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On the Finiteness of the Morse Index for Schrdinger

Operators

Baptiste Devyver

November 15, 2010

Abstract

We show that if M is a complete Riemannian manifold and H = ∆ + V is a Schrdinger

operator, then the existence of a positive solution of Hu = 0 outside a compact set is equivalent

to the finiteness of the number of negative bound states of H .

1 Introduction

A classical and important tool in differential geometry is the so-called Bochner technique. Since
its introduction by Bochner, this technique has undergone a huge number of refinements; since
it motivates this article, we want to recall a quite general setting to which it applies (see [8] for
details). Consider a Riemannian manifold M and a Riemannian vector bundle E over it, which

carries a compatible metric connection D. We assume that there is a geometric Laplacian ~∆ acting
on sections of E, which can be related to the “rough Laplacian” ∆̄ = −Tr(D2) by the formula:

~∆ = ∆̄ +R,
where R is an symetric endomorphism in each fiber of E. Classical examples of such situations
are p-differential forms for the Hodge Laplacian, and spinors for the Dirac Laplacian. Denote by
H(E) the set of section ξ of E such that ~∆ξ = 0. Then, defining V (x) to be the lower eigenvalue
of R and using Kato’s inequality, we have:

∆|ξ|+ V |ξ| ≤ 0, ∀ξ ∈ H(E),

where ∆ is the Laplacian on M (with the convention that it is a positive operator). Typically, one

wants to show that the space of harmonic sections for ~∆, satisfying some integrability conditions
(for exemple, being in L2), has finite dimension. For the L2 integrability conditions, Theorem 5.1
in [8] asserts in particular that this is the case if we can find a positive function ϕ, solution of
the equation ∆ϕ + V ϕ = 0 outside a compact set. Therefore, in this case the question reduces to
give conditions on the potential V such that we can find such a solution. This has a link with the
spectrum of the Schrdinger operator ∆+V , as the following Lemma shows (which we extract from
[8], although it is originally due to Moss and Piepenbrink [7] and Fischer-Colbrie and Schoen [4]):

Lemma 1.1 Let M be a Riemannian manifold, Ω ⊂ M be a domain and V ∈ L∞
loc. Denote by

HΩ the Schrdinger operator H := ∆ + V on Ω, with Dirichlet boundary conditions, and assume
it is bounded from below. We identify it with its Friedrichs extension, which is self-adjoint. Then
the following are equivalent:

1. There exists ϕ ∈W 1,2
loc positive solution of

Hϕ = 0 on Ω.

2. λ1(HΩ) ≥ 0, where λ1 denotes the infimum of the spectrum.

Definition 1.1 We say that a self-adjoint operator has a finite number of negative bound states
if its essential spectrum σess is contained in [0,∞), and if it has only a finite number of negative
eigenvalues. Recall for completeness that the number of negative eigenvalues is called the Morse

Index of the operator (although we will not use this terminology in this paper).
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Notice that for a Schrdinger operator ∆ + V , the condition σess ⊂ [0,∞) is satisfied if V tends to
0 at infinity for example. In [3] (see also [8], Chapter 3), Fischer-Colbrie has shown the following
Theorem:

Theorem 1.1 Let H := ∆ + V be a Scrdinger operator bounded from below on a complete Rie-
mannian manifold, with V ∈ L∞

loc, which has a finite number of negative bound states. Then there
is a positive function ϕ, solution of the equation Hϕ = 0 outside a compact set.

The proof consists in showing that the finiteness of the number of negative bound states implies
that we can find a compact set K such that λ1(HM\K) ≥ 0, and applying Theorem (1.1).

Remark 1.1 We mention that the reason why Fischer-Colbrie and Schoen studied Schrdinger
operators was to prove results concerning minimal surfaces. Indeed, for a minimal surface M in a
3-dimensional manifold N , studying the Schrdinger operator ∆ + S −K + 1

2 |A|2 on M , where S
is the scalar curvature of N , K is the Gaussian curvature of M and A is the second fundamental
form of the immersion, gives results concerning the geometry of M .

In this paper, we consider the converse of Theorem (1.1); our main result is the following

Theorem 1.2 Let M be a complete Riemannian manifold. Let V ∈ C∞, and denote H = ∆+ V
the corresponding Schrdinger operator, which we assume to be bounded from below. Then the
following assertions are equivalent:

1. Card{Spec(H)
⋂

(−∞, 0)}, the number of negative bound states of H, is finite.

2. There exists a positive smooth function ϕ which satisfies Hϕ = 0 outside a compact set.

Furthermore, in this case KerL2(H) is finite dimensional.

We first want to make several remarks concerning this result:

Remark 1.2 The hypothesis that H is bounded from below is to ensure that defined on C∞
0 (M)

-the set of compactly supported smooth functions-, it is an essentially self-adjoint operator.

Remark 1.3 The regularity hypotheses on V can be weakened. We will come back to the regularity
issues at the end of the paper. There, we will prove that Theorem (1.2) holds for V only in L∞

loc.

Remark 1.4 Theorem (1.2) also holds for more general operators H: the proof will show that in
fact it holds for H of the form (∆µ +W ) + V , where µ is a C1 positive function and W ≥ 0.

There will be two ingredients in the proof; first we consider the operator ϕ−1Hϕ: this way to
transform H is called the Doob transform associated to ϕ. Using the Doob transform, we will
see that Theorem (1.2) is a consequence of the following general result, which is of independant
interest:

Theorem 1.3 Let L be an operator of the type: L = ∆µ + W with W ≥ 0, where ∆µ =
− 1

µdiv(µgrad) with µ ∈ C1 positive function is a weighted Laplacian. Let V be a compactly
supported potential in Lp for a n

2 < p ≤ ∞.
Then sup{dim(F ) : F ⊂ C∞

0 and q|F ≤ 0}, where q is the quadratic form associated to L+ V , is
finite. Furthermore, if we assume p ≥ n, then KerL2(L + V ) := {ϕ ∈ L2 : (L + V )ϕ = 0} has
finite dimension.

Roughly, this Theorem relies on two principles: first, following an idea that goes back to Birman
and Schwinger (see for exemple [10], p.98-99), we will bound sup{dimF : F ⊂ C∞

0 and q|F ≤ 0}
by the number of eigenvalues of L−1/2(−V )L−1/2 which are greater or equal to 1. The second
idea, which comes from [2], Proposition 1.2, is that Sobolev inequalities, and more generally non-
parabolicity of (M, g) have functionnal consequences for the operator ∆−1/2V∆−1/2: in the case
where V has compact support, this operator is compact if (M, g) is non-parabolic. We will extend
this to our case of interest, i.e. to L−1/2(−V )L−1/2 when M is non-parabolic for L (details of the
meaning of this are given in the next two sections). Finally, we will use a trick to deal with the
case where L is parabolic.
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Remark 1.5 The statement concerning the finiteness of the dimension of KerL2(L + V ) could
also be obtained for L = ∆, under the hypothesis that V is continuous, by applying Theorem 5.1
in [8] (which is much more general than that). Our proof is different, and it has the advantage to
be a fairly direct consequence of the results related to the non-parabolicity of L that we prove in
section 3.

The article is organised as follows: in the first two sections, we develop the material we will need to
prove our results. In the first part, we investigate the notion of parabolicity for an operator L of the
type : L = ∆µ +W . In the second one, we describe functionnal consequences of non-parabolicity
for the operator L−1/2. In the third part, we prove the two results cited above. In a forth one,
we weaken the regularity assumptions needed on V , and in a fifth one, we present an alternative
proof of Theorem (1.3).

2 On the parabolicity of a manifold

In this section, we recall the notion of parabolicity. References for this sections are [1] and [6].
Notations : Throughout this paper, (M, g) denotes a complete Riemannian manifold, dx is the
Riemannian measure on M and C∞

0 (M) (or C∞
0 for short) is the set of compactly supported,

smooth functions on M .
We consider on M an operator L of the type L = ∆µ +W , W non-negative. It is a well-known
fact that L is a positive self-adjoint operator on L2(M,µdx), associated to the closable quadratic
form:

q(u) =

∫

M

(|du|2 +Wu2)µdx.

Particular example of such an operator are:

1. The natural Laplacian ∆ = −div grad, where divX =
∑

j g
−1/2∂j(g

1/2Xj) in a coordinate
system.

2. The µ-Laplacian ∆µ = − 1
µdiv(µgrad), where µ is a positive, smooth function on M .

3. Schrdinger operators H = ∆+W , with W ∈ L1
loc a non-negative function.

Return to the general case. We have a Green-type formula:

Proposition 2.1 If u and v are elements of C∞
0 ,

∫

M

(uLv)µdx =

∫

M

(〈du, dv〉+Wuv)µdx

Notation: we denote by dν the measure µdx.

Remark 2.1 The restriction W non-negative is to ensure that L satisfies the maximum principle.

Given Ω ⊂M an open, regular, relatively compact set, let LΩ be the self-adjoint operator associated
to the restriction of the quadratic form q to the Sobolev space W 1,2

0 (Ω, dν) (i.e. with Dirichlet
conditions). We can consider the Green kernel GΩ of L on Ω with Dirichlet conditions, extended
by zero outside Ω× Ω; it enjoys the following the properties:

1. GΩ ≥ 0,

2. GΩ is finite off the diagonal.

3. G |∂(Ω×Ω)= 0,

4. For all f ∈ L2(Ω, dν), g := GΩf verify:

g ∈ Dom(LΩ), and LΩg = f
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It is a consequence of the maximum principle that GΩ is non-decreasing with respect to Ω:

if Ω1 ⊂ Ω2, GΩ2
≥ GΩ1

,

so we can define a pointwise limit:

G(x, y) := lim
Ω→M

GΩ(x, y) for all x 6= y

Definition 2.1 We say that (M, g) is non-parabolic for L if G(x, y) <∞ for a certain (x, y).

As a consequence of the Harnack inequality that this is equivalent to G(x, y) <∞ for all x 6= y (for
an account on the notion of parabolicity for the usual Laplacian and a proof of this fact, see the
survey of Grigor’yan [6]). There is a caracterisation of non-parabolicity in term of the “Dirichlet
form” q of L, which we will make constant use of (for a proof and references, see [1], p.46-47):

Theorem 2.1 The following statements are equivalent:

1. (M, g) is non-parabolic for L.

2. There exists an open, relatively compact subset Ω of M and a constant C ≥ 0 such that for
all f ∈ C∞

0 (M),

∫

Ω

f2dν ≤ Cq(f)

3. Property (2) is true for all open, relatively compact subset Ω of M .

Corollary 2.1 If there is an ǫ > 0 such that W > ǫ on an open set, then (M, g) is non-parabolic
for ∆µ +W .

Exemple 2.1 R
n is non-parabolic for ∆ if and only if n > 2. More generally, any complete

Riemannian manifold satisfying a Sobolev inequality of index n > 2:

||f || 2n
n−2

≤ C||∇f ||2, ∀f ∈ C∞
0

is non-parabolic for ∆ (this is an easy consequence of Theorem (2.1)). Example of such a manifold
other than R

n is the connected sum of two copies of Rn, for n > 2.

3 Consequences for L
−1/2

In this section, we consider as before an operator L = ∆µ +W , W non-negative, which is non-
parabolic, and we review some functional properties of the operator L−1/2 that come from the
non-parabolicity of L. We keep the notations of section 2. We can define an operator L−1/2 by
two different means. Finally, we will have to show that these definitions are consistent, in that
they agree in a suitable sense.

Definition 3.1 We define two unbounded operators L
1/2
s and L

−1/2
s by the functionnal calculus:

if f is a Borel function on R, we can define

f(L) :=

∫ ∞

0

f(λ)dPλ,

where dPλ is the projection-valued measure associated to the self-adjoint operator L (see ([9])).

Then L
1/2
s := f(L) with f(x) = x1/2, and L

1/2
s := g(L) with g(x) = x−1/2.

Remark 3.1 1. Since (M, g) is non-parabolic for L, the functionnal inequalities of Theorem
(2.1) imply that KerL2L = {0}, for if u ∈ KerL2L we have q(u) = 0 by definition of q.
Therefore, P{0} = 0 and we can indeed take g(x) = x−1/2 in the above definition, even if g
is not defined in 0.

2. The “s” index stands for “spectral”.
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3. By construction, D(L
1/2
s ) = D(q) (where D denotes the domain).

The non-parabolicity of (M, g) for L allows us to consider an alternative definition of L−1/2,

which we describe now. Let H1
0 be the closure of C∞

0 (M) for the norm N(u) = ||L1/2
s u||2 =

(
∫

(|du|2 + Wu2)µdvol)1/2. It is a Hilbert space, and we have the following paraphrase of the
implication (1) ⇒ (3) of Theorem (2.1), which allows us to see H1

0 as a functions space:

Proposition 3.1 If M is non-parabolic for L, then the injection C∞
0 (M) →֒W 1,2

loc (M,dν) extends
continuously to:

H1
0 →֒W 1,2

loc (M),

that is : for all U open, relatively compact set, the restriction to U of elements of H1
0 belong to

W 1,2(U), and there exists a constant CU such that

∣

∣

∣

∣f |U
∣

∣

∣

∣

W 1,2(U)
≤ CU ||f ||H1

0
, ∀f ∈ H1

0 ,

or equivalently:

∫

U

f2 ≤ CU ||f ||2H1
0
, ∀f ∈ H1

0 .

We then define:

Definition 3.2 The operator L
1/2
s , restricted to C∞

0 (M), extends to an isometry:

L1/2
a : H1

0 −→ L2(M,dν)

The following Proposition tells us that these two operators L
1/2
s and L

1/2
a are in fact equal:

Proposition 3.2 1. C∞
0 (M) is a core for L

1/2
s .

2. D(L
1/2
s ) = H1

0 ∩ L2, and the restrictions to H1
0 ∩ L2 of the two operators L

1/2
a and L

1/2
s are

equal.

Proof:

(1): Let A be the restriction of L
1/2
s to C∞

0 (M). We have to show that

Im(A± i)⊥ = {0}
Let f ∈ Im(A+ i)⊥. Then for all g ∈ C∞

0 (M),

〈f, (A+ i)g〉 = 0.

We can write f = (L
1/2
s + i)u, where u ∈ L2, since L

1/2
s is self-adjoint. Then if g ∈ C∞

0 (M),

0 = 〈f, (A + i)g〉 = 〈(L1/2
s + i)u, (L1/2

s + i)g〉 = 〈u, (Ls + 1)g〉,
by the Spectral Theorem. But C∞

0 (M) is a core for Ls+1, therefore u ∈ D(Ls+1) and (Ls+1)u = 0.
Since Ls ≥ 0, −1 does not belong to the spectrum of Ls, and we conclude that u = 0, then f = 0.
The proof for A− i is similar.

(2): Define a quadratic form Q on C∞
0 by

Q(f) = ||f ||22 + 〈Lf, f〉 = ||f ||22 + ||L1/2
s f ||22,

and a quadratic form Q̄ on H1
0 ∩ L2 by

Q̄(f) = ||f ||22 + ||L1/2
a f ||22 = ||f ||22 + ||f ||2H1

0
.

By the consequence of non-parabolicity given in Proposition (3.1), Q̄ is closed. It is thus a closed
extension of Q, which yields a self-adjoint operator S such that D(S1/2) = D(Q̄) and for all
f ∈ D(Q̄),
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Q̄(f) = 〈Sf, f〉 = ||S1/2f ||22.
But since Ls is essentially self-adjoint, it has a unique self-adjoint extension, and so we get that
S = L+ 1. Using the fact that

√

Ls ≤
√

Ls + 1 ≤
√

Ls + 1,

we get that D(
√
Ls + 1) = D(

√
Ls), and then D(Q̄) = D(L

1/2
s ). By the first part of Proposition

(3.2),
√
Ls + 1|C∞

0
(M) is essentially self-adjoint, and since

Q̄(f) =
∣

∣

∣

∣

√

Ls + 1f
∣

∣

∣

∣

2

2
, ∀f ∈ D(Q̄),

we conclude that C∞
0 (M) is dense in D(Q̄) = H1

0 ∩ L2 for the norm given by
√

Q̄.

Since L
1/2
a and L

1/2
s coincide on C∞

0 (M), by a limit argument they also coincide on H1
0 ∩ L2.

�

From Proposition (3.2), we can deduce the following Lemma:

Lemma 3.1 If u and v belong to H1
0 ∩ L2, then

〈L1/2
a u, v〉 = 〈u, L1/2

a v〉

Proof:

It is a consequence of the facts that L
1/2
a and L

1/2
s coincide on H1

0 ∩L2 (by Proposition (3.2)), and

that L
1/2
s is self-adjoint.

�

Proposition 3.3 L
1/2
a : H1

0 → L2 is an isomorphism.

Proof of Proposition (3.3):

L
1/2
a is the unique continuous extension of the isometry L

1/2
s : C∞

0 (M) → L2, so it is also an
isometry, hence injective.

To prove that it is onto, since the image of L
1/2
a is closed by the fact that it is an isometry, it is

enough to prove that (ImL
1/2
a )⊥ = {0}. So let w ∈ (ImL

1/2
a )⊥ ⊂ L2. Then for all u ∈ C∞

0 (M),

〈w,L1/2
s u〉 = 0.

Since C∞
0 (M) is a core for L

1/2
s , we obtain:

w ∈ Dom(L1/2
s ) and L1/2

s w = 0.

We deduce by Lemma (3.1) that w ∈ H1
0 and L

1/2
a w = 0. Since L

1/2
a is injective, w = 0 in H1

0 and
then in L2 by Theorem (2.1).

�

To sum up, we have defined an operator:

L−1/2 = L−1/2
s = L−1/2

a ,

which enjoys the following properties:

1. It is a bijective isometry from L2 to H1
0 .

2. As a non-bounded operator, it has domain L1/2(H1
0 ∩ L2).

Later, we will look to the operator L−1/2V L−1/2, when V is compactly supported (here, we have
identified V with the operator “multiplication by V ”). To show that it is compact, we will need
the following:
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Proposition 3.4 Denote by L2
0 the space of compactly supported L2 functions.

Then L2
0 is contained in Dom(L

−1/2
s ), and given an open, relatively compact subset K, there exists

a constant CK such that for all v ∈ L2
0 with support included in K,

||L−1/2
s v||2 ≤ CK ||v||2.

More generally, if n denotes the dimension of M , for all n ≤ p ≤ ∞, there is a constant C(p,K)

such that for all v ∈ L
2p

p+2

0 with support included in K,

||L−1/2
s v||2 ≤ C(K, p)||v|| 2p

p+2

.

Proof of Proposition (3.4):
The proof is by duality: we will make use of the following

Lemma 3.2 To each v ∈ L
2p

p+2

0 , we associate the linear form

ϕv : w ∈ H1
0 ∩ L

2p
p−2 →֒ 〈v, w〉

Then for all n ≤ p ≤ ∞, ϕv extends uniquely to an element of (H1
0 )

′, with ||ϕv|| ≤ C(p,K)||v|| 2p
p+2

,

where K is an open, relatively compact subset containing the support of v.

The proof of Lemma (3.2) is a consequence of non-parabolicity of L, and we prove it after.

We then conclude the proof of Proposition (3.4). Let u ∈ H1
0 such that L

1/2
a u ∈ L2

0. We have

to show that u ∈ L2. Let v ∈ L2
0 defined by v := L

1/2
a u. By Lemma (3.2), there exists h ∈ H1

0

such that ϕv = 〈h, .〉H1
0
= 〈L1/2h, L1/2.〉. We define f = L1/2h, and since D(L

1/2
s ) = H1

0 ∩ L2,

we obtain that f ∈ D((L
1/2
s )∗) with (L

1/2
s )∗f = v. But L

1/2
s is self-adjoint, so f ∈ H1

0 ∩ L2 and

L
1/2
a f = L

1/2
s f = v = L

1/2
a u. L

1/2
a being injective, u = f ∈ L2.

For the inequality on the norm, we remark that ||u||L2 = ||f ||L2 = ||h||H1
0
= ||ϕL1/2u||, and use

Lemma (3.2).

�

Proof of Lemma (3.2):
LetK be an open, relatively compact set containing the support of v in its interior. Let ρ ∈ C∞

0 (M)
such that ρ = 1 on the support of v, and ρ = 0 outside K. If w ∈ C∞

0 (M),

|ϕv(w)| ≤ ||v|| 2p
p+2

||ρw||
L

2p
p−2 (K)

.

We first treat the case p = ∞, i.e. 2p
p−2 = 2p

p+2 = 2. In this case, we estimate ||ρw||2 by ||ρ||∞||w||2.
By non-parabolicity, there exists CK such that

||w||L2(K) ≤ CK ||w||H1
0
,

independantly of w.
Therefore

|ϕv(w)| ≤ CK ||v||L2 ||w||H1
0
,

which proves the result in this case.

For n ≤ p <∞, we use the fact that K satisfies the Sobolev inequality:

||u|| 2p
p−2

≤ C||∇u||2, ∀u ∈ C∞
0 (M) such that supp u ⊂ K.

So

||ρw||
L

2p
p−2 (K)

≤ C||∇(ρw)||2 ≤ C′
(

||w||L2(K) + ||∇w||L2(K)

)

.

Since L = ∆µ +W with W ≥ 0 and µ is bounded from below by a positive constant over K, we
have, for all u ∈ C∞

0 (M):

7



||∇u||L2(K) ≤ C||u||H1
0
.

We then conclude as before.

�

We obtain immediately the following:

Corollary 3.1 For V ∈ Lp
0 with n ≤ p ≤ ∞, the operator T := L

−1/2
s V is bounded on L2.

Proof of Corollary (3.1):
If K is a compact set containing the support of V , the operator “multiplication by V ” is bounded

from L2 to L
2p

p+2 (K). We then apply Proposition (3.4).

�

Furthermore, the non-parabolicity of M yields:

Proposition 3.5 Let M be non-parabolic with respect to L. If V ∈ Lp
loc for a n < p ≤ +∞, with

compact support the operator:

V L−1/2
a : L2 −→ L2

is compact.

Proof of Proposition (3.5):
Let K be an open, relatively compact subset of M containing the support of V . We can assume
that K is smooth. Let ρ ∈ C∞

0 such that ρ|K = 1. The non-parabolicity criterion of Theorem
(2.1) means that:

L−1/2
a : L2 −→W 1,2

loc

We consider the following compositions:

W 1,2
loc →W 1,2(K) →֒ L

2p
p−2 (K) → L2(K),

where the arrow on the left is the multiplication by ρ, the one in the middle is the compact Sobolev
inclusion, and the one on the right is the multiplication by V . The resulting composition is thus
compact, and it is in fact equal to the operator “multiplication by V ”, sending W 1,2

loc into L2(K).
Thus we get the result.

�

Finally, our main result for this section is:

Theorem 3.1 Let V ∈ Lq
0 for a n

2 < q ≤ +∞ be a non-negative, compactly supported potential.
Then the operator:

L−1/2
s V L−1/2

a : L2 −→ L2

is self-adjoint, compact.

Proof of Theorem (3.1):
We write:

L−1/2
s V L−1/2

a = (L−1/2
s W1)(W2L

−1/2
a ),

with W1 = W2 = V 1/2 ∈ Lp and p = 2q ≥ n. Let T1 = L
−1/2
s W1, and T2 = W2L

−1/2
a . By

Corollary (3.1), T1 : L2 → L2 is bounded, and by Proposition (3.5)), T2 : L2 → L2 is compact.

Therefore, T := L
−1/2
s V L

−1/2
a = T1T2 is compact.

To show that T is self-adjoint, we consider first the case where V ∈ L∞
0 ; as before, we decompose

V =W1W2, with W1 =W2 = V 1/2. It is enough to prove that in this case, T ∗
1 = T2, i.e. that for

all u, v ∈ L2,

8



〈L−1/2
s Wu, v〉 = 〈u,WL−1/2

a v〉.

It is a consequence of a small variation of Lemma (3.1): define f = L
−1/2
s Wu and g = L

−1/2
a v,

then we want to prove:

〈f, L1/2g〉 = 〈L1/2f, g〉
Lemma (3.1) asserts that it is true if f, g ∈ L2 ∩ H1

0 , which happens if v ∈ D := L1/2(H1
0 ∩ L2).

Now, D contains L1/2(C∞
0 ), hence is dense in L2, and we conclude by continuity of T1 and T2.

Let us return to the general case. We take an approximation sequence (Vn): Vn := inf(n, V ).
For all n, Vn ∈ L∞

0 and Vn → V in Lq-norm; furthermore, the support of Vn is contained in

the support of V . Define T1,n := V
1/2
n L

−1/2
a and T2,n := L

−1/2
s V

1/2
n . We have V

1/2
n → V 1/2 in

Lp-norm, so by the proof of Proposition (3.4) (resp. by the proof of Proposition (3.5)), T1,n (resp.
T2,n) converges to T1 (resp. to T2) for the strong topology of operators (i.e. ∀u ∈ L2, Ti,nu→ Tiu

in L2). We conclude that the sequence of operators (L
−1/2
s VnL

−1/2
a )n converges to L

−1/2
s V L

−1/2
a

for the strong topology of operators. Since each of the L
−1/2
s VnL

−1/2
a is self-adjoint, L

−1/2
s V L

−1/2
a

is also self-adjoint.

�

4 Main result

4.1 A preliminary result

Now we prove Theorem (1.3). For a potential V , define N−(V ) to be the cardinal of Spec(L +
V )

⋂

(−∞, 0). We recall two other equivalent definitions of N−(V ), the second one using the fact
that L + V is essentially self-adjoint on C∞

0 (M) (for a proof, see for example [10]). Let us recall
that we denote by q the quadratic form associated to L+ V .

Proposition 4.1

N−(V ) = sup{dim(F ) : F ⊂ Dom(q) and q|F negative definite}
= sup{dim(F ) : F ⊂ C∞

0 (M) and q|F negative definite}

Remark that the definition

N−(V ) = sup{dim(F ) : F ⊂ C∞
0 and q|F negative definite}

makes sense even if L + V is not essentially self-adjoint. In fact, we will prove that with this
definition of N−(V ) and without assuming L + V to be essentially self-adjoint, the existence of a
positive solution ϕ of (L + V )ϕ = 0 outside a compact set implies that N−(V ) is finite.
Proof of theorem (1.3):
Since N−(V ) ≤ N−(−V−), we can assume that V is non-positive. We divide the proof into two
steps:
Step 1: case where L is non-parabolic:
For this, we need the following two lemmas:

Lemma 4.1 As in section 2, we denote by H1
0 the space naturally associated to L. Let u ∈

C∞
0 (M), such that 〈(L + V )u, u〉 ≤ 0. Define v := L1/2u.

Then

||v||22 ≤ 〈L−1/2(−V )L−1/2v, v〉.

Proof of Lemma (4.1):
The hypothesis is that:

〈Lu, u〉 ≤ 〈(−V )u, u〉
Using that 〈Lu, u〉 = 〈L1/2u, L1/2u〉 = ||v||22, we get:
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||v||22 ≤ 〈(−V )L−1/2v, L−1/2v〉,
and it remains to prove that:

〈(−V )L−1/2v, L−1/2v〉 = 〈L−1/2(−V )L−1/2v, v〉 (1)

Let w := L−1/2(−V )L−1/2v = L−1/2(−V )u. Equality (1) is equivalent to:

〈L1/2w, u〉 = 〈w,L1/2u〉.
Now, u belongs to H1

0 ∩ L2, and since the operator L−1/2V L−1/2 : L2 → L2 is bounded, we get
w ∈ L2. In addition, by Hölder’s inequality, V u ∈ L2 (since u ∈ C∞

0 ), so w ∈ H1
0 . We conclude by

applying Lemma (3.1).

�

Lemma 4.2 If S is a subspace of L2 such that S ⊂ {v ∈ L2 : ||v||22 ≤ 〈Tv, v〉}, where T :=
L−1/2(−V )L−1/2, then the dimension of S is less than the number (counting multiplicities) of
eigenvalues of T that are greater than 1.

Proof of lemma (4.2): Clear.

�

End of the proof of Step 1:
Let F ⊂ C∞

0 such that L + V ≤ 0 on F . We have, by definition, F ⊂ H1
0 ∩ L2. Define S :=

L1/2F ⊂ L2. By Lemma (4.1), S ⊂ {v ∈ L2 : ||v||22 ≤ 〈Tv, v〉}, so by Lemma (4.2), we get that the
dimension of S is less than the number of eigenvalues greater than 1 of T . Since L1/2 is injective,
dim(F ) = dim(S), so dim(F ) is less than the number of eigenvalues greater than 1 of T . By
Theorem (3.1), T is a self-adjoint compact operator, so the number of its eigenvalues greater than
1 is finite. Since by Proposition (4.1) N−(V ) is less than the number of eigenvalues of T greater
than one, N−(V ) is finite, which concludes the first step.
Step 2: general case (L is no more assumed to be non-parabolic):
We write:

L+ V = (L+ ρ) + (V − ρ),

where ρ ∈ C∞
0 is a non-negative function such that ρ|U ≥ 1 for an open set U . Define L̃ := L+ ρ,

and Ṽ := V − ρ, so that L̃+ Ṽ = L + V . By Corollary (2.1), L̃ is non-parabolic, so we can apply
Step 1 to L̃+ Ṽ , to conclude that it has a finite number of negative eigenvalues.

It remains to prove the second part of the Theorem, i.e. to prove that if V ∈ Lp, for p ≥ n,
then KerL2(L + V ) has finite dimension. As above, it is enough to treat the case where L is
non-parabolic. The result is then a consequence of the following:

Lemma 4.3 KerL2(L + V ) ⊂ H1
0 , and L

1/2KerL2(L + V ) ⊂ KerL2(I + L−1/2V L−1/2).

Given that L1/2 : H1
0 → L2 is injective, and that L−1/2V L−1/2 : L2 → L2 is compact by Theorem

(3.1), we obtain that KerL2(L+ V ) is of finite dimension.

�

Proof of Lemma (4.3):
Let ϕ ∈ KerL2(L + V ). We have Lϕ = −V ϕ. We first prove that ϕ ∈ H1

0 . Let w ∈ C∞
0 , then by

definition,

〈ϕ,Lw〉 = −〈V ϕ,w〉.
Define u := L1/2w, which satisfies u ∈ L2 ∩H1

0 and −〈V ϕ,w〉 = 〈ϕ,Lw〉 = 〈ϕ,L1/2u〉. We notice
that L1/2C∞

0 is dense in H1
0 : this comes from the fact that L1/2 is injective, and self-adjoint.

Therefore, in order to prove that ϕ ∈ H1
0 , we only have to show that we can find a constant C
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independant of w such that |〈ϕ,L1/2u〉| ≤ C||u||2 (recall that u = L1/2w). But the following
formula holds:

〈V ϕ,L−1/2u〉 = 〈L−1/2V ϕ, u〉.
Indeed, by Lemma (3.1), it is true for all ϕ ∈ C∞

0 , V ∈ C∞
0 , and then recalling by Lemma (3.1)

that L−1/2V : L2 → L2 is bounded with norm less that a constant times ||V ||p, we can take an
approximation sequence for V and ϕ and pass to the limit in the equality. Finally, we get:

〈ϕ,L1/2u〉 = −〈L−1/2V ϕ, u〉,
and since L−1/2V : L2 → L2 is bounded, ϕ ∈ H1

0 .
Given this, we have:

〈ϕ, (L + V )w〉 = 0, ∀w ∈ C∞
0 .

We write (L + V )w = L1/2(L1/2 + L−1/2V )w; (L1/2 + L−1/2V )w ∈ L2 since L−1/2V : L2 → L2 is
bounded. Moreover, L1/2(L1/2+L−1/2V )w = (L+V )w ∈ L2, hence L1/2+L−1/2V )w ∈ D(L1/2) =
H1

0 ∩ L2. Since ϕ ∈ H1
0 ∩ L2, we can apply Lemma (3.1) to get:

〈ϕ, (L+ V )w〉 = 〈L1/2ϕ, (L1/2 + L−1/2V )w〉.
Now, (L1/2 + L−1/2V )w = (I + L−1/2V L1/2)(L1/2w). Define u = L1/2w ∈ L2, then we have:

〈L1/2ϕ, (I + L−1/2V L1/2)u〉 = 0.

Since L1/2C∞
0 is dense in L2, the preceeding equality holds for all u ∈ L2, and since (I +

L−1/2V L1/2) is self-adjoint we deduce that L1/2ϕ ∈ KerL2(I + L−1/2V L1/2).

�

4.2 Proof of the main result

The aim of this section is to prove the announced result (Theorem (1.2)).

Proof of Theorem (1.2):
As we have already said, the fact that N−(V ) < ∞ implies the existence of a positive solution
ϕ of Hϕ = 0 outside a compact set was proved by Fischer-Colbrie in [3]. The fact that this
solution is smooth if V is smooth comes from elliptic regularity. Now we assume the existence of
such a solution ϕ, and we want to prove that Card(Spec(H) ∩ (−∞, 0]) is finite. If u ∈ L2 is an
eigenfunction of H , i.e. Hu = λu for some λ, we can write (since ϕ > 0):

u = vϕ,

then

(ϕ−1Hϕ)v = λv

Furthermore, if we denote by dν the measure ϕ2dx, we have v ∈ L2(dν). So we are led to consider
the Doob transform, which is the following unitary transformation

L2(dν) → L2(dx)
w 7→ ϕw

Under this transformation, the operator on L2(dν) associated to H is L := ϕ−1Hϕ. Since the
operators H and L are conjugated by a unitary transformation, they have the same spectrum. It
turns out that L can be described in another way, thanks to the equation Hϕ = 0 satisfied by ϕ
outside a compact:

Lemma 4.4

L = ∆ϕ2 + q,

as operators on the distributions, where q := ϕ−1Hϕ is a compactly supported potential.
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Proof of Lemma (4.4):
If v ∈ C∞

0 (M),

H(ϕv) = ∆(ϕv) + V ϕv
= (∆ϕ)v + ϕ(∆v) − 2〈dϕ, dv〉+ V ϕv
= (Hϕ)v + ϕ(∆v)− 2〈dϕ, dv〉

So

Lv = qv +∆v −
〈

d(ϕ2)

ϕ2
, dv

〉

.

But for a positive function µ, we have:

∆µv = − 1

µ
div(µgradv) = ∆v − 1

µ
〈dµ, dv〉,

hence the result.

�

End of the proof of Theorem (1.2):
Applying Theorem (1.3) to L, we deduce that L has a finite number of non-positive eigenvalues.
Therefore the same is true for H .

�

4.3 Regularity questions

In this section, we consider the case of a non-smooth potential V . We show that what we have
proved remains true under a milder regularity assumption on V :

Theorem 4.1 Let M be a complete Riemannian manifold. Let V ∈ L∞
loc be a potential bounded

from below: V ≥ −C for a constant C.
If there exists a positive function ϕ ∈ W 1,2

loc such that Hϕ = 0 weakly outside a compact set, then
Card(Spec(H)

⋂

(−∞, 0]), the number of non-positive bound states of H = ∆+ V , is finite.

Proof of Theorem (4.1) :
We will use the following result (cf [5], Theorem 8.34):

Lemma 4.5 Let V ∈ L∞
loc be a potential, and H := ∆+V . Let u ∈ W 1,2

loc satisfying Hu = 0 weakly
inside a smooth, open, subset Ω.
Then for all α ∈ (0, 1) and for all Ω′ ⊂⊂ Ω, u ∈ C1,α(Ω′).

Given this Lemma, we first explain that we can assume, by modifying ϕ on a compact set, that
ϕ ∈ C1,α

loc . Let K be a compact subset such that Hϕ = 0 outside K, take Ω̃ an open set such that

Ω̃ ⊂⊂ M \ K. Let ρ ∈ C∞
0 (M) be a cut-off function such that ρ ≡ 1 on K̃ = M \ Ω̃. Define

u = ρ.1 + (1− ρ)ϕ; u ∈ C1,α
loc ∩W 1,2 and u > 0. In addition, we have:

Lemma 4.6 As a distribution, Hu ∈ L∞, and Hu = 0 outside a compact set.

Proof of Lemma (4.6):
We have:

Hu = H(ρ) +H((1− ρ)ϕ),

so that, given the the fact that ϕ ∈ C1,α
loc (Ω̃), it is enough to prove that the following formula holds

in the sense of distributions:

H((1− ρ)ϕ) = (∆(1 − ρ))ϕ+ 2〈dρ, dϕ〉
Let ψ ∈ C∞

0 (M), then by definition

〈H((1 − ρ)ϕ), ψ〉 = 〈(1 − ρ)ϕ,Hψ〉
= 〈(1 − ρ)ϕ,∆ψ〉+ 〈(1 − ρ)ϕ, V ψ〉
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Since by hypothesis Hϕ = 0 outside K, we can substract 0 = 〈ϕ,H((1 − ρ)ψ)〉 to the right term.
Furthermore,

〈ϕ,H((1 − ρ)ψ)〉 = 〈ϕ, (∆(1 − ρ))ψ〉 + 〈ϕ, (1 − ρ)∆ψ〉 − 2〈ϕd(1− ρ), dψ〉+ 〈(1 − ρ)ϕ, V ψ〉.

Thus we get:

〈H((1 − ρ)ϕ), ψ〉 = −〈ϕ, (∆(1 − ρ))ψ〉+ 2〈ϕd(1 − ρ), dψ〉

Given that ϕ is in C1,α
loc outside K, we can integrate by parts:

〈ϕd(1 − ρ), dψ〉 = 〈d∗(ϕd(1 − ρ)), ψ〉,
and furthermore the usual formula:

d∗(ϕd(1 − ρ)) = ϕ∆(1− ρ)− 〈dϕ, d(1 − ρ)〉
is valid. Hence

〈H((1− ρ)ϕ), ψ〉 = 〈ϕ, (∆(1 − ρ))ψ〉 + 2〈〈dϕ, dρ〉, ψ〉,
which is the result.

�

Given Lemma (4.6), we can assume that there is a positive function ϕ ∈ C1,α
loc ∩W 1,2

loc , satisfying
Hϕ = 0 outside a compact set and such that Hϕ ∈ L∞. We want to mimic the proof of Theorem
(1.2), and for this purpose we must show that the result of Lemma (4.4) still holds. The point
here is that the computations in the proof of Lemma (4.4) require to assume ϕ ∈ C2

loc, but here

we only have ϕ ∈ C1,α
loc . It is the aim of the next Lemma to overcome this difficulty:

Lemma 4.7 For every v ∈ C∞
0 , and ϕ ∈ C1

loc,

H(ϕv) = (Hϕ)v + ϕ(∆v) − 2〈dϕ, dv〉
in the sense of distributions.

Proof of Lemma (4.7): Let ψ ∈ C∞
0 (M). By definition ,

〈H(ϕv), ψ〉 = 〈ϕv,Hψ〉
= 〈ϕ,H(vψ)〉 − 〈ϕ, ψ∆v〉 + 2〈ϕdv, dψ〉
= 〈vH(ϕ), ψ〉 − 〈ϕ, ψ∆v〉 + 2〈d∗(ϕdv), ψ〉

Since ϕ ∈ C1,α, we have the formula

d∗(ϕdv) = ϕ∆v − 〈dϕ, dv〉,
so we get

〈H(ϕv), ψ〉 = 〈vH(ϕ), ψ〉 + 〈ϕ∆v, ψ〉 − 2〈〈dϕ, dv〉, ψ〉,
whence the result.

�

Therefore, letting L := ϕ−1Hϕ, for every v ∈ C∞
0 we have

Lv =
(

∆ϕ2 + q
)

v,

where q = ϕ−1Hϕ. We thus get the equality L = ∆ϕ2 + q as operators on distributions.
If the potential q is in L∞, then the proof of Theorem (1.2) works. But this is just a consequence
of the fact that we have assumed by Lemma (4.6) that Hϕ ∈ L∞ and φ continuous.

�
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4.4 An alternative proof of the main result:

In this paragraph, we explain how to get the result of Theorem (1.3), without the statement on
the kernel, by a different method. Let H := L+ V . We first introduce some notations.

Let us denote by Nλ(H) the cardinal of Spec(H) ∩ (−∞, λ), i.e. sup{dim(W )}, W subspace
C∞

0 on which the quadratic form q − λ is negative (recall that q is the quadratic form associated
to H). For K ⊂ M the closure of a smooth, relatively compact set in M , we denote by NK,λ

(resp. NM\K,λ) the cardinal of Spec(HK) ∩ (−∞, λ) (resp. Spec(HM\K) ∩ (−∞, λ)), where HK

(resp. HM\K) is H on K (resp. M \ K) with Neumann boundary conditions. Equivalently,
NK,λ = sup{dim(W )} (resp. NM\K,λ = sup{dim(W )}), where W is a subspace of C∞(K) (resp.
of C∞

0 (M \ K)) on which the quadratic form q − λ (resp. HM\K − λ) is negative. With these
notations, we have the following relatively classical result (see [10], Chapter 15, although it is not
stated as such):

Lemma 4.8 For all λ ∈ R,

Nλ ≤ NK,λ +NM\K,λ

Proof of Lemma (4.8):
Let W a subspace of C∞

0 on which the quadratic form associated to H − λ is negative. Let
ϕ ∈W \ {0}. We have:

q(ϕ) < λ||ϕ||22.
Let ϕ1 = ϕ|K and ϕ2 = ϕ|M\K . Then ϕ1 ∈ C∞(K) and ϕ2 ∈ C∞

0 (M \K). If we can show that

either q(ϕ1)
||ϕ1||22

< λ or q(ϕ2)
||ϕ2||22

< λ, then we have the result. Suppose it is not the case, then:

q(ϕ1) ≥ λ||ϕ1||22,
and

q(ϕ2) ≥ λ||ϕ2||22.
But ϕ = ϕ1 + ϕ2, and since ϕ1 and ϕ2 have the intersection of their support of measure zero,

q(ϕ) = q(ϕ1) + q(ϕ2) and ||ϕ||22 = ||ϕ1||22 + ||ϕ2||22. Therefore, we obtain

q(ϕ) ≤ λ||ϕ||22,
which is a contradiction.

�

Now, by standard elliptic theory, NK,λ is finite, for all K as above and all λ ∈ R. Thus, in order
to prove Theorem (1.3), we only need to find some K such that NM\K,0 is finite. Take K smooth
containing the support of V . Then HM\K is simply L with Neumann boundary conditions on ∂K.
But L is a non-negative operator, therefore NM\K,0 = 0.

�

Remark 4.1 At first sight, we could think that Lemma (4.8), combined with Lemma (1.1) would
give a proof of Theorem (1.2) in the general case (i.e. if we do not assume V to be compactly
supported), but the issue here is that Lemma (1.1) only gives the non-negativity of H restricted
to M \K with Dirichlet boundary conditions, and not Neumann boundary conditions. In general,
the infimum of the spectrum for Dirichlet boundary conditions is greater than the infimum of the
spectrum for Neumann ones, so the Neumann operator is not necessarily non-negative. Of course,
if the solution ϕ satisfies Neumann boundary conditions, then a small variation of Lemma (1.1)
shows that the Neumann operator is non-negative, but the method of Fischer-Colbrie [3] does not
easily yield the existence of such a ϕ under the assumption that the Morse index is finite.

We would like to thank G. Carron whose questions have motivated this work and whose help have
been valuable, and P. Castillon for suggesting us the alternative proof of the main theorem.

14



References

[1] Ancona and al. Thorie du potentiel sur les graphes et les varits. Ecole d’Et de Probabilit de
Saint-Flour XVIII, pages 1–112, 1988.

[2] G. Carron. Cohomologie et Ingalits de Sobolev. Mathematische Annalen, 314:613–639, 1999.

[3] D. Fischer-Colbrie. On Complete Minimal Surfaces with Finite Morse Index in Three Mani-
folds. Inventiones Mathematicae, 82:121–132, 1985.

[4] D. Fischer-Colbrie and R. Schoen. The Structure of Complete Stable Minimal Surfaces in
3-manifolds of Non-negative Scalar Curvature. Comm. Pure Appl. Math., XXXIII:199–211,
1980.

[5] D. Gilbarg and N.S. Trudinger. Elliptic Partial Differnetial Equations of Second Order.
Springer, 2001.

[6] A. Grigor’yan. Analytic and Geometric Background of Recurrence and Non-Explosion of the
Brownian Motion on Riemannian Manifolds. Bulletin of the American Mathematical Society,
36:135–249, 1999.

[7] W.F. Moss and J. Piepenbrink. Positive Solutions of Elliptic Equations. Pacific J. Math.,
75:219–226, 1978.

[8] S. Pigola, M. Rigoli, and A. Setti. Vanishing and Finiteness Results in Geometric Analysis.
Birkhuser, 2008.

[9] M. Reed and B. Simon. Methods of Modern Mathematical Physics I. Academic Press, 1978.

[10] M. Reed and B. Simon. Methods of Modern Mathematical Physics IV. Academic Press, 1978.

15


