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Abstract

The problem of Blind Identification of linear mixtures of independent random pro-
cesses is known to be related to the diagonalization of some tensors. This problem
is posed here in terms of a non conventional joint approximate diagonalization of
several matrices. In fact, a congruent transform is applied to each of these matri-
ces, the left transform being rectangular full rank, and the right one being unitary.
The application in antenna signal processing is described, and suboptimal numerical
algorithms are proposed.
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1 Introduction

Blind Source Separation (BSS), and more particularly Independent Compo-
nent Analysis (ICA), now raise great interest. In fact, ICA plays an important
role in many diverse application areas, including radiocommunications, radar,
sonar, seismology, radio astronomy, medical diagnosis (separation of electroen-
cephalogram signals for instance), and data analysis. For example, in digital
radiocommunications contexts, if some sources are received by an array of
sensors, and if for each source the channel delay spread associated with the
different sensors is much smaller than the symbol durations, a static mixture
of complex sources is observed from the sensors. BSS consists in this case of
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restoring by a spatial filtering operation the transmitted sources only from the
sensor data. Depending on the application, it may be sufficient to identify a
static mixture, as in Direction Of Arrival (DOA) estimation problems, since
the column vectors of the mixture are the source steering vectors: this is re-
ferred to as blind identification of source mixtures. In other contexts such as
radiocommunications, the question is that of blind extraction of sources, or
more commonly BSS.

Whereas some algorithms try to decorrrelate estimated signals using second
order statistics, as in Factor Analysis with Principal Component Analysis
(PCA), ICA attempts to restore the independence of outputs using Higher
Order (HO) statistics. Thus, under the source independence assumption, ICA
allows to blindly identify the static mixture, and consequently to extract the
transmitted sources. Nevertheless, ICA performance depends on several as-
sumptions: (i) sources should be independent in some way, and (ii) in most
cases the mixture has to be over-determined ; in other words, there should be
at least as many sensors as sources, which is generally a strong limitation un-
less sparsity conditions are assumed; we shall not make the latter assumption,
and assume on the contrary that the mixture may be under-determined.

Bibliographical survey

While the first paper related to HO BSS has been published in 1985 by He-
rault et al. [24], the ICA concept is proposed a few years later; Comon pro-
poses a Fourth Order (FO) contrast-based method, COM2 [11], Cardoso and
Souloumiac [6] develop a matrix approach, well-known as JADE, and give
rise to the joint diagonalization algorithm. Even when the JADE method uses
both Second Order (SO) and FO statistics, Belouchrani et al. conceive the
SOBI method [3], only based on SO statistics. A few years later, Hyvarinen
et al. present the FastICA method, first for signals with values in the real
field [26], and later for complex signals [4], using the fixed-point algorithm to
maximize a FO contrast. This algorithm is of deflation type, as that of Delfosse
et al. [18], and must extract one source at a time. Besides, Comon proposes
a simple solution [13], named COM1 in this paper, to the maximization of
another FO contrast function presented in [35] [15].

Each of these methods suffers from limitations. To start with, the SOBI algo-
rithm is unable to restore components, which have comparable spectral den-
sities. On the other hand, though the other previous methods perform under
some reasonable assumptions, they may be strongly affected by a Gaussian
noise with unknown spatial correlation. Such a noise appears for instance in
some HF (High Frequency) radiocommunications applications. Moreover, in
such applications, the reception of more sources than sensors is possible and
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its probability increases with the reception bandwidth. The mixture is then
called under-determined [12], which means that the observation vectors are
represented in the over-complete basis of source vectors [27], hence the title
of our paper. The previous algorithms, which are based on a SO prewhiten-
ing step, are then unable to identify the mixture and to extract the sources.
Indeed, the SO prewhitening step, which aims at orthonormalizing the source
steering vectors, cannot orthonormalize the latter when the number of sources
is greater than the number of sensors.

In order to deal with the correlated noise problem, Ferréol et al. have proposed
a new family of HO BSS methods exploiting the potential cyclostationarity
of the received sources [21]. In fact, the latter family of algorithms uses cyclic
statistics of the data and, since cyclic covariance matrix associated with a
stationary noise is null for non zero cyclic frequencies, these cyclic methods
allow the optimal separation of independent sources even in the presence of a
stationary noise (not necessarily Gaussian) with unknown spatial correlation.
However, the use of cyclic methods is more complex because of the estimation
of cyclic frequencies and time delays.

In order to face the under-determined mixtures case, namely when there are
fewer sensors than sources (e.g. the mixture enjoys no sparsity property such as
disjoint source spectra, or sources non permanently present), several methods
have been developed. Some papers focus on blind source extraction [27] [14],
which is a difficult problem since under-determined mixtures are not lin-
early invertible, while others, as herein, favour Blind Mixture Identification
(BMI) [5] [12] [17] [27] [34] [20] [32]. The methods proposed in [5] [12] [17] [20]
only exploit the information contained in the data FO statistics whereas the
one proposed in [34] exploits the information contained in the second charac-
teristic function of the observations. As for Lee et al. [27], they maximize the
probability of the data conditionally to the mixture matrix. However, all these
methods have drawbacks in operational contexts. Indeed, the method [5] is still
very difficult to implement and does not ensure the BMI of the source steering
vectors when the sources have the same kurtosis. The BMI methods [12] [17]
assume FO non-circularity and thus fail in separating FO circular sources.
Besides, the theory developed in [12] only confines itself to the three sources
and two sensors case. Although the method [27] succeeds in identifying the
steering vectors of up to four speech signals with only two sensors, the au-
thors need sparsity conditions, and do not address the general case when all
sources are always present. In addition, the method [34] has been developed
only for real mixtures of real-valued sources, and the issue of robustness with
respect to an over estimation of the number of sources remains open. Eventu-
ally, although the FOBIUM algorithm [20] performs the BMI of up to P = N2

sources for arrays of N different sensors even in the presence of a Gaussian
noise with unknown spatial correlation, it requires sources with different FO
spectral densities.

3



Contribution

In order to overcome the previous drawbacks, a family of new methods named
BIOME (Blind Identification of Over-complete MixturEs of sources) is pro-
posed in this paper.These methods operate on statistics of order 2q, where q
is an arbitrary integer strictly greater than 2, hence the name of 2q-BIOME
methods. This family of algorithms allows to blindly identify both over-
determined (with q ≥ 2) and under-determined (with q ≥ 3) mixtures of
sources, and to extract them in the over-determined case. An application of
BIOME to Sixth Order (SixO) statistics (q = 3), that is to say 6-BIOME, has
been succintly presented in [2] under the name BIRTH (Blind Identification of
mixtures of sources using Redundancies in the daTa Hexacovariance matrix).

More generally, the 2q-th order BIOME algorithm assumes the sources have
non zero 2q-th order marginal cumulants with the same sign (the latter as-
sumption is verified in most cases in radiocommunications contexts). Besides,
without SO prewhitening, BIOME explicitly exploits the redundancies in the
2q-th order statistical matrix of the data and implicitly uses the Virtual Array
(VA) concept, presented in [19] [10] for FO methods, and extended in [9] for
HO methods. Note that, for a given value of N , the maximum number P N,q

max

of independent sources that can be processed by the 2q-BIOME method, such
that P N,q

max ≥N , increases with q. One of our contributions is to show that it
is interesting to increase q, despite the fact that the larger q, the worse the
estimates of statistics of order 2q.

From the linear algebra viewpoint, it is shown in section 4 that the BMI
problem can be expressed in the form of the problem below, even in the under-
determined case.

Problem 1 Given N matrices, Γn, 1≤ n ≤N , each of size M×P , M ≥ P ,
find a full rank M×P matrix A, N diagonal matrices Λn of size P×P , and
a unitary P×P matrix V , such that

Γn = AΛn V H

Throughout the paper, vectors (one-way arrays) are denoted with bold lo-
wercase symbols, and matrices (2-way arrays) or tensors (HO arrays) in bold
uppercase. Transposition, conjugate transposition, and complex conjugation
are denoted respectively with superscripts (T), (H), and (∗).
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2 Assumptions and problem formulation

Assume that for any fixed index k, N complex outputs xn(k) (1≤n≤N) of
a noisy mixture of P statistically independent sources sp(k) (1≤ p≤ P ) are
available. The N × 1 vector x(k) of the measured array outputs is given by

x(k) = As(k) + ν(k) (1)

where A, s(k), ν(k) are the N×P constant mixing matrix, the P ×1 source
and N×1 noise random vectors, respectively. In addition, for any fixed index k,
s(k) and ν(k) are statistically independent. We further assume the following
hypotheses:

(A1) Vector s(k) is stationary, ergodic (or cyclostationary and cycloergodic,
respectively), with components a priori in the complex field and mutually
uncorrelated at order 2q (the cyclostationarity case will be addressed in
the statistical estimation section 3.3);

(A2) Noise vector ν(k) is stationary, ergodic and Gaussian with components
a priori in the complex field too;

(A3) 2q-th order marginal source cumulants (they will be defined in section
3.1) are not null and have all the same sign;

(A4) Column vectors ap of A, also called steering vectors, are not collinear and
have not any null component;

(A5) The N q−1×P matrix A
`
q−1, which will be defined in section 4.1, is full

column rank (this implies that P ≤N q−1);

Under the previous assumptions, the problem addressed in this paper is the
BMI of mixture A, to within a trivial matrix T (a trivial matrix is of the
form ΛΠ where Λ is an invertible diagonal matrix and Π a permutation),
from 2q-th order statistics (these ones will be defined in section 3.1) of the
observations. Besides, the classical BSS problem in the over-determined case
consists of finding a N×P matrix (the static source separator), W , yielding a
P×1 output vector y(k) = W Hx(k) corresponding to the best estimate, ŝ(k),
of the vector s(k), up to a multiplicative trivial matrix.
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3 Statistics of 2q-th order

3.1 Definition

The 2q-th order statistics considered in the paper are defined by

C
iq+1, iq+2, ..., i2q

i1, i2, ..., iq, x (k) = Cum{xi1(k),xi2(k), . . . ,xiq(k),xiq+1(k)∗, . . . ,xi2q
(k)∗} (2)

where q terms xi(k) are not conjugated and q terms are conjugated. Function
(2) is well-known as the 2q-th order cumulant computed from 2q components
of x(k) with as many conjugated terms as not conjugated. Consequently, the
associated 2q-th order marginal cumulant of source sp(k) is defined by

Cp, p, ..., p
p, p, ..., p, s(k) = Cum{sp(k),sp(k), . . . ,sp(k)︸ ︷︷ ︸

q components

,sp(k)∗, . . . ,sp(k)∗︸ ︷︷ ︸
q components

} (3)

Note that in the presence of stationary sources, 2q-th order statistics do not
depend on time k, so they can be denoted by C

iq+1,iq+2,...,i2q

i1,i2,...,iq,x . For the sake of
convenience, we will describe the 2q-BIOME algorithm in the stationary case.
Nevertheless, the cyclostationary case will be addressed in short in section 3.3.

3.2 Matrix arrangement

3.2.1 Matrix notation

First, define the following compact notation associated with the usual Kro-
necker product ⊗ and named Kronecker power :

B⊗m = B⊗B⊗. . .⊗B︸ ︷︷ ︸
m times

with B⊗0 =1 (4)

where B is any N×P rectangular matrix; B⊗m is then Nm×P m.

Next, define a columnwise Kronecker product, denoted � and sometimes re-
ferred to as the Khatri-Rao product [25]. For any rectangular matrices G and
H , of size NG×P and NH ×P respectively, the columns of the (NGNH)×P
matrix G�H are defined as gj ⊗hj , if gj and hj denote the columns of G and
H respectively:

G � H =
[
g1⊗h1 g2⊗h2 · · · gP ⊗hP

]
(5)
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So it is also possible to define the Khatri-Rao power :

B�m = B�B�. . .�B︸ ︷︷ ︸
m times

with B�0 =1 (6)

3.2.2 2q-th order statistical matrix

Finally, 2q-th order statistics computed according to (2) may be arranged in
a N q×N q statistical matrix C2q, x, called 2q-th order statistical matrix of x(k)
such that C2q, x is an Hermitian matrix. Nevertheless, several ways to store
2q-th order statistics in C2q, x are possible and we consider in the following q+1
arrangements, indexed by the integer ` (0≤ `≤ q), each yielding a statistical

matrix C
`
2q, x such that its

(
I`
1 ,I`

2

)
-th entry (1≤I`

1 ,I`
2≤N q) is given by

C`
2q, x

(
I`
1 ,I`

2

)
= C

iq+1, ..., i2q

i1, i2, ..., iq, x (7)

where for any 0≤`≤q and for all 1≤ i1, i2, . . . , i2q ≤ N ,

I`
1 = ϕ([ i1 i2 . . . iq−̀−1 iq−̀︸ ︷︷ ︸

q−̀ first subscript indices

i2q−̀+1 . . . i2q−1 i2q︸ ︷︷ ︸
` last superscript indices

])

I`
2 = ϕ([ iq+1 iq+2 . . . i2q−̀−1 i2q−̀︸ ︷︷ ︸

q−̀ first superscript indices

iq−̀+1 . . . iq−1 iq︸ ︷︷ ︸
` last subscript indices

])
(8)

and where function ϕ is defined by

∀z ∈ �J , ϕ(z) = z(J) +
J−1∑

j=1

NJ−j(z(j) − 1) (9)

denoting with z(j) the j-th component of vector z.

Example 1 SixO statistics described in appendix D may be arranged in the
N3×N3 hexacovariance matrix Hx = C

1
6, x such that

Hx

(
I1
1 ,I1

2

)
= Ci4,i5,i6

i1,i2,i3,x (10)

is the (I1
1 ,I1

2 )-th entry (1≤ I1
1 ,I1

2 ≤ N3) of Hx and where for all 1 ≤ i1, i2, i3,
i4, i5, i6≤N ,

I1
1 = ϕ([i1 i2 i6]) I1

2 = ϕ([i4 i5 i3]) (11)
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Note that, for J =3, function ϕ is defined by

∀z ∈ �3, ϕ(z) = N(N(z(1) − 1) + z(2) − 1) + z(3) (12)

Remark 1 Another, perhaps more intuitive (especially for readers familiar
with Matlab), way to present the construction of C

`
2q, x is the following: first,

construct an 2q-dimensional tensor T , whose elements are given by

T




i2q, i2q−1, . . ., i2q−̀+1, iq−̀ , iq−̀−1, . . ., i1,

iq, iq−1, . . ., iq−̀+1, i2q−̀ , i2q−̀−1, . . ., iq+1


 = C

iq+1,..., i2q

i1, i2, ..., iq, x (13)

The matrix C
`
2q, x is then given by a simple Matlab reshape operation as follows

C
`
2q, x = reshape(T , N q, N q) (14)

We limit ourselves to arrangements of statistics that give different results at
the output of the 2q-BIOME method in terms of processing power (i.e. in
terms of maximal number of processed sources). Note that the selection of the
ordering parameter ` maximizing the processing power for a fixed cumulant
order q will be discussed in section 5.2 summarizing results shown in [9].

3.2.3 Multilinearity property

The statistical matrix of the data, C
`
2q, x (q ≥ 1), has a special structure es-

pecially thanks to the multilinearity property under changes of coordinate
systems, shared by all moments and cumulants [28] [29, pp. 1-24]. Under as-
sumptions (A1)-(A2), this property can be expressed, according to (7), (8)
and (9), by the following equation

∀ 0≤`≤q, C
`
2q, x = [A⊗q−̀ ⊗A∗⊗`] C`

2q, s [A⊗q−̀ ⊗A∗⊗`]H (15)

where the N q ×N q matrices C
`
2q, x and the P q ×P q matrices C

`
2q, s are the

statistical matrices of x(k) and s(k) respectively. The number ` is the same as
that appearing in equations (8) and (7). Moreover, note that the arrangements
C

`
2q, x and C

q−̀
2q, x (0 ≤ ` ≤ q) give rise to the same processing power of under-

determined mixtures of arbitrary statistically independent sources as shown
in [9]. In fact the first arrangement is the conjugate of the other whatever the
values of q and N . It is then sufficient to limit the analysis to 0≤`≤q0 where
q0 =q/2 if q is even and q0 =(q−1)/2 if q is odd.
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3.3 Statistical estimation

Generally, using the well-known Leonov-Shiryaev formula [28], applicable in
the complex case [33], 2q-th order cumulants (2) are computed from moments
of order smaller than or equal to 2q given by

M
ir+1,ir+2,...,ir+s

i1,i2,...,ir,x (k) = E[xi1(k), . . . , xir(k), xir+1(k)∗, . . . , xir+s
(k)∗] (16)

where r+s≤2q. Appendix D illustrates the Leonov-Shiryaev formula for FO
and SixO statistics.

However, in practical situations, moments and cumulants cannot be exactly
computed: they have to be estimated from components of x(k). If components
are stationary and ergodic, sample statistics may be used to estimate v-th
order moments [28], and consequently to estimate, via the Leonov-Shiryaev
formula, 2q-th order statistics (2).

Nevertheless, if sources are cyclostationary, cycloergodic, potentially non zero-
mean, 2q-th order continuous-time temporal mean statistics have to be used
instead of (2), such as

C
iq+1,iq+2,...,im
i1,i2,...,iq,x =

〈
C

iq+1,iq+2,...,im
i1,i2,...,iq,x (k)

〉
c

(17)

where 〈·〉c is the continuous-time temporal mean operation defined by

∀ f : t 7−→f(t), 〈f(t)〉c = lim
T→+∞

1

T

T/2∫

−T/2

f(t)dt (18)

These continuous-time temporal mean statistics are thus estimated using, for
q = 2, the estimators described in [22] for zero mean signals and in [23] for
potentially non zero-mean signals, and extending the previous ones to very HO
statistics for q ≥ 3. Note that the proposed BIOME approach (in its current
form) can tolerate, but does not exploit cyclostationarity of the sources such
as in [21]: this will be the subject of a forthcoming paper.

4 The 2q-BIOME method

It is subsequently shown that the 2q-BIOME method exploits the structure
of the statistical matrix C

`
2q, x, for the chosen value of `, 0≤`≤q0, so that the
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joint diagonalization to perform is actually somewhat more complicated than
that given in problem 1, and better described by

Problem 2 Given N matrices Γn, 1 ≤ n ≤ N , each of size N q×P , N q ≥ P
but possibly N < P , find a full rank N ×P matrix A, N inversible diagonal
matrices Λn of size P×P , and a unitary P×P matrix V , such that

Γn = A
`
q Λn V H

where A
`
q =A

�q−`�A∗�`

.

4.1 The core equation

The 2q-BIOME method precisely exploits several redundancies in the statisti-
cal matrix C

`
2q, x (q≥2) of the data especially thanks to the multilinearity pro-

perty. Although most of BSS algorithms use the matrix multilinearity property
form (15) (the JADE method uses it for (q, `) = (1, 0) and for (q, `) = (2, 1)),
the 2q-BIOME method precisely exploits the second form, described by

C
`
2q, x = A

`
q ζ2q,s A

`
q

H

(19)

where ζ2q,s
def
= Diag

[
C1, 1, ..., 1

1, 1, ...1, s C2, 2, ..., 2
2, 2, ..., 2, s · · · CP, P, ..., P

P, P, ..., P, s

]
is a P×P diagonal matrix

of full rank in contrast to C
`
2q, s (15), and where the N q×P matrix A

`
q is given

by

A
`
q =A

�q−` � A∗�`

=
[
a1

⊗q−̀ ⊗(a∗
1)
⊗` · · · aP

⊗q−̀ ⊗(a∗
P)
⊗`
]

=
[
[A`

q−1Φ1]
T [A`

q−1Φ2]
T · · · [A`

q−1ΦN ]T
]

T

(20)

with

Φn = Diag[ A(n,1) A(n,2) · · · A(n,P ) ] (21)

In other words, the non zero elements of the P×P diagonal matrix Φn are
the components of the n-th row of matrix A. Note, as shown in appendix A,
that the matrix form of the multilinearity property described by (19) ensues
immediately from equations (7), (8), (9) and from the multilinearity property
shared by cumulants [28] [29, pp. 1-24]. Moreover, it appears from equation
(20), that matrix A

`
q, also called q-th order Virtual Mixture (VM), can be

written by stacking G=N q−1 matrix blocks of size N×P , denoted Ψg, and such
that

10



∀ 1≤g≤N q−1, ∃ 1≤n1,. . ., nq−1≤N, g = ϕ([nq−1 nq−2 . . . n1]),

and Ψg =





A
∏q−1

j=1 Φnj
if ` = 0

A∗ ∏ −̀1
j=1 Φnj

∗ ∏q−1
k=̀ Φnk

otherwise (o.w.)
(22)

and

A
`
q = [Ψ1

T Ψ2
T · · ·ΨG

T]T . (23)

4.2 The BIOME concept

Firstly, a unitary matrix V is estimated in the Least Squares (LS) sense, and
yields an estimate of A

`
q. In a second stage, several algorithms may be thought

of in order to compute an estimate of A from A
`
q. Finally, estimate of sources

s(k) can be computed using the estimate of A.

4.2.1 Identification of the q-th order VM A
`
q

If 2q-th order marginal source cumulants are strictly positive (A3), then, ac-
cording to (19), matrix C

`
2q, x is positive. So a square root of C

`
2q, x, denoted

[C`
2q, x]1/2 and such that [C`

2q, x]1/2[C`
2q, x]H/2 =C

`
2q, x, may be computed (if marginal

source cumulants are strictly negative, matrix −C
`
2q, x has to be considered

instead, for computing the square root). In fact, we deduce from (19) that

matrix A
`
q ζ

1/2
2q,s is a natural square root of C

`
2q, x. Another possibility is to com-

pute this square root via the singular or eigen value decomposition of C
`
2q, x

given by

[C`
2q, x]1/2 = Es L1/2

s
(24)

where L1/2
s

denotes a square root of Ls, Ls is the P ×P real-valued diagonal
matrix of the P strongest (in terms of absolute value) eigenvalues of C

`
2q, x, and

Es is the N q×P matrix of the associated orthonormalized eigenvectors.

Proposition 1 Under assumptions (A4) and (A5), the N q×P matrix A
`
q is

full column rank.

The proof of proposition 1 ensues immediately from equations (20), (21) and
assumption (A4). In fact, suppose that A

`
q is not full column rank. Then there

exists some P×1 vector β 6=0 such that A
`
q β=0, which, due to the structure

of A
`
q (20) implies that for all 1 ≤ n ≤ N , A

`
q−1 Φn β = 0. So it implies that

A
`
q−1 cannot be full column rank (since matrices Φn are P ×P diagonal with

nonzero entries, due to (21) and (A4)), which contradicts assumption (A5).
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Asumptions (A3) to (A5), proposition 1, and equations (19) and (24) allow
together to prove that matrices C

`
2q, x and [C`

2q, x]1/2, and thus Es and Ls, are of
rank P as well.

Proposition 2 For a full rank matrix A
`
q, (A3) is equivalent to assume that

the diagonal elements of Ls are not null and have also the same sign.

The proof of proposition 2 is also straightforward. In fact, it is well-known
that two square roots of a matrix are equal to within a unitary matrix, so
that

A
`
q ζ

1/2
2q,s = Es L1/2

s
V

(
= [C`

2q, x]1/2 V
)

(25)

for some P×P unitary matrix V . Note the latter is unique up to a multiplicative
unitary invertible diagonal matrix. We deduce from (25) that

Es
H
A

`
q ζ2q,s A

`
q

H

Es = Ls (26)

and hence proposition 2.

In addition, equation (25) can be rewritten as follows

[C`
2q, x]1/2 = Es L1/2

s
= A

`
q ζ

1/2
2q,s V H. (27)

showing the link between [C`
2q, x]1/2 and A

`
q. Plugging (20) into (27), matrix

[C`
2q, x]1/2 can be eventually rewritten as

[C`
2q, x]1/2 =

[
[A`

q−1Φ1ζ
1/2
2q,sV

H]T [A`
q−1Φ2ζ

1/2
2q,sV

H]T· · · [A`
q−1ΦNζ

1/2
2q,sV

H]T
]

T

= [ Γ1
T Γ2

T · · · ΓN
T ]T (28)

where the N matrix blocks Γn of size N q−1×P are given by

∀ 1 ≤ n ≤ N, Γn = A
`
q−1Φn ζ

1/2
2q,s V H (29)

Proposition 3 For any 1≤n≤N , matrix Γn is full column rank.

The proof results from proposition 1, in addition to all other stated conditions.

Using proposition 3, the pseudo-inverses Γ]
n of the N q−1×P matrices Γn may

be defined by

∀ 1 ≤ n ≤ N, Γ]
n = (Γn

HΓn)
−1

Γn
H (30)

12



Then, the information contained in matrix [C`
2q, x]1/2 allows to blindly identify

A
`
q. Indeed, matrix V jointly diagonalizes the N(N−1) matrices Θn1,n2 below

∀ 1 ≤ n1 6= n2 ≤ N, Θn1,n2 = Γ]
n1
Γn2. (31)

To see this, let us compute Θn1,n2 from (29) and (30). We obtain

Θn1,n2 = V [ζ`
2q,s]

−1/2 Φ−1
n1

Φn2 ζ
1/2
2q,s V H = V Φ−1

n1
Φn2 V H (32)

where ζ
1/2
2q,s and Dn1,n2 = Φ−1

n1
Φn2 are P×P diagonal full rank matrices, which

shows the result. The unitary matrix Vsol, solution to the previous problem of
joint diagonalization of the N(N−1) matrices Θn1,n2 has necessarily the form
Vsol = V T where T is a unitary matrix. This allows, in accordance with (27),
to recover A

`
q to within an orthogonal matrix as

[C`
2q, x]1/2 Vsol = A

`
q ζ

1/2
2q,s T (33)

Proposition 4 Under assumption (A4), for every pair (p1, p2)|p1 6=p2
of {1,

2, . . . , P}2, at least one pair (n1, n2)|n16=n2
belonging to {1, 2, . . . , N}2 exists such

that Dn1,n2(p1, p1) 6=Dn1,n2(p2, p2).

The proof is given in appendix B.

Proposition 4 and [3] allow to assert that the previous unitary matrix T is
also trivial. So matrix A

`
q may be identified, according to (33), up to a trivial

matrix.

4.2.2 Identification of mixture A

Three algorithms are proposed in this section, with increasing computational
complexity and accuracy.

Note, from (23) and (22), that equation (33) can also be written in the form

of G=N q−1 matrix blocks Σg = Ψgζ
1/2
2q,s T of size N×P as

[C`
2q, x]1/2 Vsol = [Σ1

T Σ2
T · · ·ΣG

T]T (34)

So a first approach to estimate A up to a trivial matrix, named 2q-BIOME1
in the sequel, consists of retaining only the matrix block Σ1 if ` = 0 (Σ1

∗

otherwise) made up of the N first rows of [C`
2q, x]1/2Vsol such that

Σ1 =





A [Φ1]
q−1

ζ
1/2
2q,s T if ` = 0

A∗ [Φ∗
1 ] −̀1 [Φ1]

q−̀
ζ
1/2
2q,s T o.w.

(35)
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where ζ
1/2
2q,s and Φn, for all 1≤n≤N , are diagonal matrices.

It is also possible to take into account all the matrix blocks Σg if ` = 0
(Σg

∗ otherwise) and to compute their average. This yields a second algorithm,
called 2q-BIOME2, of higher complexity.

A third algorithm, named 2q-BIOME3, is now described, and yields a more
accurate solution to the BMI problem: as shown in appendix C, it consists,
for each column bp of [C`

2q, x]1/2Vsol, first of extracting the H = N q−2 vectors
bp(h) (1 ≤ h ≤ H) of size N2×1 (such that bp = [bp(1)

Tbp(2)
T · · ·bp(H)T]T ), then

of remodeling them into H matrices Bp(h) of size N×N (the n-th column
of Bp(h) is made up from the N consecutive elements of bp(h) as from the
[N(n−1)+1]-th one), and finally of jointly diagonalizing the set ∆`

p of matrices
defined by

∆`
p =





{Bp(h)Bp(h)H, (Bp(h)HBp(h))∗ / 1≤h≤H} if ` = 0

{Bp(h)∗ / 1≤h≤H} if ` = 1

{(Bp(h)Bp(h)H)∗, (Bp(h)HBp(h)) / 1≤h≤H} o.w.

(36)

Theorem 1 The eigenvector, in common to all matrices of ∆`
p, and associated

with the strongest eigenvalue, is, up to a scale factor, a column vector of matrix
A.

The proof is given in appendix C. So each joint diagonalization of matrices
belonging to the set ∆`

p allows to estimate a column vector of A, and finally
to identify A to within a trivial matrix.

Remark 2 Although the algorithm of joint approximate diagonalization in
the LS sense [7] is restricted to unitary joint diagonalizers, it can be used to
process the previous problem since matrices belonging to ∆`

p are of rank 1 as
shown in (C.5). However it is reasonable to believe that, if an unrestricted
(non-unitary) LS joint diagonalization scheme is applied, as for instance the
one described by Yeredor in [36], a better LS fit can be attained, possibly leading
to a better estimate of A. Both approaches will be compared in section 6.2.1.

4.2.3 Extraction of the P independent components

Finally, to estimate the signal vector s(k) for any value k, and only in over-
determined situations (i.e. for P ≤ N), it is sufficient to apply a particular
matrix filter built from the estimate Â of A : such a filter may be the Spatial
Matched Filter (SMF) source separator described in [8], which is optimal in the
presence of decorrelated signals and whose estimate is given by Ŵ = R̂x

−1Â ,
where R̂x is an estimate of Rx=C

0
2, x.
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4.3 Implementation of the BIOME method

The different steps of the 2q-BIOME method are summarized hereafter when
K samples of the observations, x(k) (1≤k≤K), are available.

Step1 Choose the adequate 2q-th statistical order in accordance with the al-
leged source number P to be potentially processed: see section 5.2 for more
details. In practical situations, q is the minimal value which ensures the pro-
cessing of all the sources potentially present.

Step2 Estimate the 2q-th order statistics C
iq+1,...,i2q

i1,i2,...,iq,x from the K samples x(k)

and choose, using section 5.2 and [9], the best arrangement Ĉ`opt
2q,x, where Ĉ`

2q,x

is an estimate of C
`
2q, x.

Step3 Compute the Eigen Value Decomposition (EVD) of the Hermitian ma-
trix Ĉ`opt

2q,x; estimate P̂ , an estimate of the source number P , from an eigenvalue

test and restrict the EVD to the P̂ principal components : Ĉ`opt
2q,x ≈ Ês L̂s Ês

H,

where L̂s is the diagonal matrix of the P̂ eigenvalues of largest modulus and
Ês is the matrix of the associated eigenvectors.

Step4 Estimate the sign, ε, of the diagonal elements of L̂s.

Step5 Compute a square root matrix [εĈ`opt
2q,x]1/2 of εĈ`opt

2q,x : [εĈ`opt
2q,x]1/2 =

Ês |L̂s|1/2, where | ·| denotes the elementwise complex modulus operator.

Step6 Extract from [εĈ`opt
2q,x]1/2 the N matrices Γ̂n, construct matrices Θ̂n1,n2 =

[Γ̂
]

n1
Γ̂n2 ] for all 1≤n1 6=n2≤N , and compute the estimate V̂sol of the unitary

matrix Vsol from the joint diagonalization of the N(N−1) matrices Θ̂n1,n2 (with
the algorithm described in [7]).

Step7 Compute Â , an estimate of mixture A, from matrix [[εĈ`opt
2q,x]1/2 V̂sol] by

either one of the following:

(1) (2q-BIOME1) taking the matrix block made up of the N first rows of
[[εĈ`opt

2q,x]1/2 V̂sol] if òpt =0, and of [[εĈ`opt
2q,x]1/2 V̂sol]

∗ otherwise;
(2) (2q-BIOME2) taking the average of the N matrix blocks, of size N ×

P , made up of the successive rows of [[εĈ`opt
2q,x]1/2 V̂sol] if òpt = 0, and of

[[εĈ`opt
2q,x]1/2 V̂sol]

∗ otherwise;

(3) (2q-BIOME3) fully exploiting each column vector b̂p of [[εĈ`opt
2q,x]1/2 V̂sol].

In order to do this, first extract the M = N q−2 vectors b̂p(m) of size

N2×1, then remodel them into M matrices B̂p(m) of size N×N , and
finally build the matrix whose p-th column vector is the eigenvector in
common within the M matrices ∆̂`

p(m) (1≤m≤M) and associated with
the largest eigenvalue; the algorithm used for this task is JADE [7];
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(4) (2q-BIOME4) doing the same as in 2q-BIOME3, but using the congruent
diagonalization algorithm of Yeredor [36] instead of JADE.

Step8 If A is an over-determined mixture, estimate the signal vector s(k)
for any value k, by applying to x(k) the SMF source separator defined by
Ŵ =R̂x

−1Â , where R̂x is an estimate of Rx=C
0
2, x.

5 Identifiability

The identifiability properties of the 2q-BIOME method are directly related to
the 2q-th order Virtual Array (VA) concept described in [19] [10] for q = 2
and extended in [9] for q ≥ 2. For this reason, we recall the main results
about the VA array concept in section 5.1 before discussing, in section 5.2,
the identifiability properties of 2q-BIOME.

5.1 The VA concept

In the absence of coupling between sensors, component n of the p-th column
vector ap =a(θp, ϕp) of A, denoted an(θp, ϕp) where θp and ϕp are the azimuth
and the elevation angles of source p, can be written, in the general case of an
array with space, angular and polarization diversity, as [16]

an(θp, ϕp) = fn(θp, ϕp, ωp) exp {j2π[xn cos(θp) cos(ϕp) +

yn sin(θp) cos(ϕp) + zn sin(ϕp)] /λ} (37)

where j =
√
−1, λ is the wavelength, (xn, yn, zn) are the coordinates of sensor

n of the array, fn(θp, ϕp, ωp) is a complex number corresponding to the response
of sensor n to a unit electric field coming from the direction (θp, ϕp) and having
the state of polarization ωp (characterized by two angles in the wave plane) [16].
Let us recall that an array of sensors has space diversity if the sensors have
not all the same phase center. The array has angular and/or polarization
diversity if the sensors have not all the same radiating pattern and/or the
same polarization, respectively.

Assuming no noise, we note that matrices C
`
2q, x and Rx = C

0
2, x, defined by

(19), have the same algebraic structure, where the marginal source cumulant

Cp,p,...,p
p,p,...,p,s and the vector

[
ap

⊗q−̀ ⊗(a∗
p)
⊗`
]
=
[
a(θp, ϕp)

⊗q−̀ ⊗(a(θp, ϕp)
∗)⊗`
]

play, for

C
`
2q, x, the role played for Rx by the power Cp

p,s and the steering vector a(θp, ϕp)
respectively. Thus, for BMI methods exploiting expression (19), the N q×1 vec-

tor
[
a(θp, ϕp)

⊗q−̀ ⊗(a(θp, ϕp)
∗)⊗`
]

can be considered as the equivalent or virtual
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steering vector of the source p for the true array of N sensors with coordinates
(xn, yn, zn) and amplitude pattern fn(θp, ϕp, ωp) (1 ≤ n ≤ N). Moreover, com-

paring the components of
[
a(θp, ϕp)

⊗q−̀ ⊗(a(θp, ϕp)
∗)⊗`

]
to expression (37), it is

shown in [9] that the vector
[
a(θp, ϕp)

⊗q−̀ ⊗(a(θp, ϕp)
∗)⊗`

]
can also be considered

as the true steering vector of the source p but for a VA of N q Virtual Sensors
(VS) with particular coordinates and particular complex amplitude patterns
deduced from (xn, yn, zn) and fn(θp, ϕp, ωp) (1≤n≤N) respectively.

Nevertheless, some of these N q VS may coincide. If we note N `
2q the number

of different VS of the VA associated with the 2q-th order array processing
problem for the arrangement C

`
2q, x, N `

2q is also an upper bound to the rank

of matrix A
`
q. Conversely, if the 2q-th order VA has no ambiguities 1 of rank

smaller than or equal to N `
2q, the rank of matrix A

`
q is equal to N `

2q under
(A4).

In particular it is shown in [9] that in the general case of an arbitrary array of
N sensors with no particular symmetries, for large values of N and for a given
value of q (2≤ q ≤N), the number of different VS N `

2q can be approximated
by

N `
2q ≈ N !/ [(N − q)! (q − `)! `!] (38)

In these conditions, the optimal arrangement C
`opt
2q, x is such that `opt maximizes

N `
2q defined by (38) and thus minimizes the quantity (q − `)! `! with respect

to ` (0≤ `≤ q0 where q0 = q/2 if q is even and q0 =(q−1)/2 if q is odd). It is
straightforward to show that `opt =q0 and it is verified in [9] for 2≤q≤4 that
this result remains true whatever N .

The exact computation of the number of different VS, N `
2q, of the 2q-th order

VA for the arrangement C
`
2q, x is not easy for arbitrary values of N , q (q≥ 2)

and `. For this reason, Chevalier et al. [9] limit their analysis to some values
of q (2≤ q ≤ 4), which extends the results of [10] up to the eighth order for
arbitrary arrangements of the data cumulants. In fact, for these values of q,
Chevalier et al. give an upper bound to N `

2q, N 2q,`
max, first for an array with space,

angular and polarization diversities, summarized in table 1, then for an array
with angular and polarization diversity only, and finally for an array with only
space diversity summarized in table 2. These upper bounds are shown in [9]

1 Remind that a sensor array has ambiguities of rank m if and only if there exists at
least one (m+1)-uplet of linearly dependent directional vectors associated to (m+1)
distinct location parameters. We recall that directional vectors belong to a manifold,
entirely defined by the sensor array, and parametrized by location parameters. Rank
1 ambiguities are also known as Grating Lobes [16]; higher order ambiguities have
been first introduced by Schmidt in 1981 [31].
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to be reached for most array geometries. Nevertheless, for Uniformly spaced
Linear Arrays (ULA), these upper bounds are not reached and N `

2q is shown
in [9] to be given by

N `
2q = q(N − 1) + 1 (39)

whatever q, N and `, showing that the number N `
2q of different VS of the

2q-th order VA associated with a ULA is independent of ` and of the chosen
arrangement C

`
2q, x. However, for Uniformly spaced Circular Arrays (UCA) of

N sensors, the upper bound is shown in [9] to be reached when N is a prime
number as depicted in table 3.

Table 1
N 2q,`

max associated with arrays with space, angular and polarization diversities

N 2q,`
max

q=2 ` = 0 N(N + 1)/2

` = 1 N2

q=3 ` = 0 N !/[6(N − 3)!] + N(N − 1) + N

` = 1 N !/[2(N − 3)!] + 2N(N − 1) + N

q=4 ` = 0 N !/[24(N − 4)!] + N !/[2(N − 3)!] + 1.5N(N − 1) + N

` = 1 N !/[6(N − 4)!] + 1.5N !/(N − 3)! + 3N(N − 1) + N

` = 2 N !/[4(N − 4)!] + 2N !/(N − 3)! + 3.5N(N − 1) + N

Table 2
N 2q,`

max associated with arrays with space diversity only

N 2q,`
max

q=2 ` = 0 N(N + 1)/2

` = 1 N2 − N + 1

q=3 ` = 0 N !/[6(N − 3)!] + N(N − 1) + N

` = 1 N !/[2(N − 3)!] + N(N − 1) + N

q=4 ` = 0 N !/[24(N − 4)!] + N !/[2(N − 3)!] + 1.5N(N − 1) + N

` = 1 N !/[6(N − 4)!] + N !/(N − 3)! + 1.5N(N − 1) + N

` = 2 N !/[4(N − 4)!] + N !/(N − 3)! + 2N(N − 1) + 1
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Table 3
N `

2q associated with a UCA of N identical sensors

N `
2q

N = 3 N = 5 N = 7 N = 9 N = 11

q=2 ` = 0 6 15 28 45 66

` = 1 7 21 43 73 111

q=3 ` = 0 10 35 84 163 286

` = 1 12 55 154 306 616

q=4 ` = 0 15 70 210 477 1001

` = 1 18 115 420 918 2486

` = 2 19 131 505 1135 3191

5.2 The BIOME processing power

From the results of section 5.1, it is possible to identify the maximum number,
P N,q

max, of independent non Gaussian sources that can be processed by the 2q-
BIOME method. Indeed, it has been shown in the paper that P sources can
be blindly identified by the 2q-BIOME method from an array of N sensors,
provided conditions (A1)-(A5) are verified. For an array without any rank-1
ambiguities, condition (A4) is verified as soon as the sources have different
directions of arrival. In a same manner, assuming the 2(q−1)th order VA as-
sociated with the arrangement C

`
2(q−1), x and the considered array of N sensors

has no ambiguities of rank lower than N `
2(q−1), condition (A5) is verified pro-

vided (A4) is verified and P is lower than or equal to N `
2(q−1). Otherwise, (A5)

cannot be verified. We deduce from this result that the maximal number P N,q
max

of non Gaussian sources that can be processed by 2q-BIOME is N `opt

2(q−1).

Now concerning parameter q, on one hand it depends on the number P of
independent sources that BIOME’s user wants to process. On the other hand,
according to assumption (A3), 2q-th order marginal source cumulants have all
to be non-zero and to have the same sign. Since we have previously shown the
link between P N,q

max and N `opt

2(q−1) for a given value of q, it is important to choose

q (q≥2) such that P ≤P N,q
max, taking assumption (A3) into consideration. So,

the lowest q that still enables identification is not necessary optimal.
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6 Computer simulations

6.1 Performance criterion

Most of the existing performance criteria used to evaluate the quality of BMI
algorithms, either in the over-determined [11] or in the under-determined [12]
[34] cases, are global criteria, which evaluate a distance between the actual
mixing matrix A and its blind estimate Â . Although practical, a global per-
formance criterion necessarily contains a part of arbitrary considerations in
the manner of combining all the distances between the vectors ap and âp.

Moreover, it is possible to find that an estimate Â1 of A is better than an
estimate Â2, with respect to the global criterion, while some columns of Â2

estimate the associated true steering vectors in a better way than Â1. For
these reasons, it may be more appropriate to use a non global criterion for the
evaluation of the BMI process, which is defined [2] [20] by the P -uplet

D
(
A, Â

)
= (α1, α2, . . . , αP ) (40)

where

αp = min1≤ i≤P [d(ap, â i)] (41)

and where d(u, v) is the pseudo-distance between vectors u and v, defined
by:

d(u, v) = 1 − |uHv|2

‖u‖2‖v‖2
(42)

Thus the identification quality of the source p is evaluated by the parameter
αp, which decreases toward zero as the identification quality of the source p
improves. In particular, the source p is perfectly identified when αp =0. It will
be subsequently considered that a source p is blindly identified with a very
high quality if αp≤0.01, with a high quality if αp≤0.03, with a good quality
if αp≤0.05 and with a poor quality otherwise.

6.2 Computer results

The synthetic signals used in this section are stationary and ergodic, and ac-
cording to section 3.3, sample statistics [28] may be employed. More precisely,
the sources utilized are QPSK in baseband, with a square transmit filter, and
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a symbol rate equal to the sample rate [30]. Put in simple words, these sour-
ces sp(k) are actually sequences of independently and identically distributed
(i.i.d.) random variables ∀k, ∀p, taking equally likely their values in the set
{1, j, −1, −j}.

Moreover, the P statistically independent QPSK sources are assumed to be
received by a UCA of N identical sensors of radius R such that R/λ = 0.55
(λ: wavelength). The P sources, assumed synchronized, have the same input
SNR (Signal to Noise Ratio) and the noise is Gaussian. We apply different
BMI methods such as COM2 [11], JADE [6], FastICA [4], FOBIUM [20],
6-BIOME1, 6-BIOME2, 6-BIOME3 and 6-BIOME4 methods, and the perfor-
mance criterion D(A, Â ) = (α1, α2, . . . , αP ) is computed and averaged over
200 realizations.

6.2.1 The under-determined case

The 6-BIOME methods are compared to each other and to FOBIUM, in an
under-determined context. P = 7 poorly angularly separated QPSK sources
(θ1 = 10◦, θ2 = 35◦, θ3 = 60◦, θ4 = 85◦, θ5 = 105◦, θ6 = 150◦, θ7 = −45◦,
ϕ1 = ϕ2 = ϕ3 = ϕ4 = ϕ5 = ϕ6 = ϕ7 = 0◦) are received by a UCA of N = 3
identical sensors, with the same input SNR of 20 dB. The noise is spatially
and temporally white Gaussian. The value of max1≤p≤7{αp} is reported in
figure 1, that is, the performance index for the worst estimation among the 7
sources.

Several important observations can be made.

• the four 6-BIOME algorithms succeed in identifying the seven source di-
rectional vectors, but with different convergence speed. For instance, 6-
BIOME3 turns out to be the fastest, and is able to yield values of αp’s
all below 0.05 as soon as 600 samples are available. This is a surprising re-
sult, which contradicts the fact often admitted that “higher order techniques
are slower to converge”.

• also surprisingly, 6-BIOME3 using the JAD algorithm performs better than
6-BIOME4 using Yeredor’s joint congruent diagonalization.

• 6-BIOME1 performs better than 6-BIOME2. This is due to the choice of the
scenario. It may be useful to weight of blocks Σg (if ` = 0) or Σg

∗ (otherwise)
in the averaging in order to improve on performances. Nevertheless, the
exact optimal weighting still needs to be calculated.

• as already pointed out in section 1, FOBIUM cannot identify the 2×7 mixing
matrix because the 7 sources are white, and thus have the same trispectrum.

It turns out that the BIOME methods, originally devised for under-determined
mixtures, also perform quite well with over-determined mixtures, as demon-
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Fig. 1. max{αp} for a SNR of 20 dB

strated in the next two subsections.

6.2.2 The over-determined case : poorly angularly separated sources

The scenario is as follows. There are N = 2 sensors and P = 2 QPSK sources
very close to each other (the directions of arrival are θ1 =88◦,θ2 =90◦,ϕ1 =ϕ2 =
0◦). The additive noise is spatially and temporally white Gaussian, and the
SNR is 20dB. Since the best results were obtained for m = 3 in the previous
subsection, we report here the comparison results only for m = 3.

Figure 2 confirms the very good behavior of 6−BIOME3, even with a very
small number of snapshots (K≤100). However, figure 2 shows that for poorly
angularly separated sources, there exists a number of snapshots, K0, above
which 6-BIOME3 becomes more efficient than COM2, JADE and FastICA.
In the present scenario, it can be seen in figure 2 that K0 ≈ 100. In such
a situation, we can claim that the resolution gain obtained with 2q-BIOME
is higher than the loss due to a higher variance in the statistics estimates.
Similar results have been obtained for the directional vector of source 2.
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6.2.3 The over-determined case : colored noise

Eventually, the 6-BIOME3 method is compared to other algorithms in an over-
determined context but in the presence of a Gaussian noise with unknown
spatial correlation. We have P = 3 sources, well separated (θ1 = 10◦,θ2 =
50◦,θ3 =−40◦,ϕ1 =ϕ2 =ϕ3 =0◦). The 3 QPSK sources are received by a UCA
of N =5 identical sensors. This time, we apply COM2, JADE, FOBIUM and
6-BIOME3 methods.

Figure 3 shows the variations of α3 (source 3 performance) at the output of
the previous methods as a function of the noise spatial correlation factor ρ.
SNR of the three sources is taken equal to 0 dB and 500 samples are used to
identify the over-determined mixture. The Gaussian noise model employed in
this simulation is the sum of an internal noise νin(k) and an external noise
νout(k), of covariance matrices Rin

ν and Rout
ν respectively such that

Rin
ν (r, q)

def
= σ2δ(r−q)/2 Rout

ν (r, q)
def
= σ2ρ|r−q|/2 (43)

where σ2, ρ are the total noise variance per sensor and the noise spatial cor-

relation factor respectively. Note that Rν(r, q)
def
= Rin

ν (r, q) + Rout
ν (r, q) is the

(r, q)-th component of the total noise covariance matrix.
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Fig. 3. α3 for 3 angularly separated sources and for a SNR of 0 dB

It appears in figure 3 that the 6-BIOME3 method seems to be robust with
respect to the correlated Gaussian noise presence. On the other hand, the well-
known COM2 and JADE methods are strongly affected as soon as the noise
spatial correlation approaches 1. Actually, there exists a threshold above which
2q-BIOME methods become more attractive than more classical methods. In
the present scenario, this threshold is ρ = 0.4. Lastly, FOBIUM does not
succeed in identifying the directional vector of source 3 (this can be detected
because α3 is always larger than 0.05 regardless of the value of ρ). This is due
to the fact that the 3 sources have identical trispectra. Similar results have
been obtained for sources 1 and 2.

7 Conclusion

A family of new BMI methods, named BIOME, exploiting the information
contained in the data statistics at an arbitrary even order has been proposed
in this paper. These new methods allow to process both over- and under-
determined mixtures of sources, provided the latter have non zero marginal
HO cumulants with the same sign. The proposed methods are not sensitive
to a Gaussian colored noise whose spatial coherence is unknown. They also
allow the processing of a number of sources depending on both the kind of
sensors and the array geometry, and fast increasing with both the number of
sensors and the order of the data statistics. For under-determined mixtures
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of sources, the proposed methods seem to outperform most of the methods
currently available.

Thus, despite the higher variance of their sample estimates, high order statis-
tics (e.g. order 6) used in 2q−BIOME algorithms may yield better perfor-
mances than statistics of lower orders (e.g. order 4) used in more classical
algorithms. The reason is the following. When sources are angularly close to
each other, they can be hardly separated because of the limited angular resolu-
tion power of the array; if higher order statistics are used, then the processing
can be viewed as using a Virtual Array having more sensors, and thus a larger
resolution power. Of course, this holds true if the number of snapshots is
greater than a threshold, and this contribution has precisely shown that this
threshold is much lower than expected (a few hundreds of samples).

From a mathematical point of view, the so-called BIOME approaches allow
to pose and to solve the BMI problem in terms of a non conventional joint
approximate diagonalization of several given matrices, even in the presence of
more inputs (sources) than observations (sensors). This problem is difficult to
solve because of its structure. However, by ignoring part of the structure, it
has been possible to compute in the LS sense the left and right transforms.
More accurate numerical algorithms, taking fully into account the structure,
still remain to be devised.

A Proof of the second matrix multilinearity property (19)

Assuming (A1)-(A2), the 2q-th order statistics C
iq+1,..., i2q

i1, i2,..., iq, x defined by (2) may
be described, using (1) and the multilinearity property shared by cumulants
[28] [29, pp. 1-24], by

C
iq+1,..., i2q

i1, i2,..., iq, x =
P∑

p=1

Cp,..., p
p,..., p, s

( q∏

m=1

A(im, p)

)


2q∏

m=q+1

A(im, p)∗


 (A.1)

It is straightforward to show that
(∏q−`

m=1 A(im, p)
) (∏2q

m=2q−`+1 A(im, p)∗
)

is

the I`
1 -th component of vector

[
ap

⊗q−̀ ⊗(a∗
p)
⊗`
]

and that
(∏2q−`

m=q+1 A(im, p)∗
)

(∏q
m=q−`+1 A(im, p)

)
is the I`

2-th component of vector
[
ap

⊗q−̀ ⊗(a∗
p)
⊗`
]∗

where

I`
1 , I`

2 are given by (8) and (9). Consequently, since
[
ap

⊗q−̀ ⊗(a∗
p)
⊗`
]

is the p-th

column vector of matrix A
`
q (20), equation (A.1) may be written as

C
iq+1,..., i2q

i1, i2,..., iq, x =
P∑

p=1

Cp,..., p
p,..., p, s A

`
q(I

`
1 , p) A

`
q(I

`
2, p)∗ (A.2)
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where A
`
q(n, p) is the (n, p)-th component of the N q×P matrix A

`
q. So, since

ζ2q,s denotes the P×P invertible diagonal matrix Diag
[
C1, 1, ..., 1

1, 1, ...1, s, C2, 2, ..., 2
2, 2, ..., 2, s, · · · ,

CP, P, ..., P
P, P, ..., P, s

]
, equation (A.2) may take the following expression

C
iq+1,..., i2q

i1, i2,..., iq, x =
P∑

p=1

A
`
q(I

`
1 , p) ζ2q,s(p, p) A

`
q

H

(p, I`
2). (A.3)

That means

C
iq+1,..., i2q

i1, i2,..., iq, x =
[
A

`
q ζ2q,s A

`
q

H
]
(I`

1 , I`
2). (A.4)

And, since quantity C
iq+1,..., i2q

i1, i2,..., iq, x is also the (I`
1 , I`

2)-th component of the N q×N q

matrix C`
2q, x, according to (7), we finally have

C
`
2q, x = A

`
q ζ2q,s A

`
q

H

. (A.5)

B Proof of proposition 4

Proposition 4 may be rewritten as

(A4) ⇒ {∀ 1≤p1 6=p2≤P, ∃ 1≤n1 6=n2≤N : Dn1,n2(p1, p1) 6=Dn1,n2(p2, p2)}(B.1)

To prove it, assume the contrary:

∃ 1≤p1 6=p2≤P : ∀ 1≤n1 6=n2≤N, Dn1,n2(p1, p1)=Dn1,n2(p2, p2) (B.2)

This implies, since Dn1,n2 =Φ−1
n1

Φn2 are P×P diagonal full rank matrices, that

∃ 1≤p1 6=p2≤P : ∀ 1≤n1 6=n2≤N,
Φn2(p1, p1)

Φn1(p1, p1)
=

Φn2(p2, p2)

Φn1(p2, p2)
(B.3)

which is equivalent, according to (21), to

∃ 1≤p1 6=p2≤P : ∀ 1≤n1 6=n2≤N,
A(n2, p1)

A(n1, p1)
=

A(n2, p2)

A(n1, p2)
(B.4)

This means

∃ 1≤p1 6=p2≤P : ap1 ∝ ap2 (B.5)
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In other words, assuming (B.2) implies that at least two columns of A are
collinear, which contradicts (A4). Consequently, proposition 4 is true.

C Proof of theorem 1

Each column bp of [C`
2q, x]1/2Vsol is defined, according to (33), by

∀ 1≤p≤P, bp = λξ(p) [(aξ(p))
⊗q−̀ ⊗(a∗

ξ(p))
⊗`] of size (N q×1) (C.1)

where ξ(·) is a bijective function of {1, 2, . . . , P} into itself (i.e. a permutation
function) and where |λp| = |Cp, p, ..., p

p, p, ..., p, s|1/2, | ·| denoting the complex modulus
operator. Moreover, vectors bp may be written as

bp = [bp(1)
T bp(2)

T · · ·bp(M)T]T (C.2)

where M = N q−2 and bp(m) is of size N2×1. Now it is important to notice
that each vector bp(m) (1≤m≤M) may be expressed as a Kronecker product
of the column vector ap of A by itself:

bp(m)=





λξ(p)

(∏q−2
j=1 A(nj ,ξ(p))

)[
aξ(p)⊗aξ(p)

]
if ` = 0

λξ(p)

(∏q−2
j=1A(nj ,ξ(p))

)[
aξ(p)⊗a∗

ξ(p)

]
if ` = 1

λξ(p)

(∏q−̀
j=1A(nj ,ξ(p))

)(∏q−2
j=q−̀+1 A(nj ,ξ(p))∗

)[
aξ(p)⊗aξ(p)

]∗
o.w.

(C.3)

So we transform the M vectors bp(m) of size N2×1 into N×N matrices Bp(m)
(1 ≤ m ≤ M) where the (i1,i2)-th component of Bp(m) corresponds to the
ϕ([i2 i1])-th component of bp(m) so that

Bp(m)=





λξ(p)

(∏q−2
j=1 A(nj ,ξ(p))

)[
aξ(p) aξ(p)

T

]
if ` = 0

λξ(p)

(∏q−2
j=1A(nj ,ξ(p))

)[
aξ(p) aξ(p)

H

]∗
if ` = 1

λξ(p)

(∏q−̀
j=1A(nj ,ξ(p))

)(∏q−2
j=q−̀+1 A(nj ,ξ(p))∗

)[
aξ(p) aξ(p)

T

]∗
o.w.

(C.4)

Consequently, plugging (C.4) into (36), the set of matrices ∆`
p may be expressed

as

∆`
p =

{
µ`

p, nj
aξ(p) aξ(p)

H / 1≤nj ≤N
}

(C.5)
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with

µ`
p, nj

=





|λξ(p)|2
∣∣∣
∏q−2

j=1 A(nj ,ξ(p))
∣∣∣
2 ∥∥∥aξ(p)

∥∥∥
2

if ` = 0

λ∗
ξ(p)

∏q−2
j=1A(nj ,ξ(p))∗ if ` = 1

|λξ(p)|2
∣∣∣
(∏q−̀

j=1A(nj ,ξ(p))
) (∏q−2

j=q−̀+1 A(nj ,ξ(p))∗
)∣∣∣

2 ∥∥∥aξ(p)

∥∥∥
2

o.w.

(C.6)

where ‖ ·‖ denotes the norm operator respectively. So a joint diagonalization
of matrices belonging to ∆`

p indeed allows to extract the ξ(p)-th column vector
aξ(p) of A.

D Example of FO and SixO statistics

Consider zero mean complex variables that are distributed symmetrically with
respect to the origin. Thanks to the Leonov-Shiryaev formula, FO and SixO
statistics of these variables can be written as a function of moments [1]. As an
example, at order 4:

Ci3, i4
i1, i2, x = M i3, i4

i1, i2, x(k) − [2]M i3
i1, x(k)M i4

i2, x(k) − Mi1, i2, x(k)M i3, i4
x

(k) (D.1)

and at order 6:

Ci4, i5, i6
i1, i2, i3, x = M i4, i5, i6

i1, i2, i3, x(k) − [3]M i4
i1, i2, i3, x(k) M i5, i6

x
(k)

− [9]M i4, i5
i1, i2, x(k)M i6

i3, x(k) − [3]Mi1, i2, x(k)M i4, i5, i6
i3, x (k) +

2[9]Mi1, i2, x(k)M i4
i3, x(k)M i5, i6

x
(k) + 2[6]M i4

i1, x(k)M i5
i2, x(k)M i6

i3, x(k) (D.2)

where [d]
∏

mM
ir(m)+1,..., ir(m)+s(m)

i1(m),..., ir(m), x
(k) denotes the McCullagh bracket notation

[28]. In short, the number d appearing between brackets tells that we
have a sum of d monomials, that can be deduced from the current one,
∏

mM
ir(m)+1,..., ir(m)+s(m)

i1(m),..., ir(m), x
(k), by permuting separately either superscripts or sub-

scripts. As an illustration of this notation, an expansion of six terms is given
below:

[6]M i3
i1, i2, x(k) M i5

i4, x(k) = M i3
i1, i2, x(k) M i5

i4, x(k) + M i5
i1, i2, x(k) M i3

i4, x(k) +

M i3
i1, i4, x(k) M i5

i2, x(k) + M i5
i1, i4, x(k) M i3

i2, x(k) + M i3
i4, i2, x(k) M i5

i1, x(k) +

M i5
i4, i2, x(k) M i3

i1, x(k) (D.3)

Expressions of cumulants of order 8 as a function of moments can be found
in [28] in the real case, or in [1] in the complex case. These expressions are
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not reproduced here.
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