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WEYL THEOREMS FOR THE POLLUTED SET OF

SELF-ADJOINT OPERATORS IN GALERKIN

APPROXIMATIONS

LYONELL BOULTON1, NABILE BOUSSAÏD2, AND MATHIEU LEWIN3

Abstract. Let A be a self-adjoint operator on a separable Hilbert space H

and let (Ln)n∈N be a sequence of finite dimensional subspaces of the domain of
A, approximating H in the large n limit. Denote by An the compression of A to
Ln. In general the spectrum of A is only a subset of the limit of the spectra of
An and the latter might differ from the former in a non-trivial “polluted set”.
In this paper we show that this polluted set is determined by the existence of
particular Weyl sequences of singular type. This characterization allows us to
identify verifiable conditions on self-adjoint perturbations B, ensuring that the
polluted set of B is identical to that of A. The results reported are illustrated
by means of several canonical examples and they reveal the many subtleties
involved in the systematic study of spectral pollution.
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1. Context

Computing approximations of the spectrum of a self-adjoint operator A act-
ing on an infinite dimensional Hilbert space is a subtle task, in particular when
A has gaps in its essential spectrum. A natural approach, which can be traced
back to the beginning of the XXth Century, consists in choosing a family (Ln)n∈N

of finite-dimensional subspaces of the domain and calculating the spectrum of the
corresponding compressions An of A to Ln. This is the basic idea behind the so-
called Galerkin method. In general it is not guaranteed that σ(An) would converge
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in an appropriate natural sense to σ(A) in regions inside the convex hull of the es-
sential spectrum, even in cases when Ln contains a subspace becoming increasingly
close to spectral subspaces of A (see the various examples below). Typically the
large n limit of σ(An) would cover σ(A), however the former can be much larger
than the latter, giving rise to what is usually referred to as spectral pollution.

Spectral pollution is a remarkable phenomenon which is encountered in many
different practical situations. It arises when approximating the spectrum of Sturm-
Liouville operators [1, 32, 31], perturbations of periodic Schrödinger operators [7]
and systems underlying elliptic partial differential equations [2, 4, 5]. It is a well-
documented difficulty in quantum chemistry and physics, in particular regarding
relativistic computations [20, 30, 17, 15]. It also plays a fundamental rôle in elas-
ticity and magnetohydrodynamics [19, 10, 27, 3].

In recent years this phenomenon has raised a large interest in the mathematical
community [23, 18, 21, 12, 13, 26, 25] and there are known alternative computational
procedures capable of avoiding it. These include specialized variational formulations
such as those studied at length in [16, 19, 14, 24], as well as general methods such as
those proposed in [8, 6, 7, 21, 12]. Another possible approach is to derive conditions
on the approximating subspaces allowing to avoid pollution in a given interval
of the real line. These conditions can be found for operators with a particular
structure, and they are motivated from procedures in numerical analysis [2, 5, 27]
and computational physics and chemistry [22]. In the latter work an abstract
framework in this respect was formulated and successfully applied to problems
from relativistic and non-relativistic quantum theory.

In the present article we adopt a similar approach as that considered in [22]. We
introduce the notion of relative spectrum, σ(A,L), obtained from the approximat-
ing sequence of spaces L = (Ln)n∈N, as the limiting set in Hausdorff distance of the
spectra σ(An) as n → ∞. Under natural conditions, σ(A) ⊂ σ(A,L) (Proposition
3). We then introduce (Definition 3) the notion of relative essential spectrum asso-
ciated with L, σess(A,L). This latter set contain both the true essential spectrum
of A and the set of all spurious (or polluted) points of the method associated with L
(Proposition 5). These points are the ones which ought to be avoided in numerical
simulations.

Once we have established elementary properties of the relative spectra σ(A,L)
and σess(A,L), we address the following natural question: under which conditions
on a perturbation B is the equality

(1) σess(B,L) = σess(A,L)
satisfied? According to our main result (Theorem 11) when A and B are bounded
from below and

(2) (A− a)1/2(B − a)−1/2 − 1

is a compact operator for some a negative enough, then (1) holds true. Therefore,
under the condition (2), an approximating sequence L will not pollute for A in a
given interval if and only if it will not pollute for B in the same interval. This
generalizes [22, Corollary 2.5].

The key to our present approach is to adapt to the relative spectra several
classical results for the spectrum and essential spectrum. In turns, this leads to
many unexpected difficulties which we will illustrate on a variety of simple examples.
In particular, we establish (Theorem 7) a relative version of the spectral mapping
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theorem allowing to replace the unbounded operator A by its (bounded) resolvent
(A − a)−1. Remarkably, this theorem fails in general (Remark 4) for operators
which are not semi-bounded.

The theoretical framework that we presently establish, provides an insight on
the difficulties encountered in the presence of spectral pollution and it highlights
its many subtleties.

Background notation. We will subsequently denote by B(H1,H2) the space of
bounded operators between two Hilbert spacesH1 andH2. We will denote by K(H)
the algebra of compact operators on the Hilbert space H. We adopt the bra-ket
symbol |x〉〈y|, to denote the rank-one operator defined as |x〉〈y| z = 〈y, z〉x. Here
〈·, ·〉 is the scalar product of H.

Below A denotes a densely defined self-adjoint operator acting on a separable
infinite dimensional H, with domain D(A) ⊂ H. By σ(A), σess(A) and σdisc(A) we
mean the spectrum, essential spectrum and discrete spectrum of A.

On sequences (xn)n∈N ⊂ H of vectors and (Ln)n∈N of subspaces Ln ⊂ D(A) we
will ofter suppress the index and write (xn) and (Ln) instead. we will denote by
xn ⇀ x the fact that xn is weakly convergent to x ∈ H. When the norm is not
specified, xn → x will denote the fact that ‖xn − x‖ → 0.

2. Basic definitions

We will often make the assumption that A is bounded from below, however we
will not require this for the moment. For n ∈ N, let L = (Ln) be a sequence of
finite-dimensional subspaces of D(A). We assume that Ln approximates D(A) as
n → ∞ in the following precise sense:

Definition 1 (A-regular Galerkin sequences). We say that L = (Ln) is anA-regular
Galerkin sequence, or simply an A-regular sequence, if for all f ∈ D(A) there exists
a sequence of vectors (fn) with fn ∈ Ln such that fn → f in the graph norm of A,
that is:

(3) ‖fn − f‖+ ‖Afn −Af‖ →n→∞ 0.

Below we will always assume that L = (Ln) is an A-regular sequence. The
orthogonal projection in the scalar product of H onto Ln will be denoted by πn :
H −→ Ln and the compression of A to Ln by An = πnA ↾ Ln

: Ln −→ Ln. The
compression An will sometimes be identified with one of its matrix representation.

2.1. Spectrum of a self-adjoint operator relative to a Galerkin sequence.

The spectrum of A relative to the A-regular Galerkin sequence L, will be the set
of all limit points of the spectra of An in the large n limit.

Definition 2 (Relative spectrum). The spectrum of A relative to L = (Ln),
σ(A,L), is the set of all λ ∈ R for which there exists a sequence λk ∈ σ(Ank

)
such that nk → ∞ and λk → λ as k → ∞.

Since allAn are Hermitian endomorphisms in the above definition, clearly σ(A,L) ⊂
R. The following lemma provides an alternative characterization of σ(A,L).
Lemma 1 (L-Weyl sequences). The real number λ ∈ σ(A,L) if and only if there

exists a sequence (xk) ⊂ D(A) such that xk ∈ Lnk
, ‖xk‖ = 1 and πnk

(A− λ) xk →
0 as k → ∞.
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Proof. According to the definition, λ ∈ σ(A,L) if and only if there exists λk ∈ R

and xk ∈ Lnk
with ‖xk‖ = 1 such that λk → λ and πnk

(A− λk)xk = 0. As
πnk

(A− λ) xk = (λk−λ)xk → 0, one of the stated implications follows immediately.
On the other hand, if (xk) ⊂ D(A) is as stated, then ‖(Ank

− λ)xk‖ → 0. Since
the An are Hermitian, there necessarily exists λk ∈ σ(Ank

) such that |λk − λ| ≤
||(Ank

− λ)xk|| → 0. Thus λ ∈ σ(A,L) ensuring the complementary implication. �

We call (xk) an L-Weyl sequence for λ ∈ σ(A,L) by analogy to the classical
notion of Weyl sequence [11].

Remark 1. Self-adjointness of the An is crucial in Lemma 1. We illustrate this
by means of a simple example. Let H = ℓ2(N) and (ej) ⊂ H be the canonical
orthonormal basis of this space. Let A be the left shift operator defined by the
condition A : ej 7−→ ej−1 with the convention e0 = 0. Let Lk = Span {ei, i ≤ k}.
For this data an analogous of Lemma 1 is no longer valid. Indeed, if |λ| < 1 and

xk :=

√

1− |λ|2
1− |λ|2k−2

k
∑

i=1

λiei,

then xk ∈ Lk, ||xk|| = 1 and

||Axk − λxk|| =
√

1− |λ|2
1− |λ|2k−2

|λ|k+1 → 0.

Therefore any point of the open unit disk is associated with an L-Weyl sequence.
However, on the other hand, An is a Jordan block, so σ(An) = {0} for all n ∈ N

and hence necessarily σ(A,L) = {0}. ⋄
The above characterization of points in the relative spectrum combined with the

minimax principle yields the following fundamental statement.

Proposition 2 (The relative spectra and the spectrum). Let L be an A-regular
Galerkin sequence. Then

(4) σ(A) ⊂ σ(A,L)
and

(5) σ(A,L) \ σ(A) ⊂
(

ℓ− , ℓ+
)

where

ℓ− :=

{

−∞ for inf σ(A) = −∞
inf σess(A) otherwise

ℓ+ :=

{

+∞ for supσ(A) = +∞
supσess(A) otherwise.

Proof. The classical characterization of the spectrum of self-adjoint operators en-
sures that λ ∈ σ(A) if and only if there is a normalized sequence (yk) ⊂ D(A) such
that ‖(A−λ)yk‖ → 0 (that is (yk) is a Weyl sequence for λ). We will now construct
an L-Weyl sequence from (yk). According to (3), we can find (xk

m)(k,m)∈N2 such

that xk
m ∈ Lm, (yk − xk

m) → 0 and (A− λ)(yk − xk
m) → 0 as m → ∞. By virtue of

a diagonal process, we can extract a subsequence such that πmk
(A − λ)xk

mk
→ 0.

Dividing by ‖xk
mk

‖ (which does not vanish in the k → ∞ limit), gives (4) as conse-
quence of Lemma 1.
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The proof of (5) is a classical consequence of the minimax principle. It may be
found, for instance, in [21, Theorem 2.1] and also [22, Theorem 1.4]. �

In [22, Theorem 1.4] the existence of an A-regular Galerkin sequence L such
that σ(A,L) = [ℓ−, ℓ+] is shown. The inclusion complementary to (4) does not
hold in general. This is a source of difficulties in applications as there is not
known systematic procedure able to identify A-regular Galerkin sequences such
that σ(A) = σ(A,L). By virtue of (5), spectral pollution can only occur in “gaps”
of the essential spectrum.

2.2. Relative essential and discrete spectra. Points in σ(A,L) \ σ(A) can be
characterized in a more precise manner in terms of particular L-Weyl sequences as
we will see next.

Definition 3 (Relative essential spectrum). We denote by σess(A,L) the set of all
λ ∈ σ(A,L) for which there exists an L-Weyl sequence (xk) as in Lemma 1 with
the additional property that xk ⇀ 0.

By analogy to the classical notions, we will call σess(A,L) the essential spectrum
of A relative to L and the corresponding sequence (xk) a singular L-Weyl sequence.

Remark 2. From the definition it follows that σess(A+K,L) = σess(A,L) for any
self-adjoint operator K ∈ K(H). ⋄
Definition 4 (Relative discrete spectrum). We call the residual set σdisc(A,L) =
σ(A,L) \ σess(A,L), the discrete spectrum of A relative to L.

We illustrate these definitions by means of various simple examples.

Example 1 (A a bounded operator). Let H = Span{e±n }n∈N where e±n is an or-
thonormal set of vectors in a given scalar product. Define Ln = Span{e±1 , . . . , e±n−1, fn}
where fn = cos θ e+n + sin θ e−n for θ ∈ (0, π/2). Let

A =
∑

n≥1

|e+n 〉〈e+n |,

that is, A is the orthogonal projector onto Span(e+n ) and σ(A) = σess(A) = {0, 1}.
Then σ(An) = {0, 1, cos2 θ} for all n and σ(A,L) = σess(A,L) = {0, 1, cos2 θ}. ⋄
Example 2 (A a semi-bounded operator). Let H be as in Example 1 and define

Ln = Span{e±1 , . . . , e±n−1, e
−
n }.

For f±
n = sin( 1n ) e

∓
n ± cos( 1n ) e

±
n , let

A =
∑

n2|f+
n 〉〈f+

n | −
∑

|f−
n 〉〈f−

n |
which has a 2× 2 block diagonal representation in the basis (e±n ). Then σess(A) =
{−1} and σdisc(A) = {n2 : n ∈ N}. On the other hand

σ(An) =

{

−1, n2 sin

(

1

n

)2

− cos

(

1

n

)2

, 1, . . . , (n− 1)2

}

,

where −1 is an eigenvalue of multiplicity n, therefore

σess(A,L) = {−1, 0} and σdisc(A,L) = {n2 : n ∈ N}.
The former is a consequence of Proposition 3-(ii) while the latter follows from
Proposition 5-(iii) below.
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We can also verify the validity of the latter as follows. Assume that (xk) is a
singular L-Weyl sequence associated with ν2 ∈ σdisc(A). Then πnk

(A− ν2)xk → 0
and xk ⇀ 0. For m < nk

pmπnk
(A− ν2)xk = (A− ν2)pmxk

where pm =
∑

i<m |f±
i 〉〈f±

i |. Then

‖pnk−1xk − 〈f+
ν |xk〉f+

ν ‖2 ≤
∣

∣

∣

∣(A− ν2)pnk−1xk

∣

∣

∣

∣

2 → 0

as k → ∞. Since xk ⇀ 0, then also ||pnk−1xk||2 +
∣

∣

∣

∣(A− ν2)pnk−1xk

∣

∣

∣

∣

2 → 0.
Therefore

(A− ν2)(xk − 〈e−nk
, xk〉e−nk

) → 0.

As
∣

∣〈(A− ν2)e−n , e
−
n 〉

∣

∣ =
∣

∣n2 sin2( 1n ) + cos2( 1n )− ν2
∣

∣ →
∣

∣2− ν2
∣

∣ > 0, projecting

each term onto Lnk
yields 〈e−k , xk〉 → 0. Thus 1 = ||xk|| → 0, which is a contradic-

tion. ⋄
Example 3 (A a strongly indefinite operator). Let H and Ln be as in Example 2.
Let f±

n = 1√
2
e+n ± 1√

2
e−n . Let

A =
∑

n|f+
n 〉〈f+

n | −
∑

n|f−
n 〉〈f−

n |.
Then σ(A) = {±n : n ∈ N} = σdisc(A). On the other hand

σ(A,L) = Z, σess(A,L) = {0}, and σdisc(A,L) = {±n : n ∈ N}.
Note that the proof of the latter is similar to that of the analogous property in
Example 2. ⋄

3. The relative spectra and the behaviour of singular L-Weyl
sequences

In this section we establish various properties of the relative spectra σ(A,L),
σess(A,L) and σdisc(A,L). These properties can be deduced from properties of
different types of L-Weyl sequences.

Proposition 3 (Essential and discrete relative spectra and the spectrum). Let L
be an A-regular Galerkin sequence. Then

(i) the relative spectrum σ(A,L) and the relative essential spectrum σess(A,L)
are closed subsets of R;

(ii) moreover σess(A) ⊂ σess(A,L) and σdisc(A,L) ⊂ σdisc(A).

Proof. The proof of (i) involves a standard diagonal argument and it is left to the
reader. For the second statement we need the following auxiliary result which will
be used repeatedly below.

Lemma 4. There exists xk ∈ Lnk
such that ‖xk‖ = 1, xk ⇀ x and πnk

(A−λ)xk →
0, only when x ∈ Ker(A− λ).

Proof of Lemma 4. Suppose that (xk) satisfies the hypothesis. Let f ∈ D(A) and
fn ∈ Ln such that fn → f in the norm of D(A). Then 〈πnk

(A − λ)xk, fnk
〉 → 0.

On the other hand, since fk → f in D(A),

〈πnk
(A− λ)xk, fnk

〉 = 〈xk, (A− λ)fnk
〉 → 〈x, (A− λ)f〉.
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Thus 〈x, (A−λ)f〉 = 0 for all f ∈ D(A), so that x ∈ D(A∗) = D(A) and (A−λ)x = 0
as required. �

In order to prove (ii) of Proposition 3 we proceed as follows. The fact that
σess(A) ⊂ σess(A,L) is proved similarly to (4). It should only be noted that the
L-Weyl sequence found for λ ∈ σess(A) additionally satisfies xk

mk
⇀ 0.

For the inclusion σdisc(A,L) ⊂ σdisc(A) note that, if λ ∈ σdisc(A,L), there exists
xk ∈ Lnk

such that ‖xk‖ = 1, xk ⇀ x 6= 0 and πnk
(A − λ)xk → 0. As λ 6∈ σess(A)

(by the previous part), then either λ ∈ σdisc(A) or λ 6∈ σ(A). By Lemma 4, the
latter is impossible. �

Remark 3. If σess(A) = σess(A,L) then automatically σdisc(A) = σdisc(A,L) and
σ(A) = σ(A,L). ⋄

We will now describe in more details the behaviour of singular L-Weyl sequences
in the particular case λ ∈ σess(A,L) \ σess(A).

Proposition 5 (Singular L-Weyl sequences). The real number λ ∈ σess(A,L) if

and only if

(i) either λ 6∈ σ(A) and there exists λk → λ and yk ∈ Lnk
such that yk ⇀ 0

and Πnk
(A− λk)yk = 0;

(ii) or λ ∈ σess(A) and there exists λk → λ and yk ∈ Lnk
such that yk ⇀ 0 and

Πnk
(A− λk)yk = 0;

(iii) or λ ∈ σdisc(A) and for any ε > 0

Rank
(

1(λ−ε,λ+ε)(An)
)

≥ Rank
(

1{λ}(A)
)

+ 1

for all n large enough.

In cases (i) and (iii), λ can be regarded as an L-spurious point of A. In case (iii)
λ ∈ σ(A), but the multiplicity of the approximated spectrum σ(An) is too large for
n large, leading to the wrong spectral representation of A in the limit n → ∞. In
case (ii) the singular L-Weyl sequence (yk) behaves like a classical singular Weyl
sequence.

Only in cases (i) and (ii) the existence of a singular L-Weyl sequence (yk) con-
sisting of exact eigenvectors of Ank

such that Πnk
(A − λk)yk = 0 and λk → λ

is guaranteed. In case (iii) it may occur that all the eigenvectors of Ank
whose

corresponding eigenvalue converges to λ, converge weakly to a non-zero element
of Ker(A − λ), and that only a linear combination of these eigenvectors converges
weakly to zero. This can be illustrated by means of a simple example.

Example 4 (Spectral point satisfying Proposition 5-(iii)). Let H = Span{e0, e±n }
where e0, e

±
n form an orthonormal basis. Let

A =

∞
∑

n=1

|e+n 〉〈e+n | −
∞
∑

n=1

|e−n 〉〈e−n |.

Then σ(A) = {−1, 0, 1} and σess(A) = {−1, 1}. The eigenvalue 0 has multiplicity
one and associated eigenvector e0. Let

Ln = Span{e±1 , . . . , e±n−1, f
±
n } where f±

n =
e0 + α±

n e+n + β±
n e−n

√

1 + (α±
n )2 + (β±

n )2
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for

α±
n = ±

√

1± 1
n2

2(1∓ 1
n2 )

and β±
n = ±

√

1∓ 1
n2

2(1± 1
n2 )

.

Then σ(A,L) = {0,±1} = σess(A,L). In this case An has two eigenvalues ap-
proaching zero in the large n limit, with corresponding eigenvectors f+

n and f−
n . It

is readily seen that f±
n ⇀ e0/

√
2 and so only the difference f+

n − f−
n tends weakly

to zero. ⋄

Proof of Proposition 5. Let λ ∈ σess(A,L) ⊂ σ(A,L). By definition of σ(A,L)
there exists a normalized sequence (yk) such that πnk

(A− λk)yk = 0 and λk → λ.
The main question is whether one can ensure that yk ⇀ 0 weakly. Up to extraction
of a subsequence we may assume that yk ⇀ y ∈ Ker(A − λ) (by Lemma 4). If
λ /∈ σ(A), then Ker(A− λ) = {0} and necessarily y = 0, thus (i) follows.

We now turn to the proof of (ii). To proceed further, we require the following
auxiliary result.

Lemma 6. Let V ⊂ D(A) be a subspace of dimension d > 0. Let ε > 0 be such

that

‖(A− λ)x‖ ≤ ε‖x‖ ∀x ∈ V .
Let Wn = πnV. There exists N > 0 such that for all n ≥ N ,

‖(A− λ)y‖ ≤ 2ε
√
d‖y‖ ∀y ∈ Wn.

Proof of Lemma 6. Let (ej) be an orthonormal basis of V . For sufficiently large n,
πnej is a basis for Wn. By applying the Gramm-Schmidt procedure to πnej, we
can construct an orthonormal basis (fn

j ) of Wn such that

‖ej − fn
j ‖D(A) → 0 n → ∞.

Let N > 0 be such that

‖(A− λ)fn
j ‖ ≤ 2ε ∀n ≥ N, j = 1, . . . , d.

For y =
∑d

j=1 ŷjf
n
j ∈ Wn, we get

‖(A− λ)y‖ ≤ 2ε
d

∑

j=1

|ŷj| ≤ 2ε
√
d‖y‖,

which ensures the desired property. �

The proof of (ii) in Proposition 5 is achieved as follows. Assume that λ ∈ σess(A).
For all d ∈ N there exists a subspace Vd ⊂ D(A), such that dimVd = d2 and

‖(A− λ)y‖ ≤ 1

d2
‖y‖ ∀y ∈ Vd,

see for instance [11, Lemma 4.1.4]. According to Lemma 6 and an inductive argu-
ment, there is a sequence (nd) ⊂ N and d2-dimensional subspaces Wd ⊂ Lnd

, such
that

‖πnd
(A− λ)y‖ ≤ 2

d
‖y‖ ∀y ∈ Wd.

This ensures that And
has at least d2 eigenvalues in the interval

[

λ− 2/d, λ+2/d
]

.
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Let (fnd

j )d
2

j=1 ⊂ Lnd
be an orthonormal set of d2 eigenvectors of And

, with

associated eigenvalues (λnd

j )d
2

j=1 satisfying |λnd

j − λ| ≤ 2/d. We inductively define
the following singular L-Weyl sequence for λ:

y1 = fn1

1

y2 = fn2

δ2
with 1 ≤ δ2 ≤ 22 such that |〈y2, y1〉| ≤ 1/

√
2

y3 = fn3

δ3
with 1 ≤ δ3 ≤ 32 such that |〈y3, yj〉| ≤ 1/

√
3 for j = 1, 2

...

yd = fnd

δd
with 1 ≤ δd ≤ d2 such that |〈yd, yj〉| ≤ 1/

√
d for j = 1, . . . , d− 1.

The existence of δd is guaranteed by the fact that

∀k = 1, ..., d− 1, 1 = ‖yk‖2 ≥
d2

∑

j=1

|〈yk, fnd

j 〉|2.

Indeed, there are at most d indices j in the above summation, such that |〈yk, fnd

j 〉|2 ≥
1/d. Hence, in total, there are at most d(d−1) indices j such that |〈yk, fnd

j 〉|2 ≥ 1/d

for at least one k = 1, ..., d− 1. Since d(d− 1) < d2 for d ≥ 1, we deduce that there
is at least one index j =: δd such that |〈yk, fnd

j 〉|2 ≤ 1/d for all k = 1, ..., d− 1.

By construction ‖yd‖ = 1 and |〈yi, yj〉| ≤ 1/
√

max(i, j). Thus yk ⇀ 0 as k → ∞,
ensuring (ii).

Note that, conversely, if (i) or (ii) holds true, then λ ∈ σess(A,L) by Definition 3.
Let us now prove that if λ ∈ σess(A,L) ∩ σdisc(A), then (iii) holds true. Let

xk ∈ Lnk
be a singular L-Weyl sequence: πnk

(A − λ)xk → 0, ||xk|| = 1 and
xk ⇀ 0. Let V = Ker(A − λ) 6= {0} and d = dim(V). For n sufficiently large
Wn := πnV ⊂ Ln is of dimension d. Also, for all ε > 0, there exists N > 0 such
that

‖πn(A− λ)y‖ ≤ ε‖y‖ ∀y ∈ Wn

whenever n ≥ N . Let Sk = Span{Wnk
, xk}. Since xk ⇀ 0 and Wnk

does not
increase in dimension in the large k limit, necessarily dim(Sk) = d+1 for all k large
enough. For all ε > 0 there exists M > 0 such that

‖πnk
(A− λ)y‖ ≤ ε‖y‖ ∀y ∈ Sk

whenever k ≥ M . This ensures that σ(Ank
) ∩ (λ− ε, λ+ ε) contains at least d+ 1

points counting multiplicity and hence the claimed conclusion is achieved.
It only remains to prove that (iii) implies λ ∈ σess(A,L). Each individual eigen-

vector of Ank
might not converge weakly to 0, however there is a linear combination

of them that does it. We prove this as follows. Let (fk
j )

d+1
j=1 be an orthonormal set

of d+ 1 eigenvectors

Ank
fk
j = λk

j f
k
j j = 1, . . . , d+ 1.

Up to extraction of subsequences we may assume that fk
j ⇀ fj ∈ Ker(A − λ) for

all j = 1, . . . , d + 1. If fj = 0 for some j, then the desired conclusion follows.
Otherwise, since dimKer(A−λ) = d, there exist coefficients (aj) ∈ Cd+1 \ {0} such

that
∑d+1

j=1 ajfj = 0. Therefore, we may take

yk :=

∑d+1
j=1 ajf

k
j

√

∑d+1
j=1 |aj |2
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as singular L-Weyl sequence for λ. This ends the proof of Proposition 5. �

4. Mapping of relative spectra

In this section we establish mapping theorems for the different relative spectra.
They are a natural generalization of the analogous well-known result for σ(A) and
σess(A) (see for example [29, Section XIII.4]).

Theorem 7 (Mapping of the relative spectra). Let A be semi-bounded from below

and let a < inf σ(A). Then

(6) λ ∈ σ(A,L) ⇐⇒ (λ− a)−1 ∈ σ
(

(A− a)−1,G
)

and

(7) λ ∈ σess(A,L) ⇐⇒ (λ− a)−1 ∈ σess

(

(A− a)−1,G
)

where G =
(

(A− a)1/2Ln

)

n∈N
.

Remark 4. Recall that a self-adjoint operator A is unbounded (D(A) ( H) if and
only if 0 ∈ σ((A − a)−1) for one (hence for all) a 6∈ σ(A). As it turns out, A is
unbounded if and only if 0 ∈ σess((A−a)−1,L) for one (and hence all) a < minσ(A)
and A-regular sequence L. Formally in Theorem 7 this corresponds to the case
+∞ ∈ σ(A) and (+∞− a)−1 = 0. ⋄

Evidently a result analogous to Theorem 7 can be established when A is semi-
bounded from above. Here A is required to be semi-bounded, in order to be able
to define the square root (A− a)1/2, see for example [11, Section 4.3], and also for
a more fundamental reason. When a is in a gap of the essential spectrum, it would
be natural to expect an extension of the above result by considering, for example,
G =

(

|A − a|1/2Ln

)

n∈N
. The following shows that this extension is not possible in

general.

Example 5 (Impossibility of extending Theorem 7 for A strongly indefinite). Let
H be as in Example 2. Define Ln = Span{e±1 , . . . , e±n−1, cos(θn) e

+
n + sin(θn) e

−
n }

with θn := π/4− λ/(2n) for a fixed λ ∈ (0, 1). Let

A =
∑

n|e+n 〉〈e+n | −
∑

n|e−n 〉〈e−n |.

Then σ(A) = {±n : n ∈ N} = σdisc(A). On the other hand

σ(A,L) = σ(A) ∪ {λ}, σess(A,L) = {λ} and σdisc(A,L) = σ(A).

Now

A−1 =
∑

n−1|e+n 〉〈e+n | − n−1|e−n 〉〈e−n |

and G =
√

|A|L = L. Since A−1 is compact we have

σ(A−1,G) = σ(A−1) and σess(A
−1,G) = σess(A

−1) = {0}.
Thus λ ∈ σess(A,L) whereas 1/λ 6∈ σ(A−1,G). ⋄

In fact the following example shows that no general extension of this theorem
is possible whenever a lies in the convex hull of the essential spectrum, even for
A ∈ B(H).
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Example 6 (Impossibility of extending Theorem 7 for a ∈ Conv{σess(A)}). Let
H = L2(−π, π) and Af(x) = sgn(x)f(x) for all f ∈ H. Then σ(A) = {±1}. If L is
any A-regular sequence, then σ(A,L) ⊂ [−1, 1]. Fixing a = 0 yields (A−a)−1 = A.
Thus also σ((A − a)−1,G) ⊂ [−1, 1] for any A-regular sequence G. Therefore a
general extension of Theorem 7 to a in a gap of the essential spectrum would be
impossible. ⋄

Proof of Theorem 7. Statement (6) will follow immediately from the next result.

Lemma 8 (Mapping for the spectrum of compressions). Let A be semi-bounded

from below, let a < inf σ(A) and Ln ⊂ D(A). Then

λ ∈ σ(πnA↾Ln
) ⇐⇒ (λ− a)−1 ∈ σ(pn(A− a)−1 ↾Gn

)

where Gn = (A− a)1/2Ln and pn is the associated orthogonal projector.

Proof. Note that λ ∈ σ(An) if and only if there exists x ∈ Ln \ {0} such that

πn(A− a)1/2
(

(λ− a)−1 − (A− a)−1
)

(A− a)1/2x =
1

λ− a
πn(A− λ)x = 0.

By fixing y = (A− a)1/2x ∈ Gn \ {0}, it is readily seen that λ ∈ σ(An) if and only
if there exist y ∈ Gn \ {0} such that

〈

(A− a)1/2u,
(

(λ− a)−1 − (A− a)−1
)

y
〉

= 0

for all u ∈ Ln. Therefore, the statement λ ∈ σ(An) is equivalent to the existence of
y ∈ Gn\{0} such that

(

(λ− a)−1 − (A− a)−1
)

y ⊥ Gn which, in turns, is equivalent

to pn
(

(λ− a)−1 − (A− a)−1
)

y = 0. �

We now turn to the proof of (7). We begin by providing an alternative charac-
terization of the relative essential spectrum and then establishing a stability result
for the relative spectra with respect to compact perturbations of the A-regular
sequence.

Lemma 9 (Alternative characterization of σess(A,L)). Let

F(A) :=
{

f(A) : f ∈ Cc

(

R \ σess(A),R
)}

F±(A) :=
{

f(A) : f ∈ Cc

(

R \ σess(A),R
±)} .

Then

σess(A,L) =
⋂

B∈F(A)

σ(A+B,L)

=
⋂

B∈F+(A)

σ(A+B,L) =
⋂

B∈F−(A)

σ(A +B,L).(8)

Here Cc(Ω,R) denotes the set of all real-valued continuous functions of compact
support in the open set Ω. Note that F(A) is a real vector space and F±(A) are
cones, all spanned by projectors onto the eigenspaces of A associated with isolated
eigenvalues of finite multiplicity. At the end of this section it will become clear the
reason why we highlight the right hand side characterization in (8).
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Proof of Lemma 9. We only prove the first equality of (8) as the proof of the other
ones follows exactly the same pattern. It is well-known that

(9) σess(A) =
⋂

B∈F(A)

σ(A+B).

Since all the operators in F(A) are of finite rank, then σess(A + B) = σess(A) for
all B ∈ F(A). Hence (9) is equivalent to

(10)
⋂

B∈F(A)

σdisc(A+B) = ∅.

From Remark 2, it follows that σess(A+B,L) = σess(A,L) for all B ∈ F(A). On
the other hand, σ(A + B,L) = σdisc(A + B,L) ∪ σess(A,L) and σdisc(A+ B,L) ⊆
σdisc(A+ B), by Proposition 3. Hence, by (10),

⋂

B∈F(A)

σdisc(A+B,L) ⊂
⋂

B∈F(A)

σdisc(A+B) = ∅

and the result is proved. �

Lemma 10. Let T = T ∗ be such that ‖T ‖ < ∞ and let L be a T -regular sequence.
Let K ∈ K(H). If −1 6∈ σ(K), then

σess(T,L) = σess(T, (1 +K)L) and σdisc(T,L) = σdisc(T, (1 +K)L).

Proof of Lemma 10. We firstly prove that

(11) σess(T,L) \ σdisc(T ) = σess(T, (1 +K)L) \ σdisc(T ).

Since

(12) L = (1 +K)−1(1 +K)L = (1−K(1 +K)−1)(1 +K)L,
it suffices to show that the left hand side of (11) is contained in the right hand
side. Let λ ∈ σess(T,L) \ σdisc(T ). If λ ∈ σess(T ), Proposition 3-(iii) ensures that
λ lies also in the right hand side, so we can assume that λ 6∈ σ(A). According to
Proposition 5-(i), there exists λk → λ and xk ∈ Lnk

such that ‖xk‖ = 1, xk ⇀ 0 and
πnk

(T−λk)xk = 0. For all vk ∈ Lnk
, and hence for all wk = (1+K)vk ∈ (1+K)Lnk

,
we have

0 = 〈(T − λk)xk, vk〉 = 〈(1 +K∗)−1(T − λk)xk, (1 +K)vk〉
= 〈(1 +K∗)−1(T − λk)xk, wk〉.

Let qk be the orthogonal projection onto (1 +K)Lnk
. Then

qk(1 +K∗)−1(T − λk)xk = 0.

Now (1 +K∗)−1 = 1− K̃ where K̃ = K∗(1 +K∗)−1 ∈ K(H). Hence

qk(1− K̃)(T − λ)xk → 0.

But, since ‖T ‖ < ∞ and xk ⇀ 0, K̃(T − λ)xk → 0, so that also qk(T − λ)xk → 0.
Thus qk(T −λ)yk → 0 for yk = (1+K)xk ⇀ 0. By renormalizing yk in the obvious
manner, we obtain a singular L-Weyl sequence for λ ∈ σ(T, (1 + K)L), ensuring
(11).

To complete the proof of the first identity in the conclusion of the lemma, suppose
that λ ∈ σess(T,L) ∩ σdisc(T ). For any µ 6= λ let T̃ = T + (µ − λ)1(λ−ε,λ+ε)(T )
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where ε > 0 is sufficiently small. Then λ ∈ σess(T̃ ,L) \ σdisc(T̃ ). By virtue of (11)

and Remark 2, λ ∈ σess(T̃ , (1 +K)L) = σess(T, (1 +K)L).
We now show the second identity. By virtue of (12) and the first identity, it is

enough to verify
σdisc(T,L) ⊂ σ(T, (1 +K)L).

This, in turns, follows from Proposition 3-(ii) and (4), since

σdisc(T,L) ⊂ σdisc(T ) and σ(T ) ⊂ σ(T, (1 +K)L)
taking into account that (1 +K)L is a T -regular sequence. �

We now complete the proof of Theorem 7 by showing (7). Let λ ∈ σess(A,L).
By virtue of Lemma 9, this is equivalent to the statement

∀B ∈ F+(A), λ ∈ σ(A +B,L).
Since B ≥ 0 and a < min[σ(A+B)], according to (6) the latter is equivalent to

∀B ∈ F+(A), (λ− a)−1 ∈ σ((A +B − a)−1,GB)

where GB = (A + B − a)−1/2L. Since B has finite rank and is therefore compact,
Lemma 10 ensures that the above in turns is equivalent to

∀B ∈ F+(A), (λ− a)−1 ∈ σ((A +B − a)−1,G0).

Note that 0 6∈ σ((A + B − a)1/2(A − a)−1/2) as the corresponding operator is

an invertible function of A. Now (A + B − a)−1 = (A − a)−1 + B̃, where B̃ =
−(A−a)−1B(A+B−a)−1 runs over all of F− (

(A− a)−1
)

as B runs over all F+(A)

and conversely. For the latter note that f ∈ F+(A) if and only if −f((· − a)−1) ∈
F−((A − a)−1). Thus, once again by Lemma 9, λ ∈ σess(A,L) turns out to be
equivalent to

(λ− a)−1 ∈ σess((A − a)−1,G).
�

Remark 5. The proof of the above theorem mimics the proof of the classical
Mapping Theorem for the essential spectrum, that can be deduced from the char-
acterization

σess(A) =
⋂

B∈K(H)

σ(A+B),

see, e.g., [28]. ⋄

5. Stability properties of the relative essential spectrum

In this final section we present the main result of this paper, which strongly
depend on the validity of Theorem 7.

Theorem 11 (Weyl-type stability theorem for the relative spectra). Let A and

B be two self-adjoint operators which are bounded below. Assume that for some

a < inf{σ(A), σ(B)},
(13) D((B − a)1/2) = D((A− a)1/2)

and

(14) (A− a)1/2((B − a)−1/2 − (A− a)−1/2) ∈ K(H).

Then

σess(A,L) = σess(B,L)
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for all sequences L = (Ln) which are simultaneously A-regular and B-regular.

Under Assumption (13), (14) is equivalent to the same condition with the rôles
of A and B reversed:

(15) (B − a)1/2((A− a)−1/2 − (B − a)−1/2) ∈ K(H).

Remark 6. The KLMN theorem [29] ensures that if B − A is a densely defined
symmetric A-form-bounded operator with bound less than 1, then (13) holds for a
sufficiently negative. ⋄

The following example taken from [22] shows that Theorem 11 cannot be easily
generalized to operators which are not semi-bounded.

Example 7 (Relatively compact perturbations of the Dirac operator). Let A = D0

and B = D0 + V where D0 denotes the free Dirac operator with mass 1 [33]
and V ∈ C∞

c (R3) is a smooth non-negative function of compact support. The
ambient Hilbert space here is H = L2(R3,C4). Under the additional assumption
that supV = ||V ||L∞(R3) < 1, it is guaranteed that 0 /∈ σ(B). Furthermore it can

be verified that

D
(

|A|1/2
)

= D
(

|B|1/2
)

= H1/2(R3,C4)

and that

|A|1/2
(

|B|−1/2 − |A|−1/2
)

∈ K(H).

As a consequence of [22, Theorem 2.7], it is known that there exists a B-regular
Galerkin sequence L = (Ln) such that

(16) σess(B,L) ⊃
[

0 ; supV
]

.

These Galerkin spaces comprise upper and lower spinors, meaning that

Ln = Span

{(

fn
1

0

)

, ...,

(

fn
dn

0

)

,

(

0
gn1

)

, ...,

(

0
gnd′

n

)}

for suitable (fn
j ), (g

n
j ) ⊂ L2(R3,C2). This basis is known to be free of pollution if

the external field V = 0, that is

σ(A,L) = σ(D0) = (−∞,−1] ∪ [1,∞) = σess(A,L).
Hence σess(A,L) 6= σess(B,L) so Theorem 11 fails for operators which are strongly
indefinite. ⋄

Proof of Theorem 11. Denote by K the operator on the left side of (14). Then

(17) (B − a)−1 − (A− a)−1 = (A− a)−1/2K(B − a)−1/2 + (A− a)−1K

is a compact operator. Let G := (A− a)1/2L. According to (7),

λ ∈ σess(A,L) ⇐⇒ (λ − a)−1 ∈ σess

(

(A− a)−1,G
)

.

By Remark 2,

σess

(

(B − a)−1,G
)

= σess

(

(A− a)−1,G
)

.

Let G′ = (B − a)1/2L. Then
G = (A− a)1/2L = (A− a)1/2(B − a)−1/2G′ = (1 +K)G′.
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Note that K = (A− a)1/2(B − a)−1/2 − 1 and −1 6∈ σ(K) as a consequence of the
fact that 0 6∈ σ((A − a)1/2(B − a)−1/2) by (13). According to Lemma 10,

(18) σess

(

(B − a)−1,G
)

= σess

(

(B − a)−1,G′)

The conclusion follows by applying Theorem 7 again, this time to operator B. �

Corollary 12. Let A and B be two bounded-below self-adjoint operators such that

(13) holds true for some a < inf{σ(A), σ(B)}. Assume that C := B−A is a densely

defined symmetric operator such that

(19) C ∈ B(D((B − a)β),H)

and

(20) (A− a)−αC(B − a)−β ∈ K(H)

for some 0 ≤ α, β < 1 with α+ β ≤ 1. Then

σess(A,L) = σess(B,L)
for all sequences L = (Ln) which are simultaneously A-regular and B-regular.

Remark 7. Let A be a given bounded-below self-adjoint operator and assume that
A has a gap (a, b) in its essential spectrum in the following precise sense,

σess(A) ∩ (a, b) = ∅, tr
(

1(−∞,a)(A)
)

= tr
(

1(b,∞)(A)
)

= +∞.

Let Π := 1(c,∞)(A) where a < c < b. Results shown in [22] ensure that, when the
Galerkin spaces Ln are compatible with the decomposition H = ΠH⊕(1−Π)H (i.e.
when Π and πn commute for all n), there is no pollution in the gap: σess(A,L) ∩
(a, b) = ∅. According to [22, Corollary 2.5], when

(21) (B − a)−1C(A− a)−1/2 ∈ K(H),

then σess(B,L) = ∅ as well.
In this respect, Theorem 11 can be seen as a generalization of these results.

Although condition (20) is stronger than (21), the statement guarantees that the
whole polluted spectrum will not move irrespectively of the A-regular Galerkin
family L and not only for those satisfying [Π, πn] = 0 for all n. ⋄
Example 8 (Periodic Schrödinger operators). Let A = −∆+ Vper where Vper is a
periodic potential with respect to some fixed lattice R ⊂ Rd (for instance R = Z3).
Let C = W (x) be a perturbation. Assume that

Vper ∈ Lp
loc(R

d) where







p = 2 if d ≤ 3
p > 2 if d = 4
p = d/2 if d ≥ 5

and that
W ∈ Lq(Rd) ∩ Lp

loc(R
d) + L∞

ǫ (Rd)

for max(d/2, 1) < q < ∞. Then (20) holds true and therefore

(22) σess (−∆+ Vper +W,L) = σess (−∆+ Vper,L)
for all A-regular Galerkin sequence L. See [22, Section 2.3.1].

A Galerkin sequence L which does not yield any pollution in a given gap can
be found by localized Wannier functions, [22, 9]. In practice, these functions can
only be calculated numerically, so it is natural to ask what would be the polluted
spectrum when they are known only approximately. According to (22), the polluted
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spectrum will not increase in size more than that of the unperturbed operator
−∆+ Vper. ⋄
Example 9 (Optimality of the constants in Corollary 12). Let H, L, e±n and f±

n

be as in Example 2. Let

A =
∑

n

nℓ|f+
n 〉〈f+

n |+
∑

|f−
n 〉〈f−

n | and B =
∑

n

nr|e+n 〉〈e+n |+
∑

|e−n 〉〈e−n |.

The matrix representation of A and B in the basis e±n is made out of 2 × 2 blocks
placed along the diagonal. More precisely A = diag[An], B = diag[Bn] and C =
diag[Cn] where

An = R−n

(

nℓ 0
0 1

)

Rn, Bn =

(

nr 0
0 1

)

and Cn = An −Bn for

Rn =

(

cos(1/n) sin(1/n)
− sin(1/n) cos(1/n)

)

.

Fix a = 0 and let L = A−αCB−β . The matrix representation of L in the basis e±k
is L = diag[Ln] where we can calculate explicitly the entries as

(Ln)11 = −n−βr−αℓ+r cos2(1/n) + n−βr sin2(1/n)

− n−r(β−1) sin2(1/n) + n−βr−αℓ+ℓ cos2(1/n)

(Ln)12 = cos(1/n) sin(1/n)
(

n−ℓ(α−1) − n−αℓ
)

(Ln)21 = cos(1/n) sin(1/n)
(

n−βr−αℓ+ℓ − n−βr−αℓ+r − n−βr + n−r(β−1)
)

(Ln)12 = sin2(1/n)
(

n−ℓ(α−1) − n−αℓ
)

.

Therefore L is compact, given the following

(23)

ℓ = 2, 0 < β, α < 1, 0 < r < 2,

−βr − 2α+ 2 < 0, α > 1/2, β > 1− 1

r
.

On the other hand, for ℓ = 2,

σess(A,L) = {1} and σess(B,L) = {1, 0}.
This example shows that condition (20) in Corollary 12 is quasi-optimal for the
stated range of β and α as illustrated by Figure 1. ⋄

Proof of Corollary 12. Assume firstly that 0 ≤ α ≤ 1/2. The proof reduces to
showing that the operator K defined by expression (14) is compact. Let L =
(A− a)−αC(B − a)−β be the operator given by (20). Since β ≤ 1, we have D(B −
a) ⊂ D(B − a)β , [11, Theorem 4.3.4]. Then, by (19), LH ⊂ D((A − a)α) and
Cx = (A− a)αL(B − a)βx for all x ∈ D(B − a). By virtue of (20),

(A− a)1/2(A− a+ s)−1C(B − a+ s)−1 ∈ K(H)

for all s ≥ 0. Moreover

(A−a)1/2((A−a+s)−1−(B−a+s)−1)x = (A−a)1/2(A−a+s)−1C(B−a+s)−1x



WEYL THEOREMS 17

Figure 1. The region in green colour for the parameters β and
α is covered by the conditions of Corollary 12. If A and B satisfy
(20) for (β, α) in this region, then the relative essential spectrum
is preserved. The region in red shows the parameters β and α in
condition (23) of Example 9. The region in blue is generated by
exchanging the rôles of β and α. It is not enough for A and B to
satisfy (20) for (β, α) in these two regions, to guarantee preserva-
tion of the the relative essential spectrum.

for all x ∈ H, as this identity is satisfied in a dense subspace of H. Thus

K = − 1

π

∫ ∞

0

(A− a)1/2(A− a+ s)−1C(B − a+ s)−1 ds√
s

= − 1

π

∫ ∞

0

{

(A− a)1/2(A− a+ s)−1(A− a)α
}

L
{

(B − a)β(B − a+ s)−1
} ds√

s
.

Both terms in brackets multiplying L are bounded operators, then the integrand in
the second expression is also a compact operator. Moreover, the integral converges
in the Bochner sense as its norm is O(sβ+α−2) for s → ∞ and O(s−1/2) for s → 0.
Thus K ∈ K(H) in this case and Theorem 11 implies the desired conclusion.

Now suppose that 1/2 < α ≤ 1, so that 0 ≤ β ≤ 1/2. Since

D(A− a)α ⊂ D(A− a)1/2 = D(B − a)1/2 ⊂ D(B − a)β ,

then C ∈ B(D(A− a)α,H). Hence the operator (B − a)−βC(A− a)−α is bounded
and (B − a)−βC(A − a)−αx = L∗x for all x ∈ H. The proof is then completed by
exchanging the roles of A and B. �

Acknowledgement. The authors would like to acknowledge financial support
from the British-French project PHC Alliance no. 22817YA. Partial support from
the ANR grant NoNAP of the French Ministry of Research is also acknowledged.



18 L. BOULTON, N. BOUSSAID, AND M. LEWIN

References

[1] L. Aceto, P. Ghelardoni, and M. Marletta, Numerical computation of eigenvalues in
spectral gaps of Sturm-Liouville operators, J. Comput. Appl. Math., 189 (2006), pp. 453–
470.

[2] D. Arnold, R. S. Falk, and R. Winther, Finite element exterior calculus: from Hodge
theory to numerical stability, Bull. Amer. Math. Soc., 47 (2010), pp. 281–354.

[3] F. V. Atkinson, H. Langer, R. Mennicken, and A. A. Shkalikov, The essential spectrum
of some matrix operators, Math. Nachr., 167 (1994), pp. 5–20.

[4] D. Boffi, F. Brezzi, and L. Gastaldi, Mixed finite elements for Maxwell’s eigenproblem:
the question of spurious modes, in ENUMATH 97 (Heidelberg), World Sci. Publ., River Edge,
NJ, 1998, pp. 180–187.

[5] D. Boffi, F. Brezzi, and L. Gastaldi, On the problem of spurious eigenvalues in the
approximation of linear elliptic problems in mixed form, Math. Comp., 69 (2000), pp. 121–
140.

[6] L. Boulton and N. Boussaid, Non-variational computation of the eigenstates of Dirac
operators with radially symmetric potentials, LMS J. Comput. Math., 13 (2010), pp. 10–32.

[7] L. Boulton and M. Levitin, On approximation of the eigenvalues of perturbed periodic
Schrödinger operators, J. Phys. A, 40 (2007), pp. 9319–9329.

[8] L. Boulton and M. Strauss, On the convergence of second order spectra and multiplicity,
2010.
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