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The Fibonacci cube Γ n is the subgraph of the n-cube induced by the binary strings that contain no two consecutive 1's. The Lucas cube Λ n is obtained from Γ n by removing vertices that start and end with 1. It is proved that the number of vertices of degree k in Γ n and Λ n is

, respectively. Both results are obtained in two ways, since each of the approaches yields additional results on the degree sequences of these cubes. In particular, the number of vertices of high resp. low degree in Γ n is expressed as a sum of few terms, and the generating functions are given from which the moments of the degree sequences of Γ n and Λ n are easily computed.

Introduction

A Fibonacci string is a binary string that contains no two consecutive 1's. The Fibonacci cube Γ n , n ≥ 0, is defined as follows. Its vertices are all Fibonacci strings of length n, two vertices are adjacent if they differ in precisely one bit. In particular, Γ 0 = K 1 , Γ 1 = K 2 , and Γ 2 is the path on three vertices. Alternatively, Γ n can be defined as the so-called simplex graph of the complement of the path on n vertices, cf. [START_REF] Cabello | The Fibonacci dimension of a graph[END_REF].

Fibonacci cubes were introduced as a model for interconnection networks [START_REF] Hsu | Fibonacci cubes-a new interconnection technology[END_REF] and received a lot of attention afterwards. For different studies of their structure we refer to [START_REF] Dedó | The observability of the Fibonacci and the Lucas cubes[END_REF][START_REF] Ellis-Monaghan | Decycling of Fibonacci cubes[END_REF][START_REF] Gregor | Recursive fault-tolerance of Fibonacci cube in hypercubes[END_REF][START_REF] Klavžar | On median nature and enumerative properties of Fibonacci-like cubes[END_REF][START_REF] Munarini | Structural and enumerative properties of the Fibonacci cubes[END_REF][START_REF] Offner | Some Turán type results on the hypercube[END_REF]. These cubes also found an application in theoretical chemistry. There, perfect matchings in hexagonal graphs reflect the stability of the corresponding benzenoid molecules and the so-called resonance graphs capture the structure of the perfect matching. It is appealing that Fibonacci cubes are precisely the resonance graphs of a special class of hexagonal graphs called fibonaccenes, the result proved in [START_REF] Klavžar | Fibonacci cubes are the resonance graphs of Fibonaccenes[END_REF]. We also mention that Fibonacci cubes led to the concept of the Fibonacci dimension of a graph [START_REF] Cabello | The Fibonacci dimension of a graph[END_REF] and that they can be recognized in O(|E(G)| log |V (G)|) time [START_REF] Taranenko | Fast recognition of Fibonacci cubes[END_REF].

Lucas cubes form a class of graphs closely related to Fibonacci cubes. The Lucas cube Λ n , n ≥ 0, is the subgraph of the n-cube induced by Fibonacci strings b 1 . . . b n such that not both b 1 and b n are 1. In particular, Λ 0 = Λ 1 = K 1 and Λ 2 = Γ 2 is the path on three vertices. For different aspects of Lucas cubes see [START_REF] Dedó | The observability of the Fibonacci and the Lucas cubes[END_REF][START_REF] Gregor | Recursive fault-tolerance of Fibonacci cube in hypercubes[END_REF][START_REF] Klavžar | On median nature and enumerative properties of Fibonacci-like cubes[END_REF][START_REF] Klavžar | Edge-counting vectors, Fibonacci cubes, and Fibonacci triangle[END_REF][START_REF] Munarini | On the Lucas cubes[END_REF][START_REF] Salvi | The automorphism group of the Lucas semilattice[END_REF].

In this paper we are interested in the degree sequence of Fibonacci and Lucas cubes. One of our motivations is the fact that several partial results were previously obtained in order to attack different problems on Fibonacci cubes. In the seminal paper [START_REF] Hsu | Fibonacci cubes-a new interconnection technology[END_REF]Lemma 6] it was observed that the degrees of Γ n are at least (n + 2)/3 and (obviously) not more than n. More than ten years later, a recursive formula for computing the degree of any vertex of Γ n is given in [START_REF] Ellis-Monaghan | Decycling of Fibonacci cubes[END_REF]. It depends on the recursive structure of Γ n and the value of the integer that represents the given vertex (= binary number). This approach was further developed in [START_REF] Pike | The domination number of Fibonacci cubes[END_REF] where the degrees are used to determine the domination number of the Fibonacci cubes. In the main result on the degrees ([14, Theorem 2.6]) vertices of degrees n, n -1, n -2, and n -3 are explicitly described. However, the approach in general does not give the number of vertices of Γ n of a given degree, a fundamental property of a given family of graphs.

For n, k ≥ 0 let f n,k denote the number of vertices of Γ n having degree k. Then our first main result is:

Theorem 1.1 For all n ≥ k ≥ 0, f n,k = k i=0 n -2i k -i i + 1 n -k -i + 1 . (1) 
Note that only the terms with i between (n-k)/2 and min(k, n-k) are nonzero which could be useful when evaluating these numbers. An analogous remark holds for the subsequent summation formulas as well.

In the next section we prove Theorem 1.1 by deriving and solving a corresponding system of linear recurrences. Then, in Section 3, several consequences of Theorem 1.1 are presented. A special emphasis is given on vertices of small and large degrees. For instance, Corollary 3.4 in particular covers the degrees of the above-mentioned [START_REF] Pike | The domination number of Fibonacci cubes[END_REF]Theorem 2.6]. In Section 4 we give a direct approach to Theorem 1.1 by considering degrees via the partition of V (Γ n ) into strings of a given weight. In this way not only Theorem 1.1 is reproved, but (i) the vertices of a given degree and weight are enumerated thus giving an additional information on the Fibonacci semilattice [START_REF] Fontanesi | On the Fibonacci semilattices[END_REF] (and the Lucas semilattice [START_REF] Salvi | The automorphism group of the Lucas semilattice[END_REF]) and (ii) the way to our second main theorem is paved.

Denoting by n,k , n, k ≥ 0, the number of vertices of Λ n having degree k, we prove in Section 5:

Theorem 1.2 For all n ≥ k ≥ 0 with n ≥ 2, n,k = k i=0 2 i 2i + k -n n -2i -1 k -i + i -1 2i + k -n n -2i k -i . (2) 
Finally, in Section 6, we reprove Theorem 1.2 by the method of generating functions. This approach is somewhat more involved than the one taken in Section 5, however it can be further used to obtain several additional properties of the sequence of degrees of the Fibonacci and Lucas cubes.

Throughout the paper, we follow the definition of binomial coefficients given in [START_REF] Graham | Concrete Mathematics[END_REF]. In particular, m 0 = 1 and m k = 0 for all m, k ∈ Z with k < 0. We find this remark important since not all currently used computer algebra systems follow this convention.

Proof of Theorem 1.1

The vertex set of Γ n naturally decomposes into the sets A n and B n consisting of those strings that start with a 1, and those strings that do not start with a 1, respectively. Hence A 0 = ∅, B 0 = {λ} (where λ is the empty string), and for n ≥ 1,

A n = {1α | α ∈ B n-1 } and B n = {0α | α ∈ A n-1 ∪ B n-1 } .
Since every vertex in A n , n ≥ 2, necessarily starts with 10, A n induces Γ n-2 in Γ n . On the other hand, B n induces Γ n-1 in Γ n . Moreover, each vertex 1α of A n has exactly one neighbor in B n , namely 0α.

We now give the key definition that will enable us to compute the degree sequence of Γ n . For any n ≥ 1 and any 0 ≤ k ≤ n, let a n,k , respectively b n,k , be the number of vertices of A n , respectively B n , of degree k. Consider a vertex x ∈ A n of degree k. Then it is of degree k -1 in the subgraph Γ n-2 of Γ n induced by A n . Since x lies in exactly one of the corresponding sets A n-2 and B n-2 , we get

a n,k = a n-2,k-1 + b n-2,k-1 .
Similarly, a vertex y ∈ B n either has a neighbor in A n (if it starts with 00) or has no neighbor in A n . In the first case, it is a vertex of the corresponding set B n-1 , in the second case, a vertex of A n-1 . Therefore,

b n,k = b n-1,k-1 + a n-1,k .
Hence the degree sequences in the subgraphs induced by A n and B n satisfy the system of linear recurrences and initial conditions

a n,k = a n-2,k-1 + b n-2,k-1 (n ≥ 2, k ≥ 1), (3) 
b n,k = b n-1,k-1 + a n-1,k (n ≥ 1, k ≥ 1), (4) 
a 0,k = a n,0 = 0 (n ≥ 0, k ≥ 0), a 1,1 = 1, a 1,k = 0 (k ≥ 2), b 0,0 = 1, b 0,k = b n,0 = 0 (n ≥ 1, k ≥ 1).
Their generating functions a(x, y) = n,k≥0 a n,k x n y k and b(x, y) = n,k≥0 b n,k x n y k therefore satisfy the system of linear algebraic equations

a(x, y) -xy = x 2 y a(x, y) + x 2 y b(x, y), b(x, y) -1 = xy b(x, y) + x a(x, y)
whose solution is

a(x, y) = xy(1 + x -xy) (1 -xy)(1 -x 2 y) -x 3 y , (5) b 
(x, y) = 1 (1 -xy)(1 -x 2 y) -x 3 y . Write u = 1 -xy, v = 1 -x 2 y. Then b(x, y) = 1 uv -x 3 y = (uv) -1 1 -x 3 y(uv) -1 = h≥0 x 3h y h (uv) -h-1 = h≥0 (xy) h (1 -xy) h+1 (x 2 y) h (1 -x 2 y) h+1 y -h = h≥0 i,j≥h i h j h x i+2j y i+j-h .
In the last step we used the well-known expansion

x k (1 -x) k+1 = i≥k i k x i .

Now replace summation variables h and i by n

= i + 2j and k = i + j -h. Then i = n -2j and h = n -k -j, so b(x, y) = n,k,j≥0 n -2j n -k -j j n -k -j x n y k , hence b n,k = k j=0 n -2j k -j j n -k -j . (6) 
From ( 3) and (4) (or, alternatively, from ( 5)) we obtain

a n,k = b n-1,k-1 -b nk-2,k-2 + b n-2,k-1 (n ≥ 2, k ≥ 2). ( 7 
)
Denote

t n,k,j = n -2j k -j j n -k -j .
Then

t n-1,k-1,j -t n-2,k-2,j + t n-2,k-1,j = = n -2j -1 k -j -1 - n -2j -2 k -j -2 j n -k -j + t n-2,k-1,j = n -2j -2 k -j -1 j n -k -j + n -2j -2 k -j -1 j n -k -j -1 = n -2j -2 k -j -1 j + 1 n -k -j
by using Pascal's identity twice, hence it follows from ( 6) and ( 7) that

a n,k = j≥0 n -2j -2 k -j -1 j + 1 n -k -j = k j=0 n -2j k -j j n -k -j + 1 (n ≥ 2, k ≥ 2). ( 8 
)
Here we replaced j by j -1 and noted that n k 0 n-k+1 = 0 for n = -1. It is easy to check that (8) holds when k ∈ {0, 1} or n ∈ {0, 1} as well. Finally, from ( 6) and ( 8) we obtain

f n,k = a n,k + b n,k = k j=0 n -2j k -j j + 1 n -k -j + 1
by using Pascal's identity once more.

Consequences of Theorem 1.1

Let F n be the nth Fibonacci number:

F 0 = 0, F 1 = 1, F n = F n-1 + F n-2 for n ≥ 2. Since |V (Γ n )| = F n+2 , Theorem 1.1 immediately implies: Corollary 3.1 For any n ≥ 0, F n+2 = n k=0 k i=0 i + 1 n -k -i + 1 n -2i k -i . (9) 
We next give an alternative proof (avoiding Fibonacci cubes) of Corollary 3.

1. Set F (n) = n k=0 k i=0 i+1 n-k-i+1 n-2i k-i . If k > n and i ≥ 1 then n -k -i + 1 < 0, thus i+1 n-k-i+1 = 0. If k > n and i = 0, or if i > k, then n-2i
k-i = 0. Thus, after interchanging the order of summation and using Vandermonde's convolution,

F (n) = ∞ i=0 ∞ k=0 i + 1 n -k -i + 1 n -2i k -i = ∞ i=0 n -i + 1 n -2i + 1 .
Since for i > (n + 1)/2 we have n-i+1 n-2i+1 = 0, we can restrict our summation range to, say, 0 ≤ i ≤ n + 1, and obtain

F (n) = n+1 i=0 n -i + 1 n -2i + 1 = n+1 i=0 n -i + 1 i ,
where the last equality holds because n -i + 1 ≥ 0. Using the well-known identity

m i=0 m-i i = F m+1 , see [5, p. 289, equation 6.130], we conclude that F (n) = F n+2 .
An interesting problem, useful for applications such as domination or coloring, is to determine for some fixed integer m the number of vertices of degree ∆(Γ n ) -m and δ(Γ n )+m. (As usually, ∆ and δ denote the maximum and the minimum degree.) When m is small, the following two corollaries show that in both cases almost all the terms in the sum of Theorem 1.1 vanish.

Corollary 3.2 For 0 ≤ m ≤ n, f n,n-m = m+1 i= m/2 n -2i n -m -i i + 1 m -i + 1 . ( 10 
)
Proof. By Theorem 1.1,

f n,n-m = n-m i=0 n -2i n -m -i i + 1 m -i + 1 . If m -i + 1 < 0 we have i+1 m-i+1 = 0, thus we can assume that i ≤ m + 1. If 2i < m we have m -i + 1 > i + 1 and again i+1 m-i+1 = 0. Corollary 3.3 Let δ = δ(Γ n ) = n+2 3 . For n > 0 and m ≤ n -δ, f n,δ+m = δ+m i=δ-m 2 -1 n -2i δ + m -i i + 1 δ + m + 2i -n . Proof. We have i + 1 > 0, thus i+1 n-k-i+1 = i+1 k+2i-n . Rewrite the sum in Theo- rem 1.1 for k = δ + m and observe that if i ≤ δ -m 2 -2 then δ + m + 2i -n ≤ 3δ + m -2 m 2 -n -4 ≤ 3δ -n -3 ≤ -1. Hence in this case i+1 δ+m+2i-n = 0.
Our last two results in particular give the asymptotic behavior of the number of vertices of degrees ∆(Γ n ) -m and δ(Γ n ) + m when n → ∞.

Corollary 3.4 Let m ≥ 0 and let n ≥ 2m + 2. Then f n,n-m =                      1; m = 0, 2; m = 1, n + 1; m = 2, 3n -8; m = 3, n 2 /2 + 3n/2 -21; m = 4, 2n 2 -16n + 10; m = 5 .
More generally, f n,n-m is a polynomial in n of degree m/2 . Its leading coefficient is 1 (m/2)! when m is even, and m/2 +1 m/2 ! when m is odd.

Proof. When i ≤ m + 1 and n ≥ 2m + 2 we have n -2i ≥ 0, thus n-2i n-m-i = n-2i m-i . Hence, having in mind Corollary 3.2, the first values are thus obtained directly from m i= m/2 n -2i m -i i + 1 m -i + 1
.

Consider now this sum for some fixed m. For all i, n-2i m-i is a polynomial in n with leading term n m-i (m-i)! , and i+1 m-i+1 is independent of n. Thus f n,n-m is a polynomial in n. Its leading monomial is obtained from the term corresponding to the minimal i such that i+1 m-i+1 = 0, which is equivalent to 2i ≥ m and further to i ≥ m/2 . Hence the minimal such i is m/2 , and deg

f n,n-m = m -m/2 = m/2 . If m is even, then i+1 m-i+1 = 1 when i = m/2 = m/2, thus the leading term is 1 (m/2)! n m/2 . If m is odd, then i+1 m-i+1 = m/2 + 1 when i = m/2 , thus in this case the leading term is m/2 +1 m/2 ! n m/2 . Corollary 3.5 Let δ = δ(Γ n ) = n+2 3 . Then f n,δ+m =                      1; m = 0, n = 3p, 1 2 (p + 1)(p + 4); m = 0, n = 3p + 1, p + 2; m = 0, n = 3p + 2, 1 6 p(p + 1)(p + 8); m = 1, n = 3p, 1 120 p(p + 1) p 3 + 24p 2 + 81p + 14 ; m = 1, n = 3p + 1, 1 24 (p + 1)(p + 2) p 2 + 15p + 12 ; m = 1, n = 3p + 2.
More generally, for all m ≥ 0, f n,δ+m is :

• a polynomial in p of degree 3m and leading coefficient 1 (3m)! for n = 3p;

• a polynomial in p of degree 3m+2 and leading coefficient 1 (3m+2)! for n = 3p+1;

• a polynomial in p of degree 3m+1 and leading coefficient Let m be fixed and consider the general case when n = 3p for some fixed m. Then δ = p, and by introducing a new summation variable j = i -p we can rewrite the sum of Corollary 3.3 as

f 3p,p+m = m j=-m 2 -1 p -2j m -j p + j + 1 2j + m .
Notice that p-2j m-j is a polynomial in p of degree m -j, and p+j+1 2j+m is a polynomial in p of degree 2j + m, therefore their product is of degree 2m + j. The maximum degree will be obtained when j is maximum, i.e., j = m. Then p-2j m-j = 1 and

p+j+1 2j+m = p+m+1 3m
, thus the leading term is p 3m (3m)! . The cases n = 3p + 1 and n = 3p + 2 are treated similarly. The maximum degree is obtained when j is maximum, which in these two cases is j = m + 1. When n = 3p + 1 we have p-2j+1 m-j+1 = 1 and p+j+1 2j+m = p+m+2 3m+2 , thus the leading term is

p 3m+2 (3m+2)! . When n = 3p + 2 then p-2j+2 m-j+1 = 1 and p+j+1 2j+m-1 = p+m+2 3m+1 , thus the leading term is p 3m+1 (3m+1)! .

Enumeration of vertices in Γ n by weight

The purpose of this section is to determine the number of vertices in Γ n with a given weight and degree, where the weight of a binary string is the number of 1's in it. This could be done by means of generating functions as in Section 2, nevertheless we use a direct approach which along the way gives some additional information about Fibonacci strings. As a consequence, we are able to give an alternative proof of Theorem 1.1 as well as a combinatorial interpretation of the summation expression.

From this approach we can also describe easily the set of vertices of a given weight and degree, and deduce quickly the degree sequence of Lucas cubes. We leave the latter task for the next section and continue here with the study of the structure of Fibonacci strings.

For n ≥ 0 denote F n = the set of all Fibonacci strings of length n, L n = the set of all Lucas strings of length n, S i,j n = {α ∈ F n ; α starts with i and ends with j}, i, j ∈ {0, 1}, where S 0,0 n also includes the empty string λ.

Note that in the notation of Section 2, S 1,1 n ∪ S 1,0 n = A n and S 0,1 n ∪ S 0,0 n = B n . In addition, for any integer m ≥ 0 we introduce the following Fibonacci strings:

• α m = (01) m 0 • β m = (10) m • γ m = (01) m • δ m = (10) m 1
We call the strings δ m degenerate Fibonacci strings. Lemma 4.1 Every nondegenerate Fibonacci string can be uniquely decomposed as

β m 0 0 l 0 α m 1 0 l 1 α m 2 0 l 2 . . . α mp 0 lp γ m p+1 ,
where p ≥ 0, l 0 , . . . , l p ≥ 0, m 1 , . . . , m p ≥ 1, and m 0 , m p+1 ≥ 0. Moreover, m 0 and m p+1 determine to which of the sets S 1,1 n , S 1,0 n , S 0,1 n , or S 0,0 n the string belongs.

Proof. The proof of the existence of such a decomposition is by induction on the length of the string. This is clearly true for strings of length n ≤ 2.

Consider now a string s of length n > 2. Suppose first that s = 0s , where s ∈ F n-1 . By induction, we have the following possibilities for s :

• s = β m 0 0 l 0 α m 1 0 l 1 . . . α mp 0 lp γ m p+1 , hence s = α m 0 0 l 0 α m 1 0 l 1 . . . α mp 0 lp γ m p+1 ;
• s = 0 l 0 α m 1 0 l 1 . . . α mp 0 lp γ m p+1 , hence s = 0 l 0 +1 α m 1 0 l 1 . . . α mp 0 lp γ m p+1 ;

• s = α m 1 0 l 1 . . . α mp 0 lp γ m p+1 , hence s = 0α m 1 0 l 1 . . . α mp 0 lp γ m p+1 ;

• s = γ m 1 , thus now s = 0γ m 1 ;

• s = δ m 1 , and hence s = γ m 1 +1 . Similarly, if s = 1s , s ∈ F n-1 , we have the following cases:

• s = 0 l 0 α m 1 0 l 1 . . . α mp 0 lp γ m p+1 , hence s = β 1 0 l 0 -1 α m 1 0 l 1 . . . α mp 0 lp γ m p+1 ; • s = α m 1 0 l 1 α m 2 0 l 2 . . . α mp 0 lp γ m p+1 , hence s = β m 1 +1 0 l 1 α m 2 0 l 2 . . . α mp 0 lp γ m p+1 ; • s = γ m 1 , but then s = δ m 1 is degenerate.
Hence in each of the cases we have obtained a decomposition of s in the expected form.

It is immediate to verify that strings from S 1,1 n satisfy m 0 > 0 and m p+1 > 0; strings from S 1,0 n satisfy m 0 > 0 and m p+1 = 0; strings from S 0,1 n satisfy m 0 = 0 and m p+1 > 0; and strings from S 0,0 n satisfy m 0 = 0 and m p+1 = 0.

To prove uniqueness, consider first a string β m 0 0 l 0 α m 1 0 l 1 . . . α mp 0 lp γ m p+1 from S 1,1 n , thus with m 0 > 0 and m p+1 > 0. In the three possible cases (l 0 > 0, l 0 = 0 and m 1 > 0, p = 0) such a string contains at least two consecutive 0's, so the string is not degenerate. On the other hand, it is clear that a nondegenerate string cannot be decomposed in two ways as β m 0 0 l 0 α m 1 0 l 1 . . . α mp 0 lp γ m p+1 .

Note also that the degenerate Fibonacci string δ m is of length n = 2m+1, weight w = m + 1, and the corresponding vertex of Γ n is of degree k = m + 1. For all the other strings we have:

Proposition 4.2 A Fibonacci string β m 0 0 l 0 α m 1 0 l 1 α m 2 0 l 2 . . . α mp 0 lp γ m p+1 is of length n = p i=0 l i + 2 p+1
i=0 m i + p and weight w = p+1 i=0 m i , and the corresponding vertex of Γ n is of degree k = p i=0 l i + p+1 i=0 m i .

Proof. The assertion for the length and the weight follows immediately from definitions. As for the degree, use the fact that changing a 1 to 0 in a vertex from F n gives a vertex in F n , while a 0 can be changed to 1 only if it is not adjacent to 1, and thus not inside a block of the form α m , β m , and γ m .

We will use the following classical results about composition of integers. In the rest we will use some more notation. Let s 1,1 n,k , s 1,0 n,k , s 0,1 n,k , and s 0,0 n,k be the number of vertices of degree k in S 1,1 n , S 1,0 n , S 0,1 n , and S 0,0 n , respectively. Let in addition S 1,1 n,w , S 1,0 n,w , S 0,1 n,w , and S 0,0 n,w , be the corresponding sets where each vertex is of weight w, and let s 1,1 n,k,w , s 1,0 n,k,w , s 0,1 n,k,w , and s 0,0 n,k,w be the number of vertices of degree k in these sets, respectively.

Lemma 4.5 For all integers k, n, w

s 0,0 n,k,w = w -1 2w + k -n n -2w k -w , s 0,1 n,k,w = s 1,0 n,k,w = w -1 2w + k -n -1 n -2w k -w , s 1,1 n,k,w = w -1 2w + k -n -2 n -2w k -w .
Proof. Assume first that w ≤ k ≤ n.

A string from S 0,0 n,w is decomposable as 0 l 0 α m 1 0 l 1 . . . α mp 0 lp where p ≥ 0, l 0 , l 1 . . . , l p ≥ 0, and m 1 . . . , m p > 0. By Proposition 4.2 there is a 1-1 mapping between S 0,0 n,w and the solutions of

     p = n -k -w ≥ 0, l 0 + • • • + l p = k -w with l 0 , . . . , l p ≥ 0, m 1 + • • • + m p = w with m 1 . . . , m p ≥ 1. (11) 
A string from S 1,0 n,w is decomposable as β m 0 0 l 0 α m 1 0 l 1 α m 2 0 l 2 . . . α mp 0 lp with p ≥ 0, l 0 , l 1 . . . , l p ≥ 0, m 0 , m 1 . . . , m p > 0. Thus there is a 1-1 mapping between S 1,0 n,w and the solutions of

     p = n -k -w ≥ 0, l 0 + • • • + l p = k -w with l 0 , . . . , l p ≥ 0, m 0 + • • • + m p = w with m 0 , . . . , m p ≥ 1. (12) A nondegenerate string from S 1,1
n,w is decomposable as β m 0 0 l 0 α m 1 0 l 1 α m 2 0 l 2 . . . α mp 0 lp γ m p+1 where p ≥ 0, l 0 , . . . , l p ≥ 0, m 0 , . . . , m p > 0. Thus there is a 1-1 mapping between these strings and the solutions of

     p = n -k -w ≥ 0, l 0 + • • • + l p = k -w with l 0 , . . . , l p ≥ 0, m 0 + • • • + m p+1 = w with m 0 , . . . , m p+1 ≥ 1. ( 13 
)
Assume that p = n -k -w ≥ 0, then by Lemmas 4.3 and 4.4 the number of solutions of ( 11), ( 12) and ( 13) are

w-1 2w+k-n n-2w k-w , w-1 2w+k-n-1 n-2w k-w , and w-1 2w+k-n-2 n-2w
k-w , respectively. Assume now that n -k -w < 0. Then there are no solutions of ( 11), ( 12) and ( 13), thus there are no nondegenerate strings of degree k in S 0,0 n,w , S 1,0 n,w and S 1,1 n,w . Notice that we have w ≥ 1 because w = 0 implies n -k < 0, a contradiction.

Suppose n -k -w ≤ -2. Then we can write

2w + k -n > 2w + k -n -1 > 2w + k -n -2 = w + (w + k -n -2) ≥ w > w -1 ≥ 0 , thus w-1 2w+k-n = w-1 2w+k-n-1 = w-1 2w+k-n-2 = 0. Assume that n -k -w = -1. Then 2w + k -n > 2w + k -n -1 = w > w -1 ≥ 0 , therefore w-1 2w+k-n = w-1 2w+k-n-1 = 0. Consider now w-1 2w+k-n-2 n-2w k-w = w-1 w-1 n-2w k-w = n-2w k-w = k-w-1
k-w . This number is zero if k > w. Otherwise (if k = w and n = 2k -1) it is 1, which corresponds to the degenerate string δ k-1 .

By symmetry we have s 0,1 n,k,w = s 1,0 n,k,w . A vertex of weight w has degree at least k, thus there are no vertices of degree k in the sets S 1,1 n,w , S 1,0 n,w , S 0,1 n,w , S 0,0 n,w if w ≤ k ≤ n is not satisfied. It is immediate to verify that the four formulas hold also.

Let f n,k,w be the number of vertices of Γ n having degree k and weight w. Then we have:

Theorem 4.6 For all integers k, n, w with k, w ≤ n, f n,k,w = w + 1 n -w -k + 1 n -2w k -w . Proof. Clearly, f n,k,w = s 1,1 n,k,w + s 1,0 n,k,w + s 0,1 n,k,w + s 0,0 n,k,w
. Applying Lemma 4.5 and (three times) the identity a b + a b-1 = a+1 b , we arrive at

f n,k,w = w + 1 2w + k -n n -2w k -w .
Because w + 1 > 0, we have

w+1 2w+k-n = w+1 n-w-k+1 .
Note that by the convention we are using for the binomial coefficients, f n,k,w = 0 when w > (n + 1)/2. Theorem 1.1 immediately follows from Theorem 4.6.

Proof of Theorem 1.2

Let n,k,w be the number of vertices of Λ n of degree k and weight w, and let p,q n,k,w , for p, q ∈ {0, 1}, be the number of such strings in the set S p,q n .

Lemma 5.1 For all n, k, w such that n ≥ 2, 1 ≤ k ≤ n and 0 ≤ w ≤ n, 0,0 n,k,w = s 0,0 n-1,k-1,w + s 1,0 n-1,k,w , 0,1 n,k,w = 1,0 n,k,w = s 0,1 n-1,k,w + s 1,1 n-1,k,w , 1,1 n,k,w = 0 .
Proof. A Lucas string that starts and ends with 0 can be written as 0s, where either s ∈ S 0,0 n-1,w is of degree k -1, or s ∈ S 1,0 n-1,w is of degree k. This gives the first equality. Similarly we obtain the second equality, while the last one is obvious.

Theorem 5.2 For all n, k, w such that n ≥ k, w ≥ 0 and n ≥ 2, n,k,w = w -1 2w + k -n n -2w k -w + 2 w 2w + k -n n -2w -1 k -w . (14) 
Proof. Assume first that k ≥ 1. Since n,k,w = 0,0 n,k,w + 2 0,1 n,k,w , Lemmas 4.5 and 5.1 imply that

n,k,w = w -1 2w + k -n n -2w -1 k -w + w -1 2w + k -n n -2w -1 k -w -1 + 2 w -1 2w + k -n -1 n -2w -1 k -w + 2 w -1 2w + k -n n -2w -1 k -w .
Using Pascal's identity we can group the first term with one half of the third term, the second term with one half of the fourth term, and the remaining half of the third term with the remaining half of the fourth term to obtain [START_REF] Pike | The domination number of Fibonacci cubes[END_REF].

The only Lucas strings of degree k = 0 are λ and 0, hence n,0,w = 0 when n ≥ 2. But in this case the right-hand side of ( 14) evaluates to 0 as well.

Note again that by the convention we are using for the binomial coefficients, n,k,w = 0 when w > n/2. Theorem 1.2 now follows immediately from Theorem 5.2.

Corollary 5.3 Let n ≥ 1. The number of vertices of weight w ≤ n in L n is n k=0 n,k,w = n -w w + n -w -1 n -2w .
Proof. Note first that the result is true when w ≤ 0 or n = 1. Assume now that w ≥ 1 and n ≥ 2. Then

w-1 2w+k-n = w-1 n-k-w-1 and w 2w+k-n = w n-k-w .
Hence we obtain from Theorem 5.2 by Vandermonde's convolution

n k=0 n,k,w = n k=0 w -1 n -k -w -1 n -2w k -w + 2 w n -k -w n -2w -1 k -w = n -w -1 n -2w -1 + 2 n -w -1 n -2w .
Using Pascal's identity and n-w n-2w = n-w w we have the final expression.

Similarly as Theorem 1.1 yields special cases for specific degrees in Fibonacci cubes, one can apply Theorem 1.2 to obtain the number of vertices of certain degrees in Lucas cubes. For instance, n,n = 1 (n ≥ 2), n,n-1 = 0 (n ≥ 3), and n,n-2 = n (n ≥ 5). For the minimal degree, if n ≥ 2, then

n, (n+2)/3 =      3;
n ≡ 0 (mod 3), n(n + 5)/6; n ≡ 1 (mod 3), n;

n ≡ 2 (mod 3) .

The method of generating functions

In this section we approach Theorem 1.2 using generating functions. It is relatively more complicated than the approach from the previous two sections. On the other hand, it enables us to obtain many additional results as demonstrated at the end of the section by several examples. Clearly,

F n = S 1,1 n ∪ S 1,0 n ∪ S 0,1 n ∪ S 0,0 n (for n ≥ 0), (15) 
L n = S 1,0 n ∪ S 0,1 n ∪ S 0,0 n (for n ≥ 0), (16) 
S 1,1 n = 10F n-4 01 (for n ≥ 4), (17) 
S 1,0 n = 10F n-3 0 (for n ≥ 3), (18) 
S 0,1 n = 0F n-3 01 (for n ≥ 3), (19) 
S 0,0 n = 0F n-2 0 (for n ≥ 2). (20) 
Equation [START_REF] Taranenko | Fast recognition of Fibonacci cubes[END_REF] shows that V (Γ n ) = F n can be partitioned into four blocks which, by ( 17) -(20), induce in Γ n with n ≥ 4 a Γ n-4 , a Γ n-3 , a Γ n-3 , and a Γ n-2 , respectively. By [START_REF] Taranenko | Fast recognition of Fibonacci cubes[END_REF] again, each of these blocks can be further partitioned into four subblocks

S 1,1 n = 10S 1,1 n-4 01 ∪ 10S 1,0 n-4 01 ∪ 10S 0,1 n-4 01 ∪ 10S 0,0 n-4 01, (21) 
S 1,0 n = 10S 1,1 n-3 0 ∪ 10S 1,0 n-3 0 ∪ 10S 0,1 n-3 0 ∪ 10S 0,0 n-3 0, ( 22 
) S 0,1 n = 0S 1,1 n-3 01 ∪ 0S 1,0 n-3 01 ∪ 0S 0,1 n-3 01 ∪ 0S 0,0 n-3 01, (23) 
S 0,0 n = 0S 1,1 n-2 0 ∪ 0S 1,0 n-2 0 ∪ 0S 0,1 n-2 0 ∪ 0S 0,0 n-2 0. ( 24 
)
Proposition 6.1 The set of those edges of Γ n not contained within one of the four blocks in (15) equals 8 i=1 M i where each M i is a perfect matching between a subblock and the union of a pair of subblocks of different blocks, as follows (see Fig. 1):

1. M 1 is a perfect matching between 0S 0,0 n-2 0 and 0S 0,0 n-3 01 ∪ 0S 0,1 n-3 01, 2. M 2 is a perfect matching between 0S 1,0 n-2 0 and 0S 1,0 n-3 01 ∪ 0S 1,1 n-3 01, 3. M 3 is a perfect matching between 0S 0,0 n-3 01 and 10S 0,0 n-4 01 ∪ 10S 1,0 n-4 01, 4. M 4 is a perfect matching between 0S 0,1 n-3 01 and 10S 0,1 n-4 01 ∪ 10S 1,1 n-4 01, 5. M 5 is a perfect matching between 0S 0,0 n-2 0 and 10S 0,0 n-3 0 ∪ 10S 1,0 n-3 0, 6. M 6 is a perfect matching between 0S 0,1 n-2 0 and 10S 0,1 n-3 0 ∪ 10S 1,1 n-3 0, 7. M 7 is a perfect matching between 10S 0,0 n-3 0 and 10S 0,0 n-4 01 ∪ 10S 0,1 n-4 01, 8. M 8 is a perfect matching between 10S 1,0 n-3 0 and 10S 1,0 n-4 01 ∪ 10S 1,1 n-4 01. Proof. We need to analyze the external connections of each of the 16 subblocks of Γ n . By way of example we do this for the subblock 10S 1,0 n-3 0, in all the other cases the analysis is similar. Each string σ ∈ 10S 1,0 n-3 0 is of the form σ = 101τ 00 where τ ∈ F n-5 . So σ is adjacent to

M 1 M 2 M 7 M 8 M 4 ' & M 3 M 6 $ % M 5 10S 1,1 n-4 01 10S 1,0 n-4 01 10S 0,1 n-4 01 10S 0,0 n-4 01 0S 1,1 n-3 01 0S 1,0 n-3 01 0S 0,1 n-3 01 0S 0,0 n-3 01 10S 1,1 n-3 0 10S 1,0 n-3 0 10S 0,1 n-3 0 10S 0,0 n-3 0 0S 1,1 n-2 0 0S 1,0 n-2 0 0S 0,1 n-2 0 0S 0,0 n-2 0 S 1,1 n S 1,0 n S 0,1 n S 0,0 n
• precisely one vertex 101τ 01 ∈ S 1,1
n (if τ ends with 1 then 101τ 01 ∈ 10S 1,1 n-4 01, otherwise 101τ 01 ∈ 10S 1,0 n-4 01);

• no vertices in S 0,1 n , since each vertex of S 1,0 n is at distance 2 or more from each vertex of S 0,1 n ;

• precisely one vertex in S 0,0 n , namely 001τ 00 ∈ 0S 0,0 n-2 0. When analyzing other subblocks, we find out in a similar way that

• each vertex in 10S 1,1
n-4 01 ∪ 10S 1,0 n-4 01 is adjacent to precisely one vertex in 10S 1,0 n-3 0;

• each vertex in 10S 0,0 n-3 0 is adjacent to precisely one vertex in 0S 0,0 n-2 0;

• each vertex in 0S 0,0 n-2 0 is adjacent to precisely one vertex in 10S 1,0 n-3 0 ∪ 10S 0,0 n-3 0. Taken together, these facts imply that the external connections of the subblock 10S 1,0 n-3 0 are precisely the edges of M 5 ∪ M 8 with one endpoint in 10S 1,0 n-3 0.

It follows from ( 21) -( 24) and from Proposition 6.1 that

s 1,1 n,k = s 1,1 n-4,k-2 + s 1,0 n-4,k-2 + s 0,1 n-4,k-2 + s 0,0 n-4,k-2 (n ≥ 4, k ≥ 2), s 1,0 n,k = s 1,1 n-3,k-1 + s 1,0 n-3,k-2 + s 0,1 n-3,k-1 + s 0,0 n-3,k-2 (n ≥ 3, k ≥ 2), s 0,1 n,k = s 1,1 n-3,k-1 + s 1,0 n-3,k-1 + s 0,1 n-3,k-2 + s 0,0 n-3,k-2 (n ≥ 3, k ≥ 2), s 0,0 n,k = s 1,1 n-2,k + s 1,0 n-2,k-1 + s 0,1 n-2,k-1 + s 0,0 n-2-2,k-2 (n ≥ 2, k ≥ 2)
. Together with the corresponding initial conditions, this system of recurrences implies that the generating functions,

s 1,1 (x, y) = n,k≥0 s 1,1 n,k x n y k , s 1,0 (x, y) = n,k≥0 s 1,0 n,k x n y k , s 0,1 (x, y) = n,k≥0 s 0,1 n,k x n y k , s 0,0 (x, y) = n,k≥0
s 0,0 n,k x n y k satisfy the system of linear algebraic equations s 1,1 (x, y) = xy + x 3 y 2 + x 4 y 2 (s 1,1 (x, y) + s 1,0 (x, y) + s 0,1 (x, y) + s 0,0 (x, y)), s 1,0 (x, y) = x 2 y + x 3 y (s 1,1 (x, y) + s 0,1 (x, y)) + x 3 y 2 (s 1,0 (x, y) + s 0,0 (x, y)), s 0,1 (x, y) = x 2 y + x 3 y (s 1,1 (x, y) + s 1,0 (x, y)) + x 3 y 2 (s 0,1 (x, y) + s 0,0 (x, y)), s 0,0 (x, y) = 1 + xy + x 2 s 1,1 (x, y) + x 2 y (s 1,0 (x, y) + s 0,1 (x, y)) + x 2 y 2 s 0,0 (x, y) whose solution is

s 1,1 (x, y) = xy(1 -xy) (1 -xy)(1 -x 2 y) -x 3 y , (25) 
s 1,0 (x, y) = s 0,1 (x, y) = x 2 y (1 -xy)(1 -x 2 y) -x 3 y , (26) 
s 0,0 (x, y) = 1 -x 2 y (1 -xy)(1 -x 2 y) -x 3 y . ( 27 
)
Expanding these rational functions into power series we obtain

s 1,1 n,k = k w=0 w -1 2w + k -n -2 n -2w k -w , s 1,0 n,k = s 0,1 n,k = k w=0 w -1 2w + k -n -1 n -2w k -w , s 0,0 n,k = k w=0 w -1 2w + k -n n -2w k -w . (28) 
By noting that f n,k = s 1,1 n,k +s 1,0 n,k +s 0,1 n,k +s 0,0 n,k and by using Pascal's identity repeatedly, we obtain (1) again.

To recompute n,k , note that for n ≥ 3,

L n = 10F n-3 0 ∪ 0F n-1 = 10F n-3 0 ∪ (0S 1,1 n-1 ∪ 0S 1,0 n-1 ∪ 0S 0,1 n-1 ∪ 0S 0,0 n-1 ).
Each σ ∈ 10F n-3 0 is of the form σ = 10τ 0 with τ ∈ F n-3 . Hence σ is adjacent to precisely one vertex in 0F n-1 , namely 00τ 0 ∈ 0S 0,0 n-1 . Conversely, each vertex 00τ 0 ∈ 0S 0,0 n-1 is adjacent to 10τ 0 ∈ 10F n-3 0. So for n ≥ 3, k ≥ 1,

n,k = f n-3,k-1 + s 1,1 n-1,k + s 1,0 n-1,k + s 0,1 n-1,k + s 0,0 n-1,k-1 = f n-3,k-1 + f n-1,k + s 0,0 n-1,k-1 -s 0,0 n-1,k . (29) 
Using ( 1) and (28), this formula can be shown equivalent to [START_REF] Dedó | The observability of the Fibonacci and the Lucas cubes[END_REF]. 1. Since the generating functions f (x, y), (x, y), s 1,1 (x, y), s 1,0 (x, y), s 0,1 (x, y), s 0,0 (x, y) all have (1 -xy)(1 -x 2 y) -x 3 y = 1 -xy -x 2 y 2 -x 3 y + x 3 y 2 as their denominator, each of the sequences s n,k ∈ {f n,k , n,k , s 1,1 n,k , s 1,0 n,k , s 0,1 n,k , s 0,0 n,k } satisfies the same recurrence s n,k = s n-1,k-1 + s n-2,k-1 + s n-3,k-1 -s n-3,k-2 for all large enough n and k. where k p = p-1 j=0 (k -j) is the p-th falling power of k, we have 
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  From (25) -(29) and the values 0,0 = 1,0 = 1, 1,1 = 0 it is straightforward to compute the generating functionsf (x, y) = n,k≥0 f n,k x n y k = 1 + xy + (1 -y)x 2 y (1 -xy)(1 -x 2 y) -x 3 y , (x, y) = n,k≥0 n,k x n y k = 1 + (1 -y)x + x 2 y 2 + (1 -y)x 3 y -(1 -y) 2 x 4 y (1 -xy)(1 -x 2 y) -x 3 yfrom which additional interesting information concerning the degree sequences f n,k n k=0 and n,k n k=0 can be obtained easily. For instance:

F( 1 2 ( 1 - 4 .∞

 1214 k = f (x, y)| y=1 = 1 + x 1 -x -x 2 = n≥0 n+2 x n it follows that |V (Γ n )| = F n+2 , and from n≥0 = (x, y)| y=1 = 1 + x 2 1 -x -x 2 = n≥0 L n x n -1 it follows that |V (Λ 0 )| = L 0 -1 = 1, |V (Λ n )| = L n for n ≥ 1. -x -x 2 ) 2 = 2 n≥0 nF n+1 + 2(n + 1)F n 5 x n it follows that |E(Γ n )| = (nF n+1 + 2(n + 1)F n )/5, and from x -x 2 ) 2 = n≥0 2nF n-1 x n it follows that |E(Λ n )| = nF n-1 .More generally, for each p ≥ 0 one can easily compute the generating functions of the sequences of the p-th moments n k=0 k p f n,k higher derivatives of f (x, y) resp. (x, y). Since ∂ p ∂y p f (x, y)| y=1 = n≥0 x n n k=0 k p f n,k

  j f (x, y)| y=1where S p,j denotes Stirling numbers of the second kind. Similarly, j (x, y)| y=1 .
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