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Abstract. Until recently, the alveolar region could not be investigated
in-vivo. A novel technique, based on confocal microscopy, can now pro-
vide new images of the respiratory alveolar system, for which quantitative
analysis tools must be developed, for diagnosis and follow up of patholog-
ical situations. In particular, we wish to aid the clinician by developing a
computer-aided diagnosis system, able to discriminate between healthy
and pathological subjects. This paper describes this system, in which
images are first characterized through a 148-feature vector then classi-
fied by an SVM (Support Vector Machine). Experiments conducted on
smoker and non smoker images show that the dimensionality of the fea-
ture vector can be reduced significantly without decreasing classification
accuracy, and thus gaining some insight about the usefulness of features
for medical diagnosis. These promising results allow us to consider inter-
esting perspectives for this very challenging medical application.

1 Introduction

The lungs are the essential respiration organ. They are divided into two anatomic
and functional regions: (i) the air conduction system, that includes the trachea,
bronchi, and bronchioles, and (ii) the gas-exchange region, or lung parenchyma,
made of alveolar sacs. These sacs are made up of clusters of alveoli, tightly
wrapped in blood vessels, that allow for gas exchange. Whereas the conduction
airways can be explored in vivo during bronchoscopy, the alveolar region was
until recently unreachable for in vivo morphological investigation. Therefore,
the pathology of the distal lung is currently assessed only in vitro, using invasive
techniques such as open lung biopsies. No real time imaging was available.

Recently, a new endoscopic technique, called Fibered Confocal Fluorescence
Microscopy (FCFM), has been developed that enables the visualisation of the
more distal regions of the lungs in-vivo [1]. The technique is based on the
principle of fluorescence confocal microscopy, where the microscope objective
is replaced by a fiberoptic miniprobe, made of thousands of fiber cores. The
miniprobe can be introduced into the 2 mm working channel of a flexible bron-
choscope to produce in-vivo endomicroscopic imaging of the human respiratory
tract in real time. Real-time alveolar images are continuously recorded during



2 C. Désir et al.

the procedure and stored for further analysis. This very promising technique
could replace lung biopsy in the future and might prove to be helpful in a large
variety of diseases, including interstitial lung diseases [2].

In this context, a clinical trial is currently being conducted that collects
FCFM images in several pathological conditions of the distal lungs and on
healthy smoker and non-smoker volunteers. FCFM images represent the alve-
olar structure, made of elastin fiber (Figure 1), with an approximate resolution
of 1µm per pixel. This structure appears as a network of (almost) continuous
lines. This elastic fiber framework can be altered by distal lung pathologies and
as one can see on Figure 1, images acquired on pathological subjects differ from
the ones acquired on healthy subjects.

We describe in this paper a first attempt to classify FCFM images as healthy
or pathological. We have designed a 148-feature vector to describe the images,
the discriminative power of which is assessed through a leave-one-out evalua-
tion of a 1-Nearest Neighbour (1-NN) classifier. We then show that the size of
this feature vector can be reduced significantly without decreasing classification
accuracy by using an SVM wrapper-based feature selection technique. We thus
show how to gain some insight about usefulness of the features for the discrim-
ination of healthy/pathological FCFM images. The remaining of this paper is
organized as follows: our classification method is described in Section 2, and
results and discussion are provided in Section 3. Section 4 concludes and draws
some perspectives for this work.

(a) NS healthy (b) NS healthy (c) NS patho. (d) NS patho. (e) S healthy (f) S patho.

Fig. 1. FCFM images in non-smoking (NS) and smoking (S) subjects. In smoker im-
ages, the white spots are macrophages, which are cells normally invisible in non-smoker
but made visible by the smoke trapped in it.

2 Feature extraction and classification

2.1 Feature extraction

Features must be chosen to allow the discrimination between healthy and patho-
logical subjects. Despite the novelty of the images, their visual analysis allows
to highlight some differences, that can be used as a priori knowledge to design
the feature vector. The alveolar structure in healthy subjects can be described



Using a priori knowledge to classify in vivo images of the lung 3

as contrasted continuous lines and curves. On the opposite, in the pathological
subset, the disorganization of the meshing is illustrated by the numerous irregu-
larities and the tangle of the fibered structures (Figure 1). Differences are mostly
visible for the structure shape, image texture and contrast.

The structure contrast can be characterized by studying (i) first order
statistics on the image histogram: mean, variance, skewness, kurtosis, entropy,
(ii) pixel densities obtained on binarized images using Otsu thresholding, and
(iii) the sum of the image gradient values, obtained using Prewitt operator. We
could suppose that pathological images will have higher values of densities than
healthy ones because of an emphasized disorganization of the meshing in patho-
logical images.

The complexity of the structure shape can be characterized by study-
ing the image skeleton. After skeletonization [3] obtained on the binary image,
the number of junction points is computed. One can suppose that on clearly
organized, healthy images, this number will be small, contrary to pathological
images where the meshing mess will induce a higher number of points.

The image texture can be characterized by Haralick parameters computed
from co-occurrence matrix [4]. Co-occurrence matrix provides the joint distri-
bution of gray-level intensities between two image points. These two points are
located according several configurations, that represent different distances and
rotation angles. We chose the following classical 10 translation vectors: [0 1],
[-1 1], [-1 0], [-1 -1], [0 2], [-1 2], [-1 -2], [-2 1], [-2 0], [-2 -1]. From the features
originally proposed by Haralick, we retain the following ones: energy, contrast,
correlation, variance, inverse different moment, entropy, sum average, sum en-
tropy, sum variance, difference entropy, difference variance, and two information
measures of correlation. The only discarded feature is the maximum correlation
coefficient, which is too computationally expensive. To these 13 parameters we
added dissimilarity, a measure of homogeneity [5]. All these 14 parameters are
computed over the 10 co-occurrence matrices (Table 1).

Table 1. Features used to characterize FCFM images

Features Number

Histogram statistics 5
Contrast Pixel density 1

Sum of image gradient 1

Shape Number of junction points in skeleton 1

Texture Haralick parameters 140

Total 148



4 C. Désir et al.

2.2 Classifier

On the previously cited features several state-of-the-art classifiers have been im-
plemented. First a 1-Nearest Neighbour (1-NN) classifier is used to assess the
discriminating power of the features. Due to the high computational cost of the
1-NN classifier, we have also implemented a Support Vector Machine (SVM)
classifier on our features [6]. The SVM classifier, one of the most performing
and most used classification algorithm, is a binary classifier algorithm that looks
for an optimal hyperplane as a decision function in a high-dimensional space. A
classical choice for the kernel is the cubic polynomial kernel.

In order to improve the prediction performance of the classifier, and to pro-
vide faster and more cost-effective decision, variable selection [7] can be used.
It can also provide a better understanding of which visual features discriminate
the data. Support Vector Machine -Recursive Feature Elimination (SVM-RFE)
is one way to perform variable selection [8]. The goal is to find a subset of size
r among d variables (r < d) which maximizes the performance of the predictor.
The method is based on a sequential backward selection. One feature at a time
is removed until r features are left. The removed variables are the ones that
minimize the variation of the margin.

2.3 Experimental protocol

Because of the relatively small number of images in the non-smoker and the
smoker bases, a leave-one-out cross validation process is used, which ensures un-
biased generalization error estimation. It consists in extracting one sample image
from the image base for validation, the rest of the base being used for learning.
Recognition rate is computed over all the samples.

Table 2. Number of images in the non-smoker and smoker databases

Non-smoker database Smoker database

Healthy subjects 35 58

Pathological subjects 43 39

Total 78 97

3 Results

The SVM classifier and SVM-RFE based feature selection [8] are implemented
using the SVM and Kernel Methods Matlab Toolbox [9]. The system perfor-
mance is assessed with correct classification rate, error rate, false negative rate
(FN), which is the proportion of healthy instances that were erroneously re-
ported as pathological and false positive rate (FP), which is the proportion of
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pathological cases considered healthy.

Results obtained with the 1-NN classifier are shown in Table 3. Let us recall
that the 1-NN classifier is used here to assess the discriminative power of the fea-
ture set. As one can see in Table 3, the feature set seems to be better adapted to
the discrimination of healthy/pathological non-smoker images. This can be ex-
plained by the presence of macrophages and smoke trapped in the alveolar walls
in smoker images. Indeed, the line network is hidden behind the macrophages,
making it difficult to characterize the structure. On the other hand, recognition
rates of 95% and 89% indicate that room for improvement is left with this fea-
ture set.

Table 3. Results provided by 1-NN classifier

Non-smoker database Smoker database

Recog. rate 95% 89%

Error rate 5% 11%

FN 6% 9%

FP 5% 15%

Results obtained with the SVM and SVM-RFE are shown in Table 4. They
are quite satisfying for the considered databases. Thanks to feature selection,
the number of features, initially 148, drops down to 20 for non-smoker images,
and 36 for smoker images, without decreasing classification performance. The
selection of relevant variables allows to gain some insight about the usefulness of
features: the most discriminating ones for non smoker images are the number of
junction points, the contrast, the difference variance, and correlation computed
from co-occurrence matrices, which highlights the importance of local, contrast-
based differences between healthy and pathological subjects. On the other hand,
for smoker images, retained features include the sum of image gradient, the sum
variance, variance and contrast. Note that the number of junction points is no
more considered for smoker images, which can be explained by the fact that the
line network is hidden behind the macrophages. Finally, the reduced feature sets
obtained on smoker and non-smoker images can be compared: only 6 features are
jointly retained, which confirms that the discrimination of healthy/pathological
images should be investigated separately for smokers and non-smokers.

4 Conclusions

The present work deals with the classification of a new category of images from
the distal lung. The images were acquired using a fibered confocal fluorescence
microscopy, a technique that enables the observation of in vivo alveolar struc-
tures for the first time. Such images are not well described so far, and difficult to
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Table 4. Results provided by SVM and SVM-RFE classifier

Non-smoker database Smoker database
SVM SVM-RFE SVM SVM-RFE

Feature number 148 20 148 36

Recog. rate 92% 97% 94% 94%

Error rate 8% 3% 6% 6%

FN 9% 3% 5% 5%

FP 7% 2% 8% 7%

discriminate by pathologists and respiratory physicians. Our classification sys-
tem, that aims at discriminating healthy cases from pathological ones, shows
satisfying performance for non-smoker and smoker images. However, the cor-
responding database should be extended to confirm these results. Because the
clinical trial is ongoing, this will be feasible in the near future. Results could still
be improved by using other texture-oriented features such as the local binary
patterns, as well as more reliable classifiers such as random forests for example.

Future work will also concern rendering the process real-time, so as to aid
the clinician during in vivo examination. Classification methods could also give
information about which part of the image is the most discriminant or which
part of the structure might be more altered by pathologies. A future goal will
also be to discriminate between different pathologies: interstitial lung diseases
(such as systemic sclerosis, fibrosis, sarcoidosis), carcinomatous lesions etc.
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