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Abstract

Podosomes are involved in the spreading and motility of various cells to a solid
substrate. These dynamical structures, which have been proven to consist
of a dense actin core surrounded by an actin cloud, nucleate when the cell
comes in the vicinity of a substrate. During the cell spreading or motion, the
podosomes exhibit collective dynamical behaviors, forming clusters and rings.
We design a simple model aiming at the description of internal molecular
turnover in a single podosome: actin filaments form a brush which grows
from the cellular membrane whereas their size is regulated by the action of
a severing agent, the gelsolin. In this framework, the characteristic sizes of
the core and of the cloud, as well as the associated characteristic times are
expressed in terms of basic ingredients. Moreover, the collocation of the actin
and gelsolin in the podosome is understood as a natural result of the internal
dynamics.
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1. Introduction

All along the adult life, two types of cell insure the permanent renewal
of the bone material: the osteoclasts, which resorb the bone, and the os-
teoblasts, which secrete new material replacing the old one. When an os-
teoclast encounters a substrate, small structures, the podosomes, appear in
the contact region. Podosomes are actin structures involved in the spreading
and motility of various cells (dendritic cells, osteoclasts, macrophages) to a
solid substrate [1, 2, 3, 4]. They have been proven to consist of a dense actin
core surrounded by an actin cloud [5, 6].

In an initial stage, the podosomes form aggregates (clusters) in which
they remain randomly distributed with a distance of about 1.4 µm between
them. In a second stage, podosomes disappear at the center of the initial
cluster, forming then an annulus (ring) that migrates toward the periphery
of the contact region with a velocity of about 2 µm/min. During this pro-
cess, podosomes which remain immobile, preferably disappear along the inner
boundary of the annulus whereas others nucleate at the outer boundary. The
whole process results in an increase of the surface area of the contact region
between the cell and the substrate [5].

In the confocal microscope, the apparent shape of a podosome is a cone
of typical height h ≃ 0.5 µm and base radius rp ≃ 0.15 µm. It is made of
a dense assembly of actin filaments, the core, preferably oriented along the
perpendicular to the cell membrane [7]. Interestingly, FRAP (Fluorescence
Recovery After Photobleaching) experiments have proven that podosomes
are dynamical structures in spite of their stationary shape during their life-
span which is about 2 min [5]: the podosomes grow during about 30 s before
they reach an apparent steady-state during which the filaments continuously
grow from the cellular membrane.

The mechanisms that regulate these structures are not known at present
but probably involve actin regulators that are specifically found in podosomes,
like cortactin and Wiskott-Aldrich syndrome protein (WASP), which local-
ize directly underneath the podosome [6]. Among them, the gelsolin, an
actin severing agent, has been proven to be essential for the podosome reg-
ulation [8, 9]. Fluorescence experiments in which the actin and the gelsolin
are marked by different fluorescent dyes show that the activity of the two
molecules collocate: the concentration of the gelsolin is large in the podosome
core as well as in the surrounding cloud (Fig. 1).

In a first approach [10], we focussed on the dynamics of the actin in the
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core and in the cloud. Reducing the complex biological system to a simplified
model involving only the synthesis of actin filaments at the cell membrane
and the severing, we accounted for the observed apparent shape of the single
podosome and for experimental FRAP results, which proved that podosomes
are dynamical structures. However, the previous model could not account
for the colocalization of the gelsolin and actin fluorescence signals. In the
present Letter, introducing equations governing the activity of the gelsolin
molecule, we propose a far more complete model which explains why the
concentration of the gelsolin is large in both the core and the cloud and we
discuss the consequences for the dynamics of the podosomal structures.

2. Model and definitions

Following the same idea as developed in [10], we consider a podosome as
a dense assembly of independent actin filaments, the actin core. Seeking for
simplicity, and in accordance with recent experimental results [11], we will
consider that the filaments are not branched. Each filament is supposed to
grow, from a nucleation site located at the cell membrane, by addition of
monomers whereas its size is limited by the action of the severing molecule,
the gelsolin (Fig. 2). The filaments that are released from the core diffuse
freely in the cytoplasm (the intra cellular medium) and form the actin cloud
[5]. In the cloud, the free filaments are subsequently cut by the gelsolin.

In order to account for the dynamics of the actin in the core, we consider
the probability bn(t), at time t, for a filament attached to the nucleation site
to consist of (n+1) monomers, linked by n bonds. The number of filaments
in the core is M and the typical radius of the structure at the membrane,
σ (Note that no additional assumption about the geometrical arrangement
of the filaments in the core is made). For the freely-diffusing filaments, we
consider cn(r⃗, t) the concentration, at time t and position r⃗, of the filaments
which consist of (n+1) monomers linked by n bonds. In accordance, c0(r⃗, t)
denotes the concentration of the freely-diffusing actin monomers.

In the core, the growth of the filaments is insured by the addition of actin
monomers from a nucleation site with the frequency v. The growth velocity
of the filaments is thus av, where a (∼ 2.7 nm) denotes the diameter of the
actin monomer. Seeking for simplicity, we will assume that the typical size σ
of the nucleation site is small compared to the typical diffusion length so that
the local concentration of the actin monomer, at time t, is c0(⃗0, t), constant
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in the podosome core and, thus, that the polymerization frequency v, which
might depend on c0, is the same for all the filaments [12].

The severing of the actin filaments is due to the action of the gelsolin
[13]. Gelsolin is a potent actin-filament severing-protein. In the presence
of micromolar concentration of calcium, gelsolin rapidly binds to the side of
actin filaments, which is followed by a relatively slow severing process. After
severing, the gelsolin caps the barbed end. We mention that the activity of
the severing agent is also regulated by other species, especially phospholipids
(PIP, PIP2,. . . [13]).

In order to account for the severing, in the framework of our simplistic
model, we shall keep only the basic ingredients of the gelsolin severing ac-
tivity. We will assume that the concentration of calcium ions is large and
that their diffusion is fast. In this limit, the activity of the gelsolin will not
be limited by any kinetic effect associated with that of the calcium ions. In
the same way, seeking for simplicity, we will neglect any effect associated
with the phospholipids. Thus, the gelsolin diffuses in the cytoplasm with
the diffusion coefficient Dg and attaches to any available bond between two
actin monomers with the kinetic constant kon. Once a bond is occupied by a
gelsolin molecule, it is cut after the typical time τ ≡ 1/β. Even if the gelsolin
molecule has been recognized to cap the barbed end, we will assume that the
molecule is released in the cytoplasm right after severing. The main reason
for this choice is that the orientation of the actin filaments in the podosome
core is not known at present. Thus, considering the internal dynamics of the
core, we are unable to decide if the gelsolin molecule remains attached to the
filament inside the core or diffuses away with the released part. Both situ-
ations can be considered in the model, leading to slightly different systems
of equations. However, capping does not change the qualitative behavior of
these equations and we shall ignore it in this first approach.

The dynamics of the gelsolin will be accounted for by considering its local
concentration in the cytoplasm g(r⃗) and the probabilities fn(t), respectively
hn(r⃗, t), for one bond between two actin monomers in the core, respectively in
the cytoplasm, to be occupied by a gelsolin molecule. In order to make these
definitions clear, we consider a first example and write the total number of
gelsolin molecules bound to filaments having n bonds in the core. In average,
nfn gelsolin molecules are attached to one filament having n bonds in the
core. In addition, the number of filaments having n bonds is Mbn. As
a result, the total number of gelsolin molecules bound to all the filaments
having n bonds in the core is (Mbn)× (nfn) = M(nfnbn). Second example,
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locally in the cloud, at time t and position r⃗, the total concentration of the
gelsolin, free or bound to filaments, is cg ≡ g(r⃗, t) +

∑∞
n=1 nhn(r⃗, t)cn(r⃗, t).

The actin monomers and the filaments diffuse in the cytoplasm when not
attached to the core. We denote D0 the diffusion coefficient of the actin
monomers. Following Einstein’s prescription [14], we can assume that the
diffusion coefficient of an actin filament made of (n + 1) monomers, free of
gelsolin molecule (hn = 0), decreases with its molecular weight according to
Dn = D0/(n+ 1). When gelsolin molecules are attached to the filament, we
can accordingly assume that:

Dn ≡ D0

1 + n(1 + αhn)
, (1)

where α ≡ mg/ma ≃ 2.1 is the ratio of the mass mg ≃ 90 kDa of the gelsolin
molecule to the mass ma ≃ 43 kDa of the actin monomer [12].

3. Set of equations governing the dynamics

In the present section, we shall establish the set of equations governing
the dynamics of the distribution bn, diffusion fields, g and cn, as well as of the
probabilities, fn and hn, which account for the dynamics of the podosome
core and surrounding cloud.

3.1. The core

The internal dynamics of the actin core is accounted for by the distribu-
tion bn(t) of the filament length and the probability fn which describes the
occupation of the bonds by the gelsolin molecule.

Taking into account the polymerization at the nucleation site and the
severing, the equation governing the temporal evolution of the distribution
bn(t) is given by:

dbn
dt

= v(bn−1 − bn)− βnfnbn + β

∞∑
k=n+1

fkbk. (2)

The first term accounts for the growth of the filaments due to the polymer-
ization which results in an advection of the distribution toward larger n with
the frequency v. The two additional terms account for the severing: First,
bn(t) is decreased because filaments of size n are cut at any of the nfn occu-
pied bonds with the characteristic frequency β; second, bn(t) increases when
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any filament of size k, larger than n, whose (n + 1)th bond (counted from
the membrane) is occupied by a gelsolin molecule (which occurs with the
probability fk) is cut, at that specific position, after the time 1/β.

The dynamics of the fraction fn is more difficult to account for and, in
order to make the result understandable, we shall detail the contributions
of the various mechanisms. Consider the variation of the number, nfnbn, of
gelsolin molecules attached to filaments having the size n. The addition of
a monomer at the base does not change the number of gelsolin molecules so
that the contribution of the polymerization is:

d

dt
(nfnbn)

∣∣∣
pol.

= v(n− 1)fn−1bn−1 − vnfnbn. (3)

The severing of a filament having the size n, at any of its occupied bonds,
leads to the loss of the number nfn of gelsolin molecules for the considered
population, so that the first contribution of the severing is:

d

dt
(nfnbn)

∣∣∣
sev.1

= −(βnfn)nfnbn (4)

where the prefactor (βnfn) takes into account that the filament is likely to be
cut at nfn bonds with the characteristic time 1/β. The severing of a filament
having the size k, larger than n, at the (n+1)th bond, leads to a filament of
size n whose bonds are occupied by a gelsolin molecule with the probability
fk, so that the second contribution of the severing is:

d

dt
(nfnbn)

∣∣∣
sev.2

=
∞∑

k=n+1

(βfk)nfkbk (5)

where the prefactor (βfk) accounts for the fact that the (n + 1)th bond is
occupied with the probability fk and cut with the characteristic time 1/β if
so. Finally, the gelsolin molecules that are in solution, in the vicinity of the
core, attach to the available bonds [number n(1−fn)] with the characteristic
time kong0, where g0 is the local concentration of the gelsolin, which leads to:

d

dt
(nfnbn)

∣∣∣
att.

= (kong)n(1− fn)bn (6)

Summing all the contributions listed in the Eqs. (3) to (6), we get the equa-
tion governing the dynamics of fnbn

d

dt
(nfnbn) = v[(n− 1)fn−1bn−1 − nfnbn]
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−βn2f 2
nbn + βn

∞∑
k=n+1

f 2
k bk (7)

+kong0n(1− fn)bn.

The coupled equations (2) and (7) govern the dynamics of the distribution
bn and of the fraction fn. We point out that Eqs. (2) and (7) couple the
internal dynamics of the core with that of the diffusion fields in the cloud
through the local concentration of the gelsolin g0 and the velocity v which
might depend on the local concentration of the actin monomer c0.

3.2. The cloud

The dynamics of the cloud can be accounted for by considering, in addi-
tion to the severing, the diffusion of the various species in solution. Before
we establish the boundary conditions, we first consider the concentration of
the gelsolin, g, the concentration of the actin monomers and filaments, cn,
and then the fraction of occupied bonds, hn.

The gelsolin molecules, on the one hand, diffuse with the diffusion coef-
ficient Dg, detach from the bond when a filament is cut and attach to the
available bonds of the filaments in solution. Thus, because of the severing
process, the diffusing filaments constitute volume sources and sinks and the
field g(r⃗, t) is governed by:

∂g

∂t
= Dg∆g + β

∞∑
k=1

hkkck − kong
∞∑
k=1

[1− hk]kck (8)

where ∆ denotes the Laplacian operator.
At the same time, the filaments diffuse in the cytoplasm, are cut with the

characteristic time 1/β at any of the nhn(r⃗, t) occupied bonds, so that:

∂cn
∂t

= ∇⃗.[Dn∇⃗cn]− βnhncn + 2β
∞∑

k=n+1

hkck. (9)

Note that the diffusion coefficient depends on space. Indeed, Dn depends
on the fraction of bonds occupied by the gelsolin (Eq. 1). The factor 2 in
the last term is due to the fact that there are two possibilities for getting a
filament of size n when cutting a larger filament. Finally, we mention that
the equation (9) holds true for the monomer and that we get for n = 0:

∂c0
∂t

= D0∆c0 + 2β
∞∑
k=1

hkck. (10)
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The dynamics of the fraction hn is again more difficult to account for and
we shall detail the contributions of the various mechanisms. We consider the
contributions of all the mechanisms that induce a variation of the number
nhncn, in the unit volume, of gelsolin molecules attached to the filaments of
size n. The filaments diffuse and carry, each, a number nhn(r⃗, t) molecules:

∂

∂t
(nhncn)

∣∣∣
diff.

= ∇⃗.(nhnDn∇⃗cn) (11)

Again, the diffusion does not reduce to a simple Laplacian equation, not only
because the diffusion coefficient depends on space and time but also because
the number of gelsolin molecules on the filaments depends on space and time.
In addition, the severing of the filaments having the length n leads, on the
one hand, to the decrease of the local concentration of the gelsolin attached
to the filaments of size n according to:

∂

∂t
(nhncn)

∣∣∣
sev.1

= −βn2h2
ncn. (12)

Indeed, nhn(r⃗, t) gelsolin molecules are attached to the filament which is
thus cut with the frequency βnhn(r⃗, t), nhn(r⃗, t) gelsolin molecules being
transfered to smaller filaments or released in solution. On the other hand, the
severing of larger filaments (k > n), at two specific positions occupied with
the probability hk(r⃗, t), leads to a filament of size n and provides nhk(r⃗, t)
gelsolin molecules:

∂

∂t
(nhncn)

∣∣∣
sev.2

=
∞∑

k=n+1

β(nhk)(2hk)ck (13)

Finally, free gelsolin molecules attach to the filaments at the available bonds:

∂

∂t
(nhncn)

∣∣∣
att.

= kongn(1− hn)cn (14)

From the contributions Eqs. (11) to (14), we get the equation governing the
product hncn:

∂

∂t
(nhncn) = ∇⃗.[nhnDn∇⃗cn]− βn2h2

ncn (15)

+2βn
∞∑

k=n+1

h2
kck + kongn[1− hn]cn
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The equations (2) and (7) govern the dynamics of the distribution bn(t)
and of the fraction fn(t) in the core whereas the equations (8), (9) and (15)
govern the dynamics of cn(r⃗, t) and g(r⃗, t), the actin and gelsolin concentra-
tion fields, and the fraction hn(r⃗, t) in the cloud.

3.3. The boundary conditions

Due to the polymerization, the core acts as a sink of monomeric actin
whereas, due to the severing, it acts as a source of both actin monomers and
filaments. In the same way, due to the attachment to the available bonds,
the core acts as a sink of gelsolin molecules but, due to the severing process,
is a source of gelsolin, free or attached to diffusing filaments. In order to
account for these sources and sinks, we shall write the boundary conditions
at the core, supposed to be centered in r⃗ = 0⃗.

Diffusing filaments are released in solution when filaments of the core are
cut at the appropriate bond whereas, the total number of filaments in the
core being M and v monomers being added per unit time, Mv monomers
are consumed: ∫

S

Dn(∇⃗cn).dS⃗ = Mv δ(n)−Mβ

∞∑
k=n+1

fkbk (16)

where S is a surface enclosing the core and, dS⃗ the surface element oriented
outwards. The diffusion coefficient, which depends on hn(r⃗, t), is evaluated
at the boundary. The first term on the right-hand side accounts for the
consumption of monomers (δ stands for the Kronecker delta function) due
to the polymerization.

The severing of a longer filament (k > n) in the core, after a time 1/β
if the bond is occupied (which occurs with the probability fk) releases in
solution nfk gelsolin molecules which then diffuse attached to the filament:∫

S

nhnDn(∇⃗cn).dS⃗ = −nMβ
∞∑

k=n+1

f 2
k bk. (17)

Finally, per unit time, kong0 gelsolin molecules attach to any available
bond in the core [g0 ≡ g(0, t) stands for the gelsolin concentration at the
core] whereas one molecule is released in solution each time a bond is cut:

Dg

∫
S

∇⃗g.dS⃗ = −Mβ
∞∑
n=1

nf 2
nbn (18)
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+Mkong0

∞∑
n=1

n(1− fn)bn

Far away from the core, the concentration of any filament vanishes, whereas
the concentrations of the monomers and of the gelsolin tend respectively to
the overall concentrations c∞0 and g∞:

lim
r→∞

cn(r⃗, t) = c∞0 δ(n) (19)

lim
r→∞

g(r⃗, t) = g∞ (20)

We mention also that, accordingly, the concentration of gelsolin molecules
attached to filaments of size n also vanishes so that lim

r→∞
(nhncn) = 0 (∀n).

4. Parameters of the problem

From now on, it is particularly interesting to consider the parameters of
the problem. First, the equation governing the internal dynamics of the core
[Eqs. (2) and (7)] suggest that the pertinent timescale is τ = 1/β whereas the
equation governing the actin diffusion field [Eqs. (9) and (15)] suggest that
the pertinent length-scale is

√
D0/β. We shall thus report results expressed

in terms of the dimensionless variables t̃ ≡ βt and r̃ ≡ r
√
β/D0. Second, one

can consider that the pertinent concentration scale is the concentration of the
actin far away from the core so that one can express all the concentrations
relative to c∞0 . We thus define, for instance, c̃n = cn/c

∞
0 and g̃ = g/c∞0 .

The remaining independent parameters of the problem are α, Dg, g
∞,

M , σ, kon and the function v. The parameter α is the ratio of the gelsolin
and actin molecular weights which plays a role in the dependency of Dn on
hn. We define d ≡ Dg/D0, γ ≡ g∞/c∞0 and ζ ≡ kong

∞/β in accordance
with the choice of the dimensionless variables. The parameters M and σ
account for the surface density of the actin filaments inside the podosome
core. Indeed, assuming that σ ≪

√
D0/β one can consider that the surface

in the boundary conditions [Eqs. (16) to (18)] is a sphere of radius σ/2. As-
suming then radial diffusion fields, one exhibits the dimensionless parameter
Φ ≡ (2M/πσ2)/(

√
D0/β c∞0 ) which compares the density of the filaments in

the core with the surface density of the actin monomer in a layer of thickness√
D0/β.
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5. Results

We shall first study the steady-state solution to the problem and then
discuss the characteristic time associated with the dynamics of the system.
The solutions of the problem are calculated numerically.

5.1. The core

The internal dynamics of the core, governed by the equations (2) and
(7), is coupled to the cloud only by the velocity v which might depend on
the local concentration of the actin monomer and by the local concentra-
tion of the gelsolin, g0. Thus, it is pertinent to consider the steady-state
solution for given v∗ ≡ v/β and ζ0 ≡ kong0/β. In the figure 3a, we report
typical solutions for bn and fnbn as functions of n in the steady state. We
observe that the distribution bn presents the same typical shape already de-
scribed in [10]. From the similarity of the shapes of bn and fnbn, we can
conclude that fn does not drastically depend on n and, thus, that the gel-
solin bound to the filaments is rather homogeneously distributed among the
filaments having different lengths. We define and report the podosome size,
n ≡

∑∞
n=0(n + 1)bn, and the average fraction of gelsolin on the filaments in

the core, fg ≡ (
∑∞

n=0 nfnbn)/(
∑∞

n=0 nbn) (Fig. 3b). We find numerically that

fg and n/
√

πv∗/2 are functions of ζ0/
√
v∗ which can be understood as the

product of the attachment characteristic frequency kong0 and of the charac-
teristic time of the core growth τcore ≡ 1/

√
βv (∝ n/v∗). For ζ0/

√
v∗ ≫ 1, the

gelsolin tends to occupy all the bonds so that fg ≃ 1 and n ≃
√
πv∗/2 as we

already demonstrated analytically [10]. For smaller ζ0/
√
v∗, the concentra-

tion fg < 1, which leads to a less effective severing process and, accordingly,
to a larger typical core size n.

Thus, the characteristics of the podosome core do not depend drastically
on the local concentration of the gelsolin, g0. Indeed, changing ζ0 by a factor
104 (from 100 to 0.01) changes n by a factor 5 only. By contrast, n ∝ v∗1/2

and, thus, the characteristic time of the podosome growth, τ̃core ∼ v∗−1/2

drastically depend on the polymerization velocity which might depend on
the local concentration of the actin monomer.

5.2. The cloud

The dynamics of the actin and of the gelsolin in the surrounding core is
governed by the equations (8), (9) and (15). The podosome core, assumed to
be centered in r⃗ = 0⃗, is accounted for by the boundary conditions (16) to (20).
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Considering again the steady state, we can report the typical concentration
cn of the actin filaments of size n and the concentration nhncn of gelsolin
bound to the filaments of size n in the cloud as functions of the distance to
the core r̃. In the figure 4a, one observes that the diffusion length associated
with the longer filaments (larger n) is shorter. This can be understood easily
considering the fact that the gelsolin can cut the longer filaments in a larger
number of locations. Thus, the longer filaments have a smaller probability to
reach a large distance from the core. By contrast to cn, each concentration
nhncn has a non-monotonic dependency on the distance r̃ and reaches a
maximum at a finite distance from the core (Fig. 4b). The increase near
the core is due to the continuous binding of free gelsolin molecules whereas,
far from the core, the decrease results from the decrease of the filament
concentration cn. We define and report the total concentration of the actin
monomer, ca ≡

∑∞
n=0(n+ 1)cn, and of the gelsolin, cg ≡ g +

∑∞
n=0 nhncn, as

functions of the distance r from the podosome core (Fig. 4c). We note that
both the actin and the gelsolin accumulate around the core in a region having
a dimensionless radius, denoted r̃c, which is governed by the competition
between the diffusion and the severing: The typical diffusion-coefficient is
of the order of D0/n whereas the typical severing frequency is about nβ.
Considering that rc is of the order of the associated diffusion lengh

√
D0/β/n,

we get rc ∼
√
D0/v and, thus, r̃c ∼ 1/

√
v∗. Interestingly, considering the

dynamics, one can estimate the time necessary to establish the steady-state
diffusion field to be of the order of τcloud ∼ r2c/(D0/n) so that τ̃cloud ∼ τ̃core.
Thus, provided that the polymerization frequency v is given, the dynamics
of the whole system involves a single characteristic time τ = 1/

√
βv. We

point out that, the typical number n being a slowly varying function of the
gelsolin concentration at the core, the typical size and, thus, the characteristic
time associated with the cloud dynamics depend only slowly on the local
concentration of the gelsolin.

6. Discussion

In a former publication [10], two of us and a co-worker presented the only-
available model of the turnover of the actin within the podosomal structure.
They showed that such models can explain, for instance, that the typical
height of the core is auto-regulated by the interplay between the polymeriza-
tion and severing processes or why the steady-state core might have a finite
lifespan. However, the model was too simplistic to account for the collocal-
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ization of the actin and gelsolin molecules or to envisage a modeling of the
podosomes collective-dynamics in a so simple framework.

Here, we presented a model of the podosome dynamics including not
only the actin turnover but also the gelsolin dynamics. We show that the
polymerization of actin filaments at the cell membrane and the diffusion
and attachment kinetics of the gelsolin account for the observation of large
concentrations of the actin and of the gelsolin in the podosome region, in both
the core and the cloud. The model is thus compatible with the collocalization
of the molecules observed in the fluorescence microscope. In addition, the
model predicts that the characteristics of the podosome in the steady-state,
typical size and characteristic time for instance, are not sensitive to the local
concentration of the gelsolin. The main conclusions of the former publication
still hold true when the dynamics of the gelsolin is taken into account. The
present model might easily be modified in order to include the capping.

The interplay between the gelsolin and actin concentration fields is now
accounted for. We then think that the present model includes the ingredients
that make it possible to envisage a modeling of the podosomes collective-
dynamics based on a system of equations similar to that presented here. The
dependency of the polymerization frequency on the local concentration of
actin at the core and the interaction between cores through the diffusion fields
in the cloud might explain the collective dynamics of the system. Especially,
the formation and the migration of podosome rings [5] in the framework of
the present model shall be investigated in the near future.
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Figure captions

Figure 1: Fluorescence images of an osteoclast - The podosomes correspond to the bright
dots. The use of two dyes exhibiting different fluorescence wavelengths makes it possible
to image separately the actin (A) and the gelsolin (G). The experiment clearly demon-
strates the colocalization of the actin and gelsolin fluorescence signals in the podosome
core [Fixed osteoclast observed in an Axioplan 2 Imaging from Zeiss: actin marked with
Phalloidin (wavelength 488 nm) and gelsolin with Anti-Gelsolin bound with fluorescent
second antibody (wavelength 562 nm)]

Figure 2: Sketch of the podosomal structure.

Figure 3: Typical solution for the podosome core - (a) Typical bn and fnbn (v∗ = 1000,
ζ0 = 10). (b) Fraction fg (open squares) and normalized size n/

√
πv∗/2 (full diamonds)

vs. ζ0/
√
v∗.

Figure 4: Typical solution for the cloud - (a) Concentration of the actin filaments c̃n in
the cloud. (b) Concentration nhnc̃n of gelsolin bound to the filaments of size n in the
cloud. (c) Total concentrations of the gelsolin c̃g and of the actin c̃a in the cloud around
the core. One can notice that, in spite of the small concentration of gelsolin far away from
the podosome (γ = 5.855 10−2), the concentrations of the actin and of the gelsolin in the
core region are of the same order (v∗ = 1000, ζ0 = 10, α = 0, d = 1, ϕ = 2.516 10−3,
ζ = 1.171 102 and γ = 5.855 10−2. These parameters insure ζ0 = 10 which corresponds
to the core described in Fig. 3).
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Figure 3
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Figure 4
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