with generalized spectral density f . This generalized

spectral density is characterized by the memory parameter d and by a function f∗ which

specifies the short-range dependence structure of the process. Our setting is semi-parametric

since both f∗ and d are unknown and d is the only parameter of interest. The memory pa-

rameter d is estimated by regressing the logarithm of the estimated variance of the wavelet

coefficients at different scales. The two estimators of d that we consider are based on robust

estimators of the variance of the wavelet coefficients, namely the square of the scale estimator

proposed by [27] and the median of the square of the wavelet coefficients. We establish a

Central Limit Theorem for these robust estimators as well as for the estimator of d based on

the classical estimator of the variance proposed by [19]. Some Monte-Carlo experiments are

presented to illustrate our claims and compare the performance of the different estimators.

The properties of the three estimators are also compared on the Nile River data and the In-

ternet traffic packet counts data. The theoretical results and the empirical evidence strongly

suggest using the robust estimators as an alternative to estimate the memory parameter d

of Gaussian time series.

1. Introduction

Long-range dependent processes are characterized by hyperbolically slowly decaying cor-

relations or by a spectral density exhibiting a fractional pole at zero frequency. During the

last decades, long-range dependence (and the closely related self-similarity phenomena) has

been observed in many different fields, including financial econometrics, hydrology or analysis

of Internet traffic. In most of these applications, however, the presence of atypical observa-

tions is quite common. These outliers might be due to gross errors in the observations but

also to unmodeled disturbances; see for example [31] and [30] for possible explanations of

the presence of outliers in Internet traffic analysis. It is well-known that even a few atypical

observations can severely affect estimators, leading to incorrect conclusions. Hence, defining
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robust estimators of the memory parameter which are less sensitive to the presence of additive

outliers is a challenging practical problem.

In this paper, we consider the class of fractional processes, denotedM(d) defined as follows.

Let X = {Xk}k∈Z be a real-valued Gaussian process, not necessarily stationary and denote

by ∆X the first order difference of X, defined by [∆X]n = Xn − Xn−1, n ∈ Z. Define,

for an integer K ≥ 1, the K-th order difference recursively as follows : ∆K = ∆ ◦ ∆K−1.

Let f∗ be a bounded non-negative symmetric function which is bounded away from zero in

a neighborhood of the origin. Following [20], we say that X is an M(d) process if for any

integer K > d− 1/2, ∆KX is stationary with spectral density function

f∆KX(λ) = |1− e−iλ|2(K−d) f∗(λ), λ ∈ (−π, π) . (1)

Observe that f∆KX(λ) in (1) is integrable since −(K − d) < 1/2. When d ≥ 1/2, the process

is not stationary. One can nevertheless associate to X the function

f(λ) = |1− e−iλ|−2df∗(λ) , (2)

which is called a generalized spectral density function. In the sequel, we assume that f∗ ∈
H(β,L) with 0 < β ≤ 2 and L > 0 where H(β,L) denotes the set of non-negative and

symmetric functions g satisfying, for all λ ∈ (−π, π),

|g(λ) − g(0)| ≤ Lg(0) |λ|β . (3)

Our setting is semi-parametric in that both d and f∗ in (2) are unknown. Here, f∗ can be

seen as a nuisance parameter whereas d is the parameter of interest. This assumption on

f∗ is typical in the semi-parametric estimation setting; see for instance [25] and [21] and the

references therein.

Different approaches have been proposed for building robust estimators of the memory

parameter for M(d) processes in the semi-parametric setting outlined above. [31] have pro-

posed a robustified wavelet based-regression estimator developed by [1]; the robustification

is achieved by replacing the estimation of the wavelet coefficients variance at different scales

by the median of the square of the wavelet coefficients. Another technique to robustify the

wavelet regression technique has been outlined in [23] which consists in regressing the loga-

rithm of the square of the wavelet coefficients at different scales. [18] proposed a robustified

version of the log-periodogram regression estimator introduced in [14]. The method replaces

the log-periodogram of the observation by a robust estimator of the spectral density in the

neighborhood of the zero frequency, obtained as the discrete Fourier transform of a robust

autocovariance estimator defined in [17]; the procedure is appealing and has been found to

work well but also lacks theoretical support in the semi-parametric context (note however
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that the consistency and the asymptotic normality of the robust estimator of the covariance

have been discussed in [16]).

In the related context of the estimation of the fractal dimension of locally self-similar

Gaussian processes [10] has proposed a robust estimator of the Hurst coefficient; instead of

using the variance of the generalized discrete variations of the process (which are closely

related to the wavelet coefficients, despite the facts that the motivations are quite different),

this author proposes to use the empirical quantiles and the trimmed-means. The consistency

and asymptotic normality of this estimator is established for a class of locally self-similar

processes, using a Bahadur-type representation of the sample quantile; see also [9]. [28]

proposes to replace the classical regression of the wavelet coefficients by a robust regression

approach, based on Huberized M-estimators.

The two robust estimators of d that we propose consist in regressing the logarithm of robust

variance estimators of the wavelet coefficients of the process X on a range of scales. We use

as robust variance estimators the square of the scale estimator proposed by [27] and the

square of the mean absolute deviation (MAD). These estimators are a robust alternative to

the estimator of d proposed by [19] which uses the same method but with the classical variance

estimator. Here, we derive a Central Limit Theorem (CLT) for the two robust estimators of

d and, by the way, we give another methodology for obtaining a Central Limit Theorem for

the estimator of d proposed by [19]. In this paper, we have also established new results on

the empirical process of array of stationary Gaussian processes by extending [3, Theorem 4 ]

and the Theorem of [11] to arrays of stationary Gaussian processes. These new results were

very helpful in establishing the CLT for the three estimators of d that we propose.

The paper is organized as follows. In Section 2, we introduce the wavelet setting and

define the wavelet based regression estimators of d. Section 3 is dedicated to the asymptotic

properties of the robust estimators of d. In this section, we derive asymptotic expansions

of the wavelet spectrum estimators and provide a CLT for the estimators of d. In Section 4,

some Monte-Carlo experiments are presented in order to support our theoretical claims. The

Nile River data and two Internet traffic packet counts datasets collected from the University

of North Carolina, Chapel are studied as an application in Section 5. Sections 6 and 7 detail

the proofs of the theoretical results stated in Section 3.
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2. Definition of the wavelet-based regression estimators of the memory

parameter d.

2.1. The wavelet setting. The wavelet setting involves two functions φ and ψ in L2(R) and

their Fourier transforms

φ̂(ξ)
def
=

∫ ∞

−∞
φ(t)e−iξt dt and ψ̂(ξ)

def
=

∫ ∞

−∞
ψ(t)e−iξt dt . (4)

Assume the following:

(W-1) φ and ψ are compactly-supported, integrable, and φ̂(0) =
∫∞
−∞ φ(t) dt = 1 and∫∞

−∞ ψ2(t) dt = 1.

(W-2) There exists α > 1 such that supξ∈R |ψ̂(ξ)| (1 + |ξ|)α <∞.

(W-3) The function ψ has M vanishing moments, i.e.
∫∞
−∞ tmψ(t) dt = 0 for all m =

0, . . . ,M − 1.

(W-4) The function
∑

k∈Z k
mφ(·− k) is a polynomial of degree m for all m = 0, . . . ,M − 1.

Condition (W-2) ensures that the Fourier transform ψ̂ decreases quickly to zero. Condi-

tion (W-3) ensures that ψ oscillates and that its scalar product with continuous-time polyno-

mials up to degreeM−1 vanishes. It is equivalent to asserting that the firstM−1 derivatives

of ψ̂ vanish at the origin and hence

|ψ̂(λ)| = O(|λ|M ) , as λ→ 0 . (5)

Daubechies wavelets (with M ≥ 2) and the Coiflets satisfy these conditions, see [19]. Viewing

the wavelet ψ(t) as a basic template, define the family {ψj,k, j ∈ Z, k ∈ Z} of translated and

dilated functions

ψj,k(t) = 2−j/2 ψ(2−jt− k), j ∈ Z, k ∈ Z . (6)

Positive values of k translate ψ to the right, negative values to the left. The scale index j

dilates ψ so that large values of j correspond to coarse scales and hence to low frequencies.

We suppose throughout the paper that

(1 + β)/2 − α < d ≤M . (7)

We now describe how the wavelet coefficients are defined in discrete time, that is for a real-

valued sequence {xk, k ∈ Z} and for a finite sample {xk, k = 1, . . . , n}. Using the scaling

function φ, we first interpolate these discrete values to construct the following continuous-time

functions

xn(t)
def
=

n∑

k=1

xk φ(t− k) and x(t)
def
=
∑

k∈Z

xk φ(t− k), t ∈ R . (8)
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Without loss of generality we may suppose that the support of the scaling function φ is

included in [−T, 0] for some integer T ≥ 1. Then

xn(t) = x(t) for all t ∈ [0, n − T+ 1] .

We may also suppose that the support of the wavelet function ψ is included in [0,T]. With

these conventions, the support of ψj,k is included in the interval [2jk, 2j(k+T)]. The wavelet

coefficient Wj,k at scale j ≥ 0 and location k ∈ Z is formally defined as the scalar product in

L2(R) of the function t 7→ x(t) and the wavelet t 7→ ψj,k(t):

Wj,k
def
=

∫ ∞

−∞
x(t)ψj,k(t) dt =

∫ ∞

−∞
xn(t)ψj,k(t) dt, j ≥ 0, k ∈ Z , (9)

when [2jk, 2jk +T] ⊆ [0, n− T+ 1], that is, for all (j, k) ∈ In, where

In def
= {(j, k) : j ≥ 0, 0 ≤ k ≤ nj − 1} with nj = [2−j(n− T+ 1)− T+ 1] . (10)

If ∆MX is stationary, then from [20, Eq (17)] the process {Wj,k}k∈Z of wavelet coefficients

at scale j ≥ 0 is stationary but the two–dimensional process {[Wj,k, Wj′,k]
T }k∈Z of wavelet

coefficients at scales j and j′, with j ≥ j′, is not stationary. Here T denotes the transposition.

This is why we consider instead the stationary between-scale process

{[Wj,k, Wj,k(j − j′)T ]T }k∈Z , (11)

where Wj,k(j − j′) is defined as follows:

Wj,k(j − j′)
def
=
[
Wj′,2j−j′k, Wj′,2j−j′k+1, . . . ,Wj′,2j−j′k+2j−j′−1

]T
.

For all j, j′ ≥ 1, the covariance function of the between scale process is given by

Cov(Wj,k′(j − j′),Wj,k) =

∫ π

−π
eiλ(k−k′)Dj,j−j′(λ; f) dλ , (12)

where Dj,j−j′(λ; f) stands for the cross-spectral density function of this process. For further

details, we refer the reader to [20, Corollary 1]. The case j = j′ corresponds to the spectral

density function of the within-scale process {Wj,k}k∈Z.
In the sequel, we shall use that the within- and between-scale spectral densitiesDj,j−j′(λ; d)

of the process X with memory parameter d ∈ R can be approximated by the corresponding

spectral density of the generalized fractional Brownian motion B(d) defined, for d ∈ R and

u ∈ N, by

D∞,u(λ; d) =
[
D(0)

∞,u(λ; d), . . . ,D
(2u−1)
∞,u (λ; d)

]

=
∑

l∈Z

|λ+ 2lπ|−2d eu(λ+ 2lπ) ψ̂(λ+ 2lπ)ψ̂(2−u(λ+ 2lπ)) , (13)
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where,

eu(ξ)
def
= 2−u/2 [1, e−i2−uξ, . . . , e−i(2u−1)2−uξ]T , ξ ∈ R .

For further details, see [19, p. 307].

2.2. Definition of the robust estimators of d. Let us now define robust estimators of

the memory parameter d of the M(d) process X from the observations X1, . . . ,Xn. These

estimators are derived from the [1] construction, and consists in regressing estimators of the

scale spectrum

σ2j
def
= Var(Wj,0) (14)

with respect to the scale index j. More precisely, if σ̂2j is an estimator of σ2j based on

Wj,0:nj−1 = (Wj,0, . . . ,Wj,nj−1) then an estimator of the memory parameter d is obtained by

regressing log(σ̂2j ) for a finite number of scale indices j ∈ {J0, . . . , J0+ℓ} where J0 = J0(n) ≥ 0

is the lower scale and 1 + ℓ ≥ 2 is the number of scales in the regression. The regression

estimator can be expressed formally as

d̂n(J0,w)
def
=

J0+ℓ∑

j=J0

wj−J0 log
(
σ̂2j
)
, (15)

where the vector w
def
= [w0, . . . , wℓ]

T of weights satisfies
∑ℓ

i=0 wi = 0 and 2 log(2)
∑ℓ

i=0 iwi =

1, see [1] and [20]. For J0 ≥ 1 and ℓ > 1, one may choose for example w corresponding to the

least squares regression matrix, defined by w = DB(BTDB)−1b where

b
def
=
[
0 (2 log(2))−1

]
, B

def
=

[
1 1 . . . 1

0 1 . . . ℓ

]T

is the design matrix and D is an arbitrary positive definite matrix. The best choice of D

depends on the memory parameter d. However a good approximation of this optimal matrix

D is the diagonal matrix with diagonal entries Di,i = 2−i, i = 0 . . . , ℓ; see [13] and the

references therein. We will use this choice of the design matrix in the numerical experiments.

A heuristic justification for this choice is that by [19, Eq. (28)],

σ2j ∼ C 22jd , as j → ∞ , (16)

where C is a positive constant.

In the sequel, we shall consider three different estimators of d based on three different

estimators of the scale spectrum σ2j with respect to the scale index j which are defined below.
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2.2.1. Classical scale estimator. This estimator has been considered in the original contribu-

tion of [1] and consists in estimating the scale spectrum σ2j with respect to the scale index j

by the empirical variance

σ̂2CL,j =
1

nj

nj∑

i=1

W 2
j,i , (17)

where for any j, nj denotes the number of available wavelet coefficients at scale index j defined

in (10).

2.2.2. Median absolute deviation. This estimator is well-known to be a robust estimator of

the scale and as mentioned by [27] it has several appealing properties: it is easy to compute

and has the best possible breakdown point (50%). Since the wavelet coefficients Wj,i are

centered Gaussian observations, the square of the median absolute deviation of Wj,0:nj−1 is

defined by

σ̂2MAD,j =

(
m(Φ) med

0≤i≤nj−1
|Wj,i|

)2

, (18)

where Φ denotes the c.d.f of a standard Gaussian random variable and

m(Φ) = 1/Φ−1(3/4) = 1.4826 . (19)

The use of the median estimator to estimate the scalogram has been suggested to estimate

the memory parameter in [29] (see also [24, p. 420]). A closely related technique is considered

in [9] and [10] to estimate the Hurst coefficient of locally self-similar Gaussian processes. Note

that the use of the median of the squared wavelet coefficients has been advocated to estimate

the variance at a given scale in wavelet denoising applications; this technique is mentioned

in [12] to estimate the scalogram of the noise in the i.i.d. context; [15] proposed to use this

method in the long-range dependent context; the use of these estimators has not been however

rigorously justified.

2.2.3. The Croux and Rousseeuw estimator. This estimator is another robust scale estimator

introduced in [27]. Its asymptotic properties in several dependence contexts have been further

studied in [16] and the square of this estimator is defined by

σ̂2CR,j =
(
c(Φ){|Wj,i −Wj,k|; 0 ≤ i, k ≤ nj − 1}(knj

)

)2
, (20)

where c(Φ) = 2.21914 and knj
= ⌊n2j/4⌋. That is, up to the multiplicative constant c(Φ),

σ̂CR,j is the knj
th order statistics of the n2j distances |Wj,i −Wj,k| between all the pairs of

observations.
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3. Asymptotic properties of the robust estimators of d

3.1. Properties of the scale spectrum estimators. The following proposition gives an

asymptotic expansion for σ̂2CL,j, σ̂
2
MAD,j and σ̂

2
CR,j defined in (17), (18) and (20), respectively.

These asymptotic expansions are used for deriving Central Limit Theorems for the different

estimators of d.

Proposition 1. Assume that X is a Gaussian M(d) process with generalized spectral density

function defined in (2) such that f∗ ∈ H(β,L) for some L > 0 and 0 < β ≤ 2. Assume

that (W-1)-(W-4) hold with d, α and M satisfying (7). Let Wj,k be the wavelet coefficients

associated to X defined by (9). If n 7→ J0(n) is an integer valued sequence satisfying J0(n) →
∞ and n2−J0(n) → ∞, as n → ∞, then σ̂2∗,j defined in (17), (18) and (20), satisfies the

following asymptotic expansion, as n→ ∞, for any given ℓ ≥ 1

max
J0(n)≤j≤J0(n)+ℓ

∣∣∣∣∣∣
√
nj(σ̂

2
∗,j − σ2j )−

2σ2j√
nj

nj−1∑

i=0

IF

(
Wj,i

σj
, ∗,Φ

)∣∣∣∣∣∣
= oP (1) , (21)

where ∗ denotes CL, CR and MAD, σ2j is defined in (14) and IF is given by

IF (x,CL,Φ) =
1

2
H2(x), (22)

IF (x,CR,Φ) = c(Φ)

(
1/4 − Φ(x+ 1/c(Φ)) + Φ(x− 1/c(Φ))∫

R
ϕ(y)ϕ(y + 1/c(Φ))dy

)
, (23)

IF(x,MAD,Φ) = −m(Φ)

((1{x≤1/m(Φ)} − 3/4
)
−
(1{x≤−1/m(Φ)} − 1/4

)

2ϕ(1/m(Φ))

)
, (24)

where ϕ denotes the p.d.f of the standard Gaussian random variable, m(Φ) and c(Φ) being

defined in (19) and (20), respectively and H2(x) = x2 − 1 is the second Hermite polynomial.

The proof is postponed to Section 6.

We deduce from Proposition 1 and Theorem 6 given and proved in Section 6 the following

multivariate Central Limit Theorem for the wavelet coefficient scales.

Theorem 2. Under the assumptions of Proposition 1, (σ̂2∗,J0 , . . . , σ̂
2
∗,J0+ℓ)

T , where σ̂2∗,j is

defined in (17), (18) and (20), satisfies the following multivariate Central Limit Theorem

√
n2−J02−2J0d







σ̂2∗,J0
σ̂2∗,J0+1

...

σ̂2∗,J0+ℓ



−




σ2∗,J0
σ2∗,J0+1

...

σ2∗,J0+ℓ







d−→ N (0,U∗(d)) , (25)
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where

U∗,i,j(d) = 4(f∗(0))2
∑

p≥2

c2p(IF∗)

p! K(d)p−2
2d(2+p)i∨j2d(2−p)i∧j+i∧j

×
∑

τ∈Z

2|i−j|−1∑

r=0

(∫ π

−π
D

(r)
∞,|i−j|(λ; d)e

iλτdλ
)p

, 0 ≤ i, j ≤ ℓ . (26)

In (26), K(d)
def
=
∫
R
|ξ|−2d|ψ̂(ξ)|dξ, D∞,|i−j|(·; d) is the cross-spectral density defined in (13),

cp(IF∗) = E[IF(X, ∗,Φ)Hp(X)], where Hp is the pth Hermite polynomial and IF(·, ∗,Φ) is

defined in (22), (23) and (24).

The proof of Theorem 2 is postponed to Section 6.

Remark 1. Since for ∗ = CL, IF(·) = H2(·)/2, Theorem 2 gives an alternative proof to [19,

Theorem 2] of the limiting covariance matrix of (σ̂2CL,J0
, . . . , σ̂2CL,J0+ℓ)

T which is given, for

0 ≤ i, j ≤ ℓ, by

UCL,i,j(d) = 4π (f∗(0))2 24d(i∨j)+i∧j

∫ π

−π
|D∞,|i−j|(λ; d)|2dλ .

Thus, for ∗ = CR and ∗ = MAD, we deduce the following

UCL,i,i(d)

U∗,i,i(d)
≥ 1/2

E
[
IF2

∗(Z)
] , (27)

where Z is a standard Gaussian random variable. With Lemma 8, we deduce from the inequal-

ity (27) that the asymptotic relative efficiency of σ̂2∗,j is larger than 36.76% when ∗ = MAD

and larger than 82.27% when ∗ = CR.

3.2. CLT for the robust wavelet-based regression estimator. Based on the results

obtained in the previous section, we derive a Central Limit Theorem for the robust wavelet-

based regression estimators of d defined by

d̂∗,n(J0,w)
def
=

J0+ℓ∑

j=J0

wj−J0 log
(
σ̂2∗,j
)
, (28)

where σ̂2∗,j are given for ∗ = CL, MAD and CR by (17), (18) and (20), respectively.

Theorem 3. Under the same assumptions as in Proposition 1 and if

n2−(1+2β)J0(n) → 0 , as n→ ∞, (29)

then, d̂∗,n(J0,w) satisfies the following Central Limit Theorem:
√
n2−J0(n)

(
d̂∗,n(J0,w)− d

)
d−→ N

(
0,wTV∗(d)w

)
, (30)
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where V∗(d) is the (1 + ℓ)× (1 + ℓ) matrix defined by

V∗,i,j(d) =
∑

p≥2

4c2p(IF∗)

p! K(d)p
2pd|i−j|+i∧j

∑

τ∈Z

2|i−j|−1∑

r=0

( ∫ π

−π
D

(r)
∞,|i−j|(λ; d)e

iλτdλ
)p

, 0 ≤ i, j ≤ ℓ .

(31)

In (31), K(d) =
∫
R
|ξ|−2d|ψ̂(ξ)|dξ, D∞,|i−j|(·; d) is the cross-spectral density defined in (13),

cp(IF∗) = E[IF(X, ∗,Φ)Hp(X)], where Hp is the pth Hermite polynomial and IF(·, ∗,Φ) is

defined in (22), (23) and (24).

The proof of Theorem 3 is a straightforward consequence of [19, Proposition 3] and Theo-

rem 2 and is thus not detailed here.

Remark 2. Since it is difficult to provide a theoretical lower bound for the asymptotic relative

efficiency (ARE) of d̂∗,n(J0,w) defined by

ARE∗(d) = wTVCL(d)w/w
TV∗(d)w , (32)

where ∗ = CR or MAD, we propose to compute this quantity empirically. We know from

Theorem 3 that the expression of the limiting covariance matrix V∗,i,j(d) is valid for all

Gaussian M(d) processes satisfying the assumptions given in Proposition 1, thus it is enough

to compute ARE∗(d) in the particular case of a Gaussian ARFIMA(0,d,0) process (Xt). Such

a process is defined by

Xt = (I −B)−dZt =
∑

j≥0

Γ(j + d)

Γ(j + 1)Γ(d)
Zt−j , (33)

where {Zt} are i.i.d N (0, 1). We propose to evaluate ARE∗(d) when d belongs to [−0.8; 3].

With such a choice of d, both stationary and non-stationary processes are considered. The

empirical values of ARE∗(d) are given in Table 1. The results were obtained from the obser-

vations X1, . . . ,Xn where n = 212 and 1000 independent replications. We used Daubechies

wavelets with M = 2 vanishing moments when d ≤ 2 and M = 4 when d > 2 which ensures

that condition (7) is satisfied. The smallest scale is chosen to be J0 = 3 and J0 + ℓ = 8.

d -0.8 -0.4 -0.2 0 0.2 0.6 0.8 1 1.2 1.6 2 2.2 2.6 3

ARECR(d) 0.72 0.67 0.63 0.65 0.70 0.63 0.70 0.75 0.76 0.75 0.79 0.74 0.77 0.74

AREMAD(d) 0.48 0.39 0.38 0.36 0.43 0.39 0.44 0.47 0.45 0.50 0.48 0.5 0.49 0.49

Table 1. Asymptotic relative efficiency of d̂n,CR and d̂n,MAD with respect to d̂n,CL.

From Table 1, we can see that d̂n,CR is more efficient than d̂n,MAD and that its asymptotic

relative efficiency ARECR ranges from 0.63 to 0.79. These results indicate empirically that
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the the loss of efficiency of the robust estimator d̂n,CR is moderate and makes it an attractive

robust procedure to the non-robust estimator d̂n,CL.

4. Numerical experiments

In this section the robustness properties of the different estimators of d, namely d̂CL,n(J0,w),

d̂CR,n(J0,w) and d̂MAD,n(J0,w), that are defined in Section 2.2 are investigated using Monte

Carlo experiments. In the sequel, the memory parameter d is estimated from n = 212 obser-

vations of a Gaussian ARFIMA(0,d,0) process defined in (33) when d=0.2 and 1.2 eventually

corrupted by additive outliers. We use the Daubechies wavelets with M = 2 vanishing mo-

ments which ensures that condition (7) is satisfied.

Let us first explain how to choose the parameters J0 and J0+ℓ. With n = 212, the maximal

available scale is equal to 10. Choosing J0 too small may introduce a bias in the estimation

of d by Theorem 3. However, at coarse scales (large values of J0), the number of observations

may be too small and thus choosing J0 too large may yield a large variance. Since at scales

j = 9 and j = 10, we have respectively 5 and 1 observations, we chose J0 + ℓ = 8. For the

choice of J0, we proposed to use the empirical rule illustrated in Figure 1. In this figure, we

display the estimates d̂n,CL, d̂n,CR and d̂n,MAD of the memory parameter d as well as their

respective 95% confidence intervals from J0 = 1 to J0 = 7 with J0 + ℓ = 8. We propose to

choose J0 = 3 in both cases (d = 0.2 and d = 1.2) since the successive confidence intervals

starting from J0 = 3 to J0 = 7 are such that the smallest one is included in the largest one.

We shall take J0 = 3 in the sequel.
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Figure 1. Confidence intervals of the estimates d̂n,CL, d̂n,CR and d̂n,MAD of an

ARFIMA(0, d, 0) process with d = 0.2 (left) and d = 1.2 (right) for J0 = 1, . . . , 8 and

J0 + ℓ = 9. For each J0, are displayed confidence interval associated to d̂n,CL (red),

intervald̂n,CR (gren) and d̂n,MAD (blue), respectively.
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In the left panels of Figures 2 and 3 the empirical distribution of
√
n2−J0(d̂∗,n − d) are

displayed when ∗ = CL,MAD and CR for the ARFIMA(0,d,0) model with d = 0.2 (Figure 2)

and d = 1.2 (Figure 3), respectively. They were computed using 5000 replications; their

shapes are close to the Gaussian density (the standard deviations are of course different).

In the right panels of Figures 2 and 3, the empirical distribution of
√
n2−J0(d̂∗,n − d) are

displayed when outliers are present. We introduce 1% of additive outliers in the observations;

these outliers are obtained by choosing uniformly at random a time index and by adding to

the selected observation 5 times the standard error of the raw observations. The empirical

distribution of
√
n2−J0(d̂CL,n − d) is clearly located far away from zero especially in the non

stationary ARFIMA(0, 1.2, 0) model. One can also observe the considerable increase in the

variance of the classical estimator. In sharp contrast, the distribution of the robust estimators√
n2−J0(d̂MAD,n−d) and

√
n2−J0(d̂CR,n−d) stays symmetric and the variance stays constant.
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Figure 2. Empirical densities of the quantities
√
n2−J0 (d̂∗,n − d), with ∗ = CL (solid

line), ∗ = CR (dashed line) and ∗ = MAD (dotted line) of the ARFIMA(0,0.2,0) model

without outliers (left) and with 1% of outliers (right).

5. Application to real Data

In this section, we compare the performance of the different estimators of the long memory

parameter d introduced in Section 2.2 on two different real datasets.

5.1. Nile River data. The Nile River dataset is a well-known time series, which has been

extensively analyzed; see [5, Section 1.4,p. 20]. The data consists of yearly minimal water

levels of the Nile river measured at the Roda gauge, near Cairo, for the years 622–1284 AD

and contains 663 observations; The units for the data as presented by [5] are centimeters.

The empirical mean and the standard deviation of the data are equal to 1148 and 89.05,
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Figure 3. Empirical densities of the quantities
√
n2−J0 (d̂∗,n − d), with ∗ = CL (solid

line), ∗ = CR (dashed line) and ∗ = MAD (dotted line) of the ARFIMA(0,1.2,0) model

without outliers (left) and with 1% of outliers (right).

respectively. The question has been raised as to whether the Nile time series contains outliers;

see for example [4], [25], [8] and [18]. The test procedure developed by [8] suggests the presence

of outliers at 646 AD (p-value 0.0308) and at 809 (p-value 0.0007). Another possible outliers

is at 878 AD. Since the number of observations is small, in the estimation of d, we took J0 = 1

and J0 + ℓ = 6. With this choice, we observe a significant difference between the classical

estimators d̂n,CL = 0.28 (with 95% confidence interval [0.23, 0.32]) and the robust estimators

d̂n,CR = 0.408 (with 95% confidence interval [0.34, 0.46]) and d̂n,MAD = 0.414 (with 95%

confidence interval [0.34, 0.49]). Thus, to better understand the influence of outliers on the

estimated memory parameter in practical situations, a new dataset with artificial outliers was

generated. Here, we replaced the presumed outliers of [8] by the value of the observation plus

10 times the standard deviation. The new memory parameter estimators are d̂n,CL = 0.12,

d̂n,CR = 0.4 and d̂n,MAD = 0.392. As was expected, the values of the robust estimators

remained stable. However, the classical estimator of d was significantly affected. A robust

estimate of d for the Nile data is also given in [2] and in [18]. The authors found 0.412 and

0.416, respectively. These values are very close to d̂n,CR = 0.408 and d̂n,MAD = 0.414.

5.2. Internet traffic packet counts data. In this section, two Internet traffic packet counts

datasets collected at the University of North Carolina, Chapel (UNC) are analyzed. These

datasets are available from the website http://netlab.cs.unc.edu/public/old research/net lrd/.

These datasets have been studied by [23].

Figure 4 (left) displays a packet count time series measured at the link of UNC on April

13, Saturday, from 7:30 p.m. to 9:30 p.m., 2002 (Sat1930). Figure 4 (right) displays the same

type of time series but on April 11, a Thursday, from 1 p.m. to 3 p.m., 2002 (Thu1300). These
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packet counts were measured every 1 millisecond but, for a better display, we aggregated them

at 1 second.

0 2000 4000 6000
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00
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22
00

0
26

00
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0 2000 4000 6000
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10

00
0

30
00

0

Thu1300

Figure 4. Packet counts of aggregated traffic every 1 second.

The maximal available scale for the two datasets is 20. Since we have less than 4 observa-

tions at this scale, we set the coarse scale J0 + ℓ = 19 and vary the finest scale J0 from 1 to

17. The values of the three estimators of d are stored in Table 2 for J0 = 1 to 14 as well as

the standard errors of
√
n2−J0(d̂n,∗ − d) for the two datasets: Thu1300 and Sat1930.

J0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Thu1300

d̂n,CL 0.08 0.09 0.11 0.15 0.19 0.25 0.31 0.39 0.43 0.47 0.51 0.49 0.44 0.41

SECL (0.52) (0.56) (0.51) (0.52) (0.57) (0.52) (0.56) (1.45) (0.74) (0.76) (0.87) (0.91) ( 1.10) (1.21)

d̂n,CR 0.08 0.07 0.07 0.09 0.13 0.19 0.28 0.34 0.37 0.40 0.42 0.43 0.48 0.45

SECR (0.55) (0.58) (0.61) (0.63) (0.59) (0.6) (0.67) (1.42) (0.82) (0.88) (0.97) (1.08) (1.18) (1.23)

d̂n,MAD 0.08 0.08 0.07 0.09 0.13 0.19 0.27 0.33 0.38 0.40 0.43 0.43 0.5 0.48

SEMAD (0.74) (0.87) (0.78) (0.83) (0.86) (0.84) (0.91) (1.49) (0.98) (1.04) (1.07) (1.15) (1.18) (1.2)

Sat1930

d̂n,CL 0.05 0.06 0.08 0.11 0.14 0.17 0.23 0.28 0.33 0.36 0.37 0.39 0.42 0.42

SECL (0.41) (0.47) (0.43) (0.48) (0.47) (0.48) (0.46) (0.89) (0.54) (0.61) (0.70) (0.80) (1.11) (1.24)

d̂n,CR 0.06 0.06 0.06 0.09 0.12 0.16 0.23 0.3 0.34 0.38 0.4 0.42 0.44 0.42

SECR (0.51) (0.47) (0.54) (0.48) (0.48) (0.53) (0.56) (0.90) (0.81) (0.70) (0.88) (0.96) (1.21) (1.26)

d̂n,MAD 0.06 0.06 0.07 0.09 0.11 0.16 0.23 0.29 0.33 0.38 0.4 0.43 0.45 0.4

SEMAD (0.59) (0.77) (0.72) (0.81) (0.70) (0.89) (0.82) (0.64) (1.13) (0.99) (1.10) (1.34) (1.49) (1.38)

Table 2. Estimators of d with J0 = 1 to J0 = 14 and J0 + ℓ = 19 obtained from Thu1300

and Sat1930. Here SE denotes the standard error of
√
n2−J0(d̂n,∗ − d).

In Figure 5, we display the estimates d̂n,CL, d̂n,CR and d̂n,MAD of the memory parameter d

as well as their respective 95% confidence intervals from J0 = 1 to J0 = 14. We propose to

choose J0 = 9 for Thu1300 and J0 = 10 for Sat1930 since from these values of J0 the successive

confidence intervals are such that the smallest one is included in the largest one (for the robust

estimators). Note that [23] chose the same values of J0 using another methodology. For these
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values of J0 we obtain d̂n,CL = 0.43 (with 95% confidence interval [0.412, 0.443]) , d̂n,CR = 0.37

(with 95% confidence interval [0.358, 0.385]) and d̂n,MAD = 0.38 with (95% confidence interval

[0.362, 0.397]) for Thu1300 and d̂n,CL = 0.36 (with 95% confidence interval [0.345, 0.374]),

d̂n,CR = d̂n,MAD = 0.38 (with 95% confidence intervals [0.361, 0.398] for CR and [0.357, 0.402]

for MAD) for Sat1930. These values are similar to the one found by [23].
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Figure 5. Confidence intervals of the estimates d̂n,CL (red), d̂n,CR (green) and d̂n,MAD

(blue) on the data Thu1300 (left) and Sat1930 (right) for J0 = 1, . . . , 14 and J0 + ℓ = 19.

With this choice of J0 for Thu1300, we observe a significant difference between the classical

estimator and the robust estimators. Thus to better understand the influence of outliers on

the estimated memory parameter a new dataset with artificial outliers was generated. The

Thu1300 time series shows two spikes shooting down. Especially, the first downward spike

hits zero. [22] have shown that this dropout lasted 8 seconds. Outliers are introduced by

dividing by 6 the 8000 observations in this period. The new memory parameter estimators

are d̂n,CL = 0.445, d̂n,CR = 0.375 and d̂n,MAD = 0.377. As for the Nile River data, the classical

estimator was affected while the robust estimators remain stable.

6. Proofs

Theorem 4 is an extension of [3, Theorem 4] to arrays of stationary Gaussian processes

in the unidimensional case and Theorem 5 extends the result of [11] to arrays of stationary

Gaussian processes. These two theorems are useful for the proof of Proposition 1.

Theorem 4. Let {Xj,i, j ≥ 1, i ≥ 0} be an array of standard stationary Gaussian processes

such that for a fixed j ≥ 1, (Xj,i)i≥0 has a spectral density fj and an autocorrelation function

ρj defined by ρj(k) = E(Xj,0Xj,k), for all k ≥ 0. Assume also that there exists a non increasing
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sequence {uj}j≥1 such that for all j ≥ 1

sup
λ∈(−π,π)

|fj(λ)− g∞(λ)| ≤ uj , (34)

where g∞ is a 2π-periodic function which is bounded on (−π, π) and continuous at the origin.

Let h be a function on R with Hermite rank τ ≥ 1. We assume that h is either bounded or

is a finite linear combination of Hermite polynomials. Let {nj}j≥1, be a sequence of integers

such that nj tends to infinity as j tends to infinity. Then,

1
√
nj

nj∑

i=1

h (Xj,i)
d−→ N

(
0, σ̃2

)
, as j → ∞ , (35)

where

σ̃2 = lim
n→∞

Var
( 1
√
nj

nj∑

i=1

h(Xj,i)
)
=
∑

ℓ≥τ

c2ℓ
ℓ!
g⋆ℓ∞(0).

In the previous equality, cℓ = E[h(X)Hℓ(X)], where Hℓ is the ℓ-th Hermite polynomial and

X is a standard Gaussian random variable.

Proof of Theorem 4. Let us first prove that

∑nj

i=1

∑
l≥τ

cl
l!Hl(Xj,i)√

Var
(∑nj

i=1

∑
l≥τ

cl
l!Hl(Xj,i)

)
d−→ N (0, 1) , as n→ ∞ . (36)

Using Mehler’s formula, see Eq. (2.1) of [7], we have

Var




nj∑

i=1

∑

l≥τ

cl
l!
Hl(Xj,i)


 =

nj∑

i1,i2=1

∑

l1,l2≥τ

cl1cl2
l1!l2!

E [Hl1(Xj,i1)Hl2(Xj,i2)]

=
∑

l≥τ

c2l
l!




nj∑

i1,i2=1

ρlj(i2 − i1)


 .

In order to prove (36), it is enough to prove that for p ≥ 1,

E

[(∑nj

i=1

∑
l≥τ

cl
l!Hl(Xj,i)

)2p+1
]

(∑
l≥τ

c2
l

l!

[∑nj

i1,i2=1 ρ
l
j(i2 − i1)

]) 2p+1
2

→ 0, as n→ ∞ and (37)

E

[(∑nj

i=1

∑
l≥τ

cl
l!Hl(Xj,i)

)2p]

(∑
l≥τ

c2
l

l!

[∑nj

i1,i2=1 ρ
l
j(i2 − i1)

])p → (2p)!

p! 2p
, as n→ ∞. (38)



CLT FOR THE ROBUST WAVELET REGRESSION ESTIMATOR 17

For all m ∈ N
∗,

E






nj∑

i=1

∑

l≥τ

cl
l!
Hl(Xj,i)




m
 =

∑

1≤i1,...,im≤nj

∑

l1,...,lm≥τ

cl1 . . . clm
l1! . . . lm!

E [Hl1(Xj,i1), . . . ,Hlm(Xj,im)] .

1) We start with the case where m = 2p+ 1.

a) Let us first assume that |{i1, . . . , i2p+1}| = 2p+ 1 and that

∀i, ρj(i) ≤ ρ∗ < 1/(2p) . (39)

By [32, Lemma 3.2 P. 210], E [Hl1(Xj,i1), . . . ,Hlm(Xj,im)] is zero if l1 + · · · + lm is odd.

Otherwise it is bounded by a constant times a sum of products of (l1 + · · · + lm)/2 corre-

lations. Bounding, in each product, all of them but p + 1, by ρ∗ < 1/(2p), we get that

E
[
Hl1(Xj,i1), . . . ,Hl2p+1(Xj,i2p+1)

]
is bounded by a finite number of terms of the following

form

(ρ∗)
l1+···+l2p+1

2
−(p+1)ρj(i2−i1)ρj(i4−i3) . . . ρj(i2p−i2p−1)ρj(i2p+1−i2p)

∣∣E
(
Hl1(X) . . . Hl2p+1(X)

)∣∣ ,

where X is a standard Gaussian random variable. Note also that the hypercontractivity [32,

Lemma 3.1 P.210] yields

∣∣E
[
Hl1(X) . . . Hl2p+1(X)

]∣∣ ≤ (2p)
l1+···+l2p+1

2

√
l1! . . . l2p+1! .

Thus, using the Cauchy-Schwarz inequality and that ρ∗ < 1
2p , there exists a positive constant

C such that

∑

l1,...,l2p+1≥τ

|cl1 . . . cl2p+1 |
l1! . . . l2p+1!

(ρ∗)
l1+···+l2p+1

2
−(p+1)

∣∣E
(
Hl1(X) . . . Hl2p+1(X)

)∣∣

≤
∑

l1,...,l2p+1≥τ

|cl1 | . . . |cl2p+1 |√
l1! . . . l2p+1!

(2pρ∗)
l1+···+l2p+1

2
−(p+1) ≤ (2pρ∗)−1



∑

l≥τ

|cl|√
l!
[(2pρ∗)]

l
2
− p

2p+1




2p+1

≤ C


∑

l≥τ

c2l
l!




2p+1
2

∑

l≥τ

(2pρ∗)
l− 2p

2p+1




2p+1
2

<∞ .

To conclude the proof of (37), it remains to prove that
∑

1≤i1,...,i2p+1≤nj

|{i1,...,i2p+1}|=2p+1

ρj(i2 − i1)ρj(i4 − i3) . . . ρj(i2p − i2p−1)ρj(i2p+1 − i2p)

(
∑
l≥τ

c2
l

l!

[
nj∑

i1,i2=1
ρlj(i2 − i1)

])p+ 1
2

→ 0, as nj → ∞ .

(40)
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Let us first study the numerator in the l.h.s of (40).

∑

1≤i1,...i2p+1≤nj

|{i1,...,i2p+1}|=2p+1

ρj(i2 − i1)ρj(i4 − i3) . . . ρj(i2p − i2p−1)ρj(i2p+1 − i2p)

=
( ∑

1≤i1 6=i2≤nj

ρj(i2 − i1)
)p−1

∑

1≤i2p−1,i2p,i2p+1≤nj

|{i2p−1,i2p,i2p+1}|=3

ρj(i2p − i2p−1)ρj(i2p+1 − i2p)

=
( ∑

1≤i1 6=i2≤nj

ρj(i2 − i1)
)p−1

nj∑

i2p=1

( ∑

1≤i2p 6=i2p+1≤nj

ρj(i2p+1 − i2p)
)2
.

To prove (40), we start by proving that

nj∑

r=1

( ∑

1≤s≤nj

ρj(r − s)
)2

= O(nj). (41)

Using the notation Dnj
(λ) =

∑nj

r=1 e
iλr, we get

nj∑

r=1

( ∑

1≤s≤nj

ρj(r − s)
)2

=

nj∑

r=1

(∫ π

−π
eiλr

∑

1≤s≤nj

e−iλsfj(λ)dλ
)2

=

∫ π

−π

∫ π

−π
Dnj

(λ− λ′)Dnj
(λ)Dnj

(λ′)fj(λ)fj(λ
′)dλdλ′ .

Using (34), the boundedness of g∞ and that uj is bounded, there exists a positive constant

C such that

|fj(λ)fj(λ′)| ≤ |fj(λ)− g∞(λ)||fj(λ′)− g∞(λ′)|+ |g∞(λ′)||fj(λ)− g∞(λ)|
+ |g∞(λ)||fj(λ′)− g∞(λ′)|+ |g∞(λ)||g∞(λ′)| ≤ C .

Then, using that there exists a positive constant c such that |Dnj
(λ)| ≤ cnj/(1 + nj|λ|), for

all λ in [−π, π],
nj∑

r=1

( ∑

1≤s≤nj

ρj(r − s)
)2

≤ c3nj

∫

R2

1

1 + |µ− µ′|
1

1 + |µ|
1

1 + |µ′|dµdµ
′ . (42)

The result (41) thus follows from the convergence of the integral in (42) which is proved in

Lemma 9. Let us now prove that

1

nj

∑

1≤r,s≤nj

ρj(r − s) → g∞(0) , as n→ ∞ . (43)
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Using that Fj defined by Fj(λ) = (2πnj)
−1|

nj∑
r=1

eiλr|2, for all λ in [−π, π] satisfies
∫ π
−π Fj(λ)dλ =

1, we obtain

1

nj

( ∑

1≤r,s≤nj

ρj(r−s)
)
−g∞(0) =

∫ π

−π
(fj(λ)− g∞(λ))Fj(λ)dλ+

∫ π

−π
(g∞(λ)− g∞(0))Fj(λ)dλ .

(44)

Using that
∫ π
−π Fj(λ)dλ = 1 and (34), the first term in the r.h.s of (44) tends to zero as n

tends to infinity. The second term in the r.h.s of (44) can be upper bounded as follows. For

0 < η ≤ π,

∣∣∣∣
∫ π

−π
(g∞(λ)− g∞(0))Fj(λ)dλ

∣∣∣∣ ≤
∫ −η

−π
|g∞(λ)− g∞(0)|Fj(λ)dλ

+

∫ η

−η
|g∞(λ)− g∞(0)|Fj(λ)dλ+

∫ π

η
|g∞(λ)− g∞(0)|Fj(λ)dλ . (45)

Since there exists a positive constant C such that Fj(λ) ≤ C/(nj |λ|2), for all λ in [−π, π], the
first and last terms in the r.h.s of (45) are bounded by Cπ/(njη

2). The continuity of g∞ at

0 and the fact that
∫ η
−η Fj(λ)dλ ≤

∫ π
−π Fj(λ)dλ = 1 ensure that the second term in the r.h.s

of (45) tends to zero as n tends to infinity. This concludes the proof of (43).

Using the same arguments as those used to prove (43) and the fact that ρlj is the autocor-

relation associated to f⋆lj which is the l-th self-convolution of fj, we get that

1

nj

nj∑

r,s=1

ρlj(r − s) → g⋆l∞(0), as n→ ∞ . (46)

Let us now prove that the denominator in (40) is O(n
p+ 1

2
j ) as n→ ∞. We aim at applying

Lemma 12 with fn, gn, f and g defined hereafter.

fnj
(s, l) =

c2l
l!
1{|s|<nj}

(
1− |s|

nj

)
ρlj(s).

Observe that |fnj
(s, l)| ≤ gnj

(s, l) where

gnj
(s, l) =

c2l
l!
1{|s|<nj}

(
1− |s|

nj

)
ρ2j(s).

Using (34) and the fact that the spectral density associated to ρlj is f⋆lj , we get, as n→ ∞,

fnj
(s, l) → f(s, l) =

c2l
l!

∫ π

−π
g⋆l∞(λ)eiλsdλ and gnj

(s, l) → g(s, l) =
c2l
l!

∫ π

−π
g⋆2∞(λ)eiλsdλ .

Using [20, Lemma 1], we get

∑

l≥τ

∑

s∈Z

gnj
(s, l) →

∑

l≥τ

c2l
l!
g⋆2∞(0) .
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Then, Lemma 12 yields

lim
n→∞

1

nj
Var
( nj∑

i=1

∑

l≥τ

cl
l!
Hl(Xj,i)

)
= lim

n→∞

1

nj

∑

l≥τ

c2l
l!

[ nj∑

i1,i2=1

ρlj(i2 − i1)
]
=
∑

l≥τ

c2l
l!
g⋆l∞(0) .

Hence we get (40) by noticing that the numerator in (40) is O(npj).

If Condition (39) is not satisfied then let k0 be such that ρj(k) ≤ ρ∗ < 1/(2p), for all k > k0.

In the case where h is a linear combination of L Hermite polynomials, the same arguments

as those used previously are valid with ρ∗ = 1. In the case where h is bounded, there exists

a positive constant C such that

E

[( nj∑

i=1

h(Xj,i)

)2p+1]
≤ C

∑

1≤i1,...,iq≤nj

E
[
|h|(Xj,i1) . . . |h|(Xj,iq )

]
, (47)

where i1, . . . , iq are such that |ik − il| > k0, for all k, l in {1, . . . , q} with q ≤ 2p + 1. By ex-

panding |h| onto the basis of Hermite polynomials, we can conclude with the same arguments

as those used when Condition (39) is valid.

b) Let us now assume that |{i1, . . . , i2p+1}| = r ≤ 2p. In the case where h is bounded, the

inequality (47) is valid with q ≤ r which gives that the numerator of (37) is O(n
⌊r/2⌋
j ). In the

case where h is a linear combination of L Hermite polynomials, we use the same arguments

as those used in a) with ρ∗ = 1 which implies that the numerator of (37) is O(n
⌊r/2⌋
j ).

2) Let us now study the case where m is even that is m = 2p with p ≥ 1.

E

[( nj∑

i=1

∑

l≥τ

cl
l!
Hl(Xj,i)

)2p]
=

∑

1≤i1,...,i2p≤nj

∑

l1,...,l2p≥τ

cl1 . . . cl2p
l1! . . . l2p!

E
[
Hl1(Xj,i1) . . . Hl2p(Xj,i2p)

]
.

(48)

By [26, Formula (33), P.69], we have

E
[
Hl1(Xj,i1) . . . Hl2p(Xj,i2p)

]
= l1! . . . l2p!

∑

{l1,...,l2p}

ρνj
ν!
, (49)

where it is understood that ρνj =
∏

1≤q<k≤2p

ρ
νq,k
j (q − k), ν! =

∏
1≤q<k≤2p

νq,k!, and
∑

{l1...,l2p}

indicates that we are to sum over all symmetric matrices ν with nonnegative integer entries,

νii = 0 and the row sums equal to l1, . . . , l2p.

We shall prove that among all the terms in the r.h.s of (49), the leading ones correspond

to the case where we have p pairs of equal indices in the set {l1, . . . , l2p}, that is, for instance,
l1 = l2, l3 = l4, . . . , l2p−1 = l2p and ν1,2 = l1, ν3,4 = l3,...,ν2p−1,2p = l2p−1 the others νi,j being

equal to zero. This gives

(l2!)
2 . . . (l2p!)

2 ρj(i2 − i1)
l2ρj(i4 − i3)

l4 . . . ρj(i2p − i2p−1)
l2p

l2! . . . l2p!
.
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The corresponding term in (48) is given by

∑

1≤i1,...,i2p≤nj

∑

l2,l4,...,l2p≥τ

c2l2c
2
l4
. . . c2l2p

l2!l4! . . . l2p!
ρj(i2 − i1)

l2ρj(i4 − i3)
l4 . . . ρj(i2p − i2p−1)

l2p

=
[∑

l≥τ

c2l
l!

( nj∑

i1,i2=1

ρlk(i2 − i1)
)]p

,

which corresponds to the denominator in the l.h.s of (38). Since there exists exactly (2p)!/(2pp!)

possibilities to have pairs of equal indices among 2p indices we obtain (38) if we prove that

the other terms can be neglected.

Let us first consider the case where

∀i, ρj(i) ≤ ρ∗ <
1

2p− 1
(50)

and |{i1, . . . , i2p}| = 2p. By [32, Lemma 3.2 P. 210], E [Hl1(Xj,i1), . . . ,Hlm(Xj,im)] is zero

if l1 + · · · + lm is odd. Otherwise it is bounded by a constant times a sum of products

of (l1 + · · · + lm)/2 correlations. Bounding, in each product, all of them but p + 1, by

ρ∗ < 1/(2p− 1), we get that E
[
Hl1(Xj,i1), . . . ,Hl2p(Xj,i2p)

]
is bounded by a finite number of

terms of the following form

(ρ∗)
l1+···+l2p

2
−(p+1)ρj(i2 − i1)ρj(i4 − i3) . . . ρj(i2p − i2p−1)ρj(i2p − i1)

∣∣E
(
Hl1(X) . . . Hl2p(X)

)∣∣ .

where X is a standard Gaussian random variable. Using the same arguments as in the case

where m was odd, we have

∑

l1,...,l2p≥τ

|cl1 . . . cl2p |
l1! . . . l2p!

(ρ∗)
l1+···+l2p

2
−(p+1)

∣∣E
(
Hl1(X) . . . Hl2p(X)

)∣∣ <∞ .

To have the result (38), it remains to show that
∑

1≤i1,...,i2p≤nj

|{i1,...,i2p}|=2p

ρj(i2 − i1)ρj(i4 − i3) . . . ρj(i2p − i2p−1)ρj(i2p − i1)

[∑
l≥τ

c2
l

l!

(∑nj

i1,i2=1 ρ
l
j(i2 − i1)

)]p → 0 , as n→ ∞ . (51)

The numerator of (51) can be rewritten as

∑

1≤i1,...,i2p≤nj

|{i1,...,i2p}|=2p

ρj(i2 − i1)ρj(i4 − i3) . . . ρj(i2p − i2p−1)ρj(i2p − i1)

=
( ∑

1≤i3 6=i4≤nj

ρj(i4 − i3)
)p−2

[ ∑

1≤i1,i2,i2p−1,i2p≤nj

|{i1,i2,i2p−1,i2p}|=4

ρj(i2 − i1)ρj(i2p − i2p−1)ρj(i2p − i1)

]
.



22 O. KOUAMO, C. LÉVY-LEDUC, AND E. MOULINES

Using (43), we have
(∑

1≤i3 6=i4≤nj
ρj(i4 − i3)

)p−2
= O(np−2

j ). Let us now prove that

∑

1≤i1,i2,i3,i4≤nj

ρj(i2 − i1)ρj(i3 − i4)ρj(i3 − i1) = O(nj) . (52)

Using the notation Dnj
(λ) =

∑nj

r=1 e
iλr,

∑

1≤i1,i2,i3,i4≤nj

ρj(i2 − i1)ρj(i3 − i4)ρj(i3 − i1)

=
∑

1≤i1,i2,i3,i4≤nj

( ∫ π

−π
eiλ(i2−i1)fj(λ)dλ

)( ∫ π

−π
eiµ(i3−i4)fj(µ)dµ

)( ∫ π

−π
eiξ(i3−i1)fj(ξ)dξ

)

=

∫ π

−π
fj(ξ)

(∫ π

−π
Dnj

(µ)Dnj
(µ+ ξ)fj(µ)dµ

∫ π

−π
Dnj

(λ)Dnj
(λ+ ξ)fj(λ)dλ

)
dξ

≤
∫ π

−π

(∫ π

−π
|Dnj

(λ)||Dnj
(λ+ ξ)|fj(λ)dλ

)2

fj(ξ)dξ .

Using (34) and that g∞ is bounded, (52) will follow if we prove that
∫ π
−π(
∫ π
−π |Dnj

(λ)||Dnj
(λ+

ξ)|dλ)2dξ = O(nj) . Since there exists a positive constant c such that |Dnj
(λ)| ≤ cnj/(1 +

nj|λ|), for all λ in [−π, π],

∫ π

−π

(∫ π

−π
|Dnj

(λ)||Dnj
(λ+ξ)|fj(λ)dλ

)2

fj(ξ)dξ ≤ c4nj

∫ ∞

−∞

(∫ ∞

−∞

1

1 + |µ|
1

|1 + µ+ µ′|dµ
)2

dµ′

(53)

The result (52) thus follows from the convergence of the last integral in (53) which is proved

in Lemma 10. Hence we get (51) since the numerator of the l.h.s of (51) is O(np−1
j ) and

the denominator is O(npj ) by the same arguments as those used to find the order of the

denominator of (40). If Condition (50) is not satisfied or if |{i1, . . . , i2p}| < 2p, we can use

similar arguments as those used in 1)a) and 1)b) to conclude the proof. �

Theorem 5. Let {Xj,i, j ≥ 1, i ≥ 0} be an array of standard stationary Gaussian processes

such that for a fixed j ≥ 1, (Xj,i)i≥0 has a spectral density fj and an autocorrelation function

ρj defined by ρj(k) = E(Xj,0Xj,k), for all k ≥ 0. Let Fj be the c.d.f of Xj,1 and Fnj
the

empirical c.d.f computed from Xj,1, . . . ,Xj,nj
. If Condition (34) holds,

√
nj(Fnj

− Fj)
d−→W in D([−∞,∞]) , (54)

where W is a Gaussian process and D([−∞,∞]) denotes the Skorokhod space on [−∞,∞].
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Proof of Theorem 5. Let Sj(x) = n
−1/2
j

∑nj

i=1

(1{Xj,i≤x} − Fj(x)
)
, for all x in R. We shall

first prove that for x1, . . . , xQ and a1, . . . , aQ in R

Q∑

q=1

aqSj(xq)
d−→ N


0,

∑

l≥1

c2l
l!
g⋆l∞(0)


 , as n→ ∞ , (55)

where cl is the l-th Hermite coefficient of the function h defined by

h(·) =
Q∑

q=1

aq
(1{·≤xq} − E(1{·≤xq})

)
.

Thus,
∑Q

q=1 aqSj(xq) = n
−1/2
j

∑nj

i=1 h(Xj,i), where h is bounded and of Hermite rank τ ≥ 1

since for all t in R, E(X1X≤t) =
∫
R
x1x≤tϕ(x)dx =

∫ t
−∞(−ϕ(x))′dx = −ϕ(t) 6= 0, and the

CLT (55) follows from Theorem 4.

Let us now prove that there exists a positive constant C and β > 1 such that for all

r ≤ s ≤ t,

E
(
|Sj(s)− Sj(r)|2|Sj(t)− Sj(s)|2

)
≤ C|t− r|β . (56)

The convergence (54) then follows from (55), (56) and [6, Theorem 13.5]. Note that

E
(
|Sj(s)− Sj(r)|2|Sj(t)− Sj(s)|2

)

=
1

n2j

nj∑

i,i′=1

nj∑

l,l′=1

E
(
(fs − fr)(Xj,i)(fs − fr)(Xj,i′)(ft − fs)(Xj,l)(ft − fs)(Xj,l′

)
,

where ft(X) = 1{X≤t} − E(1{X≤t}). By developing each difference of functions in Hermite

polynomials , we get

E
(
|Sj(s)− Sj(r)|2|Sj(t)− Sj(s)|2

)
=

1

n2j

nj∑

i,i′=1

nj∑

l,l′=1

∑

p1,...,p4≥1

cp1(fs − fr)cp2(fs − fr)cp3(ft − fs)cp4(ft − fs)

p1! . . . p4!
E
(
Hp1(Xj,i)Hp2(Xj,i′)Hp3(Xj,l)Hp4(Xj,l′)

)
.

Using the same arguments as in the case where m is even in the proof of Theorem 4, we

obtain

E
(
|Sj(s)− Sj(r)|2|Sj(t)− Sj(s)|2

)
=

1

n2j

∑

p1,p2≥1

nj∑

i,i′,l,l′=1

[c2p1(ft − fs)c
2
p2(fs − fr)

p1!p2!

ρp1j (i′ − i)ρp2j (l′ − l) +
cp1(ft − fs)cp1(fs − fr)cp2(ft − fs)cp2(fs − fr)

p1!p2!
ρp1j (l − i)ρp2j (l′ − i′)

+
cp1(ft − fs)cp1(fs − fr)cp2(ft − fs)cp2(fs − fr)

p1!p2!
ρp1j (l′ − i)ρp2j (l − i′)

]
+O(n−1

j ) .
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Let ‖ · ‖2 = (E(·)2)1/2 and 〈f, g〉 = E[f(X)g(X)], where X is a standard Gaussian random

variable. Since, by (46),
∑nj

i,i′,l,l′=1 ρ
p1
j (l − i)ρp2j (l′ − i′) = O(n2j), we get with the Cauchy-

Schwarz inequality that there exists a positive constant C such that

E
(
|Sj(s)− Sj(r)|2|Sj(t)− Sj(s)|2

)

≤ C
∑

p1,p2≥1

[c2p1(ft − fs)c
2
p2(fs − fr)

p1!p2!
+
cp1(ft − fs)cp1(fs − fr)cp2(ft − fs)cp2(fs − fr)

p1!p2!

]

≤ C
(
‖ft − fs‖22 ‖fs − fr‖22 + |〈ft − fs, fs − fr〉|2

)
≤ C ‖ft − fs‖22 ‖fs − fr‖22 .

Note that ‖ft − fs‖22 ≤ 2
( ∥∥1{X≤t} − 1{X≤s}

∥∥2
2
+
∥∥E(1{X≤s})− E(1{X≤t})

∥∥2
2

)
. Since s ≤ t,∥∥1{X≤t} − 1{X≤s}

∥∥2
2
= Φ(t)−Φ(s) ≤ C|t−s|, where Φ denotes the c.d.f of a standard Gaussian

random variable. Moreover,
∥∥E(1{X≤s})− E(1{X≤t})

∥∥2
2
≤ C|t−s|2, which concludes the proof

of (56). �

Proof of Proposition 1. We first prove (21) for ∗ = CL.

√
nj(σ̂

2
CL,j − σ2j ) =

1
√
nj

nj−1∑

i=0

(W 2
j,i − σ2j ) =

2σ2j√
nj

nj−1∑

i=0

1

2

(
W 2

j,i

σ2j
− 1

)
.

Let us now prove (21) for ∗ = MAD. Let us denote by Fnj
the empirical c.d.f of Wj,0:nj−1

and by Fj the c.d.f of Wj,0. Note that

σ̂MAD,j = m(Φ)T0(Fnj
) ,

where T0 = T2 ◦ T1 with T1 : F 7→
{
r 7→

∫
R
1{|x|≤r}dF (x)

}
and T2 : U 7→ U−1(1/2). To

prove (21), we start by proving that
√
nj(Fnj

− Fj) converges in distribution in the space

of cadlag functions equipped with the topology of uniform convergence. This convergence

follows by applying Theorem 5 to Xj,i = Wj,i/σj which is an array of zero mean stationary

Gaussian processes by [20, Corollary 1]. The spectral density fj of (Xj,i)i≥0 is given by

fj(λ) = Dj,0(λ; f)/σ
2
j where Dj,0(·; f) is the within scale spectral density of the process

{Wj,k}k≥0 defined in (12) and σ2j is the wavelet spectrum defined in (14). Here, g∞(λ) =

D∞,0(λ; d)/K(d), with D∞,0(·; d) defined in (13) and K(d) =
∫ +∞
−∞ |ξ|−2d|ψ̂(ξ)|2dξ since by

[20, (26) and (29) in Theorem 1]

∣∣∣∣
Dj,0(λ; f)

f∗(0)K(d)22dj
− D∞,0(λ; d)

K(d)

∣∣∣∣ ≤ C LK(d)−1 2−βj → 0 , as n→ ∞ ,

∣∣∣∣∣
σ2j

f∗(0)K(d)22dj
− 1

∣∣∣∣∣ ≤ C L 2−βj → 0 , as n→ ∞ .
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Note also that, by [20, Theorem 1], g∞(λ) is a continuous and 2π-periodic function on (−π, π).
Moreover, g∞(λ) is bounded on (−π, π) by Lemma 11 and

uj = C1
2−βj

σ2j /2
2dj

(
2−βj + C2

σ2j
22dj

)
→ 0, as n→ ∞ ,

where C1 and C2 are positive constants. The asymptotic expansion (21) for σ̂MAD,j can be

deduced from the functional Delta method stated e.g in [33, Theorem 20.8] and the clas-

sical Delta Method stated e.g in [33, Theorem 3.1]. To show this, we have to prove that

T0 = T1 ◦ T2 is Hadamard differentiable and that the corresponding Hadamard differential is

defined and continuous on the whole space of cadlag functions. We prove first the Hadamard

differentiability of the functional T1. Let (gt) be a sequence of cadlag functions with bounded

variations such that ‖gt − g‖∞ → 0, as t → 0, where g is a cadlag function. For any non

negative r, we consider

T1(Fj + tgt)[r]− T1(Fj)[r]

t
=

(Fj + tgt)(r)− (Fj + tgt)(−r)− Fj(r) + Fj(−r)
t

=
tgt(r)− tgt(−r)

t
= gt(r)− gt(−r) → g(r)− g(−r),

since ‖gt − g‖∞ → 0, as t→ 0. The Hadamard differential of T1 at g is given by :

(DT1(Fj).g)(r) = g(r)− g(−r).

By [33, Lemma 21.3], T2 is Hadamard differentiable. Finally, using the Chain rule [33,

Theorem 20.9], we obtain the Hadamard differentiability of T0 with the following Hadamard

differential :

DT0(Fj).g = −(DT1(Fj).g)(T0(Fj))

(T1(Fj))′[T0(Fj)]
= −g(T0(Fj))− g(−T0(Fj))

(T1(Fj))′[T0(Fj)]
.

In view of the last expression, DT0(Fj) is a continuous function of g and is defined on the

whole space of cadlag functions. Thus by [33, Theorem 20.8], we obtain :

m(Φ)
√
nj
(
T0(Fnj

)− T0(Fj)
)
= m(Φ)DT0(Fj)

{√
nj(Fnj

− Fj)
}
+ oP (1),

where m(Φ) is the constant defined in (19). Since T0(Fj) = σj/m(Φ) and (T1(Fj))
′(r) =

2σj
−1ϕ(r/σj), where ϕ is the p.d.f of a standard Gaussian random variable, we get

√
nj (σ̂MAD,j − σj) =

σj√
nj

nj−1∑

i=0

IF

(
Wj,i

σj
,MAD,Φ

)
+ oP (1)

and the expansion (21) for ∗ = MAD follows from the classical Delta method applied with

f(x) = x2. We end the proof of Proposition 1 by proving the asymptotic expansion (21) for

∗ = CR. We use the same arguments as those used previously. In this case the Hadamard

differentiability comes from [16, Lemma 1]. �
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The following theorem is an extension of [3, Theorem 4] to arrays of stationary Gaussian

processes in the multidimensional case.

Theorem 6. Let XJ,i =
{
X

(0)
J,i , . . . ,X

(d)
J,i

}
be an array of standard stationary Gaussian pro-

cesses such that for j, j′ in {0, . . . , d}, the vector
{
X

(j)
J,i ,X

(j′)
J,i

}
has a cross-spectral density

f
(j,j′)
J and a cross-correlation function ρ

(j,j′)
J defined by ρ

(j,j′)
J (k) = E

(
X

(j)
J,iX

(j′)
J,i+k

)
, for all

k ≥ 0. Assume also that there exists a non increasing sequence {uJ}J≥1 such that uJ tends

to zero as J tends to infinity and for all J ≥ 1,

sup
λ∈(−π,π)

∣∣f (j,j
′)

J (λ)− g(j,j
′)

∞ (λ)
∣∣ ≤ uJ , (57)

where g
(j,j′)
∞ is a 2π-periodic function which is bounded on (−π, π) and continuous at the

origin. Let h be a function on R with Hermite rank τ ≥ 1 which is either bounded or is a finite

linear combination of Hermite polynomials. Let β = {β0, . . . , βd} in R
d+1 and H : Rd+1 → R

the real valued function defined by H(x) =
∑d

j=0 βjh(xj). Let {nJ}J≥1 be a sequence of

integers such that nJ tends to infinity as J tends to infinity. Then

1√
nJ

nJ∑

i=1

H
(
XJ,i

) d−→ N
(
0, σ̃2

)
, as J → ∞ , (58)

where

σ̃2 = lim
n→∞

Var
( 1√

nJ

nJ∑

i=1

H(XJ,i)
)
=
∑

ℓ≥τ

c2ℓ
ℓ!

∑

0≤j,j′≤d

βjβj′(g
(j,j′)
∞ )⋆ℓ(0) .

In the previous equality, cℓ = E[h(X)Hℓ(X)], where Hℓ is the ℓ-th Hermite polynomial and

X is a standard Gaussian random variable.

The proof of Theorem 6 follows the same lines as the one of Theorem 4 and is thus omitted.

Proof of Theorem 2. Without loss of generality, we set f∗(0) = 1. In order to prove (25), let

us first prove that for α = (α0, . . . , αℓ) where the αi’s are in R,

√
n2−J02−2J0d

ℓ∑

j=0

αj

(
σ̂2∗,J0+j(WJ0+j,0:nJ0+j−1)− σ2∗,J0+j

)
d−→ N

(
0,αTU∗(d)α

)
. (59)

By Proposition 1,

√
n2−J02−2J0d

ℓ∑

j=0

αj

(
σ̂2∗,J0+j(WJ0+j,0:nJ0+j−1)− σ2∗,J0+j

)

=
ℓ∑

j=0

√
n2−J02−2J0d

nJ0+j
2αjσ

2
J0+j

nJ0+j−1∑

i=0

IF

(
WJ0+j,i

σJ0+j
, ∗,Φ

)
+ oP (1). (60)
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Thus, proving (59) amounts to proving that

2−ℓ/2f∗(0)K(d)√
nJ0+ℓ

ℓ∑

j=0

2αj2
2dj+j

nJ0+j−1∑

i=0

IF

(
WJ0+j,i

σJ0+j
, ∗,Φ

)
d−→ N

(
0, αTU∗(d)α

)
, (61)

since σ2J0+j

√
n2−J02−2J0d/nJ0+j ∼ 22dj−ℓ/2+jK(d)f∗(0)/

√
nJ0+ℓ , as n tends to infinity, by

[20, (29) in Theorem 1]. Note that

nJ0+j−1∑

i=0

IF

(
WJ0+j,i

σJ0+j
, ∗,Φ

)
=

nJ0+ℓ−1∑

i=0

2ℓ−j−1∑

v=0

IF

(
Wj+J0,2ℓ−ji+v

σJ0+j
, ∗,Φ

)

+

nJ0+j−1∑

q=nJ0+j−(T−1)(2ℓ−j−1)

IF

(
Wj+J0,q

σJ0+j
, ∗,Φ

)

Using the notation: βj = 2αj2
2dj−ℓ/2+jK(d)f∗(0) and that IF is either bounded or equal to

H2/2,

1
√
nJ0+ℓ

ℓ∑

j=0

βj

nJ0+j−1∑

i=0

IF

(
WJ0+j,i

σJ0+j
, ∗,Φ

)

=
1√
nJ0+ℓ

ℓ∑

j=0

βj

nJ0+ℓ−1∑

i=0

2ℓ−j−1∑

v=0

IF

(
Wj+J0,2ℓ−ji+v

σJ0+j
, ∗,Φ

)
+ oP (1)

=
1

√
nJ0+ℓ

nJ0+ℓ−1∑

i=0

F(YJ0,ℓ,i, ∗) + oP (1) ,

where

F(YJ0,ℓ,i, ∗) =
ℓ∑

j=0

βj

2ℓ−j−1∑

v=0

IF

(
Wj+J0,2ℓ−ji+v

σJ0+j
, ∗,Φ

)

and

YJ0,ℓ,i =

(
WJ0+ℓ,i

σJ0+ℓ
,
WJ0+ℓ−1,2i

σJ0+ℓ−1
,
WJ0+ℓ−1,2i+1

σJ0+ℓ−1
, . . . ,

WJ0+j,2ℓ−ji

σJ0+j
,

. . .
WJ0+j,2ℓ−ji+2ℓ−j−1

σJ0+j
, . . . ,

WJ0,2ℓi

σJ0
, . . . ,

WJ0,2ℓi+2ℓ−1

σJ0

)T

is a 2ℓ+1 − 1 stationary Gaussian vector. By Lemma 7, F is of Hermite rank larger than 2.

Hence, from Theorem 6 applied to H(·) = F(·), XJ,i = YJ0,ℓ,i and h(·) = IF(·), we get

1√
nJ0+ℓ

nJ0+ℓ−1∑

i=0

F(YJ0,ℓ,i, ∗)
d−→ N (0, σ̃2∗) , (62)
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where σ̃2∗ = limn→∞ n−1
J0+ℓVar

(∑nJ0+ℓ−1

i=0 F(YJ0,ℓ,i, ∗)
)
. By [20, (26) and (29)] and by using

the same arguments as those used in the proof of Proposition 1, Condition (57) of Theorem 6

holds with f
(j,j′)
J (λ) = D

(r)

J0+j,j−j′(λ; f)/σJ0+jσJ0+j′ and g
(j,j′)
∞ = D

(r)
∞,j−j′(λ; d)/K(d), where

0 ≤ r ≤ 2j−j′ − 1 and DJ0+j,j−j′(·; f) is the cross-spectral density of the stationary between

scale process defined in (12). Lemma 11 and [20, Theorem 1] ensure that D
(r)
∞,j−j′(·; d) is a

bounded, continuous and 2π-periodic function.

By using Mehler’s formula [7, Eq. (2.1)] and the expansion of IF onto the Hermite polymials

basis given by: IF(x, ∗,Φ) =
∑

p≥2 cp(IF∗)Hp(x)/p!, where cp(IF∗) = E[IF(X, ∗,Φ)Hp(X)],

Hp being the pth Hermite polynomial, we get

1

nJ0+ℓ
Var
( nJ0+ℓ−1∑

i=0

F(YJ0,ℓ,i, ∗)
)

=
1

nJ0+ℓ

ℓ∑

j,j′=1

βjβj′

nJ0+ℓ−1∑

i,i′=0

2ℓ−j−1∑

v=0

2ℓ−j′−1∑

v′=0

E

[
IF
(WJ0+j,2ℓ−ji+v

σJ0+j
, ∗,Φ

)
IF
(WJ0+j′,2ℓ−j′ i′+v′

σJ0+j′
, ∗,Φ

)]

=
1

nJ0+ℓ

ℓ∑

j,j′=1

βjβj′

nJ0+j−1∑

i=0

nJ0+j′−1∑

i′=0

E

[
IF
(WJ0+j,i

σJ0+j
, ∗,Φ

)
IF
(WJ0+j′,i′

σJ0+j′
, ∗,Φ

)]
+ o(1)

=
1

nJ0+ℓ

ℓ∑

j,j′=1

βjβj′

nJ0+j−1∑

i=0

nJ0+j′−1∑

i′=0

∑

p≥2

c2p(IF∗)

p!
E

[WJ0+j,i

σJ0+j

WJ0+j′,i′

σJ0+j′

]p
+ o(1) . (63)

Without loss of generality, we shall assume in the sequel that j ≥ j′. (63) can be rewritten as

follows by using that i′ = 2j−j′q + r, where q ∈ N and r ∈ {0, 1, . . . , 2j−j′ − 1} and Eq. (18)

in [20]

1

nJ0+ℓ

ℓ∑

j,j′=1

βjβj′

nJ0+j−1∑

i=0

nJ0+j−1∑

q=0

2j−j′−1∑

r=0

∑

p≥2

c2p(IF∗)

p!
E

[WJ0+j,0

σJ0+j

WJ0+j′,2j−j′ (q−i)+r

σJ0+j′

]p
+ o(1)

=
nJ0+j

nJ0+ℓ

ℓ∑

j,j′=1

βjβj′
∑

|τ |<nJ0+j

2j−j′−1∑

r=0

∑

p≥2

c2p(IF∗)

p!

(
1− |τ |

nJ0+j

)
E

[WJ0+j,0

σJ0+j

WJ0+j′,2j−j′τ+r

σJ0+j′

]p
+o(1)

=
nJ0+j

nJ0+ℓ

ℓ∑

j,j′=1

βjβj′
∑

|τ |<nJ0+j

2j−j′−1∑

r=0

∑

p≥2

c2p(IF∗)

p!

(
1− |τ |

nJ0+j

)(∫ π

−π

D
(r)

J0+j,j−j′(λ; f)e
iλτ

σJ0+jσJ0+j′
dλ
)p

+o(1) ,

where DJ0+j,j−j′(·; f) is the cross-spectral density of the stationary between scale process

defined in (12). We aim at applying Lemma 12 with fn, gn, f and g defined hereafter.

fnJ0+j
(τ, p) =

c2p(IF∗)

p!

2j−j′−1∑

r=0

1{|τ | < nJ0+j}
(
1− |τ |

nJ0+j

)
E

[WJ0+j,0

σJ0+j

WJ0+j′,2j−j′τ+r

σJ0+j′

]p
.
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Observe that |fnJ0+j
| ≤ gnJ0+j

, where

gnJ0+j
(τ, p) =

c2p(IF∗)

p!

2j−j′−1∑

r=0

1{|τ | < nJ0+j}
(
1− |τ |

nJ0+j

)
E

[WJ0+j,0

σJ0+j

WJ0+j′,2j−j′τ+r

σJ0+j′

]2
.

Using [20, (26) and (29) in Theorem 1] we get that

lim
n→∞

DJ0+j,j−j′(λ; f)

σJ0+jσJ0+j′
=

2d(j−j′)

K(d)
D∞,j−j′(λ; d) .

This implies that limn→∞ fnJ0+j
(τ, p) = f(τ, p) where

f(τ, p) =
c2p(IF∗)

p!

2j−j′−1∑

r=0

(2d(j−j′)

K(d)

∫ π

−π
D

(r)
∞,j−j′(λ; d)e

iλτdλ
)p

.

Futhermore, limn→∞ gnJ0+j
(τ, p) = g(τ, p) where

g(τ, p) =
c2p(IF∗)

p!

22d(j−j′)

K(d)2

∣∣∣
∫ π

−π
D∞,j−j′(λ; d)e

iλτdλ
∣∣∣
2

2
,

and |x|22 =
∑r

k=1 x
2
k for x = (x1, . . . , xr) ∈ R

r. Using (63)-(65) in [20] we get

∑

p≥2

∑

τ∈Z

gnJ0+j
(τ, p) −→

(∑

p≥2

c2p(IF∗)

p!

)22d(j−j′)

K(d)2
2π

∫ π

−π
|D∞,j−j′(λ; d)|22dλ , as n→ ∞ ,

Then, with Lemma 12, we obtain

σ̃2∗ =
∑

p≥2

c2p(IF∗)(f
∗(0))2

p!K(d)p−2

ℓ∑

j,j′=0

4αjαj′2
dj(2+p)2dj

′(2−p)+j′
∑

τ∈Z

2j−j′−1∑

r=0

(∫ π

−π
D

(r)
∞,j−j′(λ; d)e

iλτdλ
)p

.

�

7. Technical Lemmas

Lemma 7. Let X be a standard Gaussian random variable. The influence functions IF

defined in Proposition 1 have the following properties

E[IF(X, ∗,Φ)] = 0 , (64)

E[XIF(X, ∗,Φ)] = 0 , (65)

E[X2IF(X, ∗,Φ)] 6= 0 . (66)

Proof of Lemma 7. We only have to prove the result for ∗ = MAD since the result for ∗ = CR

follows from [16, Lemma 12]. (64) comes from E(1{X≤1/m(Φ)}) = E(1{X≤Φ−1(3/4)}) = 3/4 and

E(1{X≤−1/m(Φ)}) = 1/4, where X is a standard Gaussian random variable. (65) follows from∫
R
x1{x≤Φ−1(3/4)}ϕ(x)dx −

∫
R
x1{x≤−Φ−1(3/4)}ϕ(x)dx = −ϕ(Φ−1(3/4)) + ϕ(−Φ−1(3/4)) = 0,

where ϕ is the p.d.f. of a standard Gaussian random variable and the fact that E(X) = 0. Let
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us now compute E[X2IF(X,MAD,Φ)]. Integrating by parts, we get
∫
R
x21{x≤Φ−1(3/4)}ϕ(x)dx−

3/4−
∫
R
x21{x≤−Φ−1(3/4)}ϕ(x)dx+1/4 = −2ϕ

(
Φ−1(3/4)

)
. Thus, E[X2IF(X,MAD,Φ)] = 2 6=

0, which concludes the proof. �

Lemma 8. Let X be a standard Gaussian random variable. The influence functions IF

defined in Lemma 1 have the following properties

E[IF2(X,MAD,Φ)] =
m2(Φ)

16ϕ (Φ−1(3/4)2)
= 1.3601 , (67)

E[IF2(X,CR,Φ)] ≈ 0.6077 . (68)

Proof of Lemma 8. Eq (68) comes from [27]. Since ,

E[IF2(X,MAD,Φ)] =
m2(Φ)

4ϕ (Φ−1(3/4)2)
Var

(1{|X|≤Φ−1(3/4)}

)
,

where 1{|X|≤Φ−1(3/4)} is a Bernoulli random variable with parameter 1/2, (67) follows. �

Lemma 9. ∫

R2

1

1 + |µ− µ′|
1

1 + |µ|
1

1 + |µ′|dµdµ
′ <∞ .

Proof of Lemma 9. Let us set I =
∫∞
−∞

∫∞
−∞ p(µ, µ′)dµdµ′, with

p(µ, µ′) =
1

1 + |µ − µ′|
1

1 + |µ|
1

1 + |µ′| .

Note that I = I1+ I2+ I3+ I4, where I1 =
∫∞
0

∫∞
0 p(µ, µ′)dµdµ′, I2 =

∫∞
0

∫ 0
−∞ p(µ, µ′)dµdµ′,

I3 =
∫ 0
−∞

∫∞
0 p(µ, µ′)dµdµ′ and I4 =

∫ 0
−∞

∫ 0
−∞ p(µ, µ′)dµdµ′. It is easy to see that I1 = I4

and I2 = I3. Let us now compute I1. Using partial fraction decomposition,

I1 =

∫ ∞

0

1

1 + µ′

(∫ ∞

µ′

1

1 + µ− µ′
1

1 + µ
dµ
)
dµ′ +

∫ ∞

0

1

1 + µ′

(∫ µ′

0

1

1− µ+ µ′
1

1 + µ
dµ
)
dµ′

=

∫ ∞

0

log(1 + µ′)

µ′(1 + µ′)
dµ′ + 2

∫ ∞

0

log(1 + µ′)

(2 + µ′)(1 + µ′)
dµ′ <∞ ,

since in the neighborhood of 0, log(1+µ′)/{µ′(1+µ′)} ∼ 1/(1+µ′), log(1+µ′)/{(2+µ′)(1+
µ′)} ∼ {−1/(1+µ′)+2/(2+µ′)} and in the neighborhood of ∞, log(1+µ′)/{µ′(1+µ′)} and

log(1+µ′)/{(2+µ′)(1+µ′)} ∼ log(µ′)/µ′2. Let us now compute I2. Using the same arguments

as previously, we get

I2 =

∫ ∞

0

1

1 + µ′

( ∫ ∞

0

1

1 + µ+ µ′
1

1 + µ
dµ
)
dµ′ =

∫ ∞

0

log(1 + µ′)

µ′(1 + µ′)
dµ′ <∞ .

�

Lemma 10. ∫

R

(∫

R

1

1 + |µ+ µ′|
1

1 + |µ|dµ
)2

dµ′ <∞ .
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Proof of Lemma 10. Let us set I =
∫∞
−∞

( ∫∞
−∞ p(µ, µ′)dµ

)2
dµ′, with

p(µ, µ′) =
1

1 + |µ+ µ′|
1

1 + |µ| .

Note that I ≤ 2(I1+I2+I3+I4), where I1 =
∫∞
0

( ∫∞
0 p(µ, µ′)dµ

)2
dµ′, I2 =

∫∞
0

( ∫ 0
−∞ p(µ, µ′)dµ

)2
dµ′,

I3 =
∫ 0
−∞

( ∫∞
0 p(µ, µ′)dµ

)2
dµ′ and I4 =

∫ 0
−∞

( ∫ 0
−∞ p(µ, µ′)dµ

)2
dµ′. It is easy to see that

I1 = I4 and I2 = I3. Let us now compute I1. Using partial fraction decomposition,

I1 =

∫ ∞

0

( ∫ ∞

0

1

1 + µ+ µ′
1

1 + µ
dµ
)2

dµ′ =

∫ ∞

0

( 1

µ′
log(1 + µ′)

)2
dµ′ <∞

since in the neighborhood of 0, [log(1+µ′)]2/µ′2 ∼ 1, and in the neighborhood of ∞, [log(1+

µ′)]2/µ′2 ∼ [log(µ′)]2/µ′2. Let us now compute I2. Using the same arguments as previously,

we get that there exists a positive constant C such that

I2 ≤ 2

∫ ∞

0

(∫ ∞

µ′

1

1 + µ− µ′
1

1 + µ
dµ
)2

dµ′ + 2

∫ ∞

0

(∫ µ′

0

1

1− µ+ µ′
1

1 + µ
dµ
)2

dµ′

≤ C

∫ ∞

0

[
log(1 + µ′)

µ′

]2
dµ′ + C

∫ ∞

0

[
log(1 + µ′)

(2 + µ′)

]2
dµ′ <∞ .

�

Lemma 11. Let eu(ξ) = 2−u/2 [1, e−i2−uξ, . . . , e−i(2u−1)2−uξ]T , where ξ ∈ R. For all u ≥ 0,

each component of the vector

D∞,u(λ; d) =
∑

l∈Z

|λ+ 2lπ|−2d eu(λ+ 2lπ) ψ̂(λ+ 2lπ)ψ̂(2−u(λ+ 2lπ)) ,

is bounded on (−π, π), where ψ̂ is defined in (4).

Proof of Lemma 11. We start with the case where l = 0. Using (5), we obtain that

2−u/2|λ|−2d|ψ̂(λ)||ψ̂(2−uλ)| = O(|λ|2M−2d), as λ→ 0 hence, (7) ensures that

2−u/2|λ|−2d|ψ̂(λ)||ψ̂(2−uλ)| = O(1). Let e
(k)
u denotes the k-th component of the vector eu.

For l 6= 0, (W-2) ensures that for all λ in (−π, π) there exists a positive constant C such that

|ψ̂(λ)| ≤ C/(1 + |λ|)α. Then, there exists a positive constant C ′ such that
∑

l∈Z∗

|λ+ 2πl|−2dψ̂(λ+ 2πl)ψ̂
(
2−u(λ+ 2πl)

)
e(k)u (λ) ≤ C ′

∑

l∈Z∗

|λ+ 2πl|−2d−2α .

If λ = 0,
∑
l∈Z∗

1/|2πl|2d+2α <∞ by (7). If λ 6= 0, then, since−π ≤ λ ≤ π,
∑
l∈Z∗

1/|λ+ 2πl|2d+2α ≤
∑
l∈Z∗

1/|π(2l − 1)|2d+2α <∞ by (7). �

Lemma 12. Let fn and gn be two sequences of measurable functions on a measure space

(Ω,F , µ) such that for all n |fn| ≤ gn. Assume that lim inf
n→∞

gn exists and is equal to g. Assume

also that
∫
gdµ = lim inf

n→∞

∫
gndµ and lim

n→∞
fn = f. Then

∫
lim inf
n→∞

fndµ = lim inf
n→∞

∫
fndµ.
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Proof of Lemma 12. Since fn = f+n − f−n , where f+n , f
−
n ≥ 0, we assume in the sequel that fn

is non negative. By Fatou’s Lemma
∫
lim inf
n→∞

(gn − fn)dµ ≤ lim inf
n→∞

∫
(gn − fn)dµ. Using that

lim inf
n→∞

gn = g and that
∫
gdµ = lim inf

n→∞

∫
gndµ, we obtain lim sup

n→∞

∫
fndµ ≤

∫
lim sup
n→∞

fndµ. By

applying Fatou’s Lemma to fn, we obtain
∫
lim inf
n→∞

fndµ ≤ lim inf
n→∞

∫
fndµ. Thus,

∫
fdµ =

∫
lim inf
n→∞

fndµ ≤ lim inf
n→∞

∫
fndµ ≤ lim sup

n→∞

∫
fndµ ≤

∫
lim sup
n→∞

fndµ =

∫
fdµ ,

which concludes the proof. �
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[16] C. Lévy-Leduc, H. Boistard, E. Moulines, S. Taqqu, M, and R. Valderio. Robust estimation of the scale

and of the autocovariance function of gaussian short and long range dependent processes. To appear in

Journal of Time Series Analysis, 2009.

[17] Y. Ma and M. Genton. Highly robust estimation of the auto-covariance function. Journal of Time Series

Analysis, 21(6):663–684, 2000.

[18] F. F. Molinares, V. A. Reisen, and F. Cribari-Neto. Robust estimation in long-memory processes under

additive outliers. J. Statist. Plann. Inference, 139(8):2511–2525, 2009.

[19] E. Moulines, F. Roueff, and M. S. Taqqu. Central Limit Theorem for the log-regression wavelet estimation

of the memory parameter in the Gaussian semi-parametric context. Fractals, 15(4):301–313, 2007.

[20] E. Moulines, F. Roueff, and M. S. Taqqu. On the spectral density of the wavelet coefficients of long

memory time series with application to the log-regression estimation of the memory parameter. J. Time

Ser. Anal., 28(2):157–187, 2007.

[21] E. Moulines and P. Soulier. Semiparametric spectral estimation for fractional processes. In Theory and

applications of long-range dependence, pages 251–301. Birkhäuser Boston, Boston, MA, 2003.
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