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GENERALISED WEYL THEOREMS AND SPECTRAL

POLLUTION IN THE GALERKIN METHOD

LYONELL BOULTON1, NABILE BOUSSAÏD2, AND MATHIEU LEWIN3

Abstract. We consider a general framework for investigating spectral pollu-
tion in the Galerkin method. We show how this phenomenon is characterised
via the existence of particular Weyl sequences which are singular in a suitable
sense. For a semi-bounded selfadjoint operator A we identify relative com-
pactness conditions on a selfadjoint perturbation B ensuring that the limiting
set of spectral pollution of A and B coincide. Our results show that, under
perturbation, this limiting set behaves in a similar fashion as the essential
spectrum.
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1. Introduction

Let A be a self-adjoint operator acting on a separable infinite dimensional Hilbert
spaceH and let λ be an isolated eigenvalue of A. For I ⊂ R an interval let 1I(A) be
the spectral projector of A associated to I. The numerical estimation of λ whenever
inf σess(A) < λ < supσess(A) and, more generally, when

Tr1(−∞,λ)(A) = Tr1(λ,∞)(A) = ∞,

constitutes a serious challenge in applied spectral theory. Indeed, it is well es-
tablished that classical approaches, such as the Galerkin method, suffer from varia-
tional collapse under no further restrictions on the approximating space. This often
leads to numerical artefacts which do not belong to the spectrum of A, giving rise
to what is generically called spectral pollution.

The spectral pollution phenomenon occurs in different practical contexts such as
Sturm-Liouville operators [1, 32, 31], perturbations of periodic Schrödinger oper-
ators [7, 23] and systems underlying elliptic partial differential equations [2, 4, 5].
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It is a well-documented difficulty in quantum chemistry and physics, in partic-
ular regarding relativistic computations [20, 30, 17, 15]. It also plays a funda-
mental role in elasticity and magnetohydrodynamics [19, 10, 27, 3]. In recent
years this phenomenon has raised a large interest in the mathematical commu-
nity [23, 18, 21, 12, 13, 26, 25]. There are known pollution-free computational
procedures alternative to the basic Galerkin method. These include specialised
variational formulations such as those studied at length in [16, 19, 14, 24] as well
as general methods such as those proposed in [8, 6, 7, 21, 12].

A natural approach to deal with spectral pollution, is to derive conditions on the
approximating subspaces guaranteeing a “safe” Galerkin method in a given interval
of the real line. These conditions were found in [22] on an abstract setting for op-
erators with particular block-type structures with respect to decompositions of the
ambient Hilbert space. They turn out to be motivated from techniques in numerical
analysis [2, 5, 27] and computational physics and chemistry (see references in [22]).

In the present paper we adopt a more general viewpoint than that of [22]. We
establish an abstract framework for spectral pollution in the Galerkin method and
then examine its invariance under relatively compact perturbations. Our main
concern is primarily theoretical and general in nature. Nonetheless, however, we
include various simple examples which illustrate the many subtleties faced when
dealing with spectral pollution on a practical setting.

The technical context of our results can be summarised as follows. Let D(A) be
the domain of A. Let L = (Ln)n∈N be a sequence of finite dimensional subspaces
of D(A), dense in the graph norm as n → ∞ (Definition 1)1. Denote by An the
compression of A to Ln. Denote by σ(A,L) the large n limiting set in Hausdorff
distance of the Galerkin method spectra σ(An), (Definition 2). Then σ(A) ⊂
σ(A,L) (Proposition 2), however in general equality fails to occur in this identity.
An abstract notion of limiting spectral pollution set can be formulated naturally
as,

σpoll(A,L) = σ(A,L) \ σ(A).

As it turns, points in the limiting spectral pollution set behave in a similar fashion as
points in the essential spectrum (Proposition 3). Therefore a question arises: what
sort of conditions on a perturbation B ensure σpoll(A,L) = σpoll(B,L)? Below we
establish a theoretical framework in order to address this question.

Section 2 and 3 are devoted to a characterisation of σ(A,L) in terms of special
Weyl-type sequences (L-Weyl sequences) and its structural properties. In Defini-
tion 3 we consider a decomposition of σ(A,L) as the union of a limiting essential
spectrum associated with L, σess(A,L), and its limiting discrete spectrum coun-
terpart, σdisc(A,L). The former contains both the true essential spectrum σess(A)
and σpoll(A,L) (Proposition 5).

The purpose of sections 4 and 5 is to find conditions on B ensuring

(1) σess(B,L) = σess(A,L).

1Below we will often consider a slightly more general framework which covers important ap-

plications such as those involving the finite element method. In this framework we will only
require that the subspaces Ln lie in the domain of the quadratic form associated to A and that
the sequence L is dense in the form sense. However, in this more general setting we restrict our
attention to A being semi-bounded.
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According to our main result (Theorem 11), when A and B are bounded from below
and

(2) (A− a)1/2(B − a)−1/2 − 1

is a compact operator for some a negative enough, (1) holds true. Therefore, an
approximating sequence L will not asymptotically pollute for A in a given interval
if and only if it does not pollute for B in the same interval. This generalises [22,
Corollary 2.5].

Our present approach consists in adapting to the context of limiting spectra,
several classical results for the spectrum and essential spectrum. In turns, this
leads to many unexpected difficulties which we will illustrate on a variety of sim-
ple examples. In particular, we establish (Theorem 7) a limiting spectra version
of the spectral mapping theorem allowing to replace the unbounded operator A
by its (bounded) resolvent (A − a)−1. Remarkably, this theorem fails in general
(Remark 4) for operators which are not semi-bounded.

2. Limiting spectra

We will often restrict our attention to A being bounded from below, however we
do not require this for the moment. Unless otherwise specified, we always assume
that the subspaces Ln are dense in the following precise sense.

Definition 1 (A-regular Galerkin sequences). We say that L = (Ln), Ln ⊂ D(A),
is an A-regular Galerkin sequence, or simply an A-regular sequence, if for all f ∈
D(A) there exists a sequence of vectors (fn) with fn ∈ Ln such that fn → f in the
graph norm of A, that is:

(3) ‖fn − f‖+ ‖Afn −Af‖ →n→∞ 0.

The orthogonal projection in the scalar product of H onto Ln will be denoted by
πn : H −→ Ln and the compression of A to Ln by An = πnA↾Ln

: Ln −→ Ln. These
compressions will sometimes be identified with any of their matrix representations.
On sequences (xn)n∈N ⊂ H of vectors and (Ln)n∈N of subspaces Ln ⊂ D(A) we
will often suppress the index and write (xn) and (Ln) instead. we will denote by
xn ⇀ x the fact that xn is weakly convergent to x ∈ H. When the norm is not
specified, xn → x will denote the fact that ‖xn − x‖ → 0.

When A is semi-bounded, we may also consider sequences L = (Ln) only in
the form domain of A. They may approximate the latter but not necessarily the
operator domain. If A ≥ 0, for instance, this simply means that Ln ⊂ D(A1/2)
and L is A1/2-regular but not necessarily A-regular. In our notation, for xn ∈ Ln,
Axn ∈ D(A1/2)#, the dual of D(A1/2) as subspace of H. Since πnA

1/2y ∈ H# = H
and πnA

1/2y ⊥ g for any y ∈ H and g ∈ H⊖Ln, the compression πnA↾Ln
:Ln −→

Ln is well defined also in this framework. Moreover, a matrix representation of
An can be obtained in the usual manner, via [〈A1/2bj , A

1/2bk〉]dimLn

jk=1 for a given

orthonormal basis {bj} of Ln. We will denote the duality product associated to

w ∈ D(A1/2)# by z 7−→ 〈z|w〉.
When A is not semi-bounded but its essential spectrum has a gap containing

a number a, we could as well consider sequences (Ln) which are only |A − a|1/2-
regular. We have chosen to avoid mentioning quadratic forms for operators which
are not semi-bounded, because in practical applications (such as those involving
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the Dirac operator) the domain of |A− a|1/2 does not necessarily coincide with the
natural domain upon which the quadratic form is defined.

The limiting spectrum of A relative to the Galerkin sequence L, is the set of all
limit points, up to subsequences, of the spectra of An in the large n limit.

Definition 2 (Limiting spectrum). The limiting spectrum of A relative to L,
σ(A,L), is the set of all λ ∈ R for which there exists λk ∈ σ(Ank

) such that
nk → ∞ and λk → λ as k → ∞.

Since all An are Hermitian endomorphisms, σ(A,L) ⊂ R. The following lemma
provides an alternative characterisation of σ(A,L).

Lemma 1 (L-Weyl sequences). The real number λ ∈ σ(A,L) if and only if there

exists a sequence xk ∈ Lnk
such that ‖xk‖ = 1 and πnk

(A− λ) xk → 0 as k → ∞.

Proof. According to the definition, λ ∈ σ(A,L) if and only if there exists λk ∈ R

and xk ∈ Lnk
with ‖xk‖ = 1 such that λk → λ and πnk

(A− λk)xk = 0. As
πnk

(A− λ) xk = (λk − λ)xk → 0, one implication follows immediately.
On the other hand, let (xk) be as stated. Since the An are Hermitian, there

necessarily exists λk ∈ σ(Ank
) such that |λk − λ| ≤ ||(Ank

− λ)xk|| → 0. Thus
λ ∈ σ(A,L) ensuring the complementary implication. �

We call (xk) an L-Weyl sequence for λ ∈ σ(A,L), by analogy to the classical
notion of Weyl sequence [11].

Remark 1. Selfadjointness of An is crucial in Lemma 1. We illustrate this by
means of a simple example. Let H = ℓ2(N) and (ej) ⊂ H be the canonical or-
thonormal basis of this space. Let A be the left shift operator defined by the
condition A : ej 7−→ ej−1 with the convention e0 = 0. Let Lk = Span {ei, i ≤ k}.
For this data an analogous of Lemma 1 is no longer valid. Indeed, if |λ| < 1 and

xk :=

√

1− |λ|2
1− |λ|2k

k
∑

i=1

λi−1ei,

then xk ∈ Lk, ||xk|| = 1 and

||Axk − λxk|| =
√

1− |λ|2
1− |λ|2k |λ|k → 0.

Therefore any point of the open unit disk is associated with an L-Weyl sequence.
On the other hand, however, An is a Jordan block, so σ(An) = {0} for all n ∈ N

and hence necessarily σ(A,L) = {0}. ⋄

The above characterisation of points in the limiting spectrum combined with the
minimax principle yields the following fundamental statement.

Proposition 2 (The limiting spectrum and the spectrum). Let L be an A-regular
Galerkin sequence or, if A ≥ 0, an A1/2-regular Galerkin sequence. Then,

(4) σ(A) ⊂ σ(A,L)
and

(5) σpoll(A,L) := σ(A,L) \ σ(A) ⊂
(

ℓ− , ℓ+
)



WEYL THEOREMS AND SPECTRAL POLLUTION 5

where

ℓ− :=

{

−∞ for inf σ(A) = −∞
inf σess(A) otherwise

ℓ+ :=

{

+∞ for supσ(A) = +∞
supσess(A) otherwise.

Proof. We start with the general case of an A-regular sequence. The classical
characterisation of the spectrum of selfadjoint operators ensures that λ ∈ σ(A) if
and only if there is a normalised sequence (yk) ⊂ D(A) such that ‖(A− λ)yk‖ → 0
(that is (yk) is a Weyl sequence for λ). We will now construct an L-Weyl sequence
from (yk). According to (3), we can find (xk

m)(k,m)∈N2 such that xk
m ∈ Lm, (yk −

xk
m) → 0 and (A − λ)(yk − xk

m) → 0 as m → ∞. By virtue of a diagonal process,
we can extract a subsequence such that πmk

(A − λ)xk
mk

→ 0. Dividing by ‖xk
mk

‖
(which does not vanish in the k → ∞ limit), gives (4) as consequence of Lemma 1.

When A ≥ 0 and L is only A1/2-regular, a similar proof applies. We explicitly
take xk

m := π′
myk where π′

m is the orthogonal projection onto Lm, for the scalar
product furnished by the quadratic form associated to A. For all z ∈ Lm with
||z|| = 1

∣

∣

〈

z|(A− λ)xk
m

〉

| =
∣

∣〈z|(A− λ)yk〉+ (λ + 1)
〈

z|yk − xk
m

〉∣

∣

≤ ||(A− λ)yk||+ (λ + 1)
∣

∣

∣

∣yk − xk
m

∣

∣

∣

∣ ,

where we have used that 〈z|(A+ 1)yk〉 = 〈z|(A+ 1)π′
myk〉 by definition of the

projection π′
m. Thus

∣

∣

∣

∣πm(A− λ)xk
m

∣

∣

∣

∣ ≤ ||(A− λ)yk||+ (λ+ 1)
∣

∣

∣

∣yk − xk
m

∣

∣

∣

∣ .

Our assumption that L is A1/2-regular implies that xk
m → yk in D(A1/2) when

m → ∞. Hence, the desired conclusion is achieved, once again, by a diagonal
argument.

The proof of (5) is a classical consequence of the minimax principle. It may be
found, for instance, in [21, Theorem 2.1] or [22, Theorem 1.4]. �

In [22, Theorem 1.4] the existence of an A-regular Galerkin sequence L such
that σ(A,L) = [ℓ−, ℓ+] is shown. Therefore the inclusion complementary to (4)
does not hold in general. This is a source of difficulties in applications as there is
no known systematic procedure able to identify A-regular Galerkin sequences such
that σ(A) = σ(A,L). By virtue of (5), limiting spectral pollution σpoll(A,L) can
only occur in “gaps” of the essential spectrum.

Let us now see how σpoll(A,L) can be characterised in a more precise manner in
terms of particular L-Weyl sequences.

Definition 3 (Limiting essential spectrum). We denote by σess(A,L) the set of all
λ ∈ σ(A,L) for which there exists an L-Weyl sequence (xk) as in Lemma 1 with
the additional property that xk ⇀ 0.

By analogy to the classical notions, we will call σess(A,L) the limiting essential
spectrum of A associated to L and the corresponding sequence (xk) a singular
L-Weyl sequence.

Remark 2. From the definition it follows that σess(A+K,L) = σess(A,L) for any
selfadjoint operator K ∈ K(H). ⋄
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Definition 4 (Limiting discrete spectrum). The residual set σdisc(A,L) = σ(A,L)\
σess(A,L), will be called the limiting discrete spectrum of A associated to L.

We illustrate these definitions by means of various simple examples.

Example 1 (A a bounded operator). Let H = Span{e±n }n∈N where e±n is an or-
thonormal set of vectors in a given scalar product. Let Ln = Span{e±1 , . . . , e±n−1, fn}
where fn = (cos θ)e+n + (sin θ)e−n for θ ∈ (0, π/2). Let2

A =
∑

n≥1

|e+n 〉〈e+n |,

that is, A is the orthogonal projector onto Span(e+n ) and σ(A) = σess(A) = {0, 1}.
Then σ(An) = {0, 1, cos2 θ} for all n and σ(A,L) = σess(A,L) = {0, 1, cos2 θ}. Here
xn = e−n is a singular L-Weyl sequence associated to λ = 0, xn = e+n is a singular
L-Weyl sequence associated to λ = 1 and xn = fn is a singular L-Weyl sequence
associated to λ = cos2 θ. ⋄
Example 2 (A a semi-bounded operator). Let H be as in Example 1 and define

Ln = Span{e±1 , . . . , e±n−1, e
−
n }.

For f±
n = sin( 1n ) e

∓
n ± cos( 1n ) e

±
n , let

A =
∑

n2|f+
n 〉〈f+

n | −
∑

|f−
n 〉〈f−

n |

which has a 2× 2 block diagonal representation in the basis (e±n ). Then σess(A) =
{−1} and σdisc(A) = {n2 : n ∈ N}. On the other hand

σ(An) =

{

−1, n2 sin2
1

n
− cos2

1

n
, 1, . . . , (n− 1)2

}

,

where −1 is an eigenvalue of multiplicity n− 1. Therefore

σess(A,L) = {−1, 0} and σdisc(A,L) = {n2 : n ∈ N}.
The former is a consequence of Proposition 3-(ii) while the latter follows from
Proposition 5-(iii) below.

We can verify directly the validity of the latter as follows. Assume that conversely
(xk) was a singular L-Weyl sequence associated with ν2 ∈ σdisc(A). Then πnk

(A−
ν2)xk → 0 and xk ⇀ 0. For m < nk

pmπnk
(A− ν2)xk = (A− ν2)pmxk

where pm =
∑

i≤m |f±
i 〉〈f±

i |. Then, on the one hand,

‖pnk−1xk − 〈f+
ν , xk〉f+

ν ‖2 ≤
∣

∣

∣

∣(A− ν2)pnk−1xk

∣

∣

∣

∣

2 → 0

so that ||pnk−1xk||2 +
∣

∣

∣

∣(A− ν2)pnk−1xk

∣

∣

∣

∣

2 → 0 as k → ∞. On the other hand,

(A− ν2)(xk − 〈e−nk
, xk〉e−nk

) = (A− ν2)pnk−1xk.

Since
∣

∣〈(A− ν2)e−n , e
−
n 〉

∣

∣ =
∣

∣n2 sin2 1
n + cos2 1

n − ν2
∣

∣ →
∣

∣2− ν2
∣

∣ > 0, projecting
each term onto Lnk

yields 〈e−nk
, xk〉 → 0 also. But then 1 = ||xk|| → 0, which is a

contradiction, so there are no singular L-Weyl sequences for ν2. ⋄

2Here and elsewhere we use the bra-ket notation |f〉〈g| to denote the linear operator ψ 7→
〈g, ψ〉f .



WEYL THEOREMS AND SPECTRAL POLLUTION 7

Example 3 (A a strongly indefinite operator). Let H and Ln be as in Example 2.
Let f±

n = 1√
2
e+n ± 1√

2
e−n . Let

A =
∑

n|f+
n 〉〈f+

n | −
∑

n|f−
n 〉〈f−

n |.

Then σ(A) = {±n : n ∈ N} = σdisc(A). On the other hand

σ(A,L) = Z, σess(A,L) = {0} and σdisc(A,L) = {±n : n ∈ N}.
The proof of the latter is similar to that of the analogous property in Example 2. ⋄

3. Limiting spectra and the behaviour of singular L-Weyl sequences

We now examine more closely various basic properties of the limiting spectra
σ(A,L), σess(A,L) and σdisc(A,L). These properties can be deduced via an analysis
of the behaviour of different types of L-Weyl sequences.

Proposition 3 (Limiting essential and discrete spectra and the spectrum). Let L
be an A-regular Galerkin sequence, or, if A ≥ 0, an A1/2-regular Galerkin sequence.

Then

(i) the limiting spectrum σ(A,L) and the limiting essential spectrum σess(A,L)
are closed subsets of R;

(ii) moreover σess(A) ⊂ σess(A,L) and σdisc(A,L) ⊂ σdisc(A).

Proof. The proof of (i) involves a standard diagonal argument and it is left to the
reader. For the second statement we need the following auxiliary result which will
be used repeatedly below.

Lemma 4. A sequence xk ∈ Lnk
is such that ‖xk‖ = 1, xk ⇀ x and πnk

(A −
λ)xk → 0, only when x ∈ Ker(A− λ).

Proof of Lemma 4. Suppose that (xk) satisfies the hypothesis with L an A-regular
Galerkin sequence. Let f ∈ D(A) and fn ∈ Ln such that fn → f in the norm of
D(A). Then 〈πnk

(A− λ)xk, fnk
〉 → 0. On the other hand, since fk → f in D(A),

〈πnk
(A− λ)xk, fnk

〉 = 〈xk, (A− λ)fnk
〉 → 〈x, (A− λ)f〉.

Thus 〈x, (A−λ)f〉 = 0 for all f ∈ D(A), so that x ∈ D(A∗) = D(A) and (A−λ)x = 0
as required.

Suppose now that A ≥ 0 and L is only A1/2-regular. The hypothesis implies
that (xk) is a bounded sequence in D(A1/2). Then the proof reduces to the same
argument, but taking this time fnk

in D(A1/2). �

We now turn to the proof of (ii) in Proposition 3. The fact that σess(A) ⊂
σess(A,L) is proved similarly to (4). It should only be noted that the L-Weyl
sequence found for λ ∈ σess(A) additionally satisfies xk

mk
⇀ 0. For the inclusion

σdisc(A,L) ⊂ σdisc(A) note that, if λ ∈ σdisc(A,L), there exists xk ∈ Lnk
such

that ‖xk‖ = 1, xk ⇀ x 6= 0 and πnk
(A − λ)xk → 0. As λ 6∈ σess(A) (by the

previous part), then either λ ∈ σdisc(A) or λ 6∈ σ(A). By Lemma 4, the latter is
impossible. �

Remark 3. If σess(A) = σess(A,L) then automatically σdisc(A) = σdisc(A,L) and
σ(A) = σ(A,L). ⋄
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We will now examine more closely singular L-Weyl sequences associated to points
λ ∈ σess(A,L).

Proposition 5 (Singular L-Weyl sequences). Let L be an A-regular Galerkin

sequence, or, if A > 0, an A1/2-regular Galerkin sequence. The real number

λ ∈ σess(A,L) if and only if

(i) either λ 6∈ σ(A) and there exists λk → λ and yk ∈ Lnk
such that yk ⇀ 0

and πnk
(A− λk)yk = 0;

(ii) or λ ∈ σess(A) and there exists λk → λ and yk ∈ Lnk
such that yk ⇀ 0 and

πnk
(A− λk)yk = 0;

(iii) or λ ∈ σdisc(A) and for any ε > 0

Rank
(

1(λ−ε,λ+ε)(An)
)

≥ Rank
(

1{λ}(A)
)

+ 1

for all n large enough.

In cases (i) and (iii), λ can in some sense be regarded as a point of spectral
pollution for A relative to L. In case (iii), λ ∈ σ(A), but the multiplicity of
the approximating spectrum σ(An) is too large for n large, leading to the wrong
spectral representation of A in the limit n → ∞. In our definition of the polluted
spectrum σpoll(A,L) in (5), we have chosen to require that λ /∈ σ(A), following [22].
Any λ ∈ σ(A) satisfying (iii) could also be considered as a spurious spectral point.
However, in case (ii), the singular L-Weyl sequence (yk) behaves like a classical
singular Weyl sequence.

Only in cases (i) and (ii) the existence of a singular L-Weyl sequence (yk) con-
sisting of exact eigenvectors of Ank

such that πnk
(A − λk)yk = 0 and λk → λ

is guaranteed. In case (iii) it may occur that all the eigenvectors of Ank
whose

corresponding eigenvalue converges to λ, converge weakly to a non-zero element
of Ker(A − λ), and that only a linear combination of these eigenvectors converges
weakly to zero. This can be illustrated by means of a simple example.

Example 4 (Spectral point satisfying Proposition 5-(iii)). Let H = Span{e0, e±n }
where e0, e

±
n form an orthonormal basis. Let

A =
∞
∑

n=1

|e+n 〉〈e+n | −
∞
∑

n=1

|e−n 〉〈e−n |.

Then σ(A) = {−1, 0, 1} and σess(A) = {−1, 1}. The eigenvalue 0 has multiplicity
one and associated eigenvector e0. Let

Ln = Span{e±1 , . . . , e±n−1, f
±
n } where f±

n =
e0 + α±

n e+n − α∓
n e−n

√

1 + (α±
n )2 + (α∓

n )2

for

α±
n = ±

√

1± 1
n2

2(1∓ 1
n2 )

.

Then σ(A,L) = {0,±1} = σess(A,L). In this case An has two eigenvalues ap-
proaching zero in the large n limit, with corresponding eigenvectors f+

n and f−
n . It

is readily seen that f±
n ⇀ e0/

√
2 and so only the difference f+

n − f−
n tends weakly

to zero. ⋄
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Proof of Proposition 5. Let λ ∈ σess(A,L) ⊂ σ(A,L). By definition of σ(A,L)
there exists a normalised sequence (yk) such that πnk

(A− λk)yk = 0 and λk → λ.
The main question is whether one can ensure that yk ⇀ 0 weakly. Up to extraction
of a subsequence, we may assume that yk ⇀ y ∈ Ker(A − λ) (by Lemma 4). If
λ /∈ σ(A), then Ker(A− λ) = {0} and necessarily y = 0, thus (i) follows.

For the proof of (ii) we require the following auxiliary result.

Lemma 6. Let V ⊂ D(A) be a subspace of dimension d > 0, with associated

orthogonal projector πV . Let ε > 0 be such that

‖πV(A− λ)x‖ ≤ ε‖x‖ ∀x ∈ V .
There exists N > 0 and a sequence of spaces Wn ⊂ Ln of dimension d, such that

for all n ≥ N

‖πWn
(A− λ)y‖ ≤ 2ε

√
d‖y‖ ∀y ∈ Wn.

Proof of Lemma 6. We firstly assume that L is A-regular. Let (ej) be a fixed or-
thonormal basis of V . Then there exists enj ∈ Ln such that

∣

∣

∣

∣enj − ej
∣

∣

∣

∣

D(A)
→ 0 when

n → ∞. The Gram matrix Gn := (
〈

eni , e
n
j

〉

)1≤i,j≤d converges to the d× d identity

matrix as n → ∞, and therefore, for sufficiently large n, Wn := span{enj , j =
1, ..., d} has dimension d. Now we define an orthonormal basis for Wn by

fn
j :=

d
∑

k=1

(G−1/2
n )kj e

n
k .

Since (G
−1/2
n )kj → δkj and enj → ej in the graph norm, it is then clear that

‖ej − fn
j ‖D(A) → 0 n → ∞.

This shows in particular that ‖(πWn
− πV)A‖ → 0, ‖πWn

− πV‖ → 0 and hence
that ‖πWn

(A− λ)fn
j − πV(A− λ)ej‖ → 0. Let N > 0 be such that

‖πWn
(A− λ)fn

j ‖ ≤ 2ε ∀n ≥ N, j = 1, . . . , d.

For y =
∑d

j=1 ŷjf
n
j ∈ Wn, we get

‖πWn
(A− λ)y‖ ≤ 2ε

d
∑

j=1

|ŷj| ≤ 2ε
√
d‖y‖,

which ensures the desired property.
When A ≥ 0 and L is only A1/2-regular, the proof is the same, using convergence

in D(A1/2) and the fact that ‖(πWn
− πV)A1/2‖ → 0 �

The proof of (ii) in Proposition 5 is achieved as follows. Assume that λ ∈ σess(A).
For all d ∈ N there exists a subspace Vd ⊂ D(A), such that dimVd = d2 and

‖(A− λ)y‖ ≤ 1

d2
‖y‖ ∀y ∈ Vd,

see for instance [11, Lemma 4.1.4]. According to Lemma 6 and an inductive argu-
ment, there is a sequence (nd) ⊂ N and d2-dimensional subspaces Wd ⊂ Lnd

, such
that

‖πnd
(A− λ)y‖ ≤ 2

d
‖y‖ ∀y ∈ Wd.

This ensures that And
has at least d2 eigenvalues in the interval

[

λ− 2/d, λ+2/d
]

.
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Let (fnd

j )d
2

j=1 ⊂ Lnd
be an orthonormal set of d2 eigenvectors of And

, with

associated eigenvalues (λnd

j )d
2

j=1 satisfying |λnd

j − λ| ≤ 2/d. We inductively define
the following singular L-Weyl sequence for λ:

y1 = fn1

1

y2 = fn2

δ2
with 1 ≤ δ2 ≤ 22 such that |〈y2, y1〉| ≤ 1/

√
2

y3 = fn3

δ3
with 1 ≤ δ3 ≤ 32 such that |〈y3, yj〉| ≤ 1/

√
3 for j = 1, 2

...

yd = fnd

δd
with 1 ≤ δd ≤ d2 such that |〈yd, yj〉| ≤ 1/

√
d for j = 1, . . . , d− 1.

The existence of δd is guaranteed by the fact that

∀k = 1, ..., d− 1, 1 = ‖yk‖2 ≥
d2

∑

j=1

|〈yk, fnd

j 〉|2.

Indeed, there are at most d indices j in the above summation, such that |〈yk, fnd

j 〉|2 ≥
1/d. Hence, in total, there are at most d(d−1) indices j such that |〈yk, fnd

j 〉|2 ≥ 1/d

for at least one k = 1, ..., d− 1. Since d(d− 1) < d2 for d ≥ 1, we deduce that there
is at least one index j =: δd such that |〈yk, fnd

j 〉|2 ≤ 1/d for all k = 1, ..., d − 1.

By construction ‖yd‖ = 1 and |〈yi, yj〉| ≤ 1/
√

max(i, j). Thus yk ⇀ 0 as k → ∞,
ensuring (ii).

Note that, conversely, if (i) or (ii) holds true, then λ ∈ σess(A,L) by Definition 3.
Let us now prove that if λ ∈ σess(A,L) ∩ σdisc(A), then (iii) holds true. Let

xk ∈ Lnk
be a singular L-Weyl sequence: πnk

(A−λ)xk → 0, ||xk|| = 1 and xk ⇀ 0.
Let V = Ker(A−λ) 6= {0} and d = dim(V). For n sufficiently large there is a space
Wn ⊂ Ln of dimension d such that for all ε > 0, there exists N > 0 such that

‖πn(A− λ)y‖ ≤ ε‖y‖ ∀y ∈ Wn

whenever n ≥ N . Let Sk = Span{Wnk
, xk}. Since xk ⇀ 0 and Wnk

does not
increase in dimension in the large k limit, necessarily dim(Sk) = d+1 for all k large
enough. For all ε > 0 there exists M > 0 such that

‖πnk
(A− λ)y‖ ≤ ε‖y‖ ∀y ∈ Sk

whenever k ≥ M . This ensures that σ(Ank
) ∩ (λ− ε, λ+ ε) contains at least d+ 1

points counting multiplicity and hence the claimed conclusion is achieved.
It only remains to prove that (iii) implies λ ∈ σess(A,L). Each individual eigen-

vector of Ank
might not converge weakly to 0, however there is a linear combination

of them that does it. We prove this as follows. Let (fk
j )

d+1
j=1 be an orthonormal set

of d+ 1 eigenvectors

Ank
fk
j = λk

j f
k
j j = 1, . . . , d+ 1.

Up to extraction of subsequences we may assume that fk
j ⇀ fj ∈ Ker(A − λ) for

all j = 1, . . . , d + 1. If fj = 0 for some j, then the desired conclusion follows.
Otherwise, since dimKer(A−λ) = d, there exist coefficients (aj) ∈ Cd+1 \ {0} such

that
∑d+1

j=1 ajfj = 0. Therefore, we may take

yk :=

∑d+1
j=1 ajf

k
j

√

∑d+1
j=1 |aj |2
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as singular L-Weyl sequence for λ. This completes the proof of Proposition 5. �

4. Mapping of the limiting spectra

In this section we establish mapping theorems for the different limiting spectra.
They are a natural generalisation of the analogous well-known result for σ(A) and
σess(A) (see for example [29, Section XIII.4]). From now on we assume that A is
bounded from below and we take L to be an (A− a)1/2-regular Galerkin sequence
with a < inf σ(A).

Theorem 7 (Mapping of the limiting spectra). Let A be semi-bounded from below

and let a < inf σ(A). Assume that L is an (A − a)1/2-regular Galerkin sequence.

Then

(6) λ ∈ σ(A,L) ⇐⇒ (λ− a)−1 ∈ σ
(

(A− a)−1,G
)

and

(7) λ ∈ σess(A,L) ⇐⇒ (λ− a)−1 ∈ σess

(

(A− a)−1,G
)

where G =
(

(A− a)1/2Ln

)

n∈N
.

Remark 4. Recall that a selfadjoint operator A is unbounded (D(A) ( H) if and
only if 0 ∈ σ((A − a)−1) for one (hence for all) a 6∈ σ(A). As it turns out, A is
unbounded if and only if 0 ∈ σess((A−a)−1,G) for one (and hence all) a < minσ(A)
and (A− a)1/2-regular sequence L. Formally in Theorem 7 this corresponds to the
case +∞ ∈ σ(A) and (+∞− a)−1 = 0. ⋄

Evidently a result analogous to Theorem 7 can be established when A is semi-
bounded from above. However, here A is required to be semi-bounded, in order
to be able to use a square root (A − a)1/2 in the definition of G, and also for a
more fundamental reason. When a is in a gap of the essential spectrum, it would
be natural to expect an extension of the above result by considering, for example,
G =

(

|A − a|1/2Ln

)

n∈N
. The following shows that this extension is not possible in

general.

Example 5 (Impossibility of extending Theorem 7 for A strongly indefinite). Let
H be as in Example 2. Define Ln = Span{e±1 , . . . , e±n−1, cos(θn) e

+
n + sin(θn) e

−
n }

with θn := π/4− λ/(2n) for a fixed λ ∈ (0, 1). Let

A =
∑

n|e+n 〉〈e+n | −
∑

n|e−n 〉〈e−n |.
Then σ(A) = {±n : n ∈ N} = σdisc(A). On the other hand

σ(A,L) = σ(A) ∪ {λ}, σess(A,L) = {λ} and σdisc(A,L) = σ(A).

Now
A−1 =

∑

n−1|e+n 〉〈e+n | − n−1|e−n 〉〈e−n |
and G =

√

|A|L = L. Since A−1 is compact we have

σ(A−1,G) = σ(A−1) and σess(A
−1,G) = σess(A

−1) = {0}.
Thus λ ∈ σess(A,L) whereas 1/λ 6∈ σ(A−1,G). ⋄

In fact the following example shows that no general extension of this theorem
is possible whenever a lies in the convex hull of the essential spectrum, even for
A ∈ B(H).
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Example 6 (Impossibility of extending Theorem 7 for a ∈ Conv{σess(A)}). Let
H = L2(−π, π) and Af(x) = sgn(x)f(x) for all f ∈ H. Then σ(A) = σess(A) =
{±1}. If L is any A-regular sequence, then σ(A,L) ⊂ [−1, 1]. Fixing a = 0 yields
(A − a)−1 = A. Thus also σ(A−1) = {±1} and σ((A − a)−1,G) ⊂ [−1, 1], for any
A-regular sequence G. If we construct a sequence L = (Ln) leading to a spurious
eigenvalue λ ∈ σess(A,L) ∩ (−1, 1), we will always have λ−1 /∈ σess(A

−1,G), no
matter what G is. We thus see that Theorem 7 cannot be extended to include a in
the convex hull of the essential spectrum. ⋄

Proof of Theorem 7. Statement (6) will follow immediately from the next result.

Lemma 8 (Mapping for the spectrum of compressions). Let A be semi-bounded

from below, let a < inf σ(A) and Ln ⊂ D((A− a)1/2). Then

λ ∈ σ(πnA↾Ln
) ⇐⇒ (λ− a)−1 ∈ σ(pn(A− a)−1 ↾Gn

)

where Gn = (A− a)1/2Ln and pn is the associated orthogonal projector.

Proof. Note that λ ∈ σ(An) if and only if there exists x ∈ Ln \ {0} such that

πn(A− a)1/2
(

(λ− a)−1 − (A− a)−1
)

(A− a)1/2x =
1

λ− a
πn(A− λ)x = 0.

By fixing y = (A− a)1/2x ∈ Gn \ {0}, it is readily seen that λ ∈ σ(An) if and only
if there exist y ∈ Gn \ {0} such that

〈

(A− a)1/2u,
(

(λ− a)−1 − (A− a)−1
)

y
〉

= 0

for all u ∈ Ln. Therefore, the statement λ ∈ σ(An) is equivalent to the existence of
y ∈ Gn\{0} such that

(

(λ− a)−1 − (A− a)−1
)

y ⊥ Gn which, in turns, is equivalent

to pn
(

(λ− a)−1 − (A− a)−1
)

y = 0. �

We now turn to the proof of (7). We begin by establishing an alternative char-
acterisation of the limiting essential spectrum and then we formulate a stability
result for the limiting spectra with respect to compact perturbations of the regular
Galerkin sequence.

Lemma 9 (Alternative characterisation of σess(A,L)). Let

F(A) :=
{

f(A) : f ∈ Cc

(

R \ σess(A),R
)}

F±(A) :=
{

f(A) : f ∈ Cc

(

R \ σess(A),R
±)} .

Then

σess(A,L) =
⋂

B∈F(A)

σ(A+B,L)

=
⋂

B∈F+(A)

σ(A+B,L) =
⋂

B∈F−(A)

σ(A +B,L).(8)

Here Cc(Ω,R) denotes the set of all real-valued continuous functions of compact
support in the open set Ω. Note that F(A) is a real vector space and F±(A) are
cones, all spanned by projectors onto the eigenspaces of A associated with isolated
eigenvalues of finite multiplicity. At the end of this section it will become clear the
reason why we highlight the right hand side characterisation in (8).
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Proof of Lemma 9. We only prove the first equality of (8) as the proof of the other
ones follows exactly the same pattern. It is well-known that

(9) σess(A) =
⋂

B∈F(A)

σ(A+B).

Since all the operators in F(A) are of finite rank, then σess(A + B) = σess(A) for
all B ∈ F(A). Hence (9) is equivalent to

(10)
⋂

B∈F(A)

σdisc(A+B) = ∅.

From Remark 2, it follows that σess(A + B,L) = σess(A,L) for all B ∈ F(A).
Therefore σ(A+B,L) = σdisc(A+B,L) ∪ σess(A,L). Moreover σdisc(A+B,L) ⊆
σdisc(A+ B), by Proposition 3. Hence, by (10),

⋂

B∈F(A)

σdisc(A+ B,L) ⊂
⋂

B∈F(A)

σdisc(A+B) = ∅

and the result is proved. �

Lemma 10. Let T = T ∗ be such that ‖T ‖ < ∞ and let L be a T -regular sequence.
Let K ∈ K(H). If −1 6∈ σ(K), then

σess(T,L) = σess(T, (1 +K)L) and σdisc(T,L) = σdisc(T, (1 +K)L).

Proof of Lemma 10. We firstly prove that

(11) σess(T,L) \ σdisc(T ) = σess(T, (1 +K)L) \ σdisc(T ).

Since

(12) L = (1 +K)−1(1 +K)L = (1−K(1 +K)−1)(1 +K)L,
it suffices to show that the left hand side of (11) is contained in the right hand side.
Let λ ∈ σess(T,L) \ σdisc(T ). If λ ∈ σess(T ), a direct application of Proposition 3-
(ii) ensures that λ lies also in the right hand side of (11), so we can assume that
λ 6∈ σ(A). According to Proposition 5-(i), there exists λk → λ and xk ∈ Lnk

such
that ‖xk‖ = 1, xk ⇀ 0 and πnk

(T − λk)xk = 0. For all vk ∈ Lnk
, and hence for all

wk = (1 +K)vk ∈ (1 +K)Lnk
, we have

0 = 〈(T − λk)xk, vk〉 = 〈(1 +K∗)−1(T − λk)xk, (1 +K)vk〉
= 〈(1 +K∗)−1(T − λk)xk, wk〉.

Let qk be the orthogonal projection onto (1 +K)Lnk
. Then

qk(1 +K∗)−1(T − λk)xk = 0.

Now (1 +K∗)−1 = 1− K̃ where K̃ = K∗(1 +K∗)−1 ∈ K(H). Hence

qk(1− K̃)(T − λ)xk → 0.

But, since ‖T ‖ < ∞ and xk ⇀ 0, K̃(T − λ)xk → 0, so that also qk(T − λ)xk → 0.
Thus qk(T −λ)yk → 0 for yk = (1+K)xk ⇀ 0. By re-normalising yk in the obvious
manner, we obtain a singular L-Weyl sequence for λ ∈ σ(T, (1 + K)L), ensuring
(11).

To complete the proof of the first identity in the conclusion of the lemma, suppose
that λ ∈ σess(T,L) ∩ σdisc(T ). For any µ 6= λ let T̃ = T + (µ − λ)1(λ−ε,λ+ε)(T )
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where ε > 0 is sufficiently small. Then λ ∈ σess(T̃ ,L) \ σdisc(T̃ ). By virtue of (11)

and Remark 2, λ ∈ σess(T̃ , (1 +K)L) = σess(T, (1 +K)L) as needed.
We now show the second identity in the conclusion of the lemma. By virtue of

(12) and the first identity which we just proved, it is enough to verify

σdisc(T,L) ⊂ σ(T, (1 +K)L).
This, in turns, follows from Proposition 3-(ii) and (4), since

σdisc(T,L) ⊂ σdisc(T ) and σ(T ) ⊂ σ(T, (1 +K)L)
taking into account that (1 +K)L is a T -regular sequence. �

We now complete the proof of Theorem 7 by showing (7). Let λ ∈ σess(A,L).
By virtue of Lemma 9, this is equivalent to the statement

∀B ∈ F+(A), λ ∈ σ(A +B,L).
Since B ≥ 0 and a < min[σ(A+B)], according to (6) the latter is equivalent to

∀B ∈ F+(A), (λ− a)−1 ∈ σ((A +B − a)−1,GB)

where GB = (A + B − a)−1/2L. Since B has finite rank and is therefore compact,
Lemma 10 ensures that the above in turns is equivalent to

∀B ∈ F+(A), (λ− a)−1 ∈ σ((A +B − a)−1,G0).

Note that 0 6∈ σ((A + B − a)1/2(A − a)−1/2) as the corresponding operator is

an invertible function of A. Now (A + B − a)−1 = (A − a)−1 + B̃, where B̃ =
−(A−a)−1B(A+B−a)−1 runs over all of F− (

(A− a)−1
)

as B runs over all F+(A)

and conversely. For the latter note that f ∈ F+(A) if and only if −f((· − a)−1) ∈
F−((A− a)−1). Thus, once again by Lemma 9, λ ∈ σess(A,L) is equivalent to

(λ− a)−1 ∈ σess((A − a)−1,G).
This completes the proof of Theorem 7. �

Remark 5. The above proof mimics the proof of the classical Mapping Theorem
for the essential spectrum which can be deduced from the characterisation

σess(A) =
⋂

B∈K(H)

σ(A+B),

see, e.g., [28]. ⋄

5. Stability properties of the limiting essential spectrum

In this final section we present the main contribution of this paper. It strongly
depends on the validity of Theorem 7.

Theorem 11 (Weyl-type stability theorem for the limiting spectra). Let A and

B be two selfadjoint operators which are bounded below. Assume that for some

a < inf{σ(A), σ(B)},
(13) D((B − a)1/2) = D((A− a)1/2)

and

(14) (A− a)1/2((B − a)−1/2 − (A− a)−1/2) ∈ K(H).

Then

σess(A,L) = σess(B,L)
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for all sequences L = (Ln) which are simultaneously (A − a)1/2-regular and (B −
a)1/2-regular.

Under Assumption (13), (14) is equivalent to the same condition with the roles
of A and B reversed:

(15) (B − a)1/2((A− a)−1/2 − (B − a)−1/2) ∈ K(H).

Note however that (13) and (14) do not imply necessarily that anA-regular sequence
is also B-regular. For this it is enough to consider an example where D(A) 6= D(B).
Let A = ∂4

x with domain

D(A) = H4(0, 1) ∩ {u(0) = u(1) = 0, u′′(0) = u′′(1) = 0} ⊂ L2(0, 1) = H.

Let B = ∂4
x + |1〉〈1|(1− ∂2

x) with domain

D(B) = H4(0, 1) ∩
{

u(0) = u(1) = 0, u′′(0) = u′′(1) =

∫ 1

0

u(x)dx

}

6= D(A).

Then A1/2 = −∂2
x and B1/2 = −∂2

x + |1〉〈1| both with domain

D(A1/2) = D(B1/2) = H2(0, 1) ∩ {u(0) = u(1) = 0}.
Since A1/2(B−1/2 − A−1/2) = |1〉〈1|B−1/2 is a rank-one operator, A and B satisfy
the hypotheses of Theorem 11, but clearly A-regular sequences Ln ⊂ D(A) \D(B)
are not B-regular.

Remark 6. The KLMN theorem [29] ensures that if B − A is a densely defined
symmetric A-form-bounded operator with bound less than 1, then (13) holds for a
sufficiently negative. ⋄

The following example from [22] shows that Theorem 11 cannot be easily gener-
alised to operators which are not semi-bounded.

Example 7 (Relatively compact perturbations of the Dirac operator). Let A = D0

and B = D0 + V where D0 denotes the free Dirac operator with unit mass [33]
and V ∈ C∞

c (R3) is a smooth non-negative function of compact support. The
ambient Hilbert space here is H = L2(R3,C4). Under the additional assumption
that supV = ||V ||L∞(R3) < 1, it is guaranteed that 0 /∈ σ(B). Furthermore it can

be verified that

D
(

|A|1/2
)

= D
(

|B|1/2
)

= H1/2(R3,C4)

and that

|A|1/2
(

|B|−1/2 − |A|−1/2
)

∈ K(H).

As a consequence of [22, Theorem 2.7], it is known that there exists a B-regular
Galerkin sequence L = (Ln) such that

(16) σess(B,L) ⊃
[

0 ; supV
]

.

These Galerkin spaces comprise upper and lower spinors, meaning that

Ln = Span

{(

fn
1

0

)

, ...,

(

fn
dn

0

)

,

(

0
gn1

)

, ...,

(

0
gnd′

n

)}

for suitable (fn
j ), (g

n
j ) ⊂ L2(R3,C2). This basis is known to be free of pollution if

the external field V = 0, that is

σ(A,L) = σ(D0) = (−∞,−1] ∪ [1,∞) = σess(A,L).
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Hence σess(A,L) 6= σess(B,L) so Theorem 11 fails for operators which are strongly
indefinite. ⋄

Proof of Theorem 11. Denote by K the operator on the left side of (14). Then

(17) (B − a)−1 − (A− a)−1 = (A− a)−1/2K(B − a)−1/2 + (A− a)−1K ∈ K(H).

Let G := (A− a)1/2L. According to (7),

λ ∈ σess(A,L) ⇐⇒ (λ − a)−1 ∈ σess

(

(A− a)−1,G
)

.

By Remark 2,

σess

(

(B − a)−1,G
)

= σess

(

(A− a)−1,G
)

.

Let G′ = (B − a)1/2L. Then
G = (A− a)1/2L = (A− a)1/2(B − a)−1/2G′ = (1 +K)G′.

Note that K = (A− a)1/2(B − a)−1/2 − 1 and −1 6∈ σ(K) as a consequence of the
fact that 0 6∈ σ((A − a)1/2(B − a)−1/2) by (13). According to Lemma 10,

(18) σess

(

(B − a)−1,G
)

= σess

(

(B − a)−1,G′)

The conclusion follows by applying Theorem 7 again, this time to operator B. �

Corollary 12. Let A and B be two bounded-below selfadjoint operators such that

(13) holds true for some a < inf{σ(A), σ(B)}. Assume that C := B−A is a densely

defined symmetric operator such that

(19) C ∈ B(D((B − a)β),H)

and

(20) (A− a)−αC(B − a)−β ∈ K(H)

for some 0 ≤ α, β < 1 with α+ β < 1. Then

σess(A,L) = σess(B,L)
for all sequences L = (Ln) which are simultaneously (A − a)1/2-regular and (B −
a)1/2-regular.

Remark 7. Let A be a given bounded-below selfadjoint operator and assume that
A has a gap (a, b) in its essential spectrum in the following precise sense,

σess(A) ∩ (a, b) = ∅, tr
(

1(−∞,a)(A)
)

= tr
(

1(b,∞)(A)
)

= +∞.

Let Π := 1(c,∞)(A) where a < c < b. Results shown in [22] ensure that, when the
Galerkin spaces Ln are compatible with the decomposition H = ΠH⊕(1−Π)H (i.e.
when Π and πn commute for all n), there is no pollution in the gap: σess(A,L) ∩
(a, b) = ∅. According to [22, Corollary 2.5], when

(21) (B − a)−1C(A− a)−1/2 ∈ K(H),

then σess(B,L) = ∅ as well.
In this respect, Theorem 11 can be seen as a generalisation of these results.

Although condition (20) is stronger than (21), the statement guarantees that the
whole polluted spectrum will not move irrespectively of the (A − a)1/2-regular
Galerkin family L and not only for those satisfying [Π, πn] = 0 for all n. ⋄
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Example 8 (Periodic Schrödinger operators). Let A = −∆+ Vper where Vper is a
periodic potential with respect to some fixed lattice R ⊂ Rd (for instance R = Z3).
Let C = W (x) be a perturbation. Assume that

Vper ∈ Lp
loc(R

d) where







p = 2 if d ≤ 3
p > 2 if d = 4
p = d/2 if d ≥ 5

and that

W ∈ Lq(Rd) ∩ Lp
loc(R

d) + L∞
ǫ (Rd)

for max(d/2, 1) < q < ∞. Then (20) holds true for suitable α, β and a, and
therefore

(22) σess (−∆+ Vper +W,L) = σess (−∆+ Vper,L)
for all A-regular Galerkin sequence L. See [22, Section 2.3.1].

A Galerkin sequence L which does lead to any pollution in a given gap, can
be found by localised Wannier functions, [22, 9]. In practice, these functions can
only be calculated numerically, so it is natural to ask what would be the polluted
spectrum when they are known only approximately. According to (22), the polluted
spectrum will not increase in size more than that of the unperturbed operator
−∆+ Vper. ⋄

Example 9 (Optimality of the constants in Corollary 12). Let H, L, e±n and f±
n

be as in Example 2. Let

A =
∑

n

nℓ|f+
n 〉〈f+

n |+
∑

|f−
n 〉〈f−

n | and B =
∑

n

nr|e+n 〉〈e+n |+
∑

|e−n 〉〈e−n |.

The matrix representation of A and B in the basis e±n is made out of 2 × 2 blocks
placed along the diagonal. More precisely A = diag[An], B = diag[Bn] and C =
diag[Cn]; where

An = R−n

(

nℓ 0
0 1

)

Rn, Bn =

(

nr 0
0 1

)

and Cn = An −Bn for

Rn =

(

cos 1
n sin 1

n
− sin 1

n cos 1
n

)

.

Fix a = 0 and let L = A−αCB−β . The matrix representation of L in the basis e±k
is L = diag[Ln] where we can calculate explicitly the entries as

(Ln)11 = −n−βr−αℓ+r cos2
1

n
+ n−βr sin2

1

n

− n−r(β−1) sin2
1

n
+ n−βr−αℓ+ℓ cos2

1

n

(Ln)12 = cos
1

n
sin

1

n

(

n−ℓ(α−1) − n−αℓ
)

(Ln)21 = cos
1

n
sin

1

n

(

n−βr−αℓ+ℓ − n−βr−αℓ+r − n−βr + n−r(β−1)
)

(Ln)22 = sin2
1

n

(

n−ℓ(α−1) − n−αℓ
)

.
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Therefore L is compact, given the following

(23)

ℓ = 2, 0 < β, α < 1, 0 < r < 2,

−βr − 2α+ 2 < 0, α > 1/2, β > 1− 1

r
.

On the other hand, for ℓ = 2,

σess(A,L) = {1, 2} and σess(B,L) = {1}.

This example suggests that condition (20) in Corollary 12 is quasi-optimal for the
stated range of β and α as illustrated by Figure 1. Note however that in this
example (13) is only satisfied when r = ℓ. ⋄

Figure 1. The region in green colour for the parameters β and
α is covered by the conditions of Corollary 12. If A and B satisfy
(20) for (β, α) in this region, then the limiting essential spectrum
is preserved. The region in red shows the parameters β and α in
condition (23) of Example 9. The region in blue is generated by
exchanging the roles of β and α. It is not enough for A and B to
satisfy (20) for (β, α) in these two regions, to guarantee preserva-
tion of the limiting essential spectrum.

Proof of Corollary 12. Assume firstly that 0 ≤ α ≤ 1/2. The proof reduces to
showing that the operator K defined by expression (14) is compact. Let L =
(A− a)−αC(B − a)−β be the operator given by (20). Since β < 1, we have D(B −
a) ⊂ D(B − a)β , [11, Theorem 4.3.4]. Then, by (19), LH ⊂ D((A − a)α) and
Cx = (A− a)αL(B − a)βx for all x ∈ D(B − a). By virtue of (20),

(A− a)1/2(A− a+ s)−1C(B − a+ s)−1 ∈ K(H)

for all s ≥ 0. Moreover

(A−a)1/2((A−a+s)−1−(B−a+s)−1)x = (A−a)1/2(A−a+s)−1C(B−a+s)−1x
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for all x ∈ H, as this identity is satisfied in a dense subspace of H. Thus

K = − 1

π

∫ ∞

0

(A− a)1/2(A− a+ s)−1C(B − a+ s)−1 ds√
s

= − 1

π

∫ ∞

0

{

(A− a)1/2(A− a+ s)−1(A− a)α
}

L
{

(B − a)β(B − a+ s)−1
} ds√

s
.

Both terms in brackets multiplying L are bounded operators, then the integrand in
the second expression is also a compact operator. Moreover, the integral converges
in the Bochner sense as its norm is O(sβ+α−2) for s → ∞ and O(s−1/2) for s → 0.
Thus K ∈ K(H) in this case and Theorem 11 implies the desired conclusion.

Now suppose that 1/2 < α < 1, so that 0 ≤ β ≤ 1/2. Since

D(A− a)α ⊂ D(A− a)1/2 = D(B − a)1/2 ⊂ D(B − a)β ,

then C ∈ B(D(A− a)α,H). Hence the operator (B − a)−βC(A− a)−α is bounded
and (B − a)−βC(A − a)−αx = L∗x for all x ∈ H. The proof is then completed by
exchanging the roles of A and B. �
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