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WEYL THEOREMS FOR THE POLLUTED SET OF
SELF-ADJOINT OPERATORS IN GALERKIN
APPROXIMATIONS

LYONELL BOULTON!, NABILE BOUSSAID2, AND MATHIEU LEWIN3

ABSTRACT. Let A be a self-adjoint operator on a separable Hilbert space H
and let (£n)nen be a sequence of finite dimensional subspaces of the domain of
A, approximating H in the large n limit. Denote by A,, the compression of A to
Ly. In general the spectrum of A is only a subset of the limit of the spectra of
A, and the latter might differ from the former in a non-trivial “polluted set”.
In this paper we show that this polluted set is determined by the existence of
particular Weyl sequences of singular type. This characterization allows us to
identify verifiable conditions on self-adjoint perturbations B, ensuring that the
polluted set of B is identical to that of A. The results reported are illustrated
by means of several canonical examples and they reveal the many subtleties
involved in the systematic study of spectral pollution.
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1. CONTEXT

Computing approximations of the spectrum of a self-adjoint operator A act-
ing on an infinite dimensional Hilbert space is a subtle task, in particular when
A has gaps in its essential spectrum. A natural approach, which can be traced
back to the beginning of the XXth Century, consists in choosing a family (£, )nen
of finite-dimensional subspaces of the domain and calculating the spectrum of the
corresponding compressions A, of A to £,,. This is the basic idea behind the so-
called Galerkin method. In general it is not guaranteed that o(A,,) would converge
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in an appropriate natural sense to o(A) in regions inside the convex hull of the es-
sential spectrum, even in cases when £,, contains a subspace becoming increasingly
close to spectral subspaces of A (see the various examples below). Typically the
large n limit of o(A,) would cover o(A), however the former can be much larger
than the latter, giving rise to what is usually referred to as spectral pollution.

Spectral pollution is a remarkable phenomenon which is encountered in many
different practical situations. It arises when approximating the spectrum of Sturm-
Liouville operators [T}, 32, 3], perturbations of periodic Schrodinger operators [7]
and systems underlying elliptic partial differential equations [2, [4 B]. It is a well-
documented difficulty in quantum chemistry and physics, in particular regarding
relativistic computations [20] 30, [I7) 15]. It also plays a fundamental role in elas-
ticity and magnetohydrodynamics [19] [10] 27 [3].

In recent years this phenomenon has raised a large interest in the mathematical
community [23] 18, 2T}, 12}, T3] 26], 25] and there are known alternative computational
procedures capable of avoiding it. These include specialized variational formulations
such as those studied at length in [16, 19, [T4] 24], as well as general methods such as
those proposed in [8, [6] [7, 2T], 12]. Another possible approach is to derive conditions
on the approximating subspaces allowing to avoid pollution in a given interval
of the real line. These conditions can be found for operators with a particular
structure, and they are motivated from procedures in numerical analysis [2], 5] 27]
and computational physics and chemistry [22]. In the latter work an abstract
framework in this respect was formulated and successfully applied to problems
from relativistic and non-relativistic quantum theory.

In the present article we adopt a similar approach as that considered in [22]. We
introduce the notion of relative spectrum, o(A, £), obtained from the approximat-
ing sequence of spaces £ = (L, )nen, as the limiting set in Hausdorff distance of the
spectra o(A,,) as n — oo. Under natural conditions, o(A) C o(A, L) (Proposition
B). We then introduce (Definition B]) the notion of relative essential spectrum asso-
ciated with £, oess(A, £). This latter set contain both the true essential spectrum
of A and the set of all spurious (or polluted) points of the method associated with £
(Proposition [l). These points are the ones which ought to be avoided in numerical
simulations.

Once we have established elementary properties of the relative spectra o(A, L)
and oess(A, L), we address the following natural question: under which conditions
on a perturbation B is the equality

(1) Oess (Bu E) = Oess (A7 E)

satisfied? According to our main result (Theorem [[1]) when A and B are bounded
from below and

(2) (A=a)"/*(B-a)"/* -1

is a compact operator for some a negative enough, then () holds true. Therefore,
under the condition (2]), an approximating sequence £ will not pollute for A in a
given interval if and only if it will not pollute for B in the same interval. This
generalizes [22], Corollary 2.5].

The key to our present approach is to adapt to the relative spectra several
classical results for the spectrum and essential spectrum. In turns, this leads to
many unexpected difficulties which we will illustrate on a variety of simple examples.
In particular, we establish (Theorem [7) a relative version of the spectral mapping
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theorem allowing to replace the unbounded operator A by its (bounded) resolvent
(A —a)~!. Remarkably, this theorem fails in general (Remark M) for operators
which are not semi-bounded.

The theoretical framework that we presently establish, provides an insight on
the difficulties encountered in the presence of spectral pollution and it highlights
its many subtleties.

Background notation. We will subsequently denote by B(#H1,H2) the space of
bounded operators between two Hilbert spaces H; and Ha. We will denote by IC(H)
the algebra of compact operators on the Hilbert space H. We adopt the bra-ket
symbol |z)(y|, to denote the rank-one operator defined as |z)(y|z = (y, z)x. Here
(-,-) is the scalar product of H.

Below A denotes a densely defined self-adjoint operator acting on a separable
infinite dimensional #, with domain D(A) C H. By 0(A), dess(A4) and oqisc(A) we
mean the spectrum, essential spectrum and discrete spectrum of A.

On sequences (zp,)nen C H of vectors and (L,,)nen of subspaces £, C D(A) we
will ofter suppress the index and write (z,) and (£,,) instead. we will denote by
r, — x the fact that z, is weakly convergent to x € H. When the norm is not
specified, x,, — = will denote the fact that ||z, — x| — 0.

2. BASIC DEFINITIONS

We will often make the assumption that A is bounded from below, however we
will not require this for the moment. For n € N, let £ = (£,,) be a sequence of
finite-dimensional subspaces of D(A). We assume that £,, approximates D(A) as
n — oo in the following precise sense:

Definition 1 (A-regular Galerkin sequences). We say that £ = (£,,) is an A-regular
Galerkin sequence, or simply an A-regular sequence, if for all f € D(A) there exists
a sequence of vectors (f,) with f,, € £,, such that f,, — f in the graph norm of A,
that is:

3) 1fn = FIl+ |Afn = Afl| Znsoe O.

Below we will always assume that £ = (£,,) is an A-regular sequence. The
orthogonal projection in the scalar product of H onto £, will be denoted by m, :
‘H — L, and the compression of A to £, by A, = m, A, : L, — L,. The
compression A, will sometimes be identified with one of its matrix representation.

2.1. Spectrum of a self-adjoint operator relative to a Galerkin sequence.
The spectrum of A relative to the A-regular Galerkin sequence L, will be the set
of all limit points of the spectra of A,, in the large n limit.

Definition 2 (Relative spectrum). The spectrum of A relative to £ = (L),
o(A, L), is the set of all A € R for which there exists a sequence A\, € o(A,,)
such that ny — oo and A\, — X as k — oo.

Since all A,, are Hermitian endomorphisms in the above definition, clearly o (A4, £)
R. The following lemma provides an alternative characterization of o (A, £).

Lemma 1 (£-Weyl sequences). The real number A € o(A, L) if and only if there
exists a sequence (xy) C D(A) such that xy, € Ly, , ||ek]| =1 and mp, (A —X) x, —
0 as k — oo.
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Proof. According to the definition, A € o(A, £) if and only if there exists A\, € R
and z € L,, with ||zgx]] = 1 such that Ay — X and 7, (A — Ag)zp = 0. As
T, (A= N) zp = (Ak—A)zr — 0, one of the stated implications follows immediately.

On the other hand, if (zx) C D(A) is as stated, then ||(4,, — A)zk|| — 0. Since
the A,, are Hermitian, there necessarily exists A\ € o(A,,) such that |\, — A] <
[(An, — Nzg| — 0. Thus A € (A, £) ensuring the complementary implication. [

We call (zx) an £-Weyl sequence for A € (A, L) by analogy to the classical
notion of Weyl sequence [I1].

Remark 1. Self-adjointness of the A,, is crucial in Lemma [Il We illustrate this
by means of a simple example. Let % = (*(N) and (e;) C H be the canonical
orthonormal basis of this space. Let A be the left shift operator defined by the
condition A : e; — e;_1 with the convention eg = 0. Let £, = Span{e;,i < k}.
For this data an analogous of Lemma [Ilis no longer valid. Indeed, if |A] < 1 and

1_|)‘| i
Tk = Y 22)‘ Cis

then zy € Ly, |zx] =1 and

[ 1= A2
|Azy, — Azg| = % AP = 0.

Therefore any point of the open unit disk is associated with an £-Weyl sequence.
However, on the other hand, A, is a Jordan block, so o(4,,) = {0} for all n € N
and hence necessarily o(A, E) ={0}. o

The above characterization of points in the relative spectrum combined with the
minimax principle yields the following fundamental statement.

Proposition 2 (The relative spectra and the spectrum). Let L be an A-regular
Galerkin sequence. Then

(4) o(A) Co(AL)
and
(5) a(A, L) \o(A) C (€7, 7)
where
_ | -0 forinfo(A) = —c0
= { inf oess(A)  otherwise

ARG B S for supo(A) = 400
| supoess(A)  otherwise.

Proof. The classical characterization of the spectrum of self-adjoint operators en-
sures that A € o(A) if and only if there is a normalized sequence (y;) C D(A) such
that || (A—N)yk|| — 0 (that is (yx) is a Weyl sequence for \). We will now construct
an L£-Weyl sequence from (yx). According to (BI) we can find (zf,)(k,myenz such
that % € L,,, (yr — 2%) — 0 and (A — \)(yx — 2%,)) — 0 as m — oco. Byv1rtueof
a d1agonal process, we can extract a subsequence such that m,, (A — \)zk Ty, — 0.
Dividing by ||zf,, || (which does not vanish in the k& — oo limit), gives (@) as conse-

quence of Lemma [I1
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The proof of (@) is a classical consequence of the minimax principle. It may be
found, for instance, in [2Il Theorem 2.1] and also [22] Theorem 1.4]. O

In [22] Theorem 1.4] the existence of an A-regular Galerkin sequence £ such
that o(A, L) = [£~,¢T] is shown. The inclusion complementary to (@) does not
hold in general. This is a source of difficulties in applications as there is not
known systematic procedure able to identify A-regular Galerkin sequences such
that o(A) = o(A4, L). By virtue of (@), spectral pollution can only occur in “gaps”
of the essential spectrum.

2.2. Relative essential and discrete spectra. Points in o(A, L) \ o(A) can be
characterized in a more precise manner in terms of particular £-Weyl sequences as
we will see next.

Definition 3 (Relative essential spectrum). We denote by oess(A, £) the set of all
A € o(A, L) for which there exists an £-Weyl sequence (z)) as in Lemma [I] with
the additional property that xzjp — 0.

By analogy to the classical notions, we will call ooss(A, £) the essential spectrum
of A relative to £ and the corresponding sequence () a singular £-Weyl sequence.

Remark 2. From the definition it follows that cess (A + K, L) = 0ess(A4, L) for any
self-adjoint operator K € K(H).

Definition 4 (Relative discrete spectrum). We call the residual set oqisc(A, £) =
(A, L)\ 0ess(A, L), the discrete spectrum of A relative to L.

We illustrate these definitions by means of various simple examples.

Example 1 (A a bounded operator). Let H = Span{e;},en where ef is an or-
thonormal set of vectors in a given scalar product. Define £,, = Span{ef, cee ef_l, fn}
where f,, = cosfel +sinfe, for 0 € (0,7/2). Let

A= leh)er
n>1

that is, A is the orthogonal projector onto Span(e;) and o(A) = gess(A) = {0,1}.
Then a( n) = {0,1,cos? 0} for all n and (A, L) = 0ess(A, L) = {0,1,co8? 0}, ©

Example 2 (A a semi-bounded operator). Let H be as in Example [[l and define
L, = Span{e%,..., e _1.e,}
For f£ =sin(2)ef +cos(L) e, let

A= P =D 1]

which has a 2 x 2 block diagonal representation in the basis (e). Then oess(A) =
{1} and 0gisc(A) = {n? : n € N}. On the other hand

o(A,) = {—1,n2sin (%)2 — cos (%)2,1,...,(71— 1)2},

where —1 is an eigenvalue of multiplicity n, therefore
Oess(A, L) = {-1,0} and Oaise(A, L) = {n? :n € N}.

The former is a consequence of Proposition Bl(ii) while the latter follows from
Proposition Bl (iii) below.
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We can also verify the validity of the latter as follows. Assume that (z3) is a
singular £-Weyl sequence associated with 1?2 € oqisc(A). Then m,, (A — )z, — 0
and xp — 0. For m < ny

Pm Ty, (A - Vz)xk = (A - I/2)pmxk
where pr, = 33, [fi) (], Then
2
1pn—12k = (FF i) 717 < (A = v®)p—azk |~ = 0

as k — oo. Since x, — 0, then also ||pn,c,133k||2 + H(A—V2)pnk,1:1:kH2 — 0.
Therefore
(A =)ok — (em kb)) = 0.
2

As [((A=1ve, en)| = [n?sin®(2) + cos?(1) — 2| — |2—1?| > 0, projecting
each term onto L, yields (e, ,x;) — 0. Thus 1 = |x}| — 0, which is a contradic-
tion. o

Example 3 (A a strongly indefinite operator). Let H and £, be as in Example
Let fi = Jsefb + J=e,. Let

= T
A=) nlfDU = 3o nl |
Then o(A) = {£n : n € N} = 0qisc(A4). On the other hand
o(A L) =17, Oess(4, L) = {0}, and Odisc(A, L) = {£n :n € N}.

Note that the proof of the latter is similar to that of the analogous property in
Example 2 o

3. THE RELATIVE SPECTRA AND THE BEHAVIOUR OF SINGULAR L-WEYL
SEQUENCES

In this section we establish various properties of the relative spectra o(A, L),
Oess(A, L) and o4isc(A, L£). These properties can be deduced from properties of
different types of £L-Weyl sequences.

Proposition 3 (Essential and discrete relative spectra and the spectrum). Let £
be an A-regular Galerkin sequence. Then

(i) the relative spectrum o(A, L) and the relative essential spectrum oess(A, L)
are closed subsets of R;

(i) moreover Oess(A) C Oess(A, L) and daisc(A, L) C gaisc(A).

Proof. The proof of (i) involves a standard diagonal argument and it is left to the
reader. For the second statement we need the following auxiliary result which will
be used repeatedly below.

Lemma 4. There exists xy, € Ly, such that ||zg| = 1, 2 — 2 and 7, (A= Nz —
0, only when = € Ker(A — \).

Proof of Lemmal[g) Suppose that (z) satisfies the hypothesis. Let f € D(A) and
fn € Ly, such that f,, — f in the norm of D(A). Then (m,, (A — Nz, fn,) — 0.
On the other hand, since fr — f in D(A),

<7T'n«k(A - /\)Ikafnk> = <$k7 (A - )\)fnk> - <:E7 (A - )‘)f>
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Thus (x, (A—X)f) = 0forall f € D(A), so that x € D(A*) =D(A) and (A—\)z =0
as required. (I

In order to prove (ii) of Proposition Bl we proceed as follows. The fact that
Oess(A) C 0ess(A, L) is proved similarly to (). It should only be noted that the
L-Weyl sequence found for \ € oess(A) additionally satisfies :zrfnk — 0.

For the inclusion oqisc(A, £) C 04isc(A) note that, if A € oqisc(4, L), there exists
xp € Ly, such that [|zx|| =1, 2 — = # 0 and 7, (A — XNz — 0. As A & 0ess(4)
(by the previous part), then either A\ € oqisc(A) or A & o(A). By Lemma [ the
latter is impossible. 0

Remark 3. If 0oss(A) = 0ess(A4, £) then automatically oqisc(A) = odisc(A, £) and
o(A) =0(A,L). o

We will now describe in more details the behaviour of singular £-Weyl sequences
in the particular case A € gess(A, L) \ Tess(A).

Proposition 5 (Singular £-Weyl sequences). The real number X € oess(A, L) if
and only if

(i) either A & o(A) and there exists A\, — A and y, € Ly, such that yi — 0
and 11, (A — \g)yk = 0;
(il) or A € gess(A) and there exists N, = X and yi, € Ly, such that yr, — 0 and
an (A - )\k)yk = 0,’
(iii) or A € o4isc(A4) and for any e > 0

Rank (1(x_c y+e)(An)) > Rank (153 (A)) +1
for all n large enough.

In cases (i) and (iii), A can be regarded as an L-spurious point of A. In case (iii)
A € o(A), but the multiplicity of the approximated spectrum o(A4,,) is too large for
n large, leading to the wrong spectral representation of A in the limit n — oco. In
case (ii) the singular £-Weyl sequence (yi) behaves like a classical singular Weyl
sequence.

Only in cases (i) and (ii) the existence of a singular £-Weyl sequence (yx) con-
sisting of exact eigenvectors of A,, such that I, (A — Ax)yr = 0 and A\ — A
is guaranteed. In case (iii) it may occur that all the eigenvectors of A,, whose
corresponding eigenvalue converges to A, converge weakly to a non-zero element
of Ker(A — \), and that only a linear combination of these eigenvectors converges
weakly to zero. This can be illustrated by means of a simple example.

Example 4 (Spectral point satisfying Proposition Bl (iii)). Let H = Span{eg, ;" }
where e, e form an orthonormal basis. Let

A=l et =D len)enl-
n=1 n=1

Then o(A) = {—1,0,1} and oess(A) = {—1,1}. The eigenvalue 0 has multiplicity
one and associated eigenvector ep. Let

+ o+ + -
eo+at el + e
L, = Spaun{eli7 .. .,ef_l, ff} where fff -0 n o+ Pu en

e R
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for
1+ L 1+ L
of =y [——2T and  fE=d Bl
2(15 32) 2(1+ 72)
Then (A, L) = {0,£1} = 0ess(A, L£). In this case A, has two eigenvalues ap-
proaching zero in the large n limit, with corresponding eigenvectors f;F and f, . It
is readily seen that f¥ — ey/+/2 and so only the difference f; — f~ tends weakly
to zero. <o

Proof of Proposition[d. Let A € 0ess(A4,L) C o(A,L). By definition of o(A, L)
there exists a normalized sequence (yi) such that m,, (A — A\g)yr = 0 and A\, — .
The main question is whether one can ensure that y, — 0 weakly. Up to extraction
of a subsequence we may assume that yp, — y € Ker(A — A\) (by Lemma [)). If
A ¢ o(A), then Ker(A — \) = {0} and necessarily y = 0, thus (i) follows.

We now turn to the proof of (ii). To proceed further, we require the following
auxiliary result.

Lemma 6. Let V C D(A) be a subspace of dimension d > 0. Let € > 0 be such
that

[[(A—=MNz| <elz] VreV.
Let W, = m,V. There exists N > 0 such that for alln > N,

[(A=Nyll < 2eVdllyl| Yy € Wi

Proof of Lemmalfl Let (e;) be an orthonormal basis of V. For sufficiently large n,
mpe; is a basis for W,. By applying the Gramm-Schmidt procedure to m,e;, we
can construct an orthonormal basis (f') of W, such that

le; — fi'llpay =0  n—o0.
Let N > 0 be such that
ANl <2 Ya>N, j=1...d

For y = E;l:l Ui f;" € W, we get

d
1A= Nyl <223 1951 < 2eV|lyll,

j=1
which ensures the desired property. 0

The proof of (ii) in PropositionHlis achieved as follows. Assume that A € gegs(A).
For all d € N there exists a subspace V; C D(A), such that dim V,; = d? and

1
[(A =Nyl < ﬁllyll Yy € Va,

see for instance [I1l Lemma 4.1.4]. According to Lemma [f] and an inductive argu-
ment, there is a sequence (ng) C N and d?-dimensional subspaces Wy C L,,,, such
that

2
I7na (A =Nyl < —llyll - Yy € Wa.
This ensures that A,, has at least d® eigenvalues in the interval [A —2/d, A+ 2/d].
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Let (f;’d)j; C L,, be an orthonormal set of d? eigenvectors of A,,,, with

associated eigenvalues (A )?2:1 satisfying [\]* — A| < 2/d. We inductively define
the following singular £-Weyl sequence for A:

1

Y1 =1
y2 = fi?  with 1 <4y < 2% such that [(y,91)] < 1/v2
ys = f5  with 1 <d3 < 3% such that |(ys,y;)| < 1/v3 for j = 1,2

ya = [yt with 1 <64 < d? such that |(ya,y;)| < 1/Vdfor j=1,...,d—1.
The existence of §, is guaranteed by the fact that

d2
Ve=1,.,d=1,  1=|ul®>>> [ 7).
j=1

Indeed, there are at most d indices j in the above summation, such that |(y, f;'*)|* >
1/d. Hence, in total, there are at most d(d—1) indices j such that |{yx, f")[* > 1/d
for at least one k = 1,...,d — 1. Since d(d — 1) < d? for d > 1, we deduce that there
is at least one index j =: §4 such that |<yk,f;ld>|2 <l/dforallk=1,..,d—1.

By construction ||yq|| = 1 and [(ys, y;)| < 1/4/max(i, j). Thus yr — 0 as k — oo,
ensuring (ii).

Note that, conversely, if (i) or (ii) holds true, then A € gegs(4, £) by Definition B

Let us now prove that if A\ € oess(A, £) N ogisc(A4), then (iii) holds true. Let
xp € Ly, be a singular £-Weyl sequence: m,, (A — Nz — 0, |zx| = 1 and
xp — 0. Let V = Ker(A — A\) # {0} and d = dim(V). For n sufficiently large
W, := mV C L, is of dimension d. Also, for all ¢ > 0, there exists N > 0 such
that

[mn (A =Nyl <ellyll vy e Wn

whenever n > N. Let & = Span{W,,,zx}. Since zx — 0 and W, does not
increase in dimension in the large k limit, necessarily dim(Sy) = d+1 for all k large
enough. For all € > 0 there exists M > 0 such that

[mn (A= Nyl <elyll vy €Sk

whenever k > M. This ensures that o(A4,,) N (A — &, A+ ¢) contains at least d + 1
points counting multiplicity and hence the claimed conclusion is achieved.

It only remains to prove that (iii) implies A € oess(A, £). Each individual eigen-
vector of A, might not converge weakly to 0, however there is a linear combination
of them that does it. We prove this as follows. Let ( fjk);iill be an orthonormal set
of d + 1 eigenvectors

An fF=Xsfe j=1,...,d+1.
Up to extraction of subsequences we may assume that f;? — f; € Ker(A — \) for
all j =1,...,d+ 1. If f; = 0 for some j, then the desired conclusion follows.
Otherwise, since dim Ker(A — \) = d, there exist coefficients (a;) € C4*1\ {0} such
that ZdH a; f; = 0. Therefore, we may take

=1
d+1 k
Zj:l ajfj

yk =
d+1
221 lagl?
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as singular £-Weyl sequence for A\. This ends the proof of Proposition B O

4. MAPPING OF RELATIVE SPECTRA

In this section we establish mapping theorems for the different relative spectra.
They are a natural generalization of the analogous well-known result for o(A) and

Oess(A) (see for example [29] Section XIIT.4]).

Theorem 7 (Mapping of the relative spectra). Let A be semi-bounded from below
and let a < inf o(A). Then

(6) Neo(A, L) <= (A-a)leo((A—a)tG)
and
(7) A€ Tess(A L) = (A—a)' €oes ((A—0a)71,G)

where G = ((A— a)l/QEW)HGN.

Remark 4. Recall that a self-adjoint operator A is unbounded (D(A4) € H) if and
only if 0 € o((A — a)™t) for one (hence for all) a ¢ o(A). As it turns out, A is
unbounded if and only if 0 € oess((A—a) ™1, £) for one (and hence all) a < min o(A)
and A-regular sequence L. Formally in Theorem [ this corresponds to the case
+00 € 0(A) and (+00 —a)~! =0. o

Evidently a result analogous to Theorem [[ can be established when A is semi-
bounded from above. Here A is required to be semi-bounded, in order to be able
to define the square root (A — a)'/2, see for example [I1], Section 4.3], and also for
a more fundamental reason. When a is in a gap of the essential spectrum, it would
be natural to expect an extension of the above result by considering, for example,
G=(lA- al'/ 2£n)n cn- The following shows that this extension is not possible in
general.

Example 5 (Impossibility of extending Theorem [7 for A strongly indefinite). Let
H be as in Example Bl Define £,, = Span{es,... el |, cos(d,)et + sin(6,) e}
with 0,, ;== 7/4 — \/(2n) for a fixed A € (0,1). Let

A=Y nlef)er| =Y nle; e -

Then o(A) = {£n : n € N} = 04isc(4). On the other hand
oA L) =o(A) U], oA L) = (A} and og(A L) = o(A).
Now
AT = e er | = n e ) ey |
and G = \/WL = L. Since A™! is compact we have
o(AT1,G) =0(A™Y) and  0es(AT,G) = 0ess(A7Y) = {0}

Thus A € 0ess(A, £) whereas 1/\ & o(A™1,G). o

In fact the following example shows that no general extension of this theorem
is possible whenever a lies in the convex hull of the essential spectrum, even for

A€ B(H).
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Example 6 (Impossibility of extending Theorem [7 for a € Conv{oess(A)}). Let
H = L*(—m,7) and Af(x) = sgn(x)f(x) for all f € H. Then o(A) = {+1}. If L is
any A-regular sequence, then o(4, £) C [—1,1]. Fixing a = 0 yields (A—a)~! = A.
Thus also o((A —a)™1,G) C [~1,1] for any A-regular sequence G. Therefore a
general extension of Theorem [7 to a in a gap of the essential spectrum would be
impossible. o

Proof of Theorem[7 Statement (6] will follow immediately from the next result.

Lemma 8 (Mapping for the spectrum of compressions). Let A be semi-bounded
from below, let a < info(A) and L,, C D(A). Then

Neo(mAle,) <= W—a)tecoapu(A—a)tlg,)
where G, = (A — a)1/2ﬁn and py, is the associated orthogonal projector.

Proof. Note that A € o(A,,) if and only if there exists « € £,, \ {0} such that

T4 =)' (A= a) 7~ (A=) ) (A - )= 5 !

(A — Nz =0.

By fixing y = (A — a)'/?2z € G, \ {0}, it is readily seen that \ € o(A,,) if and only
if there exist y € G, \ {0} such that

<(A —a)Y?, (A—a)'=(A-a)™) y> =0
for all u € L,,. Therefore, the statement A € o(4,,) is equivalent to the existence of
y € G,\{0} such that (A —a)™* — (4 —a)™') y L G, which, in turns, is equivalent
topn (A—a)™t = (A—a)"t)y=0. O
We now turn to the proof of [@). We begin by providing an alternative charac-
terization of the relative essential spectrum and then establishing a stability result

for the relative spectra with respect to compact perturbations of the A-regular
sequence.

Lemma 9 (Alternative characterization of oess(A, £)). Let

]:(A) = {f(A) : f € CC(R\Uess(A)7R)}
]::t(A) = {f(A) : fe OC(R\UCSS(A)7R:|:)}'

Then
vess(A, L) = [ o(A+B,L)
BeF(A)
(8) = (] ¢A+BL)= () o(A+BL).
BeF+(A) BeF—(A)

Here C.(€,R) denotes the set of all real-valued continuous functions of compact
support in the open set 2. Note that F(A) is a real vector space and F*(A) are
cones, all spanned by projectors onto the eigenspaces of A associated with isolated
eigenvalues of finite multiplicity. At the end of this section it will become clear the
reason why we highlight the right hand side characterization in (8]).
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Proof of Lemmald We only prove the first equality of (8] as the proof of the other
ones follows exactly the same pattern. It is well-known that

(9) Uess(A) = m U(A + B)
BeF(A)
Since all the operators in F(A) are of finite rank, then oess(A + B) = 0ess(A) for
all B € F(A). Hence (@) is equivalent to
(10) [ oac(A+B) =0.
BeF(A)

From Remark 2] it follows that oess(A+ B, L) = 0ess(A4, L) for all B € F(A). On
the other hand, (A + B, L) = c4disc(A + B, L) Uoess(A, L) and oqisc (A + B, L) C
odisc(A + B), by Proposition Bl Hence, by ({0,

ﬂ UdiSC(A—I—B,E) C ﬂ Udisc(A+B) =0
BeF(A) BeF(4)

and the result is proved. O
Lemma 10. Let T = T* be such that | T|| < oo and let £ be a T-regular sequence.
Let K € K(H). If -1 ¢ o(K), then

Oess(T, L) = 0ess (T, (1 + K)L)  and  0cqisc(T, L) = caisc (T, (1 + K)L).

Proof of Lemma[Il. We firstly prove that

(11) Oess (T, L)\ Odise(T) = 0ess (T, (1 4+ K)L) \ qise(T).
Since
(12) L=01+K) '1+K)L=(1-K(1+K)"H1+K)L,

it suffices to show that the left hand side of (1)) is contained in the right hand
side. Let A € 0oss(T, L) \ 0disc(T). If A € 0oss(T), Proposition Bl (iii) ensures that
A lies also in the right hand side, so we can assume that A € o(A). According to
Proposition[Bl(i), there exists Ay, — A and x, € L, such that ||ag| = 1, r — 0 and
Tong (T =)z, = 0. For all vy, € £, , and hence for all wy, = (1+K)v, € (1+K)Ly,,
we have
0= ((T = Me)zw,ve) = (1 + K)"HT = M)z, (1 + K)oy
={(1+ K*)_l(T — k)T, W)
Let gi be the orthogonal projection onto (1 + K)L,,. Then
ge(1+ K*) (T = M) = 0.
Now (14 K*)~' =1 — K where K = K*(1+ K*)~' € K(H). Hence

au(1 = K)(T — Nz, — 0.
But, since ||T|| < oo and x — 0, K(T — M)z — 0, so that also g, (T — Xz, — 0.
Thus ¢, (T — N yr — 0 for yr. = (14 K)xp — 0. By renormalizing y; in the obvious
manner, we obtain a singular £-Weyl sequence for A € o(T, (1 + K)L), ensuring
(.
To complete the proof of the first identity in the conclusion of the lemma, suppose
that A\ € UCSS(T) L) N UdisC(T)' For any # Alet T =T+ (:u‘ - A)ﬂ(k—s,kﬂ-a) (T)
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where € > 0 is sufficiently small. Then A € UCSS(T, L)\ adisc(f). By virtue of ()
and Remark B A € 0ogs (T, (1 + K)L) = 065 (T, (1 4+ K)L).
We now show the second identity. By virtue of (I2]) and the first identity, it is
enough to verify
Udisc(T7 ﬁ) C O'(T, (1 + K)E)
This, in turns, follows from Proposition B}(ii) and @), since
odise(T, L) C 0aisc(T) and o(T) C (T, (1 + K)L)

taking into account that (1 + K)L is a T-regular sequence. 0

We now complete the proof of Theorem [[ by showing ([@). Let A € oess(A4, £).
By virtue of Lemma [ this is equivalent to the statement
VB € FF(A), ANeo(A+ B, L).
Since B > 0 and a < min[o(A + B)], according to (@) the latter is equivalent to
VBeFt(4), (A—a)'eo((A+B—a)"',Gp)
where Gp = (A + B —a)~'/2L. Since B has finite rank and is therefore compact,
Lemma [I0 ensures that the above in turns is equivalent to
VB e FT(A), A—a)teo((A+B—a)t Go).
Note that 0 ¢ o((A + B — a)'/?(A — a)"'/2) as the corresponding operator is
an invertible function of A. Now (A+ B —a)™! = (A —a)"!' + B, where B =
—(A—a)"'B(A+B—a)"! runs over all of F~ ((A — a)™!) as B runs over all F(A)
and conversely. For the latter note that f € F(A) if and only if —f((- —a)™1) €
F~((A—a)~!). Thus, once again by Lemma [ A\ € 0css(A, L) turns out to be
equivalent to
A—a)"! € oes((A—a)™1,G).
O

Remark 5. The proof of the above theorem mimics the proof of the classical
Mapping Theorem for the essential spectrum, that can be deduced from the char-
acterization
gess(A) = () o(A+B),
BeK(H)

see, e.g., [28]. o
5. STABILITY PROPERTIES OF THE RELATIVE ESSENTIAL SPECTRUM

In this final section we present the main result of this paper, which strongly
depend on the validity of Theorem [7]

Theorem 11 (Weyl-type stability theorem for the relative spectra). Let A and
B be two self-adjoint operators which are bounded below. Assume that for some
a < inf{o(A4),0(B)},

(13) D((B —a)'/?) =D((A - a)'/?)

and

(14) (A—a)?(B—a)™ V2 —(A—a) V%) e K(H).
Then

Oess (A7 ‘C) = Oess (Ba L)
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for all sequences L = (L) which are simultaneously A-reqular and B-regular.

Under Assumption (I3]), (I4) is equivalent to the same condition with the rdles
of A and B reversed:

(15) (B—a)?(A—a)"? — (B —a)"'/?) € K(H).

Remark 6. The KLMN theorem [29] ensures that if B — A is a densely defined
symmetric A-form-bounded operator with bound less than 1, then ([I3]) holds for a
sufficiently negative. o

The following example taken from [22] shows that Theorem [[1] cannot be easily
generalized to operators which are not semi-bounded.

Example 7 (Relatively compact perturbations of the Dirac operator). Let A = D
and B = D° + V where DY denotes the free Dirac operator with mass 1 [33]
and V € C®(R3) is a smooth non-negative function of compact support. The
ambient Hilbert space here is # = L%(R*,C*). Under the additional assumption
that sup V' = [V« (gsy < 1, it is guaranteed that 0 ¢ o(B). Furthermore it can
be verified that

D (|A|1/2) -D (|B|1/2) _ H1/2(R3,(C4)
and that
A]Y2 (|BI7V/2 — 14]71/2) € K(H).

As a consequence of [22] Theorem 2.7], it is known that there exists a B-regular
Galerkin sequence £ = (£,,) such that

(16) chs(B, L) D [0, sup V] .

These Galerkin spaces comprise upper and lower spinors, meaning that

_ f I, 0 0
ez () (5)- () - ()}

for suitable (f1), (¢7) C L*(R?,C?). This basis is known to be free of pollution if
the external field V' = 0, that is

0(A, L) = (D) = (=00, 1] U [1,00) = Gess(4, L).

Hence 0ess(A, L) # 0ess(B, L) so Theorem [Tl fails for operators which are strongly
indefinite. o

Proof of Theorem[I1l Denote by K the operator on the left side of (I4]). Then
(17) B-—a)'=(A-—a)'=A-a)V’K(B-a)"?+(A-a) 'K
is a compact operator. Let G := (A — a)'/2L. According to (@),

ANE0es(A L) <= (A—a) ' €oes((A—a)™',G).
By Remark 2]

Ooss ((B - a)_l,g) = Oess ((A - a)_l,g) )
Let G’ = (B — a)'/?L. Then
G=(A-a)'’L=(A-a)"*(B—a)"'?¢' = (1+ K)G.
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Note that K = (A —a)?(B —a)~'/? =1 and —1 ¢ ¢(K) as a consequence of the
fact that 0 ¢ o((A — a)'/?(B —a)~/?) by [@3). According to Lemma [T
(18) Oess ((B - a)ilu g) = Oess ((B - a)ilu g/)
The conclusion follows by applying Theorem [1 again, this time to operator B. [

Corollary 12. Let A and B be two bounded-below self-adjoint operators such that
@3 holds true for some a < inf{o(A),c(B)}. Assume that C := B— A is a densely
defined symmetric operator such that

(19) C e B(D((B —a)®),H)
and
(20) (A—a)™C(B —a)"? € K(H)

for some 0 < o, <1 witha+ 8 < 1. Then
Oess (A7 E) = Oess (Bu E)
for all sequences L = (L,,) which are simultaneously A-regular and B-regular.

Remark 7. Let A be a given bounded-below self-adjoint operator and assume that
A has a gap (a,b) in its essential spectrum in the following precise sense,

Oess(A) N (a,b) =0, tr (11(_00),1) (A)) =tr (]l(b)oo)(A)) = +00.
Let IT := 1, o) (A) where a < ¢ < b. Results shown in [22] ensure that, when the
Galerkin spaces L,, are compatible with the decomposition H = ITH& (1 —I)H (i.e.

when IT and m,, commute for all n), there is no pollution in the gap: oess(A, L) N
(a,b) = 0. According to [22, Corollary 2.5], when

(21) (B—a)"'C(A—a)""? e K(H),

then oess(B, L) = 0 as well.

In this respect, Theorem [[I] can be seen as a generalization of these results.
Although condition (20)) is stronger than (2], the statement guarantees that the
whole polluted spectrum will not move irrespectively of the A-regular Galerkin
family £ and not only for those satisfying [II, 7,] = 0 for all n. o

Example 8 (Periodic Schrodinger operators). Let A = —A + Vi,e; where Ve, is a
periodic potential with respect to some fixed lattice R € R? (for instance R = Z?).
Let C' = W(z) be a perturbation. Assume that

p=2 ifd<3
Vper € LP. (R?) where { p>2 if d =4
p=d/2 ifd>5
and that
W e LYRY) N LP (RY) + L°(RY)
for max(d/2,1) < ¢ < oco. Then ([20)) holds true and therefore
(22) Oess (_A + Vpcr + VV, ‘C) = Oess (_A + Vpcr; L)

for all A-regular Galerkin sequence L. See [22] Section 2.3.1].

A Galerkin sequence £ which does not yield any pollution in a given gap can
be found by localized Wannier functions, [22, [0]. In practice, these functions can
only be calculated numerically, so it is natural to ask what would be the polluted
spectrum when they are known only approximately. According to [22)), the polluted
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spectrum will not increase in size more than that of the unperturbed operator
—A + Vier. o

Example 9 (Optimality of the constants in Corollary [2). Let H, £, el and f*
be as in Example 2l Let

A= BT I and B =Y "n"lef) et + > len) (e .

The matrix representation of A and B in the basis e is made out of 2 x 2 blocks

placed along the diagonal. More precisely A = diag[A,|, B = diag[B,] and C =

diag[C),] where
nt 0 n" 0
e D mn ()

and C,, = A,, — B,, for

[ cos(1/n) sin(1/n)
fin = <— sin(1/n) COS(l/n)> .
+

Fix a = 0 and let L = A~“C'B~”. The matrix representation of L in the basis €
is L = diag[L,] where we can calculate explicitly the entries as

(Lp)11 = —n 7= cos?(1/n) + n =P sin?(1/n)

—pnmBD sin?(1/n) + n—Br—at+t cos?(1/n)
(Lp)12 = cos(1/n)sin(1/n) (nfl(afl) B n"”)
(Ly)21 = cos(1/n)sin(1/n) (nfﬁrfauz _ o Pr—attr _ By n*T(ﬁfl))

(Lp)12 = sin?(1/n) (n*M*U - n*af) .
Therefore L is compact, given the following
(=2, 0<pB,a<l, 0<r<2,
(23) 1
—Br—2a+2<0, a>1/2, f>1—-.
T
On the other hand, for ¢ = 2,
Oess(A, L) = {1} and oess(B, L) = {1,0}.

This example shows that condition ([20) in Corollary [2 is quasi-optimal for the
stated range of 8 and « as illustrated by Figure 1l o

Proof of Corollary[IZ Assume firstly that 0 < a < 1/2. The proof reduces to
showing that the operator K defined by expression ([d)) is compact. Let L =
(A —a)~™C(B — a)~? be the operator given by ([20). Since 3 < 1, we have D(B —
a) € D(B — a)?, [I1, Theorem 4.3.4]. Then, by (@), LH C D((A — a)®) and
Cr = (A—a)*L(B —a)’x for all x € D(B — a). By virtue of (20),
(A—a)*(A—a+s)"'C(B—a+s)"t e K(H)
for all s > 0. Moreover
(A—a)'?((A—a+s) ' —=(B—a+s) Hz=(A—a)/*(A—a+s)"'C(B—a+s) 'z
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o

FIGURE 1. The region in green colour for the parameters 5 and
a is covered by the conditions of Corollary [2 If A and B satisfy
@0) for (8, «) in this region, then the relative essential spectrum
is preserved. The region in red shows the parameters § and « in
condition (23]) of Example @ The region in blue is generated by
exchanging the roles of 5 and «. It is not enough for A and B to
satisfy (20) for (8, «) in these two regions, to guarantee preserva-
tion of the the relative essential spectrum.

for all x € H, as this identity is satisfied in a dense subspace of H. Thus

——l h —a)?(A—a+s)7? —a s_lE
K_F/O(A)(A +9)7 0B a9 2
:—%/0 {(A—a)l/Q(A—a—l—s)_l(A—a)a}L{(B—a)'B(B—a—i—s)_l}%.

Both terms in brackets multiplying L are bounded operators, then the integrand in
the second expression is also a compact operator. Moreover, the integral converges
in the Bochner sense as its norm is O(s%+%=2) for s — oo and O(s~1/?) for s — 0.
Thus K € () in this case and Theorem [I1] implies the desired conclusion.

Now suppose that 1/2 < o <1, so that 0 < 5 < 1/2. Since

D(A—a)* c D(A—a)"/?=D(B-a)"? c D(B —a)’,

then C € B(D(A — a)®,H). Hence the operator (B — a) ?C(A — a)~® is bounded
and (B —a) PC(A —a)~®x = L*x for all x € H. The proof is then completed by
exchanging the roles of A and B. O
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