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ABSTRACT

Unsupervised subspace learning methods are widely used in
background modeling to be robust to illuminaion changes.
Their main advantage is that it doesn’t need to label data dur-
ing the training and running phase. Recently, White et al.
[1] have shown that a supervised approach can improved sig-
nificantly the robustness in background modeling. Following
this idea, we propose to model the background via a super-
vised subspace learning called Incremental Maximum Margin
Criterion (IMMC). The proposed scheme enables to initial-
ize robustly the background and to update incrementally the
eigenvectors and eigenvalues. Experimental results made on
the Wallflower datasets show the pertinence of the proposed
approach.

Index Terms— Background Modeling, Subspace Learn-
ing, Maximum Margin Criterion

1. INTRODUCTION

Many background subtraction methods have been devel-
oped in video-surveillance to detect moving objects [2][3][4].
These methods have different common steps: background
modeling, background initialization, background mainte-
nance and foreground detection. The background modeling
describes the kind of model used to represents the back-
ground. Once the model has been chosen, the background
model is initialized during a learning step by using N frames.
Then, a first foreground detection is made and consists in
the classification of the pixel as a background or as a fore-
ground pixel. Thus, the foreground mask is applied on the
current frame to obtain the moving objects. After this, the
background is adapted over time following the changes which
have occurred in the scene and so on.

The background modeling is the key choice because it de-
termines how the model will adapt to the critical situations
[5]: Noise image due to a poor quality image source, cam-
era jitter, camera automatic adjustments, time of the day,
light switch, bootstrapping, camouflage, foreground aperture,
moved background objects, inserted background objects,
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multimodal background, waking foreground object, sleep-
ing foreground object and shadows. These critical situations
have different spatial and temporal properties. The main dif-
ficulties come from the illumination changes and dynamic
backgrounds.

Background modeling methods can be classified in the fol-
lowing categories: Basic background modeling [6][7][8],
statistical background modeling [9][10][11], fuzzy back-
ground modeling [12][13][14] and background estimation
[15][16][17]. The last decade witnessed very significant con-
tributions [18] in statistical background modeling particularly
in background modeling via unsupervised subspace learning
due to their robustness to illumination changes. The first
approach developed by Oliver et al. [19] consists in apply-
ing Principal Component Analysis (PCA) on N images to
construct a background model, which is represented by the
mean image and the projection matrix comprising the first
p significant eigenvectors of PCA. In this way, foreground
segmentation is accomplished by computing the difference
between the input image and its reconstruction. The main
limitation of this method appears for the background main-
tenance because it is computationally intensive to perform
model updating using the batch mode PCA. Moreover with-
out a mechanism of robust analysis, the outliers or foreground
objects may be absorbed into the background model. In this
context, some authors have proposed different algorithms of
incremental PCA. The incremental PCA proposed by Rymel
et al. [20] need less computation but the background image is
contamined by the foreground object. To solve this, Li et al.
[21] have proposed an incremental PCA which is robust in
presence of outliers. However, when keeping the background
model updated incrementally, it assigned the same weights to
the different frames. Thus, clean frames and frames which
contain foreground objects have the same contribution. The
consequence is a relative pollution of the background model.
To solve this, Skocaj et al. [22] used a weighted incremental
and robust. The weights are different following the frame and
this method achieved a better background model. However,
the weights were applied to the whole frame without con-
sidering the contribution of different image parts to building
the background model. To achieve a pixel-wise precision for



the weights, Zhang and Zhuang [23] have proposed an adap-
tive weighted selection for an incremental PCA. This method
performs a better model by assigning a weight to each pixel
at each new frame during the update. Wang et al. [24] have
used a similar approach using the sequential Karhunen-Loeve
algorithm. Recently, Zhang et al. [25] have improved this
approach with an adaptive scheme. All these incremental
methods avoid the eigen-decomposition of the high dimen-
sional covariance matrix using approximation of it and so a
low decomposition is allowed at the maintenance step with
less computational load. However, these incremental methods
maintain the whole eigenstructure including both the eigen-
values and the exact matrix. To solve it, Li et al. [26] have
proposed a fast recursive and robust eigenbackground main-
tenance avoiding eigen-decomposition. This method achieves
similar results than the incremental PCA [21] at better frames
rates. In another way, Yamazaki et al. [27] and Tsai et al.
[28] have proposed to use another subspace learning method
called Independent Component Analysis (ICA) which is a
variant of PCA in which the components are assumed to be
mutually statistically independent instead of merely uncorre-
lated. This stronger condition allows remove the rotational
invariance of PCA, i.e. ICA provides a meaningful unique bi-
linear decomposition of two-way data that can be considered
as a linear mixture of a number of independent source signals.
The ICA model was tested on traffic scenes by Yamazaki et
al. [27] and show robustness in changing background like
illumination changes. In [28], the algorithm was tested on
indoor scenes which present illumination changes too. Re-
cently, Chu et al. [29] have used a Non-negative Matrix
Factorization algorithm to model dynamic backgrounds and
Bucak et al. [30] have preferred an Incremental version of the
Non-negative Matrix Factorization (INMF) which presents
similar performance than the incremental PCA [21]. In order
to take into account the spatial information, Li et al. [31]
have used an incremntal Rank-(R1,R2,R3) Tensor (IRT). Re-
sults [31] show better robustness to noise. The Table 1 shows
an overview of the background modeling based on subspace
learning.

However, these different approaches are unsupervised sub-
space learning methods. Indeed, it doesnt need to label data.
Recently, White et al. [1] have proved that the Gaussian
Mixture Model (GMM) [32] gives better results when some
coefficients are determined in a supervised way. Following
this idea, we propose to use a supervised subspace learning
for background modeling. Thus, the Maximum Margin Cri-
terion (MMC) offers a nice framework. It was proposed by
Li et al. [33] and it can outperform PCA and Linear Dis-
criminant Analysis (LDA) on many classification tasks [34].
MMC search for the projection axes on which the data points
of different classes are far from each other meanwhile where
data points of the same class are close to each other. As the
original PCA and LDA, MMC is a batch algorithm and so it
requires that the data must be known in advance and be given

once altogether. Recently, Yan et al. [35] have proposed in-
cremental version of MMC which is suitable to update online
the background model.

The rest of this paper is organized as follows: In the Sec-
tion 2, we firstly remind the Incremental Maximum Margin
Criterion (IMMC). In the Section 3, we present our method
using subspace learning via IMMC for background modeling.
Then, a comparative evaluation is provided in the Section 4.
Finally, the conclusion is given in Section 5.

2. INCREMENTAL MAXIMUM MARGIN
CRITERION (IMMC)

This section reminds briefly the principle of IMMC developed
in [35]. Suppose the data sample points u(1),u(2), ..., u(N)
are d-dimensional vectors, and U is the sample matrix with
u(i) as its 5" column. MMC [33] projects the data onto
a lower-dimensional vector space such that the ratio of the
inter-class distance to the intra-class distance is maximized.
The goal is to achieve maximum discrimination and the new
low-dimensional vector can be computed as y = W7 u where
W € R*? is the projection matrix from the original space
of dimension d to the low dimensional space of dimension p.
So, MMC [33] aims to maximize the criterion:

JW)=WT(S, — S, )W (1)
where
Sy = Zpi(mi —m)(m; — m)T 2)
i=1
Sw = ZPZE(UL — i) (u; —my) T 3)
i=1

are called respectively the inter-class scatter matrix and the
intra-class scatter matrix and c is the number of classes, m
is the mean of all samples, m; is the mean of the samples
belonging to class ¢ and p; is the prior probability for a sample
belonging to class ¢. The projection matrix W can be obtained
by solving:

(S = Su)w = w @)

To incrementally maximize the MMC criterion, Yan et al.[35]
constraint W to unit vectors, i.e. W = [wy,ws,...w,] and
w}wy, = 1. Thus the optimization problem of .J(W) is trans-
formed to:

P
maxZwkT(Sb — Sy)w 5)
k=1

subject to whwy = 1 with k = 1,2,...,p. W is the first k
leading eigenvectors of the matrix S, — S, and the column
vectors of W are orthogonal to each other. Thus, the problem
is learning the p leading eigenvector of S, —S,, incrementally.



Principal Components Analysis (PCA)

Incremental and Robust PCA

Weighted Incremental and Robust PCA
Adaptive Weight Selection for Incremental PCA
Sequential Karhunen-Loeve algorithm

Adaptive Sequential Karhunen-Loeve algorithm

Subspace Learning Algorithm Authors - Dates
Batch PCA Oliver et al. (1999)[19]
Incremental PCA Rymel et al. (2004)[20]

Lietal. (2003)[21]

Skocaj et al. (2003)[22]
Zhang and Zhuang (2007)[23]
Wang et al. (2006)[24]

Zhang et al. (2009)[25]

Batch ICA
Independent Component Analysis (ICA)

Incremental ICA

Yamazaki et al. (2006)[27]
Tsai and Lai (2009)[28]

. . Batch NMF
Non Negative Matrix Factorization (NMF)

Incremental NMF

Chu et al. (2010)[29]
Bucak et al. (2007)[30]

Rank-(R1,R2,R3) Tensor (RT)

Incremental RT

Lietal. (2008)[31]

Table 1. Subpace Learning for background modeling: An Overview

2.1. Updating incrementally leading eigenvectors

Let C = S, + S, be the covariance matrix, then we have
JW) = WT(2S, — C)W, W € R4*P. Then maximizing
J(W') means to find the p leading eigenvectors of 25, — C.

The inter-class scatter matrix of step n after learning from
the first n samples can be written as below,

Sp(n) = ij (n)(my))(m;(n) —m(n))"  (6)

and
1 n
S = lim 2_; S (i) @)
On the other hand,
C = E(u(n) — m)(u(n) —m)T (8)
— 1 IRS _ _ T
= Jim > (ula) = mo) o) = m)T O

2.5, — C should have the same eigenvectors as 25, — C' + 01
where @ is a positive real number and I € R**¢. From (7)
and (9) we have the following equation:

D I
28, = C+0I = lim — ; A(i)=A (10)
where A(i) = 28,(7) — (u(i) — m(i))(u(i) — m(i))T + 61,
A=25—-C+0I.

The general eigenvector form is Az = Az, where z is the
eigenvector of matrix A corresponding to the eigenvalue .
By replacing matrix A with the MMC matrix at step n, an
approximate iterative eigenvector computation formulation is
obtained with v = Ax.

n c

vin) = - 302D pi ()2 0)%; ()" (1

= (u(d) = m(i)) (u(i) — m(i))" + 01)(i)

where ®; (i) = m; (i) —m (4), v (n) is the n step estimation
of v and z (n) is the n step estimation of . Once the estima-
tion of v is obtained, eigenvector x can be directly computed
asx = v/||v]|. Letx (i) = v (i—1)/||v (i — 1) ]|, then the
incremental formulation is the following:

n—1

v(in—1) (12)

+ (252, pj(n)a;(n)®;(n)
— Blu(n) —m(n)) +0v(n—1))/|lv(n —1)|]
where aj(n) = ¢;(n)Tv(n — 1) and B(n) = (u(n) —

m(n))Tv(n — 1), j = 1,2,...,c. For initialization, v/(0) is
equal to the first data sample.

v(n) =

2.2. Updating incrementally the other eigenvectors

To compute the (j + 1)** eigenvector, its projection is sub-
stracted on the estimated ;" eigenvector from the data,

i (n) =i (n) — (u ()" ()W) (13)

where u} (n) = uy, (n). The same method is used to update

m?(n) and m7(n), i = 1,2,...,c. Since m}(n) and m7 (n)
are linear combinations of x{q (i), where ¢ = 1,2,...,k, and
l; €1,2,...,C. ®; are linear combination of m; and m, for

convenience, only ® is updated at each iteration step by:

o/ (n) = @] (n) — (8] (W)TW(n)i(n)  (14)



In this way, the time-consuming orthonormalization is
avoided and the orthogonal is always enforced when the
convergence is reached.

3. APPLICATION TO BACKGROUND MODELING

The Figure 1 shows an overview of the proposed approach.
The background modeling framework based on IMMC in-
cludes the following stages: (1) Background initialization via
MMC using N frames (2) Foreground detection (3) Back-
ground maintenance using IMMC. The steps (2) and (3) are
executed repeatedly as time progresses.

t>N Background

VMC
=N =+l
- <N B, . oreground
Video _| Tnitialization Foreground Mask
Frames Batch MMC ir gy Rstestion

Fig. 1. Overview of the proposed approach

Denote the training video sequences S = {Iy,..Iy}
where I; is the frame at time t. Let each pixel (x,y) be char-
acterized by its intensity in the grey scale and asssume that
we have the ground truth corresponding to this training video
sequences, i.e we know for each pixel its class label which
can be foreground or background. Thus, we have:

Sy = Zpi(mi —m)(m; —m)T (15)
i=1

Sw =Y piB(u;i —mg)(u; —m;)" (16)
i=1

where ¢ = 2, m is the mean of the intensity of the pixel z,y
over the training video and m; is the mean of samples be-
longing to class ¢ and p; is the prior probability for a sample
belonging to class ¢ with ¢ € {Background, Foreground}.
Then, we can apply the batch MMC to obtain the first lead-
ing eigenvectors which correspond to the background. The
corresponding eigenvalues are contained in the matrix Ly,
and the leading eigenvectors in the matrix ®,,. Once the
leading eigenbackground images stored in the matrix @, are
obtained and the mean pp too, the input image I; can be
approximated by the mean background and weighted sum of
the leading eigenbackgrounds ® ;.

So, the coordinate in leading eigenbackground space of input
image I; can be computed as follows:

we = (I — p5) s (17)

When w; is back projected onto the image space, a recon-
structed background image is created as follows:

By = ®ywf + i (18)
Then, the foreground object detection is made as follows:
|I; — Bi| > T (19)

where T is a constant threshold.

Once the first foreground detection is made, we apply the
IMMC to update the background model using (12) and (14).
The class label for each pixel is obtained using the foreground
mask.

Remark: Note that the IMMC can be applied directly at
time t=1 but its is less robust than to use the batch algorithm
on N frames and then apply the IMMC to update the back-
ground.

4. EXPERIMENTAL RESULTS

For the performance evaluation, we have compared our su-
pervised approach with the unsupervised subspace learning
methods PCA, INMF and IRT using the Wallflower dataset
provided by Toyama et al. [5]. This dataset consists in a set
of images sequences where each sequence presents a differ-
ent type of difficulty that a practical task may meet: Moved
Object (MO), Time of Day (TD), Light Switch (LS), Waving
Trees (WT), Camouflage (C), Bootstrapping (B) and Fore-
ground Aperture (F). The performance is evaluated against
hand-segmented ground truth. Three terms are used in evalu-
ation: False Positive (FP) is the number of background pixels
that are wrongly marked as foreground; False Negative (FN)
is the number of foreground pixels that are wrongly marked
as background; Total Error (TE) is the sum of FP and FN.
The Table 2 shows the performance in term of FP, FN and
TE for each algorithm. The corresponding results are shown
in Table 3. As we can see, the IMMC gives the lowest TE
followed by the PCA, the INMF and the IRT. Secondly, we
have compared our supervised approach with the state-of-art
algorithm MOG[10]. As we can see on the Table 2 and Table
3, our algorithm gives better results particularly in the case of
illumination changes.

5. CONCLUSION

In this paper, we have proposed to model the background us-
ing a supervised subspace learning called Incremental Maxi-
mum Criterion. This approach allow to initialize robustly the
background and to upate incrementally the eigenvectors and
eigenvalues. Experimental results made on the Wallflower
datasets show the pertinence of the proposed approach. In-
deed, IMMC outperforms the supervised PCA, INMF and
IRT.



Problem Type
Error MO TD LS WT C B FA Total
Algorithm Type Errors (TE)
MOG False neg 0 1008 1633 1323 398 1874 | 2442
Stauffer et al.[10] False pos 0 20 14169 341 3098 217 530 27053
PCA False neg 0 879 962 1027 350 304 2441
Oliver et al.[19] False pos 1065 16 362 2057 1548 | 6129 537 17677
INMF False neg 0 724 1593 3317 | 6626 | 1401 | 3412
Bucak et al.[30] False pos 0 481 303 652 234 190 165 19098
IRT False neg 0 1282 2822 4525 1491 1734 | 2438
Lietal.[31] False pos 0 159 389 7 114 2080 12 17053
IMMC False neg 0 1336 2707 4307 1169 | 2677 | 2640
Proposed method | False pos 0 11 16 6 136 506 203 15714

Table 2. Performance Evaluation on Wallflower dataset[15]

Sequence MO TD

Frame Frame | Frame
985 1850

Test Image

Ground Truth

MOG [10]

PCA [19]

INMF [30]

IRT [31]

-
n
=
-]
-1
1 -|

IMMC

Table 3. Results on Wallflower dataset[15]
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