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cDepartamento de Matemáticas Universidad de Córdoba

Abstract

In this paper, we are concerned with models for sedimentation transport consisting of a shallow water system
coupled with a so called Exner equation that described the evolution of the topography. We show that, for
some model of the bedload transport rate including the well-known Meyer-Peter and Müller model, the
system is hyperbolic and, thus, linearly stable, only under some constraint on the velocity. In practical
situations, this condition is hopefully fulfilled. The numerical approximations of such system are often
based on a splitting method, solving first shallow water equation on a time step and, after updating the
topography. It is proved that this strategy can create spurious/unphysical oscillations which are related to
the study of hyperbolicity e.g. the sign of some eigenvalue of the coupled system differs from the splitting
one. Some numerical results are given to illustrate these problems and the way to overcome them in some
cases using an stronger C.F.L. condition.
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1. Introduction

Soil erosion is caused by the movement of sediment due to mechanical actions of flow. In the context of
bedload transport, a mass conservation also called Exner equation [1] is used to updated the bed elevation.
This equation is often coupled with the shallow water equations describing the overland flows (see [2] and
references therein). The complete system of PDE is written as

(1)

 ∂th+ ∂x(hu) = 0
∂t(hu) + ∂x(hu2 + gh2/2) = −gh∂xzb + gh∂xH
∂tzb + ξ∂xqb = 0

where h is the water depth, u is the flow velocity and zb is the thickness of sediment layer which can be
modified by the fluid. The sediment layer is assumed to be located on a fixed bedrock layer at depth H
which is not modified by the fluid (see figure 1). ξ = (1 − γ)−1 with γ the porosity of the sediment layer.
qb is the volumetric bedload sediment transport rate per unit time and width and g is the acceleration due
to gravity. The conservative variable hu is also called debit water and noted by q. In what follows and for
the sake of simplicity, we shall assume that H is constant and the layer zb is large enough so that the term
∂xH can be neglected. We shall also assume that ξ = 1.

Let us firstly quote some of the expressions proposed for the bedload transport rate in the literature.
Many researches are devoted to developer the methods of predicting and estimating bedload discharge. The

∗Corresponding author
Email addresses: cordier@math.cnrs.fr (S. Cordier), mh.le@brgm.fr (M.H. Le), Tomas.Morales@uco.es (T. Morales de

Luna)

Preprint submitted to Elsevier November 9, 2010



H(x) h(t, x)

z(t, x)

Reference level

Figure 1: Sketch of shallow water over an erodible bed.

development of bedload transport models has a strong empirical character and relies heavily on physical
insights and quantitative data obtained in laboratory studies. Bedload transport rate expressions were
proposed for granular non-cohesive sediments.

A simple expression proposed by Grass [3] considers qb as a function of the flow velocity and a coefficient
which depends on soil properties

(2) Grass (1981): qb = Agu|u|mg−1, 1 ≤ mg ≤ 4,

where Ag is a constant.
Practically, the estimations of bedload transport rate are mainly based on the bottom shear stress τb, i.e

the force of water acting on the bed during its routing. In context of laminar flows, the bottom shear stress
is given as

(3) τb = ρghSf ,

where ρ is the density of water, Sf is the friction term quantified by different laws, as the Darcy-Weisbach
or Manning formulas (see [4])

• Darcy-Weisbach:

(4) Sf =
Fu|u|

8h
,

where F is the Darcy-Weisbach’s friction coefficient.

• Manning:

(5) Sf =
u|u|

K2h4/3
,

where K is the Manning’s coefficient.

The bottom shear stress is usually used in dimensionless form, also called Shields parameter, noted τ?b and
given as

(6) τ?b =
τb

(ρs − ρ)gds
,
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where ρs is the sediment density, ds is the diameter of sediments. The principle is that τ?b must be exceed a
critical value τ?cr called critical Shields parameter which is required to initiate motion of the grains of non-
cohesive particles. So, the bedload transport rate qb is represented as a function of τ?b via a non-dimensional
parameter Φ as

(7) qb = Φ

√(
ρs
ρ
− 1

)
gd3s .

The followings expressions, illustrated by figure 2, have been often applied [5–7]:

Meyer-Peter and Müller (1948): Φ = 8(τ?b − τ?cr)3/2(8)

Nielsen (1992): Φ = 12
√
τ?b (τ?b − τ?cr)(9)

Ribberink (1998): Φ = 11(τ?b − τ?cr)1.65(10)

Camenen and Larson (2005): Φ = 12(τ?b )1.5 exp

(
−4.5τ?cr
τ?b

)
(11)
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Figure 2: Volumetric bedload rate qb in function of Shields parameter for the very coarse sediments (ds = 32mm).

Returning to the PDE system (1). It can be written in vectorial form as

(12) ∂tW + ∂xF (W ) = S(W )

where W = (h, q, zb)
T is the state vector in conservative form. The system can be written in non conservative

form as

(13) ∂tW +A(W )∂xW = S(W )

where A(W ) = DWF is the matrix of transport coefficients. The main properties of system of PDE of this
form called transport equations is the hyperbolicity [8] which required that the matrix is R diagonalisable
(and strictly hyperbolic when eigenvalues are distincts).

Let us quickly give an interpretation of this property as a stability condition for the linearized system.
Assume W is a small wave perturbation of a constant state, i.e of the form

(14) W (x, t) = W0 + εW1e
i(kx−ωt); ε� 1.

This is a solution of the linearized problem

(15) −iωW1 +A(W0)(ik)W1 = 0
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if and only if W1 is an eigenvector associated with a velocity (ωk ). In other words, if one can write any
arbitrary perturbation W1 as a linear combination of such eigenvector associated with real velocity, the
solution will propagate without amplification of the perturbation. On the contrary, if some of the eigenvalue
are complex, this will lead to instability.

Let us also remark that these eigenvalues are also important when using explicit upwind scheme to insure
stability. Indeed, the time step, for a constant mesh size h, has to satisfy the so called Courant-Friedichs-
Lewy condition (CFL condition) in what follows, (see [8], [9] and references therein)

(16) |λmax|∆t < ∆x

where |λmax| is the maximum of the modulus of the eigenvalues or in other words, λmax is the maximum
velocity for propagation of information. We recall that when using a finite volume scheme technique for
solving 12, this condition can be seen as the definition of a time step sufficiently small so that the different
Riemann problems at each intercell do not interact between each other, that is, the information of each
Riemann problem does not cross more than one cell.

The paper is organized as follow: In the next sections, we study the hyperbolicity of system (1) and
establish the main result. Next, we consider the numerical solving of (1) by time-splitting strategy or a
coupled scheme. The last section presents some numerical tests to justify the arguments mentioned.

2. Domain of hyperbolicity

We are concerned here by the hyperbolicity of system (1) for the different models proposed (2-10) for
the bedload transport rate qb. It is known that, for Grass model, the system is always hyperbolic [2].
Nevertheless, the study the hyperbolicity of system (1) for more general bedload transport fluxes has not
been done to the authors knowledge. Moreover, Castro et al. [2] have stated numerically that hyperbolicity
may be lost in some cases for the Meyer-Peter&Müller bedload transport flux. Proposition 2.1 will give an
answer to this fact and states the domain of hyperbolicity for the different bedload transport fluxes proposed
before.

Note that qb = qb(h, q) and thus the matrix of transport coefficients is of the form

(17) A(W ) =

 0 1 0
gh− u2 2u gh

a b 0


with a = ∂qb

∂h and b = ∂qb
∂q . The characteristic polynomial of A(W ) can be written as

(18)
pA(λ) = −λ

∣∣∣∣ −λ 1
−u2 + gh 2u− λ

∣∣∣∣− gh ∣∣∣∣ −λ 1
a b

∣∣∣∣
= −λ[(u− λ)2 − gh)] + gh(bλ+ a).

The system (1) is thus strictly hyperbolic if and only if pA(λ) has three solutions distincts noted λ1 < λ2 < λ3.
In other words if the curve f(λ) = λ[(u − λ)2 − gh)] and the line d(λ) = gh(bλ + a) have three points of
intersection. This is illustrated by the figure 3 for the case of a subcritical flow.

Let us find relation between a and b in the different models (2-10).

• Grass: qb = Agu|u|m−1

u = q
h ⇒

∂u
∂q = 1

h ; ∂u
∂h = − q

h2 .
∂qb
∂q = (qb)

′
u ·

∂u
∂q ; ∂qb

∂h = (qb)
′
u ·

∂u
∂h

}
⇒ ∂qb

∂h
= − q

h

∂qb
∂q

• Meyer-Peter and Müller, Nielsen, Ribberink, Camenen and Larson: qb = qb(τb)
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Darcy-Weisback : τb = ρghFu|u|8gh = αu|u| (α = cst)

∂qb
∂q = (qb)

′
τb
· ∂τb∂q = (qb)

′
τb
· (τb)′u

∂u
∂q

∂qb
∂h = (qb)

′
τb
· ∂τb∂h = (qb)

′
τb
· (τb)′u

∂u
∂h

}
⇒ ∂qb

∂h
= − q

h

∂qb
∂q

Manning : τb = ρgh u|u|
K2h4/3 = α u|u|

h1/3 = α q|q|
h7/3

∂τb
∂q = 2α|q|

h7/3

∂τb
∂h = − 7

6
q
h

2α|q|
h7/3 = − 7

6
q
h
∂τb
∂q

}
⇒ ∂qb

∂h
= −7

6

q

h

∂qb
∂q

Finally, we have two types of relation: a = −ub or a = − 7
6ub. We shall assume that b > 0 since the sediment

rate increases with increasing of the flow rate. The line d(λ) is thus can be rewritten as d(λ) = ghb(λ− ku)
with k = 1 ou k = 7/6 and the slope ghb > 0.

Proposition 2.1. Consider system (1) with qb = qb(h, q) such that

(19)
∂qb
∂h

= −k q
h

∂qb
∂q

.

For a given state (h, q), the system is strictly hyperbolic if and only if

(20) α− < ku < α+,

with α± will be defined by expression (23) in the proof. Moreover, in the case k = 1 (or a = −ub), the
system is always strictly hyperbolic.

Proof. For simplicity, les us consider the case u > 0 so a = −kub < 0. The case u < 0 can be treated
with the same arguments. We define the two tangents of the curve f(λ) which are parallel to d(λ). Their
intersections with f(λ) are characterized by f ′(λ) = ghb which yields to two values of λ of the form

(21) λ±
def
=

2u±
√
u2 + gh+ ghb

3
.

The two tangents are such that d±(λ±) = f(λ±). This implies the equations for the tangents given by

(22) d±(λ) = ghb(λ− α±)

with

(23) α±
def
= λ± −

f(λ±)

ghb
.

The roots of pA(λ) which are the eigenvalues of A(W ) are given as the intersection of f(λ) and d(λ) (see
figure 3 for the illustration).

Recall that f(λ) is a third order polynomial with roots
{

0, u±
√
gh
}

. The equation pA(λ) = d(λ)−f(λ)
will have 3 distincts solutions if and only if the line d(λ) lies in between d−(λ) and d+(λ). This can be
equivalently written as α− < ku < α+.

It can be checked that we always have α− < u −
√
gh < u < u +

√
gh < α+ so the system is always

hyperbolic in the case k = 1. This concludes the proof.
Note that similar arguments have been used by one of the author in [10–12] to characterized the hyper-

bolicity domains for systems of moments equations arising in plasma physics.

Remark. In the case k = 7/6, a sufficient condition for the system (1) to be strictly hyperbolic is

(24) |u| < 6
√
gh.

This result is interested because the subcritical flow always verify hyperbolic condition. Moreover, the
condition (24) is easily satisfied with a general flow in reality.
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Figure 3: Eigenvalues of the transport coefficients matrix.

3. Time-splitting method

The strategy of time-splitting consistes in solving separately the shallow water system during a time step
∆t for a fixed topography zb, and after updating the topography using the third equation for the same time
step. See, for example, the references [13, 14] or chapt. 3 of [15]. It appears to be natural considering the
topography slowly varying for hydrodynamical characteristic time. This suggests the possibility of using a
time-splitting method to solve the system (1).

Using the time-splitting strategy permits to minimize computational costs and to developer the compu-
tation code in modular way. The time-splitting solving can inherit easily the robust and efficient solution of
the shallow water equations developed in the few last years, for example, those presented in the publication
[16]. We interest specially to the code FullSWOF 2D (licence DL 03434-01) developed by projet METHODE
ANR-07-BLAN-0232 (see [17] and http://www.univ-orleans.fr/mapmo/methode/). However, the use of
time-splitting method requires to pay attention as the following remarks:

1. As explained in the introduction, the stability condition for shallow water equations only requires the
CFL limitation associated with

(25)
(
|u|+

√
gh
)

∆t < ∆x.

Remark that the CFL condition (25) is not enough to insure the stability condition (16) of the coupled
system (1) because the maximum eigenvalue λ3 of the matrix of transport coefficients A(W ) is always
larger that |u|+

√
gh (see figure 9). This will result as instabilities in some numerical simulations when

a splitting technique is used. These instabilities are less frequent or do not exist if the numerical scheme
used is sufficiently diffussive. For instance, when Lax-Friedrichs scheme is used it is very difficult to find
instabilities while for Roe type schemes they are easily found. We recall that something similar has been
studied in [18] and [19] where the splitting technique for the two-layer shallow water system was studied.
Instead of computing the exact eigenvalues of A(W ), an upper bound first order λ03 of λ3 may be used,
defined as the intersection of d(λ) and the tangent dT (λ) of f(λ) at u+

√
gh (see the figure 4)

(26) dT (λ) = f ′(u+
√
gh)(λ− u−

√
gh).

λ03 is thus of the form

(27) λ03
def
=

(u+
√
gh)f ′(u+

√
gh) + gha

f ′(u+
√
gh)− ghb

.

This value can be used to impose an CFL condition associated to the full coupled system (1).
With this upper-bound the true CFL condition is now granted. Nevertheless we remark that now the
true maximum propagation speed is overstimated.
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2. Another problem is related to the sign of eigenvalues of the matrix A(W ). Rewriting the characteristic
polynomial pA(λ) in form

pA(λ) = −(λ− λ1)(λ− λ2)(λ− λ3),

the produit of three eigenvalues, in the case u > 0, satisfies

λ1λ2λ3 = pA(0) = gha < 0.

In a supercritical flow, i.e. |u| >
√
gh, this means that λ2 and λ3 are positive and consequently λ1 < 0.

This can be interpreted as there is a wave propagating to the left. The using of splitting strategy in such
situation cannot account this information as we would have 0 < u −

√
gh < u +

√
gh This will lead to

instability when using splitting method with upwind schemes.

4. Numerical results

In the following tests, we shall use two different schemes for (1):

• Splitting scheme: We use a Roe scheme for the shallow water system plus an upwinding technique
based on the sign of velocity for the bedload transport equation, that is,

Un+1
i = Uni −

∆t

∆x
(A+

i−1/2(Uni − Uni−1) +A−i+1/2(Uni+1 − Uni )),

where U = (h, q)T and Ai+1/2 is a Roe matrix for the shallow water system with non-flat topography,

(28) (zb)
n+1
i = (zb)

n
i −

∆t

∆x
((qb)

n
i+1/2 − (qb)i−1/2)n,

where

(29) (qb)
n
i+1/2 =

{
qb(h

n
i , q

n
i ), if ui+1/2 ≥ 0,

qb(h
n
i+1/2, q

n
i+1/2), if ui+1/2 < 0,

• Coupled Scheme: We use a Roe scheme for the full system which can be written in the form

Wn+1
i = Wn

i −
∆t

∆x
(A+

i−1/2(Wn
i −Wn

i−1) +A−i+1/2(Wn
i+1 −Wn

i )),

where Ai+1/2 is a Roe matrix for (1).
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We refer to [20],[21], [18], [22] for the details of the numerical schemes.
First, we shall show a case where the splitting technique gives the same result as the fully coupled scheme.

Let us consider as initial condition a subcritical steady state for the classical shallow water system given by

(30)


hu(x, t = 0) = 0.5,

zb(x, t = 0) = 0.1 + 0.1e−(x−5)
2

,
u2

2
+ g(h+ z) = 6.386.

The water surface and topography corresponding to this initial condition are shown in figure 5. We shall
consider Grass model (2) with Ag = 0.005. As we see in figure 6, no major differences are observed between
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Figure 5: Initial condition for (30).
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(a) Coupled scheme
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Figure 6: Solution for (30) with Ag = 0.005

the two schemes. Both simulations have been computed with CFL = 0.95.
Now, consider the same initial condition 5 but we set Ag = 0.07. We remark in figure 7 that some

instabilities arise which disappear if the CFL is reduced. This is not the case when the coupled scheme is
used as we see in figure 8.

The main difference between the experiment with Ag = 0.005 and Ag = 0.07 is that, in the second case,
the true eigenvalues of the full system are far from the approximations u+

√
gh and u−

√
gh given by the
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Figure 7: Solution for (30) with Ag = 0.07
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Figure 8: Solution for (30), Ag = 0.07 with a coupled scheme.

splitting scheme. In particular, the maximum of the modulus of the eigenvalue is larger than |u| +
√
gh.

This implies that a CFL condition close to 1 should not be used with the splitting scheme. (See figure 9)
Finally, let us consider an example with subcritical and supercritical regions. In order to do so, we begin

with the initial condition

(31)


hu(x, t = 0) = 0.6,

zb(x, t = 0) = 0.1 + 0.1e−(x−5)
2

,
h(x, t = 0) + zb(x, t = 0) = 0.4.

We solve the shallow water system (Ag = 0.0) with this initial data until a steady state solution is reached
(see Fig. 10) Once the steady state is reached, we let the sediment to evolve by using a Grass bedload flux
with Ag = 0.0005. Figure 11 shows that again we find instabilities by using the splitting technique. These
instabilities remain even for CFL = 0.05. Note that theses instabilities do not appear when using the full
coupled system even for CFL = 0.95 as it is shown in figure 12.

If we study the eigenvalues of the system in Fig 13, we remark that 0 and u±
√
gh are good approximations

of the true eigenvalues of the system. Nevertheless, in the supercritical region we see that, while u ±
√
gh

is always positive, we find a negative eigenvalue of the system. As a consequence, the upwinding in the
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Figure 9: Eigenvalues for (30). True eigenvalues of the system (Continuous line) and u±
√
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Figure 10: Transcritical steady-state for shallow water system.

splitting technique does not take into account the information travelling backwards in general which explains
the instabilities in the simulation shown before.
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Figure 11: Solution for (31) with Ag = 0.0005 using splitting scheme

0 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

t = 16.20

Surface
Topography

(a)

0 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

t = 30.00

Surface
Topography

(b)

Figure 12: Solution for (31) with Ag = 0.0005 using full system
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Figure 13: Eigenvalues for (31). True eigenvalues of the system (Continuous line) and u±
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5. Conclusions

Exner equation coupled with shallow water equations result as a system that may lose hyperbolicity in
some cases at least theoretically. A practical criterium has been introduced for the study of the hyperbolicity
region. Nevertheless, the system remains hyperbolic in most of physical situations for classical definitions
of the bedload transport flux.

While it seems natural to do a splitting approach by solving first the shallow water system and then
updating the topography, it is shown that it could result as instability. The resulting instabilities may be
avoided by reducing the CFL condition in certain cases but in some simulations a numerical scheme for the
full coupled system may be needed.
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Joseph-Fourier - Grenoble I university, 2004.

[16] E. F. Toro, Shock-Capturing Methods for Free-Surface Shallow Flows, Wiley and Sons Ltd., 2001.
[17] O. Deleste, Rain water overland flow on agricultural fields simulation, PhD. Thesis, Orleans university, 2010.

URL http://tel.archives-ouvertes.fr/tel-00531377/fr/
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