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Abstract—The detection of Steady State Visual
Evoked Potentials (SSVEP) in the electroencephalo-
gram (EEG) allows creating non-invasive Brain-
Computer Interface (BCI). To produce an SSVEP re-
sponse, a visual stimulus must be presented to the user.
This stimulus can be a light that flickers at a particular
frequency. Classical SSVEP-BCIs consider a frequency
for each BCI command. One problem for an SSVEP
based BCI can be the number of simultaneous flickering
stimuli. It is difficult to render many flashing boxes
with as many frequencies as boxes, due to hardware
constraint like the vertical refresh rate of a screen. As
an alternative to the common paradigm that assigns
one command to each frequency, we propose to classify
different type of SSVEP responses based on the duty
cycle of the flickering lights, the frequency being the
same for evoking SSVEP responses. Three paradigms
based on different duty cycles over six subjects are com-
pared. The offline classification of the obtained SSVEP
responses is performed with spatial filters combined
with a Bayesian Linear Discriminant Analysis classi-
fier. The results show that it is possible to efficiently
discriminate SSVEP responses given by visual stimuli
at the same frequency but with different duty cycles.

I. Introduction
Brain-Computer Interfaces based on non-invasive scalp

electroencephalography (EEG) have emerged as an in-
creasingly active multidisciplinary research area. Indeed,
BCIs allow to communicate through direct neural activity
measurements [1]–[3]. Different BCI paradigms have been
proposed. They differ in the type of brain activity to
detect. For creating an EEG-based BCI, brain responses
such as event-related potentials, event-related desynchro-
nization/synchronization (ERD/ERS), slow cortical po-
tentials are commonly used. Several obstacles remain for
proposing commercial BCIs. Among these obstacles, the
low information transfer rate (ITR), which depends on
the number of available commands and the classification
rate, can be an issue for users with a high expectation
in the BCI performance. For BCIs that require special
external stimuli, e.g., visual stimuli, their quality and their
sources can be a bottleneck for increasing the number
of basic commands in a BCI. As a full part of the BCI
system, these stimuli shall be reliable, stable and should
not involve any risk or inconvenience like visual fatigue for
the user. When persons have to use a BCI daily, e.g. who

are unable to communicate through any classical ways,
the ergonomic aspect can be as important as the ITR.
As BCI applications are usually aimed for persons with
severe disabilities, a BCI shall be convenient as much as
possible [4]–[6].

In this paper, we focus on the detection of Steady
State Visual Evoked Potentials (SSVEP) responses [7],
[8]. SSVEP-BCIs are described as more accessible than
other BCI systems. SSVEP-BCIs have been considered for
several applications [9]–[11] and are described as reliable in
the literature [12]–[14]. Compared to other BCI paradigms,
they allow a high information transfer rate (ITR) and
little or no user training [15]–[17]. However, BCIs based
on SSVEP are not considered as independent BCIs as
the generation of the VEP depends on the gaze control
via extraocular muscles and particular nerves. For this
SSVEP-BCI, the user shall be able to control his/her eye
movements.

BCIs based on SSVEP use the response of the user at-
tention to an oscillating visual stimulus. When a person is
looking at one particular oscillating object, then its brain
response can provide a way for tailoring a BCI. Usually,
the stimuli that are used for inducing SSVEP responses are
flickering lights at different frequencies. When an object
flickers at a frequency f, then a response occurs in the
visual cortex. This response corresponds to the frequency
of the stimulus and its higher harmonics [18]. Therefore,
it is possible to obtain different responses in relation
to different frequencies. It is then possible to assign a
command for each SSVEP response to create a BCI.

The amplitude and the phase that define an SSVEP
response depend on three main parameters [19]:
• The frequency. The SSVEP responses with maximum
amplitude are usually obtained in three frequency bands:
5-12Hz, 12-25Hz and 30-50Hz [20].

• The intensity of the flickering light.
• The structure of the repetitive visual pattern. This
parameter is the focus of this paper, which deals with
the stimulus duty cycle as the main parameter between
SSVEP responses. The goal here is to determine if the
duty cycle can be considered as a reliable parameter for
the classification of SSVEP responses, i.e., if it could
be used as a parameter for evoking different kinds of



detectable SSVEP responses.
The paper is organized as follows: the different methods

for spatial filtering and classification are first presented
in the second section. Then, the experimental protocol
is described in the third section. Finally, the results are
presented and discussed in the las two sections.

II. Methods
A. Signal structure

The signal for the stimuli depends on the hardware de-
vice [21]. Stimuli are usually presented on a set of LEDs or
on an LCD screen. We consider the visual stimulation on
a classical LCD screen with a vertical refresh rate of 60Hz.
With visual stimuli on a monitor screen, the graphical user
interface (GUI) of the BCI application and the stimuli can
be on the same screen. When the visual stimuli and the
application share the same screen, the subject does not
need to shift his/her gaze too much between the stimuli
and the GUI [16]. Monitors can also provide to the user
different feedbacks, e.g. neurofeedbacks. The frequency
power, the detection probability and other information
can be displayed in real time near the visual stimuli for
allowing both a better control of the user/patient and
a control from the supervisor of the experiment. The
repetitive visual pattern is composed of n frames with
n > 1. Thus, the frequency of a stimulus based on n frames
is 60/n Hz. A visual stimulus is represented on the screen
by a flickering box (white/black).

The duty cycle D is defined by:

D = τ

T
(1)

where τ is the duration when the function is non-zero,
i.e. the number of black frames and T is the period
of the function, i.e. the number of frames describing a
period of the visual stimulus. Usually, the duty cycle of
the repetitive signal is not mentioned in the literature
for SSVEP experiments. In these cases, we can assume
D = 0.5 when the information is not provided. The
structure of the signal was specified in [22]. Kelly et al.
consider two frequencies at 10.03Hz and 12.04Hz with duty
cycles of 0.16 and 0.2, respectively. The impact of this
choice on the overall performance was not measured.

B. Spatial filters
In an online BCI application, several types of SSVEP

responses must be taken into account. Each type of SSVEP
response corresponds to a particular frequency. In this
multi-class classification problem, we consider Nf classes
where each class corresponds to an SSVEP response, i.e. a
particular frequency. We consider a visual stimulation with
a flicker-frequency of f Hz is applied. We use the following
description for the signal yi(t) as the voltage between the
electrode i and a reference electrode at a time t:

yi(t) =
Nh∑
k=1

ai,k sin(2πkft+ Φi,k) +Bi,t (2)

where Nh is the number of considered harmonics h. The
signal is decomposed into two parts: the SSVEP response
and the noise. The first part corresponds to the evoked
SSVEP response signal, which is composed of a number
of sinusoids with frequencies in relation to the stimulus
frequency and a number of Nh harmonic frequencies. Each
sinusoid is therefore defined by its amplitude ai,k and its
phase Φi,k. The second part Bi,t is dedicated to all the
information that is not relevant to the SSVEP response.

The online detection of an SSVEP response on an EEG
signal requires a time segment for the signal analysis. We
consider a time segment of Nt samples of the signals, with
a sampling frequency of Fs Hz.

yi = Xai +Bi (3)

where yi = [yi(1), . . . , yi(Nt)]T contains the EEG signal
for the electrode i in one time segment. The SSVEP infor-
mation matrix X is of size Nt × 2Nh. For Ny electrodes,
the signal is defined as:

Y = XA+B (4)

where Y = [y1, . . . , yNy
] contains the sampled EEG signals

from all the electrodes. A contains all the amplitudes for
all the expected sinusoids for all electrode signals.

For enhancing discriminant features from the signal, the
signals from the electrodes must be combined. A channel is
used for a combination of the signals measured by different
electrodes. A vector of channel data is denoted by s. Its
purpose is to enhance the information contained in the
EEG while reducing the nuisance signals. A channel signal
is defined as a linear combination of yi.

s =
Ny∑
i=1

wiyi = Y w (5)

where wi is the weight for the ith electrode.
Several channels can be created by using several sets

of weights w. We note Ns the number of channels. The
channel creation is an essential step for enhancing the
relevant signal [18], [23], [24]. For creating the channels,
i.e. spatial filters, we consider the minimum energy combi-
nation, which is based on the principal component analysis
(PCA) [14]. Its purpose is to have an optimal combination
of the electrode signals, which cancels the nuisance signals
as much as possible. The technique removes any potential
discriminant components from all the electrode signals,
by projecting them onto the orthogonal complement of
the formal model of the signal X. It can generate a
frequency power estimation of any frequency. Different sets
of channels are created for each frequency. Thus, channels
are set in relation to the expected frequency to observe.
This method allows the combination of a fixed number
of electrodes that minimizes the nuisance signals. The
power of the expected frequencies and their harmonics are
calculated for the Ns channels. For each frequency, the
evaluation of the SSVEP response is defined by:



R = 1
NsNh

Ns∑
i=1

Nh∑
j=1
|P (i, j)| (6)

where |P (i, j)| is the amplitude of the frequency power
in the channel i at the harmonic j. Ns, the number of
channels, is equal to the number of electrodes. Nh is the
number of considered harmonics. Nh = 1 is equivalent of
using only the frequency of the visual stimulus. For the
classification in the next sections, we set Nh = 4.

C. Classifiers
For the classification of SSVEP responses evoked by

visual stimuli of the same frequencies but with different
duty cycle, we consider the Bayesian linear discriminant
analysis (BLDA) [25]. This classifier has been tested and
successfully applied for the detection of P300 [26], [27].
This classifier finds a discriminant vector w such that the
distance between the associated vector of a class c and
wT p is minimized when the input vector p belongs to the
class c. For this classifier we define the input vector p that
contain frequency power at each harmonic:

p(j) =
Ns∑
i=1
|P (i, j)| (7)

with 1 ≤ j ≤ Nh. For this classifier, we consider a time
segment of 2s for the analysis of the SSVEP response.

III. Experiments
A. Materials

The EEG signal was recorded with sensors placed on
the surface of the scalp via 8 standard passive (with
no inbuilt circuitry) EEG electrodes; EEG are usually
used for non-invasive BCIs. The locations of the elec-
trodes are AFZ for ground, CZ for the reference and
PO3, PO4, PZ , O10, O9, OZ for the input electrodes [28].
The impedances below 5kΩ were achieved by using an
abrasive electrode gel. The EEG data were acquired with
a G.tec amplifier [29], the sampling frequency was 128Hz.
During the EEG acquisition, an analog bandpass filter
between 2 and 35Hz, and a notch filter around 50Hz
(main frequency in Europe) were applied directly inside
the amplifier. For the stimuli display, an LCD screen of
a laptop with the resolution of 1680 × 1050 pixels and a
vertical refresh rate of 60Hz was used. The luminance is
about 180.0cd/m2 with an estimated contrast of 280 : 1.
The visual stimulus corresponds to a flickering square
centered in the middle of the screen with a luminance
equivalent to about 0.27cd.

B. Subjects
Six healthy male subjects participated in this study.

These subjects had no risk of epileptic seizure. They were
all volunteers (unpaid) and belong to the same age group,

with an average age of 28.5 years and a standard deviation
of 1.22 years. They are not BCI-naive subjects as they have
all already tested some SSVEP-BCI systems.

C. Paradigms
Three paradigms were tested during the experiments.

Each paradigm corresponds to a different duty cycle. For
the first paradigm (A), the number of black frames is
equal to the number of white frames in the repetitive
visual stimulation. In the second and third paradigm, B
and C, the number of black frames is equal to 2 and 1,
respectively. Table I presents the signal structure for each
paradigm and each frequency (1 for rendering a black box,
0 for for white box).

The experimental protocol is the same for each
paradigm. Each subject had to look during 20s at one
particular stimulus. The task was to focus on the flickering
box on the screen. The subjects were instructed to gaze at
the flashing targets. If the subject was not focusing seri-
ously on the screen, the session was restarted. The order
of the trials was randomized. The lighting conditions and
the subject position were identical for all experiments. For
each frequency, six sessions were recorded. The subjects
were sitting in a comfortable chair, wearing an EEG cap
as described previously (cf. section III-A).

TABLE I
Parameters for the each paradigm.

Paradigm Frequency (Hz) D Signal structure
6.66 0.444 111100000

A 7.50 0.500 11110000
8.57 0.429 1110000
6.66 0.222 110000000

B 7.50 0.250 11000000
8.57 0.286 1100000
6.66 0.111 100000000

C 7.50 0.125 10000000
8.57 0.143 1000000

IV. Results
Figure 1 presents the amplitude of frequencies till 30Hz

for Subject 2. For each paradigm, the amplitude was
determined on a whole trial of 20s. In this case, the channel
combination was achieved with a Laplacian filter. This
figure highlights the interest for considering the amplitude
at the different harmonics for determining the duty cycle
of the visual stimulus. Indeed, the frequency of the visual
stimulus (6.66Hz) and its first harmonic (13.33Hz) have
high amplitude in the first paradigm. Furthermore, the
first harmonic has higher amplitude than the fundamental
frequency of the stimulus. In the second paradigm, the
distribution of the amplitude is different: the second and
third harmonics (20 and 26.66Hz) have clearly a peak. The
SSVEP response seems more reliable in this paradigm. In
the last paradigm, which has the lowest duty cycle, the
amplitude of the first harmonic is very low compared to the
others. The amplitude at 20Hz remains high and reliable



Fig. 1. Frequency amplitude during one trial of 20s for a stimulus at 6.66Hz for Subject 2.

D=0.444 D=0.222 D=0.111

for the detection. The low accuracy in the third paradigm
can be explained by the low amplitude of the first har-
monic and by consequence its low discriminant power in
the detection. This harmonic can involve confusion in the
detection. These distributions of the amplitude between
the different harmonics are also observed for the two other
frequencies.

The effect of the duty cycle on the SSVEP responses
is evaluated thanks to the accuracy of their detection.
The signal detection technique is applied on the signal
every 100ms. The amplitude analysis suggested that the
frequency power of the different harmonics could be dis-
criminant for the classification of SSVEP responses evoked
by the same frequency and different duty cycle. Table II
presents the recognition rate of the binary classification of
several SSVEP responses with different duty cycles. For
this classification, 50% of the recorded EEG was used for
training, the remaining data being used for the test. The
goal is to determine if for a fixed frequency, it would be
possible to classify different duty cycles. The duty cycle of
paradigms B and C are relatively close. This small differ-
ence has an effect in the recognition rate with an average
accuracy: 75.30%, 66.36% and 82.67% for the frequencies
6.66, 7.50 and 8.57Hz, respectively. When the difference
of duty cycle is larger, like between pradigms A and C,
the recognition is higher: 89.86%, 92.65% and 91.40% for
the frequencies 6.66, 7.50 and 8.57Hz, respectively. With
such high accuracies, the possibility to classify different
SSVEP responses evoked by the same frequency appears
as a promising tool for extending the number of possible
commands in SSVEP-BCIs.

V. Conclusion

The visual stimuli on a common LCD screen can be
an advantage for designing BCI graphical user interface,
however it can be a drawback for enabling a large number
of visual stimuli with different frequencies. The effect of
the duty cycle, i.e. the structure of the periodic signal,
of the visual stimuli has been tested and evaluated on
the offline classification of SSVEP responses. Three duty

cycles and three flickering frequencies have been tested
over six subjects. Only eight electrodes are used for record-
ing the signal. The offline classification of the SSVEP
responses has been successfully achieved with spatial filters
combined with a Bayesian Linear Discriminant Analysis
classifier. It is possible to discriminate SSVEP responses at
the same frequency but with different duty cycles. It means
that for a determined frequency, it is possible to observe
different responses based on the difference of the signal
structure. Using hardware with a limited number of avail-
able frequencies like LCD screens, the definition of several
signal structures can extend the number of available BCI
commands. First, the observed visual stimulus frequency
should be detected. Then, the detection of its structure
would allow determining the observed visual stimulus.

The results are based on a signal processing method
that does not include the structure of the visual stimuli
as a parameter. This strategy may have had an impact
on the accuracy. To exploit the duty cycle effect across
the SSVEP responses, the classifier should weigh the
amplitude in relation to the particular subject’s behavior.
In addition to the signal processing part that might limit
the outcome of the raw results, the LCD screen is one
other relevant parameter. The quality of the stimuli (the
response and the contrast of the screen) plays an impor-
tant role in the accuracy. These encouraging results about
the visual stimuli parameters suggest that there exist other
ways than signal processing or user training for improving
the quality of SSVEP-BCIs. Further works will deal with
the evaluation of the proposed strategy in an online BCI
with more subjects.
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TABLE II
Recognition rate (in %) of the binary classification of several SSVEP response with different duty cycle.

f (Hz) Method S1 S2 S3 S4 S5 S6 MEAN S.D.
A vs C 72.58 94.20 94.80 95.16 93.91 88.53 89.86 8.81

6.66 A vs B 74.19 88.89 99.64 93.36 87.27 95.87 89.87 8.91
B vs C 52.33 63.44 80.10 83.87 83.15 88.89 75.30 14.22
A vs C 81.72 94.26 99.46 95.16 93.37 91.94 92.65 5.93

7.50 A vs B 88.23 81.54 99.82 95.88 86.38 95.52 91.23 6.93
B vs C 51.07 57.17 60.21 69.71 81.15 78.85 66.36 12.18
A vs C 81.90 87.27 98.92 87.10 94.98 98.21 91.40 6.95

8.57 A vs B 71.86 63.80 88.35 71.14 66.13 89.25 75.09 11.05
B vs C 60.21 86.56 93.55 81.36 84.40 89.96 82.67 11.80
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