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Abstract. The goal of this paper is to show that there are strong relations between
certain Monge-Ampère integrals appearing in holomorphic Morse inequalities, and
asymptotic cohomology estimates for tensor powers of holomorphic line bundles.
Especially, we prove that these relations hold without restriction for projective
surfaces, and in the special case of the volume, i.e. of asymptotic 0-cohomology,
for all projective manifolds. These results can be seen as a partial converse to the
Andreotti-Grauert vanishing theorem.

Résumé. Le but de ce travail est de montrer qu’il y a des relations fortes
entre certaines intégrales de Monge-Ampère apparaissant dans les inégalités de
Morse holomorphes, et les estimations asymptotiques de cohomologie pour les
fibrés holomorphes en droites. En particulier, nous montrons que ces relations
sont satisfaites sans restriction pour toutes les surfaces projectives, et dans le cas
particulier du volume, c’est-à-dire de la 0-cohomologie asymptotique, pour toutes
les variétés projectives. Ces résultats peuvent être vus comme une réciproque
partielle au théorème d’annulation d’Andreotti-Grauert.
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1. Main results

Throughout this paper, X denotes a compact complex manifold, n = dimCX
its complex dimension and L → X a holomorphic line bundle. In order to
estimate the growth of cohomology groups, it is interesting to consider appropriate
“asymptotic cohomology functions”. Following notation and concepts introduced
by A. Küronya [Kür06, FKL07], we introduce

(1.1) Definition. One defines the asymptotic q-cohomology of L to be

ĥq(X,L) := lim sup
k→+∞

n!

kn
hq(X,L⊗k).

Clearly, the definition can also be given for a Q-line bundle L or a Q-divisor D,
and in the case q = 0 one gets what is usually called the volume of L, namely

(1.2) Vol(X,L) = ĥ0(X,L) = lim sup
k→+∞

n!

kn
h0(X,L⊗k).

(see also [DEL00], [Bou02], [Laz04]). It has been shown in [Kür06] for the

projective case and in [Dem10] in general that the ĥq functional induces a
continuous map

DNSR(X) ∋ α 7→ ĥq(X,α)

defined on the “divisorial Neron-Severi space” DNSR(X) ⊂ H1,1
BC(X,R), i.e. the

vector space spanned by real linear combinations of classes of divisors in the real
Bott-Chern cohomology group of bidegree (1, 1). Here Hp,q

BC(X,C) is defined as the
quotient of d-closed (p, q)-forms by ∂∂-exact (p, q)-forms, and there is a natural
conjugationHp,q

BC(X,C) → Hq,p
BC(X,C) which allows us to speak of real classes when

q = p. Notice that Hp,q
BC(X,C) coincides with the usual Dolbeault cohomology

group Hp,q(X,C) when X is Kähler, and that DNSR(X) coincides with the usual
Néron-Severi space

NSR(X) = R⊗Q

(
H2(X,Q) ∩H1,1(X,C)

)

when X is projective. It follows from holomorphic Morse inequalities (cf. [Dem85],
[Dem91]) that asymptotic cohomology can be compared with certain Monge-
Ampère integrals.

(1.3) Theorem ([Dem85]). For every holomorphic line bundle L on a compact

complex manifold X, one has the “weak Morse inequality”

(i) ĥq(X,L) 6 inf
u∈c1(L)

∫

X(u,q)

(−1)qun

where u runs over all smooth d-closed (1, 1)-forms which belong to the cohomology

class c1(L) ∈ H1,1
BC(X,R), and X(u, q) is the open set

X(u, q) :=
{
z ∈ X ; u(z) has signature (n− q, q)

}
.



1. Main results 3

Moreover, if we put X(u,6 q) :=
⋃

06j6qX(u, j), the “strong Morse inequality”

(ii)

q∑

j=0

(−1)q−jĥj(X,L) 6 inf
u∈c1(L)

∫

X(u,6q)

(−1)qun

holds provided that all lim sup’s involved in the ĥj(X,L) are limits.

It is a natural problem to ask whether the inequalities (1.3) (i) and (1.3) (ii)
might not always be equalities. These questions are strongly related to the
Andreotti-Grauert vanishing theorem [AG62]. A well-known variant of this theo-
rem says that if for some integer q and some u ∈ c1(L) the form u(z) has at least
n− q+1 positive eigenvalues everywhere (so that X(u,> q) =

⋃
j>qX(u, j) = ∅),

then Hj(X,L⊗k) = 0 for j > q and k ≫ 1. We are asking here whether conversely
the knowledge that cohomology groups are asymptotically small in a certain de-
gree q implies the existence of a hermitian metric on L with suitable curvature,
i.e. no q-index points or only a very small amount of such.

The first goal of this note is to prove that the answer is positive in the case
of the volume functional (i.e. in the case of degree q = 0), at least when X is
projective algebraic.

(1.4) Theorem. Let L be a holomorphic line bundle on a projective algebraic

manifold. then

Vol(X,L) = inf
u∈c1(L)

∫

X(u,0)

un.

The proof relies mainly on five ingredients: (a) approximate Zariski decom-
position for a Kähler current T ∈ c1(L) (when L is big), i.e. a decomposition
µ∗T = [E] + β where µ : X̃ → X is a modification, E an exceptional divisor
and β a Kähler metric on X̃ ; (b) the characterization of the pseudoeffective cone
([BDPP04]), and the orthogonality estimate

E · βn−1
6 C

(
Vol(X,L)− βn

)1/2

proved as an intermediate step of that characterization; (c) properties of solutions
of Laplace equations to get smooth approximations of [E] ; (d) log concavity of
the Monge-Ampère operator ; and finally (e) birational invariance of the Morse
infimums. In the case of higher cohomology groups, we have been able to treat
only the case of projective surfaces :

(1.5) Theorem. Let L→ X be a holomorphic line bundle on a complex projective

surface. Then both weak and strong inequalities (1.3) (i) and (1.3) (ii) are equalities
for q = 0, 1, 2, and the lim sup’s involved are limits.

Thanks to the Serre duality and the Riemann-Roch formula, the (in)equality
for a given q is equivalent to the (in)equality for n − q. Therefore, on surfaces,
the only substantial case which still has to be checked in addition to Theorem 1.4



4 A converse to the Andreotti-Grauert theorem

is the case q = 1 : this is done by using Grauert’ criterion that the intersection
matrix (Ei ·Ej) is negative definite for every exceptional divisor E =

∑
cjEj . Our

statements are of course trivial on curves since the curvature of any holomorphic
line bundle can be taken to be constant with respect to any given hermitian metric.

I warmly thank Burt Totaro for stimulating discussions in connection with his
recent work [Tot10].

2. Invariance by modification

It is easy to check that the asymptotic cohomology function is invariant by
modification, namely that for every modification µ : X̃ → X and every line bundle
L we have

(2.1) ĥq(X,L) = ĥq(X̃, µ∗L).

In fact the Leray’s spectral sequence provides an E2 term

Ep,q2 = Hp(X,Rqµ∗OX̃
(µ∗L⊗k)) = Hp(X,OX(L

⊗k)⊗Rqµ∗OX̃
).

Since Rqµ∗OX̃
is equal to OX for q = 0 and is supported on a proper analytic

subset of X for q > 1, one infers that hp(X,OX(L
⊗k ⊗ Rqµ∗OX̃

) = O(kn−1) for
all q > 1. The spectral sequence implies that

hq(X,L⊗k)− ĥq(X̃, µ∗L⊗k) = O(kn−1).

We claim that the Morse integral infimums are also invariant by modification.

(2.2) Proposition. Let (X,ω) be a compact Kähler manifold, α ∈ H1,1(X,R) a

real cohomology class and µ : X̃ → X a modification. Then

inf
u∈α

∫

X(u,q)

(−1)qun = inf
v∈µ∗α

∫

X(v,q)

(−1)qvn,(i)

inf
u∈α

∫

X(u,6q)

(−1)qun = inf
v∈µ∗α

∫

X(v,6q)

(−1)qvn.(ii)

Proof. Given u ∈ α on X , we obtain Morse integrals with the same values by
taking v = µ∗u on X̃ , hence the infimum on X̃ is smaller or equal to what is on X .
Conversely, we have to show that given a smooth representative v ∈ µ∗α on X̃,
one can find a smooth representative u ∈ X such that the Morse integrals do not
differ much. We can always assume that X̃ itself is Kähler, since by Hironaka
[Hir64] any modification X̃ is dominated by a composition of blow-ups of X . Let
us fix some u0 ∈ α and write

v = µ∗u0 + ddcϕ
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where ϕ is a smooth function on X̃. We adjust ϕ by a constant in such a way that
ϕ > 1 on X̃. There exists an analytic set S ⊂ X such that µ : X̃rµ−1(S) → XrS
is a biholomorphism, and a quasi-psh function ψS which is smooth on X r S and
has −∞ logarithmic poles on S (see e.g. [Dem82]). We define

(2.3) ũ = µ∗u0 + ddcmaxε0(ϕ+ δ ψS ◦ µ , 0) = v + ddcmaxε0(δ ψS ◦ µ , −ϕ)

where maxε0 , 0 < ε0 < 1, is a regularized max function and δ > 0 is very small.
By construction ũ coincides with µ∗u0 in a neighborhood of µ−1(S) and therefore
ũ descends to a smooth closed (1, 1)-form u on X which coincides with u0 near S,
so that ũ = µ∗u. Clearly ũ converges uniformly to v on every compact subset
of X̃ r µ−1(S) as δ → 0, so we only have to show that the Morse integrals are
small (uniformly in δ) when restricted to a suitable small neighborhood of the

exceptional set E = µ−1(S). Take a sufficiently large Kähler metric ω̃ on X̃ such
that

−
1

2
ω̃ 6 v 6

1

2
ω̃, −

1

2
ω̃ 6 ddcϕ 6

1

2
ω̃, −ω̃ 6 ddcψS ◦ µ.

Then ũ > −ω̃ and ũ 6 ω̃ + δ ddcψS ◦ µ everywhere on X̃. As a consequence

|ũn| 6
(
ω̃+δ(ω̃+ddcψS ◦µ)

)n
6 ω̃n+nδ(ω̃+ddcψS ◦µ)∧

(
ω̃+δ(ω̃+ddcψS ◦µ)

)n−1

thanks to the inequality (a + b)n 6 an + nb(a + b)n−1. For any neighborhood V
of µ−1(S) this implies

∫

V

|ũn| 6

∫

V

ω̃n + nδ(1 + δ)n−1

∫

X̃

ω̃n

by Stokes formula. We thus see that the integrals are small if V and δ are small.
The reader may be concerned that Monge-Ampère integrals were used with an
unbounded potential ψS , but in fact, for any given δ, all the above formulas
and estimates are still valid when we replace ψS by maxε0(ψS,−(M + 2)/δ)
with M = max

X̃
ϕ, especially formula (2.3) shows that the form ũ is unchanged.

Therefore our calculations can be handled by using merely smooth potentials.

3. Proof of the infimum formula for the volume

We have to show that

(3.1) inf
u∈c1(L)

∫

X(u,0)

un 6 Vol(X,L)

Let us first assume that L is a big line bundle, i.e. that Vol(X,L) > 0. Then it is
known by [Bou02] that Vol(X,L) is obtained as the supremum of

∫
Xrsing(T )

Tn for
Kähler currents T = − i

2π
∂∂h with analytic singularities in c1(L); this means that
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locally h = e−ϕ where ϕ is a strictly plurisubharmonic function which has the same
singularities as c log

∑
|gj |

2 where c > 0 and the gj are holomorphic functions. By

[Dem92], there exists a blow-up µ : X̃ → X such that µ∗T = [E] + β where E is a

normal crossing divisor on X̃ and β > 0 smooth. Moreover, by [BDPP04] we have
the orthogonality estimate

(3.2) [E] · βn−1 =

∫

E

βn−1
6 C

(
Vol(X,L)− βn

)1/2
,

while

(3.3) βn =

∫

X̃

βn =

∫

Xrsing(T )

Tn approaches Vol(X,L).

In other words, E and β become “more and more orthogonal” as βn approaches the
volume (these properties are summarized by saying that µ∗T = [E]+ β defines an
approximate Zariski decomposition of c1(L), cf. also [Fuj94]). By subtracting to β
a small linear combination of the exceptional divisors and increasing accordingly
the coefficients of E, we can achieve that the cohomology class {β} contains a

positive definite form β′ on X̃ (i.e. is the fundamental form of a Kähler metric);
we refer e.g. to ([DP04], proof of Lemma 3.5) for details. This means that we
can replace T by a cohomologous current such that the corresponding form β is
actually a Kähler metric, and we will assume for simplicity of notation that this
situation occurs right away for T . Under this assumption, there exists a smooth
closed (1, 1)-form v belonging to the Bott-Chern cohomology class of [E], such
that we have identically (v − δβ) ∧ βn−1 = 0 where

(3.4) δ =
[E] · βn−1

βn
6 C′(Vol(X,L)− βn

)1/2

for some constant C′ > 0. In fact, given an arbitrary smooth representative
v0 ∈ {[E]}, the existence of v = v0 + i∂∂ψ amounts to solving a Laplace equation
∆ψ = f with respect to the Kähler metric β, and the choice of δ ensures that we
have

∫
X
f βn = 0 and hence that the equation is solvable. Then ũ := v + β is

a smooth closed (1, 1)-form in the cohomology class µ∗c1(L), and its eigenvalues
with respect to β are of the form 1 + λj where λj are the eigenvalues of v. The
Laplace equation is equivalent to the identity

∑
λj = nδ. Therefore

(3.5)
∑

16j6n

λj 6 C′′(Vol(X,L)− βn
)1/2

.

The inequality between arithmetic means and geometry means implies

∏

16j6n

(1 + λj) 6
(
1 +

1

n

∑

16j6n

λj

)n
6 1 + C3(Vol(X,L)− βn

)1/2
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whenever all factors (1 + λj) are nonnegative. By 2.2 (i) we get

inf
u∈c1(L)

∫

X(u,0)

un 6

∫

X̃(ũ,0)

ũn

6

∫

X̃

βn
(
1 + C3(Vol(X,L)− βn

)1/2)

6 Vol(X,L) + C4(Vol(X,L)− βn
)1/2

.

As βn approches Vol(X,L), this implies inequality (3.1).

We still have to treat the case when L is not big, i.e. Vol(X,L) = 0. Let A
be an ample line bundle and let t0 > 0 be the infimum of real numbers such that
L + tA is a big Q-line bundle for t rational, t > t0. The continuity of the volume
function implies that 0 < Vol(X,L+ tA) 6 ε for t > t0 sufficiently close to t0. By
what we have just proved, there exists a smooth form ut ∈ c1(L + tA) such that∫
X(ut,0)

unt 6 2ε. Take a Kähler metric ω ∈ c1(A) and define u = ut − tω. Then

clearly ∫

X(u,0)

un 6

∫

X(ut,0)

unt 6 2ε,

hence

inf
u∈c1(L)

∫

X(u,0)

un = 0.

Inequality (3.1) is now proved in all cases.

4. Estimate of the first cohomology group on a projective
surface

Assume first that L is a big line bundle on a projective non singular variety X .
As in section 3, we can find an approximate Zariski decomposition, i.e. a blow-up
µ : X̃ → X and a current T ∈ c1(L) such µ∗T = [E] + β, where E an effective

divisor and β a Kähler metric on X̃ such that

(4.1) Vol(X,L)− η < βn < Vol(X,L), η ≪ 1.

(On a projective surface, one can even get exact Zariski decomposition, but we
want to remain general at this point, so that the arguments might possibly be
applied later for arbitrary dimension). By blowing-up further, we may even assume
that E is a normal crossing divisor. We select a hermitian metric h on O(E) and
take

(4.2) uε =
i

2π
∂∂ log(|σE|

2
h + ε2) + ΘO(E),h + β ∈ µ∗c1(L)
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where σE ∈ H0(X̃,O(E)) is the canonical section and ΘO(E),h the Chern curvature
form. Clearly, by the Lelong-Poincaré equation, uε converges to [E] + β in the
weak topology as ε→ 0. Straightforward calculations yield

uε =
i

2π

ε2D1,0
h σE ∧D1,0

h σE
(ε2 + |σE |2)2

+
ε2

ε2 + |σE |2
ΘE,h + β.

The first term converges to [E] in the weak topology, while the second, which is
close to ΘE,h near E, converges pointwise everywhere to 0 on X̃ r E. A simple
asymptotic analysis shows that

( i

2π

ε2D1,0
h σE ∧D1,0

h σE
(ε2 + |σE |2)2

+
ε2

ε2 + |σE |2
ΘE,h

)p
→ [E] ∧Θp−1

E,h

in the weak topology for p > 1, hence

(4.3) lim
ε→0

unε = βn +
n∑

p=1

(
n

p

)
[E] ∧Θp−1

E,h ∧ βn−p.

In arbitrary dimension, the signature of uε is hard to evaluate, and it is also non
trivial to decide the sign of the limiting measure limunε . However, when n = 2, we
get the simpler formula

lim
ε→0

u2ε = β2 + 2[E] ∧ β + [E] ∧ΘE,h.

In this case, E can be assumed to be an exceptional divisor (otherwise some part
of it would be nef and could be removed from the poles of T ). Hence the matrix
(Ej ·Ek) is negative definite and we can find a smooth hermitian metric h on O(E)
such that (ΘE,h)|E < 0, i.e. ΘE,h has one negative eigenvalue everywhere along E.

(4.4) Lemma. One can adjust the metric h of O(E) in such a way that ΘE,h is

negative definite on a neighborhood of the support |E| of the exceptional divisor,

and ΘE,h + β has signature (1, 1) there. (We do not care about the signature far

away from |E|).

Proof. At a given point x0 ∈ X , let us fix coordinates and a positive quadratic
form q on C2. If we put ψε(z) = εχ(z) log(1 + ε−1q(z)) with a suitable cut-off
function χ, then the Hessian form of ψε is equal to q at x0 and decays rapidly
to O(ε log ε)|dz|2 away from x0. In this way, after multiplying h with e±ψε(z),
we can replace the curvature ΘE,h(x0) with ΘE,h(x0) ± q without substantially
modifying the form away from x0. This allows to adjust ΘE,h to be equal to (say)
−1

4β(x0) at any singular point x0 ∈ Ej ∩ Ek in the support of |E|, while keeping
ΘE,h negative definite along E. In order to adjust the curvature at smooth points
x ∈ |E|, we replace the metric h with h′(z) = h(z) exp(−c(z)|σE(z)|

2). Then the
curvature form ΘE,h is replaced by ΘE,h′(x) = ΘEh

(x) + c(x)|dσE|
2 at x ∈ |E|
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(notice that dσE(x) = 0 if x ∈ sing |E|), and we can always select a real function
c so that ΘE,h′ is negative definite with one negative eigenvalue between −1/2
and 0 at any point of |E|. Then ΘE,h′ + β has signature (1, 1) near |E|.

With this choice of the metric, we see that for ε > 0 small, the sum

ε2

ε2 + |σE |2
ΘE,h + β

is of signature (2, 0) or (1, 1) (or degenerate of signature (1, 0)), the non positive
definite points being concentrated in a neighborhood of E. In particular the index
set X(uε, 2) is empty, and also

uε 6
i

2π

ε2D1,0
h σE ∧D1,0

h σE
(ε2 + |σE |2)2

+ β

on a neighborhood V of |E|, while uε converges uniformly to β on X̃ r V . This
implies that

β2
6 lim inf

ε→0

∫

X(uε,0)

u2ε 6 lim sup
ε→0

∫

X(uε,0)

u2ε 6 β2 + 2β · E.

Since
∫
X̃
u2ε = L2 = β2 + 2β · E +E2 we conclude by taking the difference that

−E2 − 2β ·E 6 lim inf
ε→0

∫

X(uε,1)

−u2ε 6 lim sup
ε→0

∫

X(uε,1)

−u2ε 6 −E2.

Let us recall that β ·E 6 C(Vol(X,L)−β2)1/2 = 0(η1/2) is small by (4.1) and the

orthogonality estimate. The asymptotic cohomology is given here by ĥ2(X,L) = 0
since h2(X,L⊗k) = H0(X,KX ⊗L⊗−k) = 0 for k > k0, and we have by Riemann-
Roch

ĥ1(X,L) = ĥ0(X,L)− L2 = Vol(X,L)− L2 = −E2 − β · E +O(η).

Here we use the fact that n!
knh

0(X,L⊗k) converges to the volume when L is big.
All this shows that equality occurs in the Morse inequalities (1.3) when we pass to
the infimum. By taking limits in the Neron-Severi space NSR(X) ⊂ H1,1(X,R),
we further see that equality occurs as soon as L is pseudo-effective, and the same
is true if −L is pseudo-effective by Serre duality.

It remains to treat the case when neither L nor −L are pseudo-effective. Then
ĥ0(X,L) = ĥ2(X,L) = 0, and asymptotic cohomology appears only in degree 1,

with ĥ1(X,L) = −L2 by Riemann-Roch. Fix an ample line bundle A and let
t0 > 0 be the infimum of real numbers such that L+ tA is big for t rational, t > t0,
resp. let t′0 > 0 be the infimum of real numbers t′ such that −L + t′A is big for
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t′ > t′0. Then for t > t0 and t′ > t′0, we can find a modification µ : X̃ → X and
currents T ∈ c1(L+ tA), T ′ ∈ c1(−L+ t′A) such that

µ∗T = [E] + β, µ∗T ′ = [F ] + γ

where β, γ are Kähler forms and E, F normal crossing divisors. By taking a
suitable linear combination t′(L+tA)−t(−L+t′A) the ample divisor A disappears,
and we get

1

t+ t′

(
t′[E] + t′β − t[F ]− tγ

)
∈ µ∗c1(L).

After replacing E, F , β, γ by suitable multiples, we obtain an equality

[E]− [F ] + β − γ ∈ µ∗c1(L).

We may further assume by subtracting that the divisors E, F have no common
components. The construction shows that β2 6 Vol(X,L + tA) can be taken
arbitrarily small (as well of course as γ2), and the orthogonality estimate implies
that we can assume β ·E and γ ·F to be arbitrarily small. Let us introduce metrics
hE on O(E) and hF on O(F ) as in Lemma 4.4, and consider the forms

uε =+
i

2π

ε2D1,0
hE
σE ∧D1,0

hE
σE

(ε2 + |σE |2)2
+

ε2

ε2 + |σE |2
ΘE,hE

+ β

−
i

2π

ε2D1,0
hF
σF ∧D1,0

hF
σF

(ε2 + |σF |2)2
−

ε2

ε2 + |σF |2
ΘF,hF

− γ ∈ µ∗c1(L).

Observe that uε converges uniformly to β − γ outside of every neighborhood of
|E| ∪ |F |. Assume that ΘE,hE

< 0 on VE = {|σE | < ε0} and ΘF,hF
< 0 on

VF = {|σF | < ε0}. On VE ∪ VF we have

uε 6
i

2π

ε2D1,0
hE
σE ∧D1,0

hE
σE

(ε2 + |σE |2)2
−

ε2

ε2 + |σF |2
ΘF,hF

+ β +
ε2

ε20
Θ+
E,hE

where Θ+
E,hE

is the positive part of ΘE,hE
with respect to β. One sees immediately

that this term is negligible. The first term is the only one which is not uniformly
bounded, and actually it converges weakly to the current [E]. By squaring, we
find

lim sup
ε→0

∫

X(uε,0)

u2ε 6

∫

X(β−γ,0)

(β − γ)2 + 2β · E.

Notice that the term − ε2

ε2+|σF |2
ΘF,hF

does not contribute to the limit as it
converges boundedly almost everywhere to 0, the exceptions being points of |F |,
but this set is of measure zero with respect to the current [E]. Clearly we have∫
X(β−γ,0)

(β − γ)2 6 β2 and therefore

lim sup
ε→0

∫

X(uε,0)

u2ε 6 β2 + 2β · E.
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Similarly, by looking at −uε, we find

lim sup
ε→0

∫

X(uε,2)

u2ε 6 γ2 + 2γ · F.

These lim sup’s are small and we conclude that the essential part of the mass is
concentrated on the 1-index set, as desired.
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