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The problem of Blind Identification of linear mixtures of independent random processes is known to be related to the diagonalization of some tensors. This problem is posed here in terms of a non conventional joint approximate diagonalization of several matrices. In fact, a congruent transform is applied to each of these matrices, the left transform being rectangular full rank, and the right one being unitary. The application in antenna signal processing is described, and suboptimal numerical algorithms are proposed.

Introduction

Blind Source Separation (BSS), and more particularly Independent Component Analysis (ICA), now raise great interest. In fact, ICA plays an important role in many diverse application areas, including radiocommunications, radar, sonar, seismology, radio astronomy, medical diagnosis (separation of electroencephalogram signals for instance), and data analysis. For example, in digital radiocommunications contexts, if some sources are received by an array of sensors, and if for each source the channel delay spread associated with the different sensors is much smaller than the symbol durations, a static mixture of complex sources is observed from the sensors. BSS consists in this case of restoring by a spatial filtering operation the transmitted sources only from the sensor data. Depending on the application, it may be sufficient to identify a static mixture, as in Direction Of Arrival (DOA) estimation problems, since the column vectors of the mixture are the source steering vectors: this is referred to as blind identification of source mixtures. In other contexts such as radiocommunications, the question is that of blind extraction of sources, or more commonly BSS.

Whereas some algorithms try to decorrrelate estimated signals using second order statistics, as in Factor Analysis with Principal Component Analysis (PCA), ICA attempts to restore the independence of outputs using Higher Order (HO) statistics. Thus, under the source independence assumption, ICA allows to blindly identify the static mixture, and consequently to extract the transmitted sources. Nevertheless, ICA performance depends on several assumptions: (i) sources should be independent in some way, and (ii) in most cases the mixture has to be over-determined ; in other words, there should be at least as many sensors as sources, which is generally a strong limitation unless sparsity conditions are assumed; we shall not make the latter assumption, and assume on the contrary that the mixture may be under-determined.

Bibliographical survey

While the first paper related to HO BSS has been published in 1985 by Herault et al. [START_REF] Herault | Détection de grandeurs primitives dans un message composite par une architecture de calcul neuromimétique en apprentissage non supervisé[END_REF], the ICA concept is proposed a few years later; Comon proposes a Fourth Order (FO) contrast-based method, COM2 [START_REF] Comon | Independent Component Analysis, a new concept ?[END_REF], Cardoso and Souloumiac [START_REF] Cardoso | Blind beamforming for non-gaussian signals[END_REF] develop a matrix approach, well-known as JADE, and give rise to the joint diagonalization algorithm. Even when the JADE method uses both Second Order (SO) and FO statistics, Belouchrani et al. conceive the SOBI method [START_REF] Belouchrani | A blind source separation technique using second-order statistics[END_REF], only based on SO statistics. A few years later, Hyvarinen et al. present the FastICA method, first for signals with values in the real field [START_REF] Hyvarinen | A fast fixed-point algorithm for independent component analysis[END_REF], and later for complex signals [START_REF] Bingham | A fast fixed-point algorithm for independent component analysis of complex valued signals[END_REF], using the fixed-point algorithm to maximize a FO contrast. This algorithm is of deflation type, as that of Delfosse et al. [START_REF] Delfosse | Adaptive blind separation of independent sources: a deflation approach[END_REF], and must extract one source at a time. Besides, Comon proposes a simple solution [START_REF]From source separation to blind equalization, contrast-based approaches[END_REF], named COM1 in this paper, to the maximization of another FO contrast function presented in [START_REF] Thirion | New criteria for blind signal separation[END_REF] [START_REF] Comon | Improved contrast dedicated to blind separation in communications[END_REF].

Each of these methods suffers from limitations. To start with, the SOBI algorithm is unable to restore components, which have comparable spectral densities. On the other hand, though the other previous methods perform under some reasonable assumptions, they may be strongly affected by a Gaussian noise with unknown spatial correlation. Such a noise appears for instance in some HF (High Frequency) radiocommunications applications. Moreover, in such applications, the reception of more sources than sensors is possible and its probability increases with the reception bandwidth. The mixture is then called under-determined [START_REF]Blind Identification and Source Separation in 2x3 Under-determined Mixtures[END_REF], which means that the observation vectors are represented in the over-complete basis of source vectors [START_REF] Lee | Blind source separation of more sources than mixtures using overcomplete representations[END_REF], hence the title of our paper. The previous algorithms, which are based on a SO prewhitening step, are then unable to identify the mixture and to extract the sources. Indeed, the SO prewhitening step, which aims at orthonormalizing the source steering vectors, cannot orthonormalize the latter when the number of sources is greater than the number of sensors.

In order to deal with the correlated noise problem, Ferréol et al. have proposed a new family of HO BSS methods exploiting the potential cyclostationarity of the received sources [START_REF] Ferreol | Higher order blind source separation using cyclostationarity property of the signals[END_REF]. In fact, the latter family of algorithms uses cyclic statistics of the data and, since cyclic covariance matrix associated with a stationary noise is null for non zero cyclic frequencies, these cyclic methods allow the optimal separation of independent sources even in the presence of a stationary noise (not necessarily Gaussian) with unknown spatial correlation. However, the use of cyclic methods is more complex because of the estimation of cyclic frequencies and time delays.

In order to face the under-determined mixtures case, namely when there are fewer sensors than sources (e.g. the mixture enjoys no sparsity property such as disjoint source spectra, or sources non permanently present), several methods have been developed. Some papers focus on blind source extraction [START_REF] Lee | Blind source separation of more sources than mixtures using overcomplete representations[END_REF] [START_REF] Comon | Non-linear inversion of under-determined mixtures[END_REF], which is a difficult problem since under-determined mixtures are not linearly invertible, while others, as herein, favour Blind Mixture Identification (BMI) [START_REF] Cardoso | Super-symetric decomposition of the fourth-order cumulant tensor. Blind identification of more sources than sensors[END_REF] [START_REF]Blind Identification and Source Separation in 2x3 Under-determined Mixtures[END_REF] [17] [27] [34] [20] [START_REF] Sidiropoulos | On the Uniqueness of Multilinear Decomposition of N-way Arrays[END_REF]. The methods proposed in [START_REF] Cardoso | Super-symetric decomposition of the fourth-order cumulant tensor. Blind identification of more sources than sensors[END_REF] [START_REF]Blind Identification and Source Separation in 2x3 Under-determined Mixtures[END_REF] [17] [START_REF] Ferreol | Fourth order blind identification of under-determined mixtures of sources (FOBIUM)[END_REF] only exploit the information contained in the data FO statistics whereas the one proposed in [START_REF] Taleb | An algorithm for the blind identification of N independent signal with 2 sensors[END_REF] exploits the information contained in the second characteristic function of the observations. As for Lee et al. [START_REF] Lee | Blind source separation of more sources than mixtures using overcomplete representations[END_REF], they maximize the probability of the data conditionally to the mixture matrix. However, all these methods have drawbacks in operational contexts. Indeed, the method [START_REF] Cardoso | Super-symetric decomposition of the fourth-order cumulant tensor. Blind identification of more sources than sensors[END_REF] is still very difficult to implement and does not ensure the BMI of the source steering vectors when the sources have the same kurtosis. The BMI methods [START_REF]Blind Identification and Source Separation in 2x3 Under-determined Mixtures[END_REF] [START_REF] De Lathauwer | ICA algorithms for 3 sources and 2 sensors[END_REF] assume FO non-circularity and thus fail in separating FO circular sources. Besides, the theory developed in [START_REF]Blind Identification and Source Separation in 2x3 Under-determined Mixtures[END_REF] only confines itself to the three sources and two sensors case. Although the method [START_REF] Lee | Blind source separation of more sources than mixtures using overcomplete representations[END_REF] succeeds in identifying the steering vectors of up to four speech signals with only two sensors, the authors need sparsity conditions, and do not address the general case when all sources are always present. In addition, the method [START_REF] Taleb | An algorithm for the blind identification of N independent signal with 2 sensors[END_REF] has been developed only for real mixtures of real-valued sources, and the issue of robustness with respect to an over estimation of the number of sources remains open. Eventually, although the FOBIUM algorithm [START_REF] Ferreol | Fourth order blind identification of under-determined mixtures of sources (FOBIUM)[END_REF] performs the BMI of up to P = N 2 sources for arrays of N different sensors even in the presence of a Gaussian noise with unknown spatial correlation, it requires sources with different FO spectral densities.

Contribution

In order to overcome the previous drawbacks, a family of new methods named BIOME (Blind Identification of Over-complete MixturEs of sources) is proposed in this paper.These methods operate on statistics of order 2q, where q is an arbitrary integer strictly greater than 2, hence the name of 2q-BIOME methods. This family of algorithms allows to blindly identify both overdetermined (with q ≥ 2) and under-determined (with q ≥ 3) mixtures of sources, and to extract them in the over-determined case. An application of BIOME to Sixth Order (SixO) statistics (q = 3), that is to say 6-BIOME, has been succintly presented in [START_REF] Albera | Sixth order blind identification of under-determined mixtures (BIRTH) of sources[END_REF] under the name BIRTH (Blind Identification of mixtures of sources using Redundancies in the daTa Hexacovariance matrix).

More generally, the 2q-th order BIOME algorithm assumes the sources have non zero 2q-th order marginal cumulants with the same sign (the latter assumption is verified in most cases in radiocommunications contexts). Besides, without SO prewhitening, BIOME explicitly exploits the redundancies in the 2q-th order statistical matrix of the data and implicitly uses the Virtual Array (VA) concept, presented in [START_REF] Dogan | Applications of cumulants to array processing -Part I: Aperture extension and array calibration[END_REF] [START_REF] Chevalier | On the virtual array concept for the fourth-order direction finding problem[END_REF] for FO methods, and extended in [START_REF] Chevalier | On the virtual array concept for higher order array processing[END_REF] for HO methods. Note that, for a given value of N, the maximum number P N,q max of independent sources that can be processed by the 2q-BIOME method, such that P N,q max ≥ N, increases with q. One of our contributions is to show that it is interesting to increase q, despite the fact that the larger q, the worse the estimates of statistics of order 2q.

From the linear algebra viewpoint, it is shown in section 4 that the BMI problem can be expressed in the form of the problem below, even in the underdetermined case.

Problem 1 Given N matrices, Γ n , 1 ≤ n ≤ N, each of size M ×P , M ≥ P , find a full rank M ×P matrix A, N diagonal matrices Λ n of size P ×P , and a unitary P ×P matrix V , such that

Γ n = A Λ n V H
Throughout the paper, vectors (one-way arrays) are denoted with bold lowercase symbols, and matrices (2-way arrays) or tensors (HO arrays) in bold uppercase. Transposition, conjugate transposition, and complex conjugation are denoted respectively with superscripts ( T ), ( H ), and ( * ).

Assumptions and problem formulation

Assume that for any fixed index k, N complex outputs x n (k) (1 ≤ n ≤ N) of a noisy mixture of P statistically independent sources s p (k) (1 ≤ p ≤ P ) are available. The N × 1 vector x(k) of the measured array outputs is given by

x(k) = A s(k) + ν(k) (1) 
where A, s(k), ν(k) are the N ×P constant mixing matrix, the P ×1 source and N×1 noise random vectors, respectively. In addition, for any fixed index k, s(k) and ν(k) are statistically independent. We further assume the following hypotheses:

(A1) Vector s(k) is stationary, ergodic (or cyclostationary and cycloergodic, respectively), with components a priori in the complex field and mutually uncorrelated at order 2q (the cyclostationarity case will be addressed in the statistical estimation section 3.3); (A2) Noise vector ν(k) is stationary, ergodic and Gaussian with components a priori in the complex field too; (A3) 2q-th order marginal source cumulants (they will be defined in section 3.1) are not null and have all the same sign; (A4) Column vectors a p of A, also called steering vectors, are not collinear and have not any null component; (A5) The N q-1 ×P matrix A q-1 , which will be defined in section 4.1, is full column rank (this implies that P ≤ N q-1 );

Under the previous assumptions, the problem addressed in this paper is the BMI of mixture A, to within a trivial matrix T (a trivial matrix is of the form ΛΠ where Λ is an invertible diagonal matrix and Π a permutation), from 2q-th order statistics (these ones will be defined in section 3.1) of the observations. Besides, the classical BSS problem in the over-determined case consists of finding a N×P matrix (the static source separator), W , yielding a P ×1 output vector y(k) = W H x(k) corresponding to the best estimate, ŝ(k), of the vector s(k), up to a multiplicative trivial matrix.

3 Statistics of 2q-th order

Definition

The 2q-th order statistics considered in the paper are defined by

C i q+1 , i q+2 , ..., i 2q i 1 , i 2 , ..., iq, x (k) = Cum{x i 1 (k),x i 2 (k), . . . ,x iq (k),x i q+1 (k) * , . . . ,x i 2q (k) * } (2) 
where q terms x i (k) are not conjugated and q terms are conjugated. Function (2) is well-known as the 2q-th order cumulant computed from 2q components of x(k) with as many conjugated terms as not conjugated. Consequently, the associated 2q-th order marginal cumulant of source s p (k) is defined by C p, p, ..., p p, p, ..., p, s (k) = Cum{s p (k),s p (k), . . . ,s p (k)

q components ,s p (k) * , . . . ,s p (k) * q components } (3) 
Note that in the presence of stationary sources, 2q-th order statistics do not depend on time k, so they can be denoted by

C i q+1 ,i q+2 ,...,i 2q i 1 ,i 2 ,...,iq,x
. For the sake of convenience, we will describe the 2q-BIOME algorithm in the stationary case. Nevertheless, the cyclostationary case will be addressed in short in section 3.3.

Matrix arrangement

Matrix notation

First, define the following compact notation associated with the usual Kronecker product ⊗ and named Kronecker power :

B ⊗m = B⊗B⊗. . .⊗B m times with B ⊗0 = 1 ( 4 
)
where B is any

N ×P rectangular matrix; B ⊗m is then N m ×P m .
Next, define a columnwise Kronecker product, denoted and sometimes referred to as the Khatri-Rao product [START_REF] Horn | Topics in Matrix Analysis[END_REF]. For any rectangular matrices G and H, of size N G ×P and N H ×P respectively, the columns of the (N G N H ) ×P matrix G H are defined as g j ⊗ h j , if g j and h j denote the columns of G and H respectively:

G H = g 1 ⊗h 1 g 2 ⊗h 2 • • • g P ⊗h P ( 5 
)
So it is also possible to define the Khatri-Rao power :

B m = B B . . . B m times with B 0 = 1 (6)
3.2.2 2q-th order statistical matrix Finally, 2q-th order statistics computed according to (2) may be arranged in a N q ×N q statistical matrix C 2q, x , called 2q-th order statistical matrix of x(k) such that C 2q, x is an Hermitian matrix. Nevertheless, several ways to store 2q-th order statistics in C 2q, x are possible and we consider in the following q+1 arrangements, indexed by the integer (0 ≤ ≤ q), each yielding a statistical matrix C 2q, x such that its I 1 ,I 2 -th entry (1 ≤ I 1 ,I 2 ≤ N q ) is given by

C 2q, x I 1 ,I 2 = C i q+1 , ..., i 2q i 1 , i 2 , ..., iq, x (7) 
where for any 0 ≤ ≤ q and for all 1 ≤ i 1 , i 2 , . . . , i 2q ≤ N,

I 1 = ϕ([ i 1 i 2 . . . i q--1 i q- q-first subscript indices i 2q-+1 . . . i 2q-1 i 2q last superscript indices
])

I 2 = ϕ([ i q+1 i q+2 . . . i 2q--1 i 2q- q-first superscript indices i q-+1 . . . i q-1 i q last subscript indices ]) (8) 
and where function ϕ is defined by

∀z ∈ J , ϕ(z) = z(J) + J-1 j=1 N J-j (z(j) -1) (9) 
denoting with z(j) the j-th component of vector z.

Example 1 SixO statistics described in appendix D may be arranged in the

N 3 ×N 3 hexacovariance matrix H x = C 1 6, x such that H x I 1 1 ,I 1 2 = C i 4 ,i 5 ,i 6 i 1 ,i 2 ,i 3 ,x (10) 
is the

(I 1 1 ,I 1 2 )-th entry (1 ≤ I 1 1 ,I 1 2 ≤ N 3
) of H x and where for all

1 ≤ i 1 , i 2 , i 3 , i 4 , i 5 , i 6 ≤ N, I 1 1 = ϕ([i 1 i 2 i 6 ]) I 1 2 = ϕ([i 4 i 5 i 3 ]) (11) 
Note that, for J = 3, function ϕ is defined by

∀z ∈ 3 , ϕ(z) = N(N(z(1) -1) + z(2) -1) + z(3) (12) 
Remark 1 Another, perhaps more intuitive (especially for readers familiar with Matlab), way to present the construction of C 2q, x is the following: first, construct an 2q-dimensional tensor T , whose elements are given by

T    i 2q , i 2q-1 , . . ., i 2q-+1 , i q-, i q--1 , . . ., i 1 , i q , i q-1 , . . ., i q-+1 , i 2q-, i 2q--1 , . . ., i q+1    = C i q+1 ,..., i 2q i 1 , i 2 , ..., iq, x (13) 
The matrix C 2q, x is then given by a simple Matlab reshape operation as follows

C 2q, x = reshape(T , N q , N q ) ( 14 
)
We limit ourselves to arrangements of statistics that give different results at the output of the 2q-BIOME method in terms of processing power (i.e. in terms of maximal number of processed sources). Note that the selection of the ordering parameter maximizing the processing power for a fixed cumulant order q will be discussed in section 5.2 summarizing results shown in [START_REF] Chevalier | On the virtual array concept for higher order array processing[END_REF].

Multilinearity property

The statistical matrix of the data, C 2q, x (q ≥ 1), has a special structure especially thanks to the multilinearity property under changes of coordinate systems, shared by all moments and cumulants [28] [29, pp. 1-24]. Under assumptions (A1)-(A2), this property can be expressed, according to ( 7), ( 8) and ( 9), by the following equation

∀ 0 ≤ ≤ q, C 2q, x = [A ⊗q-⊗A * ⊗ ] C 2q, s [A ⊗q-⊗A * ⊗ ] H (15) 
where the N q × N q matrices C 2q, x and the P q × P q matrices C 2q, s are the statistical matrices of x(k) and s(k) respectively. The number is the same as that appearing in equations ( 8) and [START_REF]Jacobi angles for simultaneous diagonalization[END_REF]. Moreover, note that the arrangements C 2q, x and C q- 2q, x (0 ≤ ≤ q) give rise to the same processing power of underdetermined mixtures of arbitrary statistically independent sources as shown in [START_REF] Chevalier | On the virtual array concept for higher order array processing[END_REF]. In fact the first arrangement is the conjugate of the other whatever the values of q and N. It is then sufficient to limit the analysis to 0 ≤ ≤ q 0 where q 0 = q/2 if q is even and q 0 = (q-1)/2 if q is odd.

Statistical estimation

Generally, using the well-known Leonov-Shiryaev formula [START_REF] Mccullagh | Tensor Methods in Statistics[END_REF], applicable in the complex case [START_REF] Spooner | The cumulant theory of cyclostationarity time-series -Part. II : Development and applications[END_REF], 2q-th order cumulants (2) are computed from moments of order smaller than or equal to 2q given by

M i r+1 ,i r+2 ,...,i r+s i 1 ,i 2 ,...,ir,x (k) = E[x i 1 (k), . . . , x ir (k), x i r+1 (k) * , . . . , x i r+s (k) * ] ( 16 
)
where r+s ≤ 2q. Appendix D illustrates the Leonov-Shiryaev formula for FO and SixO statistics.

However, in practical situations, moments and cumulants cannot be exactly computed: they have to be estimated from components of x(k). If components are stationary and ergodic, sample statistics may be used to estimate v-th order moments [START_REF] Mccullagh | Tensor Methods in Statistics[END_REF], and consequently to estimate, via the Leonov-Shiryaev formula, 2q-th order statistics (2).

Nevertheless, if sources are cyclostationary, cycloergodic, potentially non zeromean, 2q-th order continuous-time temporal mean statistics have to be used instead of (2), such as

C i q+1 ,i q+2 ,...,im i 1 ,i 2 ,...,iq,x = C i q+1 ,i q+2 ,...,im i 1 ,i 2 ,...,iq,x (k) c (17) 
where • c is the continuous-time temporal mean operation defined by

∀ f : t -→ f (t), f (t) c = lim T →+∞ 1 T T /2 -T /2 f (t)dt (18) 
These continuous-time temporal mean statistics are thus estimated using, for q = 2, the estimators described in [START_REF]On the behavior of current second and higher order blind source separation methods for cyclostationary sources[END_REF] for zero mean signals and in [START_REF] Ferreol | Higher order blind separation of non zero-mean cyclostationary sources[END_REF] for potentially non zero-mean signals, and extending the previous ones to very HO statistics for q ≥ 3. Note that the proposed BIOME approach (in its current form) can tolerate, but does not exploit cyclostationarity of the sources such as in [START_REF] Ferreol | Higher order blind source separation using cyclostationarity property of the signals[END_REF]: this will be the subject of a forthcoming paper.

The 2q-BIOME method

It is subsequently shown that the 2q-BIOME method exploits the structure of the statistical matrix C 2q, x , for the chosen value of , 0 ≤ ≤ q 0 , so that the joint diagonalization to perform is actually somewhat more complicated than that given in problem 1, and better described by Problem 2 Given N matrices Γ n , 1 ≤ n ≤ N, each of size N q ×P , N q ≥ P but possibly N < P , find a full rank N ×P matrix A, N inversible diagonal matrices Λ n of size P ×P , and a unitary P ×P matrix V , such that

Γ n = A q Λ n V H where A q = A q- A * .

The core equation

The 2q-BIOME method precisely exploits several redundancies in the statistical matrix C 2q, x (q ≥ 2) of the data especially thanks to the multilinearity property. Although most of BSS algorithms use the matrix multilinearity property form (15) (the JADE method uses it for (q, ) = (1, 0) and for (q, ) = (2, 1)), the 2q-BIOME method precisely exploits the second form, described by

C 2q, x = A q ζ 2q,s A q H ( 19 
)
where

ζ 2q,s def = Diag C 1, 1, ..., 1 1, 1, ...1, s C 2, 2, ..., 2 2, 2 
, ..., 2, s • • • C P, P, ..., P P, P, ..., P, s is a P×P diagonal matrix of full rank in contrast to C 2q, s [START_REF] Comon | Improved contrast dedicated to blind separation in communications[END_REF], and where the N q ×P matrix A q is given by

A q = A q- A * = a 1 ⊗q-⊗(a * 1 ) ⊗ • • • a P ⊗q-⊗(a * P ) ⊗ = [A q-1 Φ 1 ] T [A q-1 Φ 2 ] T • • • [A q-1 Φ N ] T T (20) 
with

Φ n = Diag[ A(n,1) A(n,2) • • • A(n,P ) ] (21) 
In other words, the non zero elements of the P×P diagonal matrix Φ n are the components of the n-th row of matrix A. Note, as shown in appendix A, that the matrix form of the multilinearity property described by [START_REF] Dogan | Applications of cumulants to array processing -Part I: Aperture extension and array calibration[END_REF] ensues immediately from equations ( 7), ( 8), [START_REF] Chevalier | On the virtual array concept for higher order array processing[END_REF] and from the multilinearity property shared by cumulants [START_REF] Mccullagh | Tensor Methods in Statistics[END_REF] [29, pp. . Moreover, it appears from equation [START_REF] Ferreol | Fourth order blind identification of under-determined mixtures of sources (FOBIUM)[END_REF], that matrix A q , also called q-th order Virtual Mixture (VM), can be written by stacking G = N q-1 matrix blocks of size N×P , denoted Ψ g , and such that

∀ 1 ≤ g ≤ N q-1 , ∃ 1 ≤ n 1 ,. . ., n q-1 ≤ N, g = ϕ([n q-1 n q-2 . . . n 1 ]),
and

Ψ g =      A q-1 j=1 Φ n j if = 0 A * -1 j=1 Φ n j * q-1 k= Φ n k otherwise (o.w.) (22) 
and

A q = [Ψ 1 T Ψ 2 T • • • Ψ G T ] T . ( 23 
)

The BIOME concept

Firstly, a unitary matrix V is estimated in the Least Squares (LS) sense, and yields an estimate of A q . In a second stage, several algorithms may be thought of in order to compute an estimate of A from A q . Finally, estimate of sources s(k) can be computed using the estimate of A.

Identification of the q-th order VM A q

If 2q-th order marginal source cumulants are strictly positive (A3), then, according to [START_REF] Dogan | Applications of cumulants to array processing -Part I: Aperture extension and array calibration[END_REF]

, matrix C 2q, x is positive. So a square root of C 2q, x , denoted [C 2q, x ] 1/2 and such that [C 2q, x ] 1/2 [C 2q, x ] H/2 = C 2q, x
, may be computed (if marginal source cumulants are strictly negative, matrix -C 2q, x has to be considered instead, for computing the square root). In fact, we deduce from (19) that matrix A q ζ 1/2 2q,s is a natural square root of C 2q, x . Another possibility is to compute this square root via the singular or eigen value decomposition of C 2q, x given by

[C 2q, x ] 1/2 = E s L 1/2 s (24)
where L 1/2 s denotes a square root of L s , L s is the P ×P real-valued diagonal matrix of the P strongest (in terms of absolute value) eigenvalues of C 2q, x , and E s is the N q ×P matrix of the associated orthonormalized eigenvectors.

Proposition 1 Under assumptions (A4) and (A5), the N q ×P matrix A q is full column rank.

The proof of proposition 1 ensues immediately from equations [START_REF] Ferreol | Fourth order blind identification of under-determined mixtures of sources (FOBIUM)[END_REF], [START_REF] Ferreol | Higher order blind source separation using cyclostationarity property of the signals[END_REF] and assumption (A4). In fact, suppose that A q is not full column rank. Then there exists some P ×1 vector β = 0 such that A q β = 0, which, due to the structure of A q (20) implies that for all 1 ≤ n ≤ N, A q-1 Φ n β = 0. So it implies that A q-1 cannot be full column rank (since matrices Φ n are P ×P diagonal with nonzero entries, due to ( 21) and (A4)), which contradicts assumption (A5). Asumptions (A3) to (A5), proposition 1, and equations ( 19) and ( 24) allow together to prove that matrices C 2q, x and [C 2q, x ] 1/2 , and thus E s and L s , are of rank P as well.

Proposition 2 For a full rank matrix A q , (A3) is equivalent to assume that the diagonal elements of L s are not null and have also the same sign.

The proof of proposition 2 is also straightforward. In fact, it is well-known that two square roots of a matrix are equal to within a unitary matrix, so that

A q ζ 1/2 2q,s = E s L 1/2 s V = [C 2q, x ] 1/2 V ( 25 
)
for some P×P unitary matrix V . Note the latter is unique up to a multiplicative unitary invertible diagonal matrix. We deduce from ( 25) that

E s H A q ζ 2q,s A q H E s = L s ( 26 
)
and hence proposition 2.

In addition, equation ( 25) can be rewritten as follows

[C 2q, x ] 1/2 = E s L 1/2 s = A q ζ 1/2 2q,s V H . (27) 
showing the link between [C 2q, x ] 1/2 and A q . Plugging (20) into [START_REF] Lee | Blind source separation of more sources than mixtures using overcomplete representations[END_REF], matrix [C 2q, x ] 1/2 can be eventually rewritten as

[C 2q, x ] 1/2 = [A q-1 Φ 1 ζ 1/2 2q,s V H ] T [A q-1 Φ 2 ζ 1/2 2q,s V H ] T • • • [A q-1 Φ N ζ 1/2 2q,s V H ] T T = [ Γ 1 T Γ 2 T • • • Γ N T ] T (28) 
where the N matrix blocks Γ n of size N q-1 ×P are given by

∀ 1 ≤ n ≤ N, Γ n = A q-1 Φ n ζ 1/2 2q,s V H (29) 
Proposition 3 For any 1 ≤ n ≤ N, matrix Γ n is full column rank.

The proof results from proposition 1, in addition to all other stated conditions.

Using proposition 3, the pseudo-inverses Γ n of the N q-1 ×P matrices Γ n may be defined by

∀ 1 ≤ n ≤ N, Γ n = (Γ n H Γ n ) -1 Γ n H (30) 
Then, the information contained in matrix [C 2q, x ] 1/2 allows to blindly identify A q . Indeed, matrix V jointly diagonalizes the N(N -1) matrices Θ n 1 ,n 2 below

∀ 1 ≤ n 1 = n 2 ≤ N, Θ n 1 ,n 2 = Γ n 1 Γ n 2 . (31) 
To see this, let us compute Θ n 1 ,n 2 from ( 29) and [START_REF] Proakis | Digital Communications[END_REF]. We obtain

Θ n 1 ,n 2 = V [ζ 2q,s ] -1/2 Φ -1 n 1 Φ n 2 ζ 1/2 2q,s V H = V Φ -1 n 1 Φ n 2 V H (32) 
where

ζ 1/2 2q,s and D n 1 ,n 2 = Φ -1 n 1 Φ n 2 are
P×P diagonal full rank matrices, which shows the result. The unitary matrix V sol , solution to the previous problem of joint diagonalization of the N(N -1) matrices Θ n 1 ,n 2 has necessarily the form V sol = V T where T is a unitary matrix. This allows, in accordance with [START_REF] Lee | Blind source separation of more sources than mixtures using overcomplete representations[END_REF], to recover A q to within an orthogonal matrix as

[C 2q, x ] 1/2 V sol = A q ζ 1/2 2q,s T (33) 
Proposition 4 Under assumption (A4), for every pair

(p 1 , p 2 )| p 1 =p 2 of {1, 2, . . . , P } 2 , at least one pair (n 1 , n 2 )| n 1 =n 2 belonging to {1, 2, . . . , N} 2 exists such that D n 1 ,n 2 (p 1 , p 1 ) = D n 1 ,n 2 (p 2 , p 2 ).
The proof is given in appendix B.

Proposition 4 and [START_REF] Belouchrani | A blind source separation technique using second-order statistics[END_REF] allow to assert that the previous unitary matrix T is also trivial. So matrix A q may be identified, according to [START_REF] Spooner | The cumulant theory of cyclostationarity time-series -Part. II : Development and applications[END_REF], up to a trivial matrix.

Identification of mixture A

Three algorithms are proposed in this section, with increasing computational complexity and accuracy.

Note, from ( 23) and [START_REF]On the behavior of current second and higher order blind source separation methods for cyclostationary sources[END_REF], that equation [START_REF] Spooner | The cumulant theory of cyclostationarity time-series -Part. II : Development and applications[END_REF] can also be written in the form of G = N q-1 matrix blocks

Σ g = Ψ g ζ 1/2 2q,s T of size N×P as [C 2q, x ] 1/2 V sol = [Σ 1 T Σ 2 T • • • Σ G T ] T (34) 
So a first approach to estimate A up to a trivial matrix, named 2q-BIOME1 in the sequel, consists of retaining only the matrix block

Σ 1 if = 0 (Σ 1 * otherwise) made up of the N first rows of [C 2q, x ] 1/2 V sol such that Σ 1 =      A [Φ 1 ] q-1 ζ 1/2 2q,s T if = 0 A * [Φ * 1 ] -1 [Φ 1 ] q-ζ 1/2 2q,s T o.w. ( 35 
)
where

ζ 1/2
2q,s and Φ n , for all 1 ≤ n ≤ N, are diagonal matrices.

It is also possible to take into account all the matrix blocks Σ g if = 0 (Σ g * otherwise) and to compute their average. This yields a second algorithm, called 2q-BIOME2, of higher complexity.

A third algorithm, named 2q-BIOME3, is now described, and yields a more accurate solution to the BMI problem: as shown in appendix C, it consists, for each column b 

p of [C 2q, x ] 1/2 V sol , first of extracting the H = N q-2 vectors b p (h) (1 ≤ h ≤ H) of size N 2 ×1 (such that b p = [b p (1) T b p (2) T • • • b p (H) T ] T ),
∆ p =              {B p (h)B p (h) H , (B p (h) H B p (h)) * / 1 ≤ h ≤ H} if = 0 {B p (h) * / 1 ≤ h ≤ H} if = 1 {(B p (h)B p (h) H ) * , (B p (h) H B p (h)) / 1 ≤ h ≤ H} o.w. ( 36 
)
Theorem 1 The eigenvector, in common to all matrices of ∆ p , and associated with the strongest eigenvalue, is, up to a scale factor, a column vector of matrix A.

The proof is given in appendix C. So each joint diagonalization of matrices belonging to the set ∆ p allows to estimate a column vector of A, and finally to identify A to within a trivial matrix.

Remark 2 Although the algorithm of joint approximate diagonalization in the LS sense [START_REF]Jacobi angles for simultaneous diagonalization[END_REF] is restricted to unitary joint diagonalizers, it can be used to process the previous problem since matrices belonging to ∆ p are of rank 1 as shown in (C.5). However it is reasonable to believe that, if an unrestricted (non-unitary) LS joint diagonalization scheme is applied, as for instance the one described by Yeredor in [START_REF] Yeredor | Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation[END_REF], a better LS fit can be attained, possibly leading to a better estimate of A. Both approaches will be compared in section 6.2.1.

Extraction of the P independent components

Finally, to estimate the signal vector s(k) for any value k, and only in overdetermined situations (i.e. for P ≤ N), it is sufficient to apply a particular matrix filter built from the estimate A of A : such a filter may be the Spatial Matched Filter (SMF) source separator described in [START_REF] Chevalier | Optimal separation of independent narrow-band sources : Concept and Performances[END_REF], which is optimal in the presence of decorrelated signals and whose estimate is given by W

= R x -1 A , where R x is an estimate of R x = C 0 2, x .

Implementation of the BIOME method

The different steps of the 2q-BIOME method are summarized hereafter when K samples of the observations, x(k) (1 ≤ k ≤ K), are available.

Step1 Choose the adequate 2q-th statistical order in accordance with the alleged source number P to be potentially processed: see section 5.2 for more details. In practical situations, q is the minimal value which ensures the processing of all the sources potentially present.

Step2 Estimate the 2q-th order statistics C i q+1 ,...,i 2q i 1 ,i 2 ,...,iq,x from the K samples x(k) and choose, using section 5.2 and [START_REF] Chevalier | On the virtual array concept for higher order array processing[END_REF], the best arrangement C opt 2q,x , where C 2q,x is an estimate of C 2q, x .

Step3 Compute the Eigen Value Decomposition (EVD) of the Hermitian matrix C opt 2q,x ; estimate P , an estimate of the source number P , from an eigenvalue test and restrict the EVD to the P principal components : C opt 2q,x ≈ E s L s E s H , where L s is the diagonal matrix of the P eigenvalues of largest modulus and E s is the matrix of the associated eigenvectors.

Step4 Estimate the sign, , of the diagonal elements of L s .

Step5 Compute a square root matrix [

C opt 2q,x ] 1/2 of C opt 2q,x : [ C opt 2q,x ] 1/2 = E s | L s | 1/2
, where | •| denotes the elementwise complex modulus operator.

Step6 Extract from [ C opt 2q,x ] 1/2 the N matrices Γ n , construct matrices Θ n 1 ,n 2 = [ Γ n 1 Γ n 2 ]
for all 1 ≤ n 1 = n 2 ≤ N, and compute the estimate V sol of the unitary matrix V sol from the joint diagonalization of the N(N-1) matrices Θ n 1 ,n 2 (with the algorithm described in [START_REF]Jacobi angles for simultaneous diagonalization[END_REF]).

Step7 Compute A , an estimate of mixture A, from matrix [[ C opt 2q,x ] 1/2 V sol ] by either one of the following:

(1) (2q-BIOME1) taking the matrix block made up of the N first rows of

[[ C opt 2q,x ] 1/2 V sol ] if opt = 0, and of [[ C opt 2q,x ] 1/2 V sol ] * otherwise; (2) (2q-BIOME2) taking the average of the N matrix blocks, of size N × P , made up of the successive rows of [[ C opt 2q,x ] 1/2 V sol ] if opt = 0, and of [[ C opt 2q,x ] 1/2 V sol ] * otherwise; (3) (2q-BIOME3) fully exploiting each column vector b p of [[ C opt 2q,x ] 1/2 V sol ].
In order to do this, first extract the M = N q-2 vectors b p (m) of size N 2 ×1, then remodel them into M matrices B p (m) of size N ×N, and finally build the matrix whose p-th column vector is the eigenvector in common within the M matrices ∆ p (m) (1 ≤ m ≤ M) and associated with the largest eigenvalue; the algorithm used for this task is JADE [START_REF]Jacobi angles for simultaneous diagonalization[END_REF];

(4) (2q-BIOME4) doing the same as in 2q-BIOME3, but using the congruent diagonalization algorithm of Yeredor [START_REF] Yeredor | Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation[END_REF] instead of JADE.

Step8 If A is an over-determined mixture, estimate the signal vector s(k) for any value k, by applying to x(k) the SMF source separator defined by

W = R x -1 A , where R x is an estimate of R x = C 0 2, x .

Identifiability

The identifiability properties of the 2q-BIOME method are directly related to the 2q-th order Virtual Array (VA) concept described in [START_REF] Dogan | Applications of cumulants to array processing -Part I: Aperture extension and array calibration[END_REF] [10] for q = 2 and extended in [START_REF] Chevalier | On the virtual array concept for higher order array processing[END_REF] for q ≥ 2. For this reason, we recall the main results about the VA array concept in section 5.1 before discussing, in section 5.2, the identifiability properties of 2q-BIOME.

The VA concept

the absence of coupling between sensors, component n of the p-th column vector a p = a(θ p , ϕ p ) of A, denoted a n (θ p , ϕ p ) where θ p and ϕ p are the azimuth and the elevation angles of source p, can be written, in the general case of an array with space, angular and polarization diversity, as [START_REF] Compton | Adaptive Antennas -Concepts and Performance[END_REF] a n (θ p , ϕ p ) = f n (θ p , ϕ p , ω p ) exp {j2π[x n cos(θ p ) cos(ϕ p ) + y n sin(θ p ) cos(ϕ p ) + z n sin(ϕ p )] /λ} (37)

where j = √ -1, λ is the wavelength, (x n , y n , z n ) are the coordinates of sensor n of the array, f n (θ p , ϕ p , ω p ) is a complex number corresponding to the response of sensor n to a unit electric field coming from the direction (θ p , ϕ p ) and having the state of polarization ω p (characterized by two angles in the wave plane) [START_REF] Compton | Adaptive Antennas -Concepts and Performance[END_REF]. Let us recall that an array of sensors has space diversity if the sensors have not all the same phase center. The array has angular and/or polarization diversity if the sensors have not all the same radiating pattern and/or the same polarization, respectively.

Assuming no noise, we note that matrices C 2q, x and R x = C 0 2, x , defined by [START_REF] Dogan | Applications of cumulants to array processing -Part I: Aperture extension and array calibration[END_REF], have the same algebraic structure, where the marginal source cumulant C p,p,...,p p,p,...,p,s and the vector a p ⊗q-⊗(a * p ) ⊗ = a(θ p , ϕ p ) ⊗q-⊗(a(θ p , ϕ p ) * ) ⊗ play, for C 2q, x , the role played for R x by the power C p p,s and the steering vector a(θ p , ϕ p ) respectively. Thus, for BMI methods exploiting expression [START_REF] Dogan | Applications of cumulants to array processing -Part I: Aperture extension and array calibration[END_REF], the N q ×1 vector a(θ p , ϕ p ) ⊗q-⊗(a(θ p , ϕ p ) * ) ⊗ can be considered as the equivalent or virtual steering vector of the source p for the true array of N sensors with coordinates (x n , y n , z n ) and amplitude pattern f n (θ p , ϕ p , ω p ) (1 ≤ n ≤ N). Moreover, comparing the components of a(θ p , ϕ p ) ⊗q-⊗(a(θ p , ϕ p ) * ) ⊗ to expression (37), it is shown in [START_REF] Chevalier | On the virtual array concept for higher order array processing[END_REF] that the vector a(θ p , ϕ p ) ⊗q-⊗(a(θ p , ϕ p ) * ) ⊗ can also be considered as the true steering vector of the source p but for a VA of N q Virtual Sensors (VS) with particular coordinates and particular complex amplitude patterns deduced from (x n , y n , z n ) and f n (θ p , ϕ p , ω p ) (1 ≤ n ≤ N) respectively.

Nevertheless, some of these N q VS may coincide. If we note N 2q the number of different VS of the VA associated with the 2q-th order array processing problem for the arrangement C 2q, x , N 2q is also an upper bound to the rank of matrix A q . Conversely, if the 2q-th order VA has no ambiguities1 of rank smaller than or equal to N 2q , the rank of matrix A q is equal to N 2q under (A4).

In particular it is shown in [START_REF] Chevalier | On the virtual array concept for higher order array processing[END_REF] that in the general case of an arbitrary array of N sensors with no particular symmetries, for large values of N and for a given value of q (2 ≤ q ≤ N), the number of different VS N 2q can be approximated by

N 2q ≈ N!/ [(N -q)! (q -)! !] (38) 
In these conditions, the optimal arrangement C opt 2q, x is such that opt maximizes N 2q defined by (38) and thus minimizes the quantity (q -)! ! with respect to (0 ≤ ≤ q 0 where q 0 = q/2 if q is even and q 0 = (q -1)/2 if q is odd). It is straightforward to show that opt = q 0 and it is verified in [START_REF] Chevalier | On the virtual array concept for higher order array processing[END_REF] for 2 ≤ q ≤ 4 that this result remains true whatever N.

The exact computation of the number of different VS, N 2q , of the 2q-th order VA for the arrangement C 2q, x is not easy for arbitrary values of N, q (q ≥ 2) and . For this reason, Chevalier et al. [START_REF] Chevalier | On the virtual array concept for higher order array processing[END_REF] limit their analysis to some values of q (2 ≤ q ≤ 4), which extends the results of [START_REF] Chevalier | On the virtual array concept for the fourth-order direction finding problem[END_REF] up to the eighth order for arbitrary arrangements of the data cumulants. In fact, for these values of q, Chevalier et al. give an upper bound to N 2q , N 2q, max , first for an array with space, angular and polarization diversities, summarized in table 1, then for an array with angular and polarization diversity only, and finally for an array with only space diversity summarized in table 2. These upper bounds are shown in [START_REF] Chevalier | On the virtual array concept for higher order array processing[END_REF] to be reached for most array geometries. Nevertheless, for Uniformly spaced Linear Arrays (ULA), these upper bounds are not reached and N 2q is shown in [START_REF] Chevalier | On the virtual array concept for higher order array processing[END_REF] to be given by N 2q = q(N -1) + 1 (39) whatever q, N and , showing that the number N 2q of different VS of the 2q-th order VA associated with a ULA is independent of and of the chosen arrangement C 2q, x . However, for Uniformly spaced Circular Arrays (UCA) of N sensors, the upper bound is shown in [START_REF] Chevalier | On the virtual array concept for higher order array processing[END_REF] to be reached when N is a prime number as depicted in table 3. 

max q=2 = 0 N (N + 1)/2 = 1 N 2 q=3 = 0 N !/[6(N -3)!] + N (N -1) + N = 1 N !/[2(N -3)!] + 2N (N -1) + N q=4 = 0 N !/[24(N -4)!] + N !/[2(N -3)!] + 1.5N (N -1) + N = 1 N !/[6(N -4)!] + 1.5N !/(N -3)! + 3N (N -1) N = 2 N !/[4(N -4)!] + 2N !/(N -3)! + 3.5N (N -1) + N Table 2
N 2q, max associated with arrays with space diversity only N 2q, 

max q=2 = 0 N (N + 1)/2 = 1 N 2 -N + 1 q=3 = 0 N !/[6(N -3)!] + N (N -1) + N = 1 N !/[2(N -3)!] + N (N -1) + N q=4 = 0 N !/[24(N -4)!] + N !/[2(N -3)!] + 1.5N (N -1) + N = 1 N !/[6(N -4)!] + N !/(N -3)! + 1.5N (N -1) + N = 2 N !/[4(N -4)!] + N !/(N -3)! + 2N (N -1) + 1

The BIOME processing power

From the results of section 5.1, it is possible to identify the maximum number, P N,q max , of independent non Gaussian sources that can be processed by the 2q-BIOME method. Indeed, it has been shown in the paper that P sources can blindly identified by the 2q-BIOME method from an array of N sensors, provided conditions (A1)-(A5) are verified. For an array without any rank-1 ambiguities, condition (A4) is verified as soon as the sources have different directions of arrival. In a same manner, assuming the 2(q-1)th order VA associated with the arrangement C 2(q-1), x and the considered array of N sensors has no ambiguities of rank lower than N 2(q-1) , condition (A5) is verified provided (A4) is verified and P is lower than or equal to N 2(q-1) . Otherwise, (A5) cannot be verified. We deduce from this result that the maximal number P N,q max of non Gaussian sources that can be processed by 2q-BIOME is N opt 2(q-1) .

Now concerning parameter q, on one hand it depends on the number P of independent sources that BIOME's user wants to process. On the other hand, according to assumption (A3), 2q-th order marginal source cumulants have all to be non-zero and to have the same sign. Since we have previously shown the link between P N,q max and N opt 2(q-1) for a given value of q, it is important to choose q (q ≥ 2) such that P ≤ P N,q max , taking assumption (A3) into consideration. So, the lowest q that still enables identification is not necessary optimal.

6 Computer simulations

Performance criterion

Most of the existing performance criteria used to evaluate the quality of BMI algorithms, either in the over-determined [START_REF] Comon | Independent Component Analysis, a new concept ?[END_REF] or in the under-determined [START_REF]Blind Identification and Source Separation in 2x3 Under-determined Mixtures[END_REF] [34] cases, are global criteria, which evaluate a distance between the actual mixing matrix A and its blind estimate A . Although practical, a global performance criterion necessarily contains a part of arbitrary considerations in the manner of combining all the distances between the vectors a p and a p . Moreover, it is possible to find that an estimate A 1 of A is better than an estimate A 2 , with respect to the global criterion, while some columns of A 2 estimate the associated true steering vectors in a better way than A 1 . For these reasons, it may be more appropriate to use a non global criterion for the evaluation of the BMI process, which is defined [START_REF] Albera | Sixth order blind identification of under-determined mixtures (BIRTH) of sources[END_REF] [20] by the P -uplet

D A, A = (α 1 , α 2 , . . . , α P ) (40) 
where

α p = min 1≤ i≤P [d(a p , a i )] (41) 
and where d(u, v) is the pseudo-distance between vectors u and v, defined by:

d(u, v) = 1 - |u H v| 2 u 2 v 2 (42) 
Thus the identification quality of the source p is evaluated by the parameter α p , which decreases toward zero as the identification quality of the source p improves. In particular, the source p is perfectly identified when α p = 0. It will be subsequently considered that a source p is blindly identified with a very high quality if α p ≤ 0.01, with a high quality if α p ≤ 0.03, with a good quality if α p ≤ 0.05 and with a poor quality otherwise.

Computer results

The synthetic signals used in this section are stationary and ergodic, and according to section 3.3, sample statistics [START_REF] Mccullagh | Tensor Methods in Statistics[END_REF] may be employed. More precisely, the sources utilized are QPSK in baseband, with a square transmit filter, and a symbol rate equal to the sample rate [START_REF] Proakis | Digital Communications[END_REF]. Put in simple words, these sources s p (k) are actually sequences of independently and identically distributed (i.i.d.) random variables ∀k, ∀p, taking equally likely their values in the set {1, j, -1, -j}.

Moreover, the P statistically independent QPSK sources are assumed to be received by a UCA of N identical sensors of radius R such that R/λ = 0.55 (λ: wavelength). The P sources, assumed synchronized, have the same input SNR (Signal to Noise Ratio) and the noise is Gaussian. We apply different BMI methods such as COM2 [START_REF] Comon | Independent Component Analysis, a new concept ?[END_REF], JADE [START_REF] Cardoso | Blind beamforming for non-gaussian signals[END_REF], FastICA [START_REF] Bingham | A fast fixed-point algorithm for independent component analysis of complex valued signals[END_REF], FOBIUM [START_REF] Ferreol | Fourth order blind identification of under-determined mixtures of sources (FOBIUM)[END_REF], 6-BIOME1, 6-BIOME2, 6-BIOME3 and 6-BIOME4 methods, and the performance criterion D(A, A ) = (α 1 , α 2 , . . . , α P ) is computed and averaged over 200 realizations.

The under-determined case

The 6-BIOME methods are compared to each other and to FOBIUM, in an under-determined context. P = 7 poorly angularly separated QPSK sources

(θ 1 = 10 • , θ 2 = 35 • , θ 3 = 60 • , θ 4 = 85 • , θ 5 = 105 • , θ 6 = 150 • , θ 7 = -45 • , ϕ 1 = ϕ 2 = ϕ 3 = ϕ 4 = ϕ 5 = ϕ 6 = ϕ 7 = 0 •
) are received by a UCA of N = 3 identical sensors, with the same input SNR of 20 dB. The noise is spatially and temporally white Gaussian. The value of max 1≤p≤7 {α p } is reported in figure 1, that is, the performance index for the worst estimation among the 7 sources.

Several important observations can be made.

• the four 6-BIOME algorithms succeed in identifying the seven source directional vectors, but with different convergence speed. For instance, 6-BIOME3 turns out to be the fastest, and is able to yield values of α p 's all below 0.05 as soon as 600 samples are available. This is a surprising result, which contradicts the fact often admitted that "higher order techniques are slower to converge". • also surprisingly, 6-BIOME3 using the JAD algorithm performs better than 6-BIOME4 using Yeredor's joint congruent diagonalization. • 6-BIOME1 performs better than 6-BIOME2. This is due to the choice of the scenario. It may be useful to weight of blocks Σ g (if = 0) or Σ g * (otherwise) in the averaging in order to improve on performances. Nevertheless, the exact optimal weighting still needs to be calculated.

• as already pointed out in section 1, FOBIUM cannot identify the 2×7 mixing matrix because the 7 sources are white, and thus have the same trispectrum.

It turns out that the BIOME methods, originally devised for under-determined mixtures, also perform quite well with over-determined mixtures, as demon- strated in the next two subsections.

6.2.2

The over-determined case : poorly angularly separated sources scenario is as follows. There are N = 2 sensors and P = 2 QPSK sources very close to each other (the directions of arrival are θ 1 = 88 • ,θ 2 = 90 • ,ϕ 1 = ϕ 2 = 0 • ). The additive noise is spatially and temporally white Gaussian, and the SNR is 20dB. Since the best results were obtained for m = 3 in the previous subsection, we report here the comparison results only for m = 3.

Figure 2 confirms the very good behavior of 6-BIOME3, even with a very small number of snapshots (K ≤ 100). However, figure 2 shows that for poorly angularly separated sources, there exists a number of snapshots, K 0 , above which 6-BIOME3 becomes more efficient than COM2, JADE and FastICA. In the present scenario, it can be seen in figure 2 that K 0 ≈ 100. In such a situation, we can claim that the resolution gain obtained with 2q-BIOME is higher than the loss due to a higher variance in the statistics estimates. Similar results have been obtained for the directional vector of source 2. Figure 3 shows the variations of α 3 (source 3 performance) at the output of the previous methods as a function of the noise spatial correlation factor ρ. SNR of the three sources is taken equal to 0 dB and 500 samples are used to identify the over-determined mixture. The Gaussian noise model employed in this simulation is the sum of an internal noise ν in (k) and an external noise ν out (k), of covariance matrices R in ν and R out ν respectively such that

R in ν (r, q) def = σ 2 δ(r-q)/2 R out ν (r, q) def = σ 2 ρ |r-q| /2 (43) 
where σ 2 , ρ are the total noise variance per sensor and the noise spatial correlation factor respectively. Note that R ν (r, q) def = R in ν (r, q) + R out ν (r, q) is the (r, q)-th component of the total noise covariance matrix. It appears in figure 3 that the 6-BIOME3 method seems to be robust with respect to the correlated Gaussian noise presence. On the other hand, the wellknown COM2 and JADE methods are strongly affected as soon as the noise spatial correlation approaches 1. Actually, there exists a threshold above which 2q-BIOME methods become more attractive than more classical methods. In the present scenario, this threshold is ρ = 0.4. Lastly, FOBIUM does not succeed in identifying the directional vector of source 3 (this can be detected because α 3 is always larger than 0.05 regardless of the value of ρ). This is due to the fact that the 3 sources have identical trispectra. Similar results have been obtained for sources 1 and 2.

Conclusion

A family of new BMI methods, named BIOME, exploiting the information contained in the data statistics at an arbitrary even order has been proposed in this paper. These new methods allow to process both over-and underdetermined mixtures of sources, provided the latter have non zero marginal HO cumulants with the same sign. The proposed methods are not sensitive to a Gaussian colored noise whose spatial coherence is unknown. They also allow the processing of a number of sources depending on both the kind of sensors and the array geometry, and fast increasing with both the number of sensors and the order of the data statistics. For under-determined mixtures of sources, the proposed methods seem to outperform most of the methods currently available.

Thus, despite the higher variance of their sample estimates, high order statistics (e.g. order 6) used in 2q-BIOME algorithms may yield better performances than statistics of lower orders (e.g. order 4) used in more classical algorithms. The reason is the following. When sources are angularly close to each other, they can be hardly separated because of the limited angular resolution power of the array; if higher order statistics are used, then the processing can be viewed as using a Virtual Array having more sensors, and thus a larger resolution power. Of course, this holds true if the number of snapshots is greater than a threshold, and this contribution has precisely shown that this threshold is much lower than expected (a few hundreds of samples).

From a mathematical point of view, the so-called BIOME approaches allow to pose and to solve the BMI problem in terms of a non conventional joint approximate diagonalization of several given matrices, even in the presence of more inputs (sources) than observations (sensors). This problem is difficult to solve because of its structure. However, by ignoring part of the structure, it has been possible to compute in the LS sense the left and right transforms. More accurate numerical algorithms, taking fully into account the structure, still remain to be devised.

A Proof of the second matrix multilinearity property [START_REF] Dogan | Applications of cumulants to array processing -Part I: Aperture extension and array calibration[END_REF] Assuming (A1)-(A2), the 2q-th order statistics C i q+1 ,..., i 2q i 1 , i 2 ,..., iq, x defined by (2) may be described, using [START_REF] Albera | Asymptotic performance of contrast-based blind source separation algorithms[END_REF] and the multilinearity property shared by cumulants [28] [29, pp. 1-24], by C i q+1 ,... , i 2q i 1 , i 2 ,..., iq, x = P p=1 C p,... , p p,... , p, s

q m=1 A(i m , p)   2q m=q+1 A(i m , p) *   (A.1) It is straightforward to show that q- m=1 A(i m , p) 2q m=2q-+1 A(i m , p) * is the I 1 -th component of vector a p ⊗q-⊗(a * p ) ⊗ and that 2q- m=q+1 A(i m , p) * q m=q-+1 A(i m , p) is the I 2 -th component of vector a p ⊗q-⊗(a * p ) ⊗ *
where I 1 , I 2 are given by ( 8) and [START_REF] Chevalier | On the virtual array concept for higher order array processing[END_REF]. Consequently, since a p ⊗q-⊗(a * p ) ⊗ is the p-th column vector of matrix A q (20), equation (A.1) may be written as C i q+1 ,... , i 2q i 1 , i 2 ,..., iq, x = P p=1 C p,... , p p,... , p, s A q (I 1 , p) A q (I 2 , p) * (A.2)

where A q (n, p) is the (n, p)-th component of the N q ×P matrix A q . So, since ζ 2q,s denotes the P×P invertible diagonal matrix Diag C 1, 1, ..., 1 1, 1, ...1, s , C 2, 2, ..., 2 2, 2, ..., 2, s , • • • , C P, P, ..., P P, P, ..., P, s , equation (A.2) may take the following expression

C i q+1 ,... , i 2q i 1 , i 2 ,..., iq, x = P p=1 A q (I 1 , p) ζ 2q,s (p, p) A q H (p, I 2 ). (A.3) That means C i q+1 ,... , i 2q i 1 , i 2 ,..., iq, x = A q ζ 2q,s A q H (I 1 , I 2 ). (A.4)
And, since quantity C i q+1 ,... , i 2q i 1 , i 2 ,..., iq, x is also the (I 1 , I 2 )-th component of the N q ×N q matrix C 2q, x according to (7), we finally have To prove it, assume the contrary: In other words, assuming (B.2) implies that at least two columns of A are collinear, which contradicts (A4). Consequently, proposition 4 is true.

C 2q, x = A q ζ 2q,s A q H . (A.
∃ 1 ≤ p 1 = p 2 ≤ P : ∀ 1 ≤ n 1 = n 2 ≤ N,

C Proof of theorem 1

Each column b p of [C 2q, x ] 1/2 V sol is defined, according to [START_REF] Spooner | The cumulant theory of cyclostationarity time-series -Part. II : Development and applications[END_REF], by where • denotes the norm operator respectively. So a joint diagonalization of matrices belonging to ∆ p indeed allows to extract the ξ(p)-th column vector a ξ(p) of A.

D Example of FO and SixO statistics

Consider zero mean complex variables that are distributed symmetrically with respect to the origin. Thanks to the Leonov-Shiryaev formula, FO and SixO statistics of these variables can be written as a function of moments [START_REF] Albera | Asymptotic performance of contrast-based blind source separation algorithms[END_REF]. As an example, at order 4:

C i 3 , i 4 i 1 , i 2 , x = M i 3 , i 4 i 1 , i 2 , x (k) -[2]M i 3 i 1 , x (k)M i 4 i 2 , x (k) -M i 1 , i 2 , x (k)M i 3 , i 4 x (k) (D.1)
and at order 6:

C i 4 , i 5 , i 6 i 1 , i 2 , i 3 , x = M i 4 , i 5 , i 6 i 1 , i 2 , i 3 , x (k) -[3]M i 4 i 1 , i 2 , i 3 , x (k) M i 5 , i 6 x (k) -[9]M i 4 , i 5 i 1 , i 2 , x (k)M i 6 i 3 , x (k) -[3]M i 1 , i 2 , x (k)M i 4 , i 5 , i 6 i 3 , x (k) + 2 [START_REF] Chevalier | On the virtual array concept for higher order array processing[END_REF]M i 1 , i 2 , x (k)M i 4 i 3 , x (k)M i 5 , i 6 x (k) + 2[6]M i 4 i 1 , x (k)M i 5 i 2 , x (k)M i 6 (k) denotes the McCullagh bracket notation [START_REF] Mccullagh | Tensor Methods in Statistics[END_REF]. In short, the number d appearing between brackets tells that we have a sum of d monomials, that can be deduced from the current one, m M i r(m)+1 ,..., i r(m)+s(m) i 1(m) ,..., i r(m) , x (k), by permuting separately either superscripts or subscripts. As an illustration of this notation, an expansion of six terms is given below:

[6]M i 3 i 1 , i 2 , x (k) M i 5 i 4 , x (k) = M i 3 i 1 , i 2 , x (k) M i 5 i 4 , x (k) + M i 5 i 1 , i 2 , x (k) M i 3 i 4 , x (k) + M i 3 i 1 , i 4 , x (k) M i 5 i 2 , x (k) + M i 5 i 1 , i 4 , x (k) M i 3 i 2 , x (k) + M i 3 i 4 , i 2 , x (k) M i 5 i 1 , x (k) + M i 5 i 4 , i 2 , x (k) M i 3 i 1 , x (k) (D.3)
Expressions of cumulants of order 8 as a function of moments can be found in [START_REF] Mccullagh | Tensor Methods in Statistics[END_REF] in the real case, or in [START_REF] Albera | Asymptotic performance of contrast-based blind source separation algorithms[END_REF] in the complex case. These expressions are

  then of remodeling them into H matrices B p (h) of size N×N (the n-th column of B p (h) is made up from the N consecutive elements of b p (h) as from the [N(n-1)+1]-th one), and finally of jointly diagonalizing the set ∆ p of matrices defined by

2 Fig. 1 .

 21 Fig. 1. max{α p } for a SNR of 20 dB

Fig. 2 .

 2 Fig. 2. α 1 for 2 poorly angularly separated sources and for a SNR of 20 dB

Fig. 3 .

 3 Fig. 3. α 3 for 3 angularly separated sources and for a SNR of 0 dB

5 )B Proof of proposition 4 Proposition 4

 544 may be rewritten as(A4) ⇒ {∀ 1 ≤ p 1 = p 2 ≤ P, ∃ 1 ≤ n 1 = n 2 ≤ N : D n 1 ,n 2 (p 1 , p 1 ) = D n 1 ,n 2 (p 2 , p 2 )}(B.1)

∀ 1 ≤ 2 o

 12 p ≤ P, b p = λ ξ(p) [(a ξ(p) ) ⊗q-⊗(a * ξ(p) ) ⊗ ] of size (N q ×1) (C.1) where ξ(•) is a bijective function of {1, 2, . . . , P } into itself (i.e. a permutation function) and where |λ p | = | C p, p, ..., p p, p, ..., p, s | 1/2 , | •| denoting the complex modulus operator. Moreover, vectors b p may be written asb p = [b p (1) T b p (2) T • • • b p (M) T ] T (C.2)where M = N q-2 and b p (m) is of size N 2 ×1. Now it is important to notice that each vector b p (m) (1 ≤ m ≤ M) may be expressed as a Kronecker product of the column vector a p of A by itself:n j ,ξ(p)) a ξ(p) ⊗a ξ(p) if = 0 λ ξ(p) q-2 j=1 A(n j ,ξ(p)) a ξ(p) ⊗a * ξ(p) if = 1 λ ξ(p) q-j=1 A(n j ,ξ(p)) q-2 j=q-+1 A(n j ,ξ(p)) * a ξ(p) ⊗a ξ(p) * o.w. (C.3) So we transform the M vectors b p (m) of size N 2 ×1 into N×N matrices B p (m) (1 ≤ m ≤ M) where the (i 1 ,i 2 )-th component of B p (m) corresponds to the ϕ([i 2 i 1 ])-th component of b p (m) so that B p (m) = n j ,ξ(p)) a ξ(p) a ξ(p) n j ,ξ(p)) a ξ(p) a ξ(p) n j ,ξ(p)) q-2 j=q-+1 A(n j ,ξ(p)) * a ξ(p) a ξ(p) T * o.w. (C.4)Consequently, plugging (C.4) into[START_REF] Yeredor | Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation[END_REF], the set of matrices ∆ p may be expressed as∆ p = µ p, n j a ξ(p) a ξ(p) H / 1 ≤ n j ≤ N (C.5) with µ p, n j =              |λ ξ(p) | 2 q-2j=1 A(n j ,ξ(p)) n j ,ξ(p)) * if = 1 |λ ξ(p) | 2 q-j=1 A(n j ,ξ(p)) q-2 j=q-+1 A(n j ,ξ(p)) * 2 a ξ(p)

i 3 ,

 3 x (k) (D.2) where [d] m M i r(m)+1 ,..., i r(m)+s(m) i 1(m) ,..., i r(m) , x

Table 1 N

 1 2q, max associated with arrays with space, angular and polarization diversities N 2q,

Table 3 N

 3 2q associated with a UCA of N identical sensors

					N 2q		
			N = 3 N = 5 N = 7 N = 9 N = 11
	q=2	= 0	6	15	28	45	66
		= 1	7	21	43	73	111
	q=3	= 0	10	35	84	163	286
		= 1	12	55	154	306	616
	q=4	= 0	15	70	210	477	1001
		= 1	18	115	420	918	2486
		= 2	19	131	505	1135	3191

  D n 1 ,n 2 (p 1 , p 1 ) = D n 1 ,n 2 (p 2 , p 2 ) (B.2) This implies, since D n 1 ,n 2 = Φ -1 n 1 Φ n 2 are P×P diagonal full rank matrices, that ∃ 1 ≤ p 1 = p 2 ≤ P : ∀ 1 ≤ n 1 = n 2 ≤ N, Φ n 2 (p 1 , p 1 ) Φ n 1 (p 1 , p 1 ) = Φ n 2 (p 2 , p 2 ) Φ n 1 (p 2 , p 2 ) (B.3)which is equivalent, according to[START_REF] Ferreol | Higher order blind source separation using cyclostationarity property of the signals[END_REF], to∃ 1 ≤ p 1 = p 2 ≤ P : ∀ 1 ≤ n 1 = n 2 ≤ N, A(n 2 , p 1 )

	A(n 1 , p 1 )	=	A(n 2 , p 2 ) A(n 1 , p 2 )	(B.4)
	This means			

∃ 1 ≤ p 1 = p 2 ≤ P : a p 1 ∝ a p 2 (B.5)

Remind that a sensor array has ambiguities of rank m if and only if there exists at least one (m+1)-uplet of linearly dependent directional vectors associated to (m+1) distinct location parameters. We recall that directional vectors belong to a manifold, entirely defined by the sensor array, and parametrized by location parameters. Rank 1 ambiguities are also known as Grating Lobes[START_REF] Compton | Adaptive Antennas -Concepts and Performance[END_REF]; higher order ambiguities have been first introduced by Schmidt in 1981[START_REF] Schmidt | Multiple emitter location and signal parameter estimation[END_REF].
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