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We consider the effect of Gaussian white noise on fast-slow dynamical systems with one fast and two slow variables, containing a folded-node singularity. In the absence of noise, these systems are known to display mixed-mode oscillations, consisting of alternating large-and small-amplitude oscillations. We quantify the effect of noise and obtain critical noise intensities above which the small-amplitude oscillations become hidden by fluctuations. Furthermore we prove that the noise can cause sample paths to jump away from so-called canard solutions with high probability before deterministic orbits do. This early-jump mechanism can drastically influence the local and global dynamics of the system by changing the mixed-mode patterns.

Introduction

Our main focus of study are stochastic dynamical systems with multiple time scales. In particular, we are going to study a special bifurcation ("a folded node") in a threedimensional fast-slow stochastic differential equation (SDE) with one fast and two slow variables. The detailed technical discussion including all relevant definitions and precise statements and proofs of our results starts in Section 2. In this section we want to outline our motivation and state our main results in a non-technical way. There are two main motivations for our work:

(M1) We want to develop an analogue to the intricate deterministic bifurcation theory for random dynamical systems by linking stochastic sample-path techniques and the well understood deterministic theory. Although a deterministic model is able to explain a some experiments (see, e.g., experimental results by Hudson et al. [START_REF] Hudson | An experimental study of multiple peak periodic and nonperiodic oscillations in the Belousov-Zhabotinskii reaction[END_REF]) it fails to accurately model realistic MMOs due to the presence of noise (see, e.g., the experiments by Dickson et al. [START_REF] Dickson | Properties and role of I h in the pacing of subtreshold oscillations in entorhinal cortex layer II neurons[END_REF]). Figure 1 also shows a sample path which is a stochastic version of the deterministic orbit perturbed by Gaussian white noise. Two important observations that can be made about the stochastic MMO pattern are

• Part of the SAOs become indistinguishable from the random fluctuations so that counting SAOs below a certain amplitude is impossible.

• The stochastic sample path typically jumps before the deterministic solution makes an LAO.

In this work, we are going to provide rigorous formulations and the proofs of both observations.

Our motivation (M1) is to contribute to a better understanding of bifurcations in random dynamical systems by relating deterministic and stochastic methods for fast-slow systems. Within the last two decades substantial progress on deterministic fast-slow systems has been made. The analysis of hyperbolic fast dynamics has been completed in a series of works by Fenichel [START_REF] Fenichel | Geometric singular perturbation theory for ordinary differential equations[END_REF] (see also [START_REF] Jones | Geometric Singular Perturbation Theory: in Dynamical Systems[END_REF]) at the end of the 1970s; the theory focuses upon perturbations of normally hyperbolic critical manifolds to nearby slow manifolds. Near bifurcation points of the fast dynamics major developments in the 1980s used nonstandard analysis [START_REF] Callot | Le problème de la "chasse au canard[END_REF][START_REF] Benoît | Chasse au canards[END_REF] and asymptotic methods [START_REF] Eckhaus | Relaxation oscillations including a standard chase on french ducks[END_REF][START_REF] Baer | Singular Hopf bifurcation to relaxation oscillations I[END_REF][START_REF] Baer | Singular Hopf bifurcation to relaxation oscillations II[END_REF][START_REF] Mishchenko | Differential equations with small parameters and relaxation oscillations[END_REF]. In the 1990s, two main geometric methods were introduced into multiple time scale systems. Switching between hyperbolic fast and slow dynamics was analyzed using the exchange lemma [START_REF] Jones | Tracking invariant manifolds with differential forms in singularly perturbed systems[END_REF][START_REF] Tin | On the dynamics of tangent spaces near normally hyperbolic manifolds and singularly perturbed boundary value problems[END_REF]. The geometry of non-hyperbolic or singular dynamics has been uncovered using the blow-up technique [START_REF] Dumortier | Canard cycles and center manifolds[END_REF][START_REF] Dumortier | Techniques in the theory of local bifurcations: Blow-up, normal forms, nilpotent bifurcations, singular perturbations[END_REF]. Since then the blow-up method has been applied successfully for many singular-perturbation problems [START_REF] Krupa | Geometric analysis of the singularly perturbed fold[END_REF][START_REF] Krupa | Relaxation oscillation and canard explosion[END_REF][START_REF] Krupa | Extending geometric singular perturbation theory to nonhyperbolic points -fold and canard points in two dimensions[END_REF][START_REF] Krupa | Extending slow manifolds near transcritical and pitchfork singularities[END_REF]. In particular, folded nodes [START_REF] Szmolyan | Canards in R 3[END_REF][START_REF] Wechselberger | Existence and bifurcation of canards in R 3 in the case of a folded node[END_REF][START_REF] Krupa | Local analysis near a folded saddle-node singularity[END_REF][START_REF] Mishchenko Yu | Asymptotic Methods in Singularly Perturbed Systems[END_REF] are a very interesting case since they occur already in generic fast-slow systems with one fast and two slow variables and have a highly nontrivial unfolding. Near a folded node the canard phenomenon occurs, i.e., orbits stay near a repelling manifold for a long time. This effect can generate MMOs [START_REF] Brøns | Mixed mode oscillations due to the generalized canard phenomenon[END_REF][START_REF] Desroches | Mixed-mode oscillations with multiple time scales[END_REF]; see also the discussion for (M2) above and Figure 1.

Noise acting on a system with multiple time scales can induce new phenomena such as early transitions [START_REF] Torrent | Stochastic-dynamics characterization of delayed laser threshold instability with swept control parameter[END_REF][START_REF] Swift | Stochastic Landau equation with time-dependent drift[END_REF][START_REF] Stocks | Influence of random fluctuations on delayed bifurcations: The case of additive white noise[END_REF][START_REF] Kalvis | Stochastic calculus: application to dynamic bifurcations and threshold crossings[END_REF][START_REF] Kuske | Probability densities for noisy delay bifurcations[END_REF] and stochastic resonance [START_REF] Benzi | The mechanism of stochastic resonance[END_REF][START_REF] Nicolis | Stochastic aspects of climatic transitions-additive fluctuations[END_REF][START_REF] Mcnamara | Theory of stochastic resonance[END_REF][START_REF] Fox | Stochastic resonance in a double well[END_REF][START_REF] Gammaitoni | Periodically time-modulated bistable systems: Stochastic resonance[END_REF][START_REF] Gammaitoni | Stochastic resonance[END_REF]. The mathematical theory of fast-slow stochastic differential equations has mainly been developed during the last decade and is still far from being complete. Classical work on random perturbations of dynamical systems [START_REF] Freidlin | Random Perturbations of Dynamical Systems[END_REF], which mainly focused on large-deviation aspects, can be applied to situations with a time-scale separation exponentially large in the noise intensity [START_REF] Mark | Quasi-deterministic approximation, metastability and stochastic resonance[END_REF][START_REF] Mark | On stable oscillations and equilibriums induced by small noise[END_REF][START_REF] Imkeller | Model reduction and stochastic resonance[END_REF][START_REF] Herrmann | The exit problem for diffusions with timeperiodic drift and stochastic resonance[END_REF][START_REF] Herrmann | Transition times and stochastic resonance for multidimensional diffusions with time periodic drift: a large deviations approach[END_REF]. A different approach, based on a detailed description of sample-path properties, applies to situations with time-scale separation and noise intensity of comparable magnitude [START_REF] Berglund | Pathwise description of dynamic pitchfork bifurcations with additive noise[END_REF][START_REF] Berglund | A sample-paths approach to noise-induced synchronization: Stochastic resonance in a double-well potential[END_REF][START_REF] Berglund | The effect of additive noise on dynamical hysteresis[END_REF][START_REF] Berglund | Beyond the Fokker-Planck equation: Pathwise control of noisy bistable systems[END_REF]. This method led to a general theory for the behaviour of sample paths near normally hyperbolic invariant manifolds [START_REF] Berglund | Geometric singular perturbation theory for stochastic differential equations[END_REF][START_REF] Berglund | Noise-induced phenomena in slow-fast dynamical systems. A sample-paths approach[END_REF]. Other approaches include [START_REF] Kabanov | Two-scale stochastic systems[END_REF], which is based on moment estimates, and [START_REF] Schmalfuss | Invariant manifolds for random dynamical systems with slow and fast variables[END_REF], which adopts the viewpoint of random dynamical systems in the sense of [START_REF] Arnold | Random Dynamical Systems[END_REF]. The associated methods and results have important applications in climate dynamics [START_REF] Benzi | The mechanism of stochastic resonance[END_REF][START_REF] Nicolis | Stochastic aspects of climatic transitions-additive fluctuations[END_REF][START_REF] Timmermann | Coherent resonant millennial-scale climate oscillations triggered by massive meltwater pulses[END_REF][START_REF] Berglund | Metastability in simple climate models: Pathwise analysis of slowly driven Langevin equations[END_REF], the theory of critical transitions [START_REF] Scheffer | Early-warning signals for critical transitions[END_REF][START_REF] Kuehn | A mathematical framework for critical transitions: bifurcations, fastslow systems and stochastic dynamics[END_REF], classical and quantum atomic physics [START_REF] Allman | Breaking the chain[END_REF][START_REF] Allman | A chain of interacting particles under strain[END_REF][START_REF] Aguilar | The effect of classical noise on a quantum two-level system[END_REF] and neuroscience [START_REF] Henry | Stochastic Processes in the Neurosciences[END_REF][START_REF] Longtin | Stochastic resonance in neuron models[END_REF][START_REF] Longtin | Effect of noise on the tuning properties of excitable systems[END_REF][START_REF] Laing | Stochastic methods in neuroscience[END_REF][START_REF] Berglund | Stochastic dynamic bifurcations and excitability[END_REF]. In particular, canards in the stochastic FitzHugh-Nagumo system describing the action potential of neurons have been considered from the points of view of large deviations [START_REF] Lee Deville | Two distinct mechanisms of coherence in randomly perturbed dynamical systems[END_REF][START_REF] Doss | Oscillations and random perturbations of a FitzHugh-Nagumo system[END_REF], and of convergence of sample-paths [START_REF] Sowers | Random perturbations of canards[END_REF]. Stochastic MMOs have also been considered in certain planar systems [START_REF] Muratov | Noise-induced mixed-mode oscillations in a relaxation oscillator near the onset of a limit cycle[END_REF][START_REF] Muratov | Self-induced stochastic resonance in excitable systems[END_REF] and in coupled oscillators [START_REF] Yu | Stochastic phase dynamics and noise-induced mixedmode oscillations in coupled oscillators[END_REF].

The theory of stochastic differential equations with higher-dimensional singularities and multiple slow variables is not yet as advanced. Here we make a first step towards bridging this gap between the generic higher-dimensional deterministic theory and stochastic sample-path analysis. The non-technical statements of our two main results are: (R1) Sample paths near a folded node stay inside a tubular neighbourhood of an attracting deterministic solution. The neighbourhood is explicitly defined by the covariance matrix of a linearized process. The relation between the noise level, the time scale separation and a system parameter determines when small oscillations near a folded node become indistinguishable from noisy fluctuations. This relation can be calculated explicitly to lowest asymptotic order.

(R2) Sample paths near a folded node typically escape from a repelling deterministic solution earlier than their deterministic counterparts. The typical escape time can be determined rather precisely and depends on the same parameters as the relation in (R1). The probability of observing atypical escape times can be shown to be small.

Both results have important implications from theoretical and applied perspectives. In particular, we show how to control stochastic sample paths near a multi-dimensional bifurcation point. Therefore it is expected that the methods we develop have a much wider applicability beyond folded nodes, e.g. to singular Hopf bifurcations [START_REF] Guckenheimer | Singular Hopf bifurcation in systems with two slow variables[END_REF] or other stochastic bifurcation problems [START_REF] Berglund | Noise-induced phenomena in slow-fast dynamical systems. A sample-paths approach[END_REF][START_REF] Arnold | Recent progress in stochastic bifurcation theory[END_REF]. The precise quantitative estimates on the relation between noise level and a parameter controlling the number of SAOs are immediately useful in applications. Furthermore, the effect of early jumps could potentially regularize the complicated flow maps near a folded node [START_REF] Guckenheimer | Return maps of folded nodes and folded saddle-nodes[END_REF][START_REF] Guckenheimer | Geometry and bifurcations of mixed-mode oscillations in the autocatalator[END_REF] and simplify the local-global decomposition of return maps [START_REF] Kuehn | Global return maps for mixed-mode oscillations with one fast and two slow variables[END_REF].

The paper is organized as follows. In Section 2 we review the necessary theory for deterministic fast-slow systems and fix the notation. In Section 3 we state the known results about folded nodes and explain why they produce small-amplitude oscillations. In Section 4 we consider a variational equation around a special canard solution, called the weak canard. The solution of the variational equation can be transformed into a "canonical form" which allows us to prove a result on the spacing of canard solutions up cross-sections near or including the folded node. The proof is postponed to Appendix A. In Section 5 we develop the main setup for stochastic fast-slow SDEs and recall a result on attracting normally hyperbolic slow manifolds away from bifurcation points. Several notations that we use throughout are introduced as well. In Section 6 we give the rigorous formulation of our main results (R1)-(R2) for stochastic folded nodes. The result (R1) on covariance tubes for the linearized process is proved in Appendix B. The influence of nonlinear contributions is dealt with in Appendix C. The result (R2) on early jumps is proven in Appendix D. Section 7 develops numerical simulations to visualize the analytical results. We conclude by giving a summary of parameter regimes and discussing the influence of early jumps on the global return mechanism and LAOs in Section 8. many results we review in Section 3 were discovered by Benoît [START_REF] Benoît | Les canards de R 3[END_REF][START_REF] Benoît | Systems lents-rapides dans R 3 et leurs canards[END_REF][START_REF] Benoît | Enlacements de canards[END_REF]. However, we are not going to use any nonstandard methods and focus on the geometric viewpoint.

A fast-slow system of ordinary differential equations (ODEs) is given by

ǫ dx d s = ǫ ẋ = f (x, y, µ, ǫ) , dy ds = ẏ = g(x, y, µ, ǫ) , (2.1) 
where (x, y) ∈ R m ×R n are phase-space coordinates, µ ∈ R p are parameters and 0 < ǫ ≪ 1 represents the ratio of time scales. We shall assume that f, g are sufficiently smooth. By a rescaling we can change from the slow time s to the fast time t = s/ǫ; this transforms (2.1) to

dx dt = x ′ = f (x, y, µ, ǫ) , dy dt = y ′ = ǫg(x, y, µ, ǫ) .
(2.2)

Remark:

The more common notation for the slow time would be τ but we shall reserve τ for stopping times of stochastic processes; see Section 5.

The first step to analyze fast-slow systems is to consider the singular limit ǫ → 0. From (2.2) we obtain

x ′ = f (x, y, µ, 0) , y ′ = 0 . (2.3)
which is an ODE for the fast variables x where the slow variables y act as parameters.

We call (2.3) the fast subsystem or layer equations; the associated flow is called the fast flow. Considering ǫ → 0 in (2.1) we find a differential-algebraic equation for the slow y-variables

0 = f (x, y, µ, 0) , ẏ = g(x, y, µ, 0) , (2.4) 
called the slow subsystem or reduced system; the flow induced by (2.4) is called the slow flow. The slow subsystem is defined on the critical manifold

C 0 := {(x, y) ∈ R m+n : f (x, y, µ, 0) = 0} .
Observe that C 0 can also be interpreted as a manifold of equilibria for the fast subsystem. Note also that C 0 does not have to be a manifold [START_REF] Krupa | Extending slow manifolds near transcritical and pitchfork singularities[END_REF] but we only consider the manifold case in this paper. If the Jacobian matrix (D x f )(p) has maximal rank at p ∈ C 0 then the implicit-function theorem describes C 0 locally as a graph

h 0 : R n → R m , f (h 0 (y), y, µ, 0) = 0
near p. This allows us to write the slow subsystem more concisely as ẏ = g(h 0 (y), y, µ, 0) .

(2.5)

We can strengthen the assumption on (D x f )(p) and require that it is a hyperbolic matrix, i.e., (D x f )(p) has no eigenvalues with zero real part. In this case we say that C 0 is normally hyperbolic at p. If all the eigenvalues of (D x f )(p) have negative (positive) real parts we say that C 0 is attracting (repelling) with respect to the fast variables.

The following theorem shows that normal hyperbolicity is the key regularity assumption for fast-slow systems.

Theorem 2.1 (Fenichel's Theorem [START_REF] Fenichel | Geometric singular perturbation theory for ordinary differential equations[END_REF]). Suppose M 0 is a compact normally hyperbolic submanifold (possibly with boundary) of the critical manifold C 0 and that f, g ∈ C r , 1 ≤ r < ∞. Then for ǫ > 0 sufficiently small the following holds:

(F1) There exists a locally invariant manifold M ǫ diffeomorphic to M 0 . Local invariance means that M ǫ can have boundaries through which trajectories enter or leave.

(F2) M ǫ has a Hausdorff distance of O(ǫ) from M 0 .

(F3) The flow on M ǫ converges to the slow flow as ǫ → 0.

(F4) M ǫ is C r -smooth and can locally be given as a graph h ǫ : R n → R m .

(F5) M ǫ is normally hyperbolic with the same stability properties with respect to the fast variables as M 0 .

(F6) M ǫ is usually not unique. In regions that remain at a fixed distance from the boundary of M ǫ , all manifolds satisfying (F1)-(F5) lie at a Hausdorff distance O(e -K/ǫ ) from each other for some K > 0 with K = O(1).

We call a perturbed manifold M ǫ a slow manifold. Sometimes we refer to "the slow manifold" despite the non-uniqueness (F6) as it will be often irrelevant which of the O(e -K/ǫ )-close manifolds we pick.

A simple example where normal hyperbolicity fails is given by

ǫ ẋ = y -x 2 , ẏ = µ -x . (2.6) 
The critical manifold

C 0 = {(x, y) ∈ R 2 : y = x 2 } splits into three parts C 0 = C a 0 ∪ {(0, 0)} ∪ C r 0 where C a 0 = C 0 ∩ {x > 0} , and C r 0 = C 0 ∩ {x < 0} .
C a 0 is attracting and C r 0 is repelling. At (x, y) = (0, 0) the critical manifold is not normally hyperbolic and has a generic fold singularity [START_REF] Krupa | Geometric analysis of the singularly perturbed fold[END_REF]; observe that (x, y) = (0, 0) is a fold (or saddle-node) bifurcation of the fast subsystem. Figure 2 illustrates the dynamics near the fold point of (2.6).

To calculate the slow subsystem on C 0 we could consider the two graphs x = h 0 (y) = ± √ y as suggested by (2.5). For (2.6) it is more convenient to differentiate y = x 2 implicitly with respect to s. This gives

ẏ = 2x ẋ ⇒ ẋ = µ -x 2x ,
which shows that the slow flow is undefined at (0, 0) if µ = 0. Fenichel's Theorem provides slow manifolds C a ǫ and C r ǫ . A major step in the theory of fast-slow systems was to consider the dependence of the dynamics of (2.6) on the value of µ [START_REF] Dumortier | Canard cycles and center manifolds[END_REF][START_REF] Baer | Singular Hopf bifurcation to relaxation oscillations I[END_REF][START_REF] Krupa | Relaxation oscillation and canard explosion[END_REF]. Note that for µ = 0 the slow flow is well-defined and there is a special trajectory that passes from C a 0 to C r 0 and that a singular Hopf bifurcation [START_REF] Krupa | Relaxation oscillation and canard explosion[END_REF][START_REF] Braaksma | Singular Hopf bifurcation in systems with fast and slow variables[END_REF] occurs for µ = 0 and 0 < ǫ ≪ 1. The slow manifolds can be extended under the flow into the fold point region. Comparing 2(c) we expect that there is a parameter value µ for which the slow manifolds intersect/coincide. This intersection marks what has become known as a canard explosion [START_REF] Krupa | Relaxation oscillation and canard explosion[END_REF][START_REF] Kuehn | From first Lyapunov coefficients to maximal canards[END_REF].

More generally, suppose that γ ǫ is a trajectory of a fast-slow system (2.1). Then we call γ ǫ a maximal canard if it lies in the intersection of an attracting and a repelling slow manifold; for ǫ = 0 we also refer to γ 0 as a maximal singular canard. Canards in planar fast-slow systems are of codimension one whereas for higher-dimensional systems we do not need an additional parameter. In the next section we are going to focus on canards in three dimensions.

Folded Nodes

A general three-dimensional fast-slow system with one fast variable and two slow variables can be written as ǫ ẋ = f (x, y, z, µ, ǫ) , ẏ = g 1 (x, y, z, µ, ǫ) , ż = g 2 (x, y, z, µ, ǫ) .

(3.1)
We assume that the critical manifold C 0 = {(x, y, z) ∈ R 3 : f (x, y, z, µ, 0) = 0} of (3.1) is a folded surface near the origin; suitable non-degeneracy conditions [START_REF] Desroches | Mixed-mode oscillations with multiple time scales[END_REF][START_REF] Szmolyan | Canards in R 3[END_REF] are f (0, 0, 0, µ, 0) = 0 , f x (0, 0, 0, µ, 0) = 0 , f y (0, 0, 0, µ, 0) = 0 , f xx (0, 0, 0, µ, 0) = 0 ,

where subscripts denote partial derivatives. The critical manifold again decomposes into three parts

C 0 = C r 0 ∪ L ∪ C a 0 ,
where C r 0 = C 0 ∩{f x > 0} is repelling, C a 0 = C 0 ∩{f x < 0} is attracting and L = C 0 ∩{f x = 0} is the curve of fold points; see Figure 3. Note that the assumption f y (0, 0, 0, µ, 0) = 0 in (3.2) implies that the fold curve L can be locally parametrized by z. To obtain the slow subsystem we again differentiate f (x, y, z, µ, 0) = 0 implicitly with respect to s ẋf x + ẏf y + żf z = 0 . This implies that the slow subsystem is

f x ẋ = -f y g 1 -f z g 2 , ż = g 2 , (3.3) 
where all functions are evaluated for p = (x, y, z) ∈ C 0 and ǫ = 0. On L the ODE (3.3) is singular but we can rescale time s → -s/f x to obtain the desingularized slow subsystem

ẋ ż = f y g 1 + f z g 2 -f x g 2 p∈C 0 . (3.4)
Note that the time rescaling has reversed the orientation of trajectories of (3.3) on C r 0 and that (3.4) is a well-defined planar ODE. We define

l(z) := (f y g 1 + f z g 2 )| p∈L
and make the assumptions that l(0) = 0 (3.5) l(z) = 0 , for z = 0 .

(3.6)

Observe that (3.5) and f x (0, 0, 0, µ, 0) = 0 imply that (x, z) = (0, 0) is an equilibrium point for (3.4) that lies on the fold curve. We say that (x, y, z) = (0, 0, 0) is a folded singularity. Points (x, y, z = 0) ∈ L are called jump points as trajectories have to make a transition from the slow to the fast flow at these points; the condition (3.6) is also called the normal switching condition. Generic folded singularities can be classified according to their equilibrium type into folded saddles, folded foci and folded nodes [START_REF] Szmolyan | Canards in R 3[END_REF][START_REF] Benoît | Systems lents-rapides dans R 3 et leurs canards[END_REF]. Folded nodes are the most interesting folded singularities. Without loss of generality we may assume that the folded node is stable for (3.4) with associated eigenvalues λ 1 , λ 2 for the linearization of (3.4).

Proposition 3.1 ( [START_REF] Brøns | Mixed mode oscillations due to the generalized canard phenomenon[END_REF][START_REF] Wechselberger | Existence and bifurcation of canards in R 3 in the case of a folded node[END_REF]). Suppose that (3.1) satisfies (3.2), (3.5), (3.6) and that we are in the folded-node scenario. Then there exist a smooth coordinate change and a smooth change of time which bring (3.1) near (x, y, z) = (0, 0, 0) into the form

ǫ ẋ = y -x 2 + O(yx 2 , x 3 , xyz) + ǫO(x, y, z, ǫ) , ẏ = -(µ + 1)x -z + O(y, ǫ, (x + z) 2 ) , ż = µ 2 , (3.7) 
with λ 1 = -µ and λ 2 = -1 being the eigenvalues for the linearization of (3.4).

We shall show in Section 4 that the terms in (3.7) denoted by O(•) are indeed higherorder for the analysis near the folded node. Hence we can work with the normal form

ǫ ẋ = y -x 2 , ẏ = -(µ + 1)x -z , ż = µ 2 .
(3.8)

The critical manifold of (3.8) is

C 0 = {(x, y, z) ∈ R 3 : y = x 2 } .
It splits into three components

C 0 = C a 0 ∪ L ∪ C r 0 ,
where

C a 0 = C 0 ∩ {x > 0} is attracting, C r 0 = C 0 ∩ {x < 0} is
repelling, and L is now a line of fold points. Parametrizing over the slow variables, we can also write C a,r 0 = {x = ± √ y}, i.e., h a,r 0 (y, z) = ± √ y.

Again differentiating y = x 2 implicitely, we see that the slow subsystem is given by

2x ẋ = -(µ + 1)x -z , ż = µ 2 , (3.9) 
and the desingularized slow subsystem (see also Figure 4(a)) is of the form

ẋ = -(µ + 1)x -z , ż = µx . (3.10) C r 0 C r 0 C a 0 C a 0 L L z z x x (a) (b) γ s 0 γ w 0 Figure 4: (a)
The desingularized slow flow (3.10) is sketched for some µ > 0 with a stable node at the origin. (b) The slow flow (3.9) is illustrated. The strong eigendirection (solid red) defines the strong singular canard γ s 0 ; the weak eigendirection (dashed red) defines the weak singular canard γ w 0 .

The system (3.10) is linear with an equilibrium point at (x, z) = (0, 0), and the eigenvalues are (λ 1 , λ 2 ) := (-1, -µ). We assume from now on that µ ∈ (0, 1) so that (0, 0) is a stable node for the desingularized slow subsystem (3.10). Hence we also denote the eigenvalues as λ 1 = -1 =: λ s and λ 2 = -µ =: λ w to emphasize the strong and weak eigendirections. Note that µ = λ w /λ s precisely represents the ratio of eigenvalues and attains all resonances µ -1 ∈ N for µ ∈ (0, 1). The associated (unnormalized) eigenvectors are

γ s 0 = (-1/µ, 1) T and γ w 0 = (-1, 1) T , (3.11) 
which also represent directions for two maximal singular canards; see Figure 4. Observe that the singular strong canard γ s 0 and L bound a funnel region on C a 0 of trajectories that all flow into the folded node; see Figure 4. The funnel region has an opening angle cos -1 (µ/ 1 + µ 2 ) which converges to π/2 as µ → 0. The funnel on C a 0 is located in the {x > 0, z < 0}-quadrant and the singular weak canard γ w 0 is given by the anti-diagonal {z = -x}. Theorem 3.2 ([101, 11, 15, 107]). Suppose (3.1) has a generic folded node (i.e. Proposition 3.1 applies). Then for ǫ > 0 sufficiently small the following holds:

(C1) The singular strong canard γ s 0 always perturbs to a maximal canard γ s ǫ . If µ -1 ∈ N, then the singular weak canard γ w 0 also perturbs to a maximal canard γ w ǫ . We call γ s ǫ and γ w ǫ primary canards.

(C2) Suppose k > 0 is an integer such that 2k + 1 < µ -1 < 2k + 3 and µ -1 = 2(k + 1) .

Then, in addition to γ s,w ǫ , there are k other maximal canards, which we call secondary canards.

(C3) The secondary canards converge to the strong primary canard as ǫ → 0.

(C4) The primary weak canard of a folded node undergoes a transcritical bifurcation for odd µ -1 ∈ N and a pitchfork bifurcation for even µ -1 ∈ N.

We emphasize the results (C1)-(C3) which will be of major importance for our stochastic analysis; (C4) describes the behaviour near resonances and will not be considered here.

The next theorem provides a geometric viewpoint for the generation of maximal canards near a folded node. We say that a twist corresponds to a half rotation (i.e. a rotation by an angle of π). Theorem 3.3 ([101,[START_REF] Wechselberger | Existence and bifurcation of canards in R 3 in the case of a folded node[END_REF]). Assume 2k + 1 < µ -1 < 2k + 3, for some k ∈ N, and µ -1 = 2(k + 1). Then the following holds:

(C5) The primary strong canard γ s 0 twists once around the primary weak canard γ w ǫ .

(C6) The j-th secondary canard γ j ǫ , 1 j k, twists 2j + 1 times around the primary weak canard γ w ǫ .

(C7) The twisting/rotation occurs in an O( √ ǫ) neighborhood of the folded node for (3.1).

In particular, the slow manifolds C a ǫ and C r ǫ start to spiral near the folded node creating transversal intersections away from resonances. For visualizations of these manifolds in several different contexts see [START_REF] Desroches | The geometry of slow manifolds near a folded node[END_REF][START_REF] Desroches | Mixed-mode oscillations with multiple time scales[END_REF][START_REF] Desroches | Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh-Nagumo system[END_REF].

In Figure 5 we show the slow manifolds for (3.8) near the folded node on the crosssection {z = 0}. The manifolds have been computed by forward integration and using the symmetry (x, y, z, s) → (-x, y, -z, -s) .

(3.12)

The center of rotation is the weak canard γ w 0 . Since µ = 0.08 we know by (C2) that there are five secondary canards in Figure 5. Five intersections are indeed detected numerically but γ 4,5 0 are very close to γ w 0 on {z = 0}. All secondary canards γ j 0 approach γ w 0 when z < 0 near the folded-node region on C a ǫ . The canards move away from each other for z > 0 (see Figure 3). The next theorem shows that the maximal canards organize the rotational properties of trajectories passing through a folded-node region.

Theorem 3.4 ([29]). Fix two sections

Σ 1 := {(x, y, z) ∈ R 3 : y = K 1 } for some 0 < K 1 = O(1) Σ 2 := {(x, y, z) ∈ R 3 : y = K 2 ǫ} for some 0 < K 2 = O(1)
for the system (3.8). Consider the intersection points of maximal canards in Σ 1 ∩ C a ǫ . Let k be the number of secondary canards. Then, for ǫ > 0 sufficiently small, the following holds: (C8) The secondary canards are O(ǫ (1-µ)/2 ) close to the primary strong canard.

(C9) There exist (k + 1) so-called sectors of rotation I j , 1 j k + 1, between the two primary canards labeled in increasing order starting from the strong primary canard. The size of the sectors

I j for 1 j k is O(ǫ (1-µ)/2
) while the size of the sector I k+1 is O(1).

(C10) The Poincaré map from Σ 1 to Σ 2 is a contraction with rate O(ǫ (1-µ)/(2µ) ).

(C11) All maximal canards are separated by O( √ ǫ) in their z-coordinate on Σ 2 .

Remark: We note that the results from Theorems 3.2, 3.3 and 3.4 also extend to higherdimensional fast-slow systems with at least two slow variables and at least one fast variable [START_REF] Wechselberger | A propos de canards (apropos canards)[END_REF][START_REF] Brøns | Mixed mode oscillations due to the generalized canard phenomenon[END_REF] but that they do not provide a detailed analysis of canards beyond the section Σ 2 .

Theorem 3.4 provides sectors of rotation that organize the twisting of trajectories near the folded node. Once we know which sector an orbit enters we can predict the number of oscillations. Note that the oscillations can be classified as "small oscillations" due to (C7). Global returns can induce so-called mixed-mode oscillations (MMOs) which are found in a wide variety of applications; see [START_REF] Desroches | Mixed-mode oscillations with multiple time scales[END_REF] for a review of MMO mechanisms in multiple time scale systems.

Canard Spacing

Theorem 3.4 describes the spacing of maximal canards away from the folded-node region. Since we are also interested in their spacing on the cross-section {z = 0} depending on µ we need a refined analysis near the folded node. The key component in the proofs of Theorems 3.2, 3.3 and 3.4 is a rescaling of (3.8) near the folded node

(x, y, z, s) = √ ǫx, ǫȳ, √ ǫz, √ ǫs (4.1)
which can also be interpreted as a blow-up transformation [START_REF] Szmolyan | Canards in R 3[END_REF][START_REF] Wechselberger | Existence and bifurcation of canards in R 3 in the case of a folded node[END_REF][START_REF] Brøns | Mixed mode oscillations due to the generalized canard phenomenon[END_REF]. We shall not introduce the blow-up method here but restrict ourselves to the analysis of the rescaled

system ẋ = ȳ -x2 + O( √ ǫ) , ẏ = -(µ + 1)x -z + O( √ ǫ) , ż = µ 2 . (4.2)
Therefore the O(•)-terms in (3.7) are indeed of higher order for the analysis near the folded node. Neglecting the small ǫ-dependent terms and dropping the overbars in (4.2) for notational convenience yields

ẋ = y -x 2 , ẏ = -(µ + 1)x -z , ż = µ 2 .
(4.

3)

The ODEs (4.3) are our main focus of study in this section. Note that (C11) in Theorem 3.4 implies that the maximal canards are all O(1)-finitely separated for (4.3) when they are an O(1)-distance away from (x, y, z) = (0, 0, 0). Observe that we can always solve the last equation

z(s) = µ 2 (s -s 0 ) + z 0
where z 0 = z(s 0 ) denotes the initial z-coordinate of the trajectory at the initial time s = s 0 . Hence we can view z as a time variable and re-write (4.3) if necessary as a planar non-autonomous ODE

µ dx dz = 2y -2x 2 , µ dy dz = -2(µ + 1)x -2z . (4.4) 
Our first goal is to quantify the intersections of canard solutions with the section {z = 0}. Therefore we are going to focus on the analysis of orbits arising as perturbations of slow subsystem trajectories inside the funnel on C a 0 and assume z 0 z 0 .

Let (x * (z), y * (z)) be any solution of (4.4) and set

u = (u 1 , u 2 ) := (x -x * , y -y * )
to derive the variational equation

µ du 1 dz = -4u 1 x * + 2u 2 -2u 2 1 , µ du 2 dz = -2(µ + 1)u 1 . (4.5) 
A key observation by Benoît [START_REF] Benoît | Canards et enlacements[END_REF] was that there are some special solutions to (4.3).

Lemma 4.1 ([13]). The ODE (4.3) admits two polynomial solutions

(x(s), y(s), z(s)) = λ 2 s, λ 2 4 s 2 + λ 2 , µ 2 s (4.6)
with λ ∈ {-µ, -1} corresponding to the two primary singular canards.

Lemma 4.1 can be checked by direct differentiation of (4.6). We know that the weak canard is the center of rotation, and from (4.6) with λ = -µ we find that the variational equation around the weak canard is given by

µ du dz = 4z 2 -2(µ + 1) 0 u 1 u 2 + -2u 2 1 0 . (4.7)
We are interested in the detailed interaction of other maximal canards with the weak canard.

Proposition 4.2. If µ > 0 is sufficiently small and z < 0 is bounded away from 0 then solutions u = u(z) of (4.7) are attracted exponentially fast to

{u 1 = 0 = u 2 }.
Proof. Augmenting the variational equation (4.7) by ż = 0 gives an autonomous fast-slow system with two fast variables u = (u 1 , u 2 ) and one slow variable z (since µ is sufficiently small). The critical manifold is

{(u 1 , u 2 , z) ∈ R 3 : u 1 = 0, u 2 = 0} .
Computing the linearization with respect to the fast variables for µ = 0 gives a matrix 4z 2 -2 0 with eigenvalues 2(z ± √ z 2 -1). Hence if z < 0 both eigenvalues have negative real parts and the result follows from Fenichel's Theorem.

For 0 < µ ≪ 1, Proposition 4.2 allows us to reduce the study of the nonlinear variational equation (4.7) to a linear one by dropping the higher-order term -2u 2 1 . This yields the linear non-autonomous ODE

µ du dz = 4z 2 -2(µ + 1) 0 =:A(z) u = A(z)u . (4.8) 
In particular, we must show what happens to solutions u = u(u 1 , u 2 ) near the weak canard and when z is not bounded away from 0.

Remark: The variational equation (4.8) has been analyzed [START_REF] Benoît | Canards et enlacements[END_REF][START_REF] Szmolyan | Canards in R 3[END_REF] by re-writing it as a second-order equation d 2 u 1 ds 2 -µs

du 1 ds + u 1 = 0 . (4.9)
Benoît [START_REF] Benoît | Canards et enlacements[END_REF] observed that using the time rescaling s = s/ √ µ of (4.9) one gets

d 2 u 1 ds 2 - s du 1 ds + 1 µ u 1 = 0 (4.10)
which is referred to as Weber equation or Ricatti-Hermite equation. The ODE (4.10) has explicit solutions in terms of Hermite polynomials (see [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF], p. 781). Then the asymptotic properties of Hermite polynomials can be used to draw conclusions about the existence of maximal canards.

We develop two alternative ways to describe the variational equation (4.8) directly. This provides new quantitative information about canard solutions and also gives estimates for the spacing of canards on cross-sections near the folded node. Our first approach in Section 4.1 uses averaging and provides a formal result. This result is then stated in Section 4.2 and proven in Appendix A using coordinate changes that are motivated by the formal calculation.

Averaging

As shown in (4.9) we can consider the variational equation (4.8) as the second-order equation ü1 + u 1 = µs u1 .

(4.11)

The form (4.11) suggests to view the problem as a damped oscillator; we assume that

- 2 µ < s 0 s 0 . (4.12)
Note that µs = -2 is precisely critical damping and for µs ∈ (-2, 0) the oscillator is underdamped. Therefore we expect that (4.11) describes harmonic oscillations with damping/contraction that is non-uniform in time. We make a change to polar coordinates

(u 1 , u1 ) = (r(s) cos(s + ψ(s)), -r(s) sin(s + ψ(s)))
which yields the ODEs ṙ = µsr sin 2 (s + ψ) , ψ = µs cos(s + ψ) sin(s + ψ) . (4.13)

To simplify the analysis, consider the time rescaling s = -√ -s. This converts (4.13) to

dr ds = -µr 2 sin 2 (- √ -s + ψ) , dψ ds = -µ 2 cos(- √ -s + ψ) sin(- √ -s + ψ) . (4.14) 
We consider (4.14) on each time subinterval

I j := [-((j + 2)π) 2 , -(jπ) 2 ],
for j ∈ {0, 2, 4, 6, . . .} by viewing (4.14) as a vector field on R + × (I j / ∼) where the equivalence relation ∼ identifies the endpoints of I j . Then the vector field is in the form for averaging [START_REF] Verhulst | Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics[END_REF]. The averaged equations are

dr j ds = - µr j 2|I j | I j sin 2 (- √ -s + ψ j )ds = - (2j + 2)π + sin(2ψ j ) 2(4j + 4)π µr j , (4.15) 
dψ j ds = - µ 2|I j | I j cos(- √ -s + ψ j ) sin(- √ -s + ψ j )ds = - µπ cos(2ψ j ) 2(4j + 4)π 2 . (4.16)
In particular, we find that if we take a formal limit j → ∞ the equation for the radius is

dr ∞ ds = - µ 4 r ∞ . (4.

17)

Remark: Observe that one could also view (4.15)-(4.16) as an autonomous vector field and formally average over the angle ψ j to get dr j ds = -(j + 1) (4j + 4) µr j , dψ j ds = 0 , and then take the limit j → ∞.

The solution of (4.17) is given by

r ∞ (s) = r ∞ (s 0 ) e -1 4 µ(s-s 0 ) = r ∞ (s 0 ) e 1 4 µ(s 2 -s 2 0 ) = r ∞ ((2/µ)z 0 ) e (z 2 -z 2 0 )/µ (4.18)
which shows that the leading-order behaviour of the solutions to the variational equation (4.8) for z < 0 consists of a contraction towards the weak canard, given by (4.18), combined with a rotation. If we assume that ψ 0 (0) = 0, i.e., the rotation ends at angle 0 on section {z = 0}, then solving (4.16) yields

ψ 0 (s) = -tan -1 tanh sµ 8(1 + j)π .
In principle we can now calculate ψ 0 (-(2π) 2 ), use this result as an initial condition for ψ 1 and then repeat the process to get a very detailed description of the rotational properties of trajectories near a folded node.

Diagonalization

To give rigorous arguments instead of the above formal calculation, we start by considering the variational equation in first-order form (4.8). The matrix A(z) has eigenvalues 2z ± 2 i ω(z) , where ω(z) = 1 -z 2 + µ .

We assume that |z| < 1 so that ω(z) is real and bounded away from 0. Furthermore A(z) has trace 4z. We expect that the solution u(z) for (4.8) consists of a contraction and a rotation for

1 < z 0 z < 0 . (4.19)
Observe that (4.19) corresponds to the condition (4.12).

Theorem 4.3 (Canonical form).

There exists a matrix

S(z) = 1 ω(z) -z + ω(z) -z -ω(z) 1 1 + O(µ) (4.20)
such that the coordinate change u(z) = S(z)ũ(z) transforms the variational equation (4.8) into canonical form

µ dũ dz = a(z) ̟(z) -̟(z) a(z) ũ , (4.21) 
where

a(z) = 2z + O(µ 2 ) , ̟(z) = 2ω(z) + O(µ) . (4.22)
As a consequence, we can write the solution of (4.8) in the form

u(z) = e α(z,z 0 )/µ S(z)U (z, z 0 )S(z 0 ) -1 u(z 0 ) (4.23) for |z| < 1 and |z 0 | < 1, where α(z, z 0 ) = z z 0 a(s) ds = z 2 -z 2 0 + O(µ 2 ) (4.24)
and U (z, z 0 ) is the orthogonal matrix

U (z, z 0 ) = cos(ϕ(z, s)/µ) sin(ϕ(z, s)/µ) -sin(ϕ(z, s)/µ) cos(ϕ(z, s)/µ) , ϕ(z, z 0 ) = z z 0 ̟(s) ds + O(µ) . (4.25)
The proof is given in Appendix A. We remark that Theorem 4.3 easily extends to the linearization around solutions other than the weak canard.

The Distance Estimate

From the solution of the variational equation in Theorem 4.3 we can give asymptotic estimates on the distance of the secondary canards to the weak canard on the section 

Σ 0 := {(x, y, z) ∈ R 3 : z = 0} .
ϕ(0, z 0 ) µ = 1 µ 0 z 0 ̟(s) ds ! = π 2k + 1 2 (4.26)
to leading order. Using concavity of the integral z → 0 z ω(s) ds for z ∈ (-1, 0), we find

- π 4 z 0 1 + µ 0 z 0 ω(s) ds -z 0 1 + µ , (4.27) 
which enables us to approximate the integral in (4.26). Hence as µ → 0 we get that

z 0 ∈ -(2k + 1)µ, - π 4 (2k + 1)µ =: [z (1) 0 , z (2) 0 ] , (4.28) 
where z

(1) 0 is the starting-point estimate for maximal canards that start to spiral around γ w near z -1 and z

(2) 0 the estimate for maximal canards that start to spiral around γ w near z 0. In particular, we find that z 0 = O((2k + 1)µ). Note that the contraction term towards γ w in (4.23) for -1 < z 0 z < 0 has order

O e (z 2 -z 2 0 )/µ . (4.29)
The result follows upon evaluating (4.29) on Σ 0 and substituting (4.28).

Stochastic Fast-Slow Systems

As for deterministic fast-slow systems we only give a brief introduction to stochastic fast-slow systems. For a detailed introduction to stochastic multiple time-scale dynamics consider [START_REF] Berglund | Noise-induced phenomena in slow-fast dynamical systems. A sample-paths approach[END_REF][START_REF] Kuehn | Multiple Time Scale Dynamics[END_REF]; we are also going to assume standard results on stochastic differential equations (SDEs) [START_REF]Stochastic Differential Equations[END_REF][START_REF] Kallenberg | Foundations of Modern Probability -2 nd edition[END_REF]. All SDEs and stochastic integrals in this paper are considered in the Itô interpretation.

We associate to the deterministic fast-slow system (2.1) a stochastic fast-slow system given by dx s = 1 ǫ f (x, y, µ, ǫ) ds + σ √ ǫ F (x s , y s ) dW s , dy s = g(x, y, µ, ǫ)ds + σ ′ G(x s , y s ) dW s , (

where F : R m+n → R m×k , G : R m+n → R n×k , {W s } s 0 is a k-dimensional standard Brownian motion on some probability space (Ω, F, P) and σ, σ ′ > 0 are parameters controlling the noise level

σ 2 + (σ ′ ) 2 .
We also define ρ := σ ′ /σ and assume that ρ is bounded above and below by positive constants. The initial conditions (x 0 , y 0 ) := (x s 0 , y s 0 ) are chosen to be square-integrable and independent of {W s } s s 0 . Furthermore we assume that f, g, F, G are sufficiently smooth and satisfy the standard assumptions that guarantee the existence and pathwise uniqueness of strong solutions (x s , y s ) to the SDE (5.1). Note that these conditions also imply the existence of a continuous version of (x s , y s ). The law of the process (x s , y s ), starting at time s 0 in (x 0 , y 0 ), is denoted by P s 0 ,(x 0 ,y 0 ) and the corresponding expectation by E s 0 ,(x 0 ,y 0 ) . Our approach to understand the dynamics of (5.1) is to analyze the time a sample path spends in a given Borel-measurable set A ⊂ R m+n . Suppose (x 0 , y 0 ) ∈ A and define the first-exit time from A as

τ A := inf{s ∈ [s 0 , ∞) : (x s , y s ) / ∈ A} .
In this paper we are always going to choose sets A so that τ A is a stopping time with respect to the filtration generated by {(x s , y s )} s s 0 .

Our first goal is to state an analog of Fenichel's Theorem. This theorem is going to describe the typical spreading of sample paths near an attracting critical manifold bounded away from folded singularities. Suppose the deterministic version of (5.1) with σ = 0 = σ ′ has a compact attracting normally hyperbolic critical manifold

C 0 = {(x, y) ∈ R m+n : x = h 0 (y), y ∈ D 0 } .
Let C ǫ be the slow manifold obtained from Fenichel's Theorem 2.1. Our strategy is to construct a neighborhood B(r) for C ǫ that contains the sample paths with high probability [START_REF] Berglund | Geometric singular perturbation theory for stochastic differential equations[END_REF][START_REF] Berglund | Noise-induced phenomena in slow-fast dynamical systems. A sample-paths approach[END_REF]. Define

ξ s = x s -h ǫ (y s ) . (5.2)
Observe that ξ s measures the deviation of the fast components from C ǫ . Applying Itô's formula to (5.2) gives:

dξ s = dx s -D y h ǫ (y s ) dy s + O (σ ′ ) 2 ds (5.3) = 1 ǫ f (h ǫ (y s ) + ξ s , y s , µ, ǫ) -ǫD y h ǫ (y s )g(h ǫ (y s ) + ξ s , y s , µ, ǫ) + O(ǫ(σ ′ ) 2 ) ds + σ √ ǫ F (h ǫ (y s ) + ξ s , y s ) -ρ √ ǫD y h ǫ (y s )G(h ǫ (y s ) + ξ s , y s ) dW s .
From now on, we suppress the arguments µ and ǫ for brevity. Consider the linear approximation of (5.2) in ξ s , neglect the Itô term O(ǫ(σ ′ ) 2 ) and replace y s by its deterministic version y det s to obtain

dξ 0 s = 1 ǫ A ǫ (y det s )ξ 0 s ds + σ √ ǫ F 0 ǫ (y det s ) dW s , dy det s = g(h ǫ (y det s ), y det s ) ds , (5.4) 
where the two matrices A ǫ and F 0 ǫ are defined as

A ǫ (y) = D x f (h ǫ (y), y) -ǫ D y h ǫ (y) D x g(h ǫ (y), y) , F 0 ǫ (y) = F (h ǫ (y), y) -ρ √ ǫD y h ǫ (y)G(h ǫ (y), y) .
Observe that A 0 (y) = D x f (h 0 (y), y) and F 0 0 (y) = F (h 0 (y), y). To solve (5.4), we pick an initial condition on the slow manifold (ξ 0 0 , y det 0 ) = (0, y det 0 ). Then the solution of (5.4) is the Itô integral

ξ 0 s = σ √ ǫ s 0 U (s, r)F 0 ǫ (y det r ) dW r
where U (s, r) denotes the principal solution of the homogeneous linear system ǫ ν = A ǫ (y det s )ν. If we fix a time s then ξ 0 s is a Gaussian random variable of mean zero and covariance matrix

Cov(ξ 0 s ) = σ 2 ǫ s 0 U (s, r)F 0 ǫ (y det s )F 0 ǫ (y det s ) T U (s, r) T dr .
Note carefully that X s := σ -2 Cov(ξ 0 s ) does satisfy a fast-slow ODE given by

ǫ Ẋ = A ǫ (y)X + XA ǫ (y) T + F 0 ǫ (y)F 0 ǫ (y) T , ẏ = g(h ǫ (y), y) .
(5.5)

The system (5.5) has a critical manifold S ξ 0 given by the equation

A 0 (y)X + XA 0 (y) T + F 0 0 (y)F 0 0 (y) T = 0 .
By the remarks above we see that this is equivalent to solving

(D x f )(h 0 (y), y)X + X[(D x f )(h 0 (y), y)] T + F (h 0 (y), y)F (h 0 (y), y) T = 0 . (5.6)
Again this manifold can be locally described as a graph

S ξ 0 = {(X, y) ∈ R m+n : X = H 0 (y)} .
The next lemma states that S ξ 0 is normally hyperbolic and attracting.

Lemma 5.1 ( [START_REF] Bellman | Introduction to Matrix Analysis[END_REF]). Let M 1 and M 2 be square matrices of dimension m with eigenvalues λ 1,1 , . . . λ 1,m and λ 2,1 , . . . λ 2,m , respectively. Then the linear map L : R m×m → R m×m defined by

L(X) = M 1 X + XM 2
has m 2 eigenvalues given by {λ 1,i + λ 2,j } for i, j ∈ {1, 2, . . . , m}.

Therefore Fenichel's Theorem 2.1 provides us with a slow manifold

S ξ ǫ = {(X, y) ∈ D ⊂ R m+n : X = H ǫ (y) = H 0 (y) + O(ǫ)} ,
which we will now use to describe the typical spreading of sample paths.

Theorem 5.2 ( [START_REF] Berglund | Geometric singular perturbation theory for stochastic differential equations[END_REF][START_REF] Berglund | Noise-induced phenomena in slow-fast dynamical systems. A sample-paths approach[END_REF]). Suppose the norms H ǫ (y) and H -1 ǫ (y) are uniformly bounded. Define the neighborhood B(r) around the deterministic slow manifold as

B(r) := {(x, y) ∈ D : [x -h ǫ (y)], H -1 ǫ (y)[x -h ǫ (y)] < r 2 } .
Then, for ǫ > 0 and σ > 0 sufficiently small, sample paths starting on C ǫ remain in B(r) with high probability; in particular, we have

P s 0 ,(x 0 ,y 0 ) τ B(r) < s ∧ τ D 0 < K 1 (s, ǫ) e -K 2 r 2 /2σ 2 .
(5.7)

with K 1,2 > 0.
Detailed discussions of the factors K 1 (s, ǫ) and K 2 can be found in [START_REF] Berglund | Geometric singular perturbation theory for stochastic differential equations[END_REF][START_REF] Berglund | Noise-induced phenomena in slow-fast dynamical systems. A sample-paths approach[END_REF]. In particular, K 1 (s, ǫ) grows at most like s 2 , while K 2 does not depend on time and can be taken close to 1. The probability in (5.7) thus remains small on long time spans as soon as we choose r ≫ σ. This implies that sample paths stay for exponentially long times near an attracting slow manifold before they jump away unless they come close to the boundary of C 0 before, i.e., the y-coordinates leave the set D 0 .

6 Stochastic Folded Nodes 6.1 Blow-Up Proposition 3.1 shows that Equation (3.8) is a normal form for deterministic fast-slow systems with a folded node. We study the associated SDE

dx s = 1 ǫ (y s -x 2 s ) ds + σ √ ǫ dW (1) s 
,

dy s = [-(µ + 1)x s -z s ] ds + σ ′ dW (2) s , dz s = µ 2 ds , (6.1) 
where W

s , W

are independent standard Brownian motions; to simplify the notation we also define W s := (W

(1) s , W (2) 
s ) T . Since z plays the role of a time variable we do not add noise to the z-component. We will always assume that the noise terms are of equal order, i.e., that ρ = σ ′ /σ is bounded above and below by positive constants. Note that (6.1) fits into the framework of a general fast-slow SDE (5.1) with F (x, y) = 1 0 and G(x, y) = 0 1 .

We apply the rescaling/blowup given by (4.1) to (6.1) to get

ǫ 1/2 dx s = ǫ 1/2 (ȳ s -x2 s ) ds + σ √ ǫ dW (1) 
ǫ 1/2 s , ǫ dȳ s = ǫ [-(µ + 1)x s -zs ] ds + σ ′ dW (2) ǫ 1/2 s , dz s = µ 2 ds .
We use the scaling law of Brownian motion, divide the first equation by √ ǫ and the second one by ǫ and drop the overbars for notational convenience, obtaining

dx s = (y s -x 2 s ) ds + σ ǫ 3/4 dW (1) s 
,

dy s = [-(µ + 1)x s -z s ] ds + σ ′ ǫ 3/4 dW (2) s , dz s = µ 2 ds . (6.2)
Therefore rescaling the noise intensities as

(σ, σ ′ ) = (ǫ 3/4 σ, ǫ 3/4 σ′ ) (6.3)
removes ǫ from the equations and yields

dx s = (y s -x 2 s ) ds + σ dW (1) s , dy s = [-(µ + 1)x s -z s ] ds + σ ′ dW (2) s , dz s = µ 2 ds , (6.4) 
where the overbars from (6.3) have again been dropped. To study (6.4) we consider the variational equation around a deterministic solution (which may be the weak primary canard, a secondary canard, or even any other solution with initial condition (x 0 , y 0 , z 0 ) sufficiently close to C a 0 ). This approach is a generalization of Section 5 where we considered the variation around the slow manifold. Viewing (6.4) as a planar non-autonomous system with time z = (µ/2)s and setting

(x z , y z ) = (x det z + ξ z , y det z + η z ) ,
we get the SDE

dξ z = 2 µ (η z -ξ 2 z -2x det z ξ z ) dz + σ 2 µ dW (1) z 
,

dη z = -2 µ (µ + 1)ξ z dz + σ ′ 2 µ dW (2) z 
. (6.5)

Covariance Tubes

We linearize (6.5) and denote by ζ 0 z = (ξ 0 z , η 0 z ) T the solution which satisfies the SDE

dζ 0 z = 1 µ -4x det z 2 -2(µ + 1) 0 =:A(x det z ) ζ 0 z dz + σ √ µ √ 2 0 0 √ 2ρ =:F 0 dW z . (6.6) 
Then (6.6) is solved by the following Gaussian process

ζ 0 z = U (z, z 0 )ζ 0 z 0 + σ √ µ z z 0 U (z, r)F 0 dW r ,
where U (z, r) is the principal solution to the deterministic homogeneous non-autonomous linear system µ ζ = A(x det z )ζ. The two-by-two covariance matrix Cov(ζ 0 z ) =: Cov(z) is given by

Cov(z) = σ 2 µ z z 0 U (z, r)(F 0 )(F 0 ) T U (z, r) T dr . (6.7)
Differentiating V (z) := σ -2 Cov(z) we find that it satisfies the ODE

µ dV dz = A(x det z )V + V A(x det z ) T + (F 0 )(F 0 ) T (6.8)
with initial condition V (z 0 ) = 0. The following result describes the behaviour of the solutions of (6.8), in particular as z approaches 0.

Theorem 6.1 (Behaviour of the covariance matrix). Fix an initial time z 0 < 0. There exist constants c + > c -> 0 such that, for all 0 < µ ≪ 1, the solution of (6.8) with initial condition V (z 0 ) = 0 satisfies

c - |z| V 11 (z), V 22 (z) c + |z| for z 0 + O(µ|log µ|) z - √ µ , (6.9) 
c - √ µ V 11 (z), V 22 (z) c + √ µ for - √ µ z √ µ , (6.10) 
and

|V 12 (z)| = |V 21 (z)| c + for z 0 z √ µ , |V 22 (z) -V 11 (z)| c + for z 0 z √ µ . (6.11) 
Furthermore, let V (z) be any solution of (6.8) with positive definite initial condition V (z 0 ). More precisely, we require both V (z 0 ) and V (z 0 ) -1 to have all elements uniformly bounded in µ. Then the matrix elements of V (z) satisfy (6.10) and (6.11), and (6.9) holds for all z ∈ [z 0 , -√ µ ].

The proof is given in Appendix B, where we also give some additional information on how the covariance can be approximated by asymptotic expansions.

Equations (6.9) and (6.10) show that the variances of ξ 0 z and η 0 z grow like σ 2 /|z| up to time -√ µ, and then stay of order σ 2 / √ µ up to time √ µ. Thus we expect the fluctuations of stochastic sample paths around the deterministic solution to increase when the fold at z = 0 is approached. The restriction z z 0 + O(µ|log µ|) is due to the fact that the variances are initially equal to zero, and need some time to build up.

Equations (6.11) show that the covariance of ξ 0 z and η 0 z remains bounded, of order σ 2 , up to time √ µ, and the same holds true for the difference between the variances. This implies that fluctuations become more isotropic as z approaches 0.

We now turn to the analysis of the full nonlinear SDE (6.5) satisfied by the difference ζ z = (ξ z , η z ) between stochastic sample paths and deterministic solutions. This SDE can be written in vectorial form as

dζ z = 1 µ A(x det z )ζ z + b(ζ z ) dz + σ √ µ F 0 dW z , (6.12) 
where A and F 0 have been defined in (6.6), and b(ζ) T = (-ξ 2 , 0) denotes the nonlinear term. We expect the covariance matrix of ζ z to be close to Cov(ζ 0 z ) = σ 2 V (z), where V (z) is the solution of (6.8) with initial condition V (z 0 ) = 0. Thus sample paths should be concentrated in a tube surrounding the deterministic solution, with elliptical cross-section determined by V (z). Note that the elliptical cross-section becomes close to circular as z approaches 0, since the variances V 11 , V 22 are then of larger order than the covariance V 12 and the difference V 22 -V 11 .

The fact that V (z 0 ) is not invertible causes some technical complications. Therefore, in the following we let V (z) be the solution of (6.8) with an initial condition V (z 0 ) which is positive definite. Observe that the difference between V (z) and V (z) decreases exponentially fast. We fix a z 0 < 0 and define the covariance-tube as

B(r) = (x, y, z) : z 0 z √ µ, [(x, y) -(x det z , y det z )], V (z) -1 [(x, y) -(x det z , y det z )] < r 2 . (6.
13) The cross-section of B(r) at any plane {z = const} is an ellipsoid whose axes are determined by V (z), while the scaling parameter r controls the size of the tube. Theorem 6.2 (Concentration of sample paths in the covariance tube). There exist constants ∆ 0 , r 0 , µ 0 > 0 such that for all 0 < ∆ < ∆ 0 , all σ < r < r 0 µ 3/4 and all µ ≤ µ 0 ,

P τ B(r) < z C + (z, z 0 ) e -κ 0 r 2 /2σ 2 (6.14)
holds for all z √ µ, where the exponent κ 0 satisfies

κ 0 = 1 -O(∆) -O(rµ -3/4 ) -O(σ 2 /r 2 ) , (6.15) 
and the prefactor is given by

C + (z, z 0 ) = 1 + const ∆µ r σ 2 z z 0
x det s ds . (6.16)

The proof is given in Appendix C. This result shows that the probability that sample paths leave the covariance-tube before time z is small, provided we choose r ≫ σ(log(C + (z, z 0 ))) 1/2 . Indeed, for these values of r, the exponential term dominates the polynomial prefactor. We thus say that sample paths are concentrated in the covariance tube B(r) for r slightly larger than σ, or that the typical spreading of sample paths is given by B(σ).

The condition σ < r < r 0 µ 3/4 implies that the theorem only applies to noise intensities smaller than O(µ 3/4 ). What happens for σ µ 3/4 is that fluctuations become large already some time before the fold line is reached, which completely smears out the small oscillations present in the deterministic case. In fact, it is possible to show that if σ µ 3/4 , the bound (6.14) still holds true for r r 0 |z| 3/2 , and thus sample paths are localised up to times z ≪ -σ 2/3 .

Small-Amplitude Oscillations and Noise

Our knowledge of the size of the covariance tubes now allows to determine when they start to overlap; from this we can deduce consequences for the existence of small-amplitude oscillations (SAOs) in the presence of noise. Recall from Theorem 3.2 that there are two primary canards γ s,w ǫ and K -1 secondary canards γ k ǫ for 2K -1 < µ -1 < 2K + 1. We want to consider the rotations around γ w ǫ and denote the strong canard by γ 0 ǫ , i.e., k = 0. By Theorem 4.4 the distance from the weak canard is given by O(exp(-c 0 (2k + 1) 2 µ)) for some positive constant c 0 ∈ [π/4, 1]. Theorem 6.1 implies that on z = 0 the width of the covariance tubes is given by O(µ -1/4 σ). Therefore the covariance tubes for sample paths starting on the k-th canard start to overlap with the weak canard for σ ≈ µ 1/4 exp(-c 0 (2k + 1) 2 µ). We define the functions σ k (µ) := µ 1/4 e -c 0 (2k+1) 2 µ . The previous considerations yield the following result. Corollary 6.3 (Noisy SAOs). On the section {z = 0} the covariance tubes of the k-th canard overlap if σ > σ k (µ) . (6.17)
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Therefore, depending on the noise level σ, the canard number and the parameter µ, deterministic SAOs with 2k+1 twists become indistinguishable from noisy fluctuations whenever (6.17) holds.

In Figure 6 we show the curves σ k (µ) and indicate in which regions of the (µ, σ)parameter plane one can distinguish which number of canards. The curves σ k (µ) and the existence conditions for canards enclose bounded regions where precisely k + 1 canards can be distinguished which yields (2k + 1)/2 twists up to the section {z = 0}; see also Theorem 3.3. We can also study Figure 6 for fixed σ. In this case decreasing µ first increases the number of visible SAOs and then decreases it again.

Early Jumps

We now turn to the behaviour for times z > √ µ. For definiteness, we let (x det z , y det z ) = (-z, z 2 -µ/2) be the weak canard solution, and define the set

D(η) = (x, y, z) : z √ µ, (x -x det z ) 2 + (y -y det z ) 2 < η 2 z . (6.18)
D(η) is a tube centred in the weak canard, whose width grows like √ z. The following result, which is proved in Appendix D, shows that sample paths are unlikely to stay for very long in D(η).

Theorem 6.4 (Escape of sample paths from the primary canard). There exist constants κ = κ(η) > 0, C 0 > 0 and γ 1 , γ 2 > 0 such that, whenever σ|log σ| γ 1 µ 3/4 ,

P τ D(η) > z C 0 |log σ| γ 2 e -κ(z 2 -µ)/(µ|log σ|) . (6.19)
The probability that a sample paths stays in D(η) thus becomes small as soon as z ≫ µ|log σ|/κ . (6.20)

Unless the noise intensity σ is exponentially small in µ, the typical time at which sample paths jump away from the canard is slightly (that is, logarithmically) larger than √ µ.

Numerics and Visualization

In this section we briefly discuss how to compute canard solutions and their associated covariance tubes. Furthermore we visualize the early jumps after passage near a folded node in phase space for a model system with global returns. We also compute the probability density of escaping trajectories on a cross-section for this example. SDEs have been integrated numerically by a standard Euler-Maruyama scheme [START_REF] Highham | An algorithmic introduction to numerical simulation of stochastic differential equations[END_REF][START_REF] Kloeden | Numerical Solution of Stochastic Differential Equations[END_REF]. Deterministic solutions have been computed using a stiff ODE solver [START_REF] Shampine | The MatLab ODE suite[END_REF][START_REF] Hairer | Solving Ordinary Differential Equations II[END_REF].

Covariance Tubes

The maximal canards and their associated covariance tubes can be computed. Figure 7 shows an example for these computations where we used the blown-up normal form (6.4) with µ = 0.08.

First we compute the deterministic slow manifolds C a ǫ and C r ǫ by forward respectively backward integration (see [START_REF] Desroches | Mixed-mode oscillations with multiple time scales[END_REF]) up to the section

Σ 0 = {(x, y, z) ∈ R 3 : z = 0} .
The primary and secondary maximal canards have been computed as intersections of the slow manifolds C a ǫ ∩ C r ǫ ; see also Section 3 and [53,[START_REF] Desroches | Numerical continuation of canard orbits in slow-fast dynamical systems[END_REF]. The resulting maximal canards (thick green curves) are shown in Figure 7. We also computed a sample path (thin red curves) for each maximal canard starting at the same point as the maximal canard with z 0 = -1; the noise values were fixed at σ = 0.008 = σ ′ . The tubes defined by the covariance are shown in grey and have been computed using integration of the covariance differential equation (6.8); the section Σ 0 is drawn in yellow for better orientation.

Figure 7(a) shows a side view that illustrates how the different primary canards γ s,w ǫ and secondary canards γ j ǫ are organized with respect to z. We have only started to draw the covariance tubes B(r) with r 2 = 0.02 a bit beyond the initial values at x 0 = 1. It is clearly visible how the canards and their tubes are attracted towards the weak canard and then start to rotate around it. Figure 7(b) shows a front view towards the section Σ 0 . This view shows nicely how the tubes grow with increasing z-values and that the ellipses defined by the covariance matrix are indeed close to circular near z = 0. Furthermore we can see how the canards are organized on Σ 0 ; the maximal canard tubes for γ s,1,2 ǫ do not overlap while all other tubes overlap near the weak canard. Figure 7(c) shows a zoom that illustrates the twisting and also shows how the sample paths are indeed "trapped" inside the covariance tubes with very high probability.

Early Jumps

To visualize the effect of early jumps, we consider a folded node with global returns given by dx = 1 ǫ (y -

x 2 -x 3 ) ds + σ √ ǫ dW (1) s , dy = [-(µ + 1)x -z] ds + σ ′ dW (2) s , dz = µ 2 + ax + bx 2 ds , (7.1)
which is a slight modification of a model system for folded-node MMOs [START_REF] Brøns | Mixed mode oscillations due to the generalized canard phenomenon[END_REF]. The critical manifold is cubic-shaped (or S-shaped) and given by

C 0 = {(x, y, z) ∈ R 3 : y = x 2 + x 3 } = C a,- 0 ∪ L -∪ C r ∪ L + ∪ C a,+
where C a,+

0 = C 0 ∩ {x < -2/3}, C r 0 = C 0 ∩ {-2/3 < x < 0}, C a,+ 0 = C 0 ∩ {x > 0}, L -= C 0 ∩ {x = -2/3} and L + = C 0 ∩ {x = 0}. The parameters (a, b) ∈ R 2 help
to adjust the global return mechanism. If a, b are O(1) then they do not influence the local behaviour of a folded node at the origin (x, y, z) = (0, 0, 0). Figure 8 shows the effect of early jumps after passage through a folded-node region. Parameters for the simulation are:

ǫ = 0.01 , µ = 0.143 , a = 0.2 , b = -1.1 , σ = 0.005 , σ ′ = 0 . (7.2)
In Figure 8(a) a deterministic trajectory (thick blue curve) has been computed for σ = 0. Then an SDE sample path for (7.1) has been started on a point (green dot) of the deterministic solution and integrated forward. We define a cross-section

Σ J := {(x, y, z) ∈ R 3 : x = -0.3} .
Escapes of sample paths from the folded-node region are recorded on Σ J . The next two returns are also shown as points (violet and red) on the cross-section Σ J . It is clearly visible from Figure 8(a) how in this realization the SDE sample path jumps before the deterministic solution. Note that this causes the path to get re-injected into the foldednode region after a large excursion at a point slightly different from the deterministic solution. Hence the global return mechanism can potentially act as a control mechanism for the noise. To investigate the early jumps further we show in Figure 8 The density has been computed by recording the intersections with Σ J after passage through the folded node for 4000 sample paths that have been integrated for a time s ∈ [0, 20]. The corresponding deterministic point measure p det has been indicated as well.

The density p(y, z) clearly shows that paths are likely to jump before the deterministic solution if we consider the z-coordinate distance from the folded node. We also see that the density p(y, z) is quite concentrated and shows a multi-modal structure. This structure can be explained from the fact that sample paths exit early but between different exit points they can make additional deterministic small oscillations. The possible different numbers of these oscillations correspond to the different maxima of p(y, z).

Final Remarks

In Section 6 we stated our results on the relation between the noise level, the parameter µ and the typical spreading of sample paths. Note that we proved and stated our results in blown-up (or re-scaled) coordinates removing the ǫ-dependence. In particular, we worked in a neighbourhood of the folded node that is of size O( √ ǫ) in original coordinates. To obtain the results in original coordinates one has to apply a blow-down transformation. First, we replace (x, y, z, σ, σ ′ ) by (x, ȳ, z, σ, σ′ ) (recall: we dropped the overbars for notational convenience), cf. (4.1) and (6.3). Then the identity

(x, ȳ, z, σ, σ′ , µ) = (ǫ -1/2 x, ǫ -1 y, ǫ -1/2 z, ǫ -3/4 σ, ǫ -3/4 σ ′ , µ)
provides the required blow-down transformation. This implies, e.g., that the interaction of canards in Corollary 6.3 is given, in original coordinates, by relations of the form

σ ≈ ǫ 3/4 µ 1/4 e -c 0 (2k+1) 2 µ
or that sample paths are likely to escape for

z ≫ µǫ κ log σ - 3 4 log ǫ
as shown in Theorem 6.4. Obviously one also has to translate the assumptions in a similar way, e.g., σ ≪ µ 3/4 becomes σ ≪ (µǫ) 3/4 .

Another important point is that we focused on the detailed analysis near the folded node and did not consider different types of global return mechanisms. In Figure 9 we show the interaction between global returns and noise-induced early jumps on oscillatory patterns. The simulation in Figure 9 has been carried out using the model system (7.1) with parameter values

ǫ = 0.01 , µ = 0.029 , a = -0.1 , b = -0.5 , σ = 0.005 , σ ′ = 0.005 . (8.1) 
The deterministic solution in Figure 9 is an MMO with pattern 2 s where the number of small oscillations is difficult to count from the numerical results as µ is already extremely small. The SDE sample paths jump significantly earlier to C a,- ǫ than the deterministic solution as expected from our results. However, we see that the deterministic solution makes an additional large-amplitude oscillation (LAO) given by the passage

C a,- ǫ → jump near L -→ C a,+ ǫ → jump near L + → C a,- ǫ .
In particular, the early jumps change the number of LAOs in the MMO pattern from L = 2 to L = 1. The noise also influences the number of SAOs but the crucial point is that it can also have a global effect. Hence we end up with a stochastic-resonance-type mechanism for MMO patterns. Furthermore, one could think about extending our results to capture the effect of a global return map on the escape density after the passage through a folded-node region; see also the brief discussion in Section 7.2. Let Σ J denote a cross-section on which we record the escape from the folded-node region and let Σ R denote a cross-section to the deterministic flow slightly before the re-entry to the folded-node region; see also [START_REF] Kuehn | Global return maps for mixed-mode oscillations with one fast and two slow variables[END_REF]. Then we have a global return map induced by the deterministic flow

M : Σ J → Σ R . (8.2) 
If we are given a probability density p on Σ J , we can then consider the induced density

p • M -1 /|det DM • M -1 | on Σ R
. This should allow us to calculate a distribution for different MMO patterns, i.e., we can hope to assign a probability to each combination L s after one return from Σ J to Σ J . Although this approach seems possible it is beyond the local analysis we focused on here. A solution of this problem crucially depends on the form of the global returns which are described by the map M .

B Proof of Theorem 6.1 (Covariance Matrix)

In this Appendix, we discuss the equation

µ dV dz = A(x det z )V + V A(x det z ) T + (F 0 )(F 0 ) T (B.1)
describing the evolution of V (z) = {V ij (z)} i,j∈{1,2} := σ -2 Cov(z), the covariance matrix of the linearized variational equation around a deterministic solution of (6.4). Before proving Theorem 6.1 on the small-µ asymptotics of the solutions, we provide different approaches yielding information on the behaviour of V (z). A formal method based on iterative computations of a slow manifold is developed in Section B.1 to understand the asymptotics of (B.1). In Section B.2 we provide rigorous bounds using a Lyapunov function. In Section B.3 we refine the previous results by a transformation to real canonical form and results about delayed Hopf bifurcation, thereby proving the main theorem.

Proposition B.1. Let v(z) =   v 1 (z) v 2 (z) v 3 (z)   , where      v 1 (z) = V 11 (z) , v 2 (z) = V 22 (z) , v 3 (z) = V 12 (z) = V 21 (z) (B.2)
denote the two variances and the covariance. Then v(z) satisfies the ODE

µ dv dz =   -8x(z) 0 4 0 0 -4(µ + 1) -2(µ + 1) 2 -4x(z)   =:B(z) v +   2 2ρ 2 0   =:E (B.3)
where we have abbreviated x det (z) =: x(z).

Proof. Using the definitions from (6.6) and equation (B.1) we get

µ dV dz = A(x det z )V + V A(x det z ) T + (F 0 )(F 0 ) T = -4x det z 2 -2(µ + 1) 0 V + V -4x det z -2(µ + 1) 2 0 + √ 2 0 0 √ 2ρ √ 2 0 0 √ 2ρ = 4V 12 -8V 11 x det z + 2 2V 22 -4V 12 x det z -2V 11 (1 + µ) 2V 22 -4V 12 x det z -2V 11 (1 + µ) -4V 12 (1 + µ) + 2ρ 2 .
Therefore the result follows.

Our goal is to analyze (B.3) for a given maximal canard solution x(z). Observe that B(z) has eigenvalues

-4x(z), -4x(z) ± 4i 1 -x(z) 2 + µ = -4x(z) ± 4 i ω 0 (-x(z)) .
We assume that z 0 , z 1 are chosen so that

-1 < z 0 < 0 < z 1 < 1 and 1 -x(z) 2 + µ > 0 ∀z ∈ [z 0 , z 1 ] . (B.4)
In particular, the assumptions (B.4) are satisfied for any maximal canard solution approaching the folded-node region from the slow manifold C a ǫ for some z 0 < 0 < z 1 of order 1 and µ sufficiently small.

B.1 Iteration and Asymptotics

Notation B.2. Henceforth, we write x(z, µ) ≍ y(z, µ) if

c -y(z, µ) x(z, µ) c + y(z, µ) (B.5)
holds for all z with positive constants c ± independent of z and µ.

A formal derivation for the asymptotics as µ → 0 for (B.3) can be carried out using an iterative scheme [START_REF] Neȋshtadt | Persistence of stability loss for dynamical bifurcations[END_REF][START_REF] Berglund | Adiabatic Dynamical Systems and Hysteresis[END_REF]. We set v(z) = V * 0 (z) + V 1 (z) where

V * 0 (z) := -B(z) -1 E = - 1 4(1 + µ)x(z)   1 + µ + ρ 2 (1 + µ) 2 + (1 + 4x(z) 2 + µ)ρ 2 2ρ 2 x(z)   (B.6)
defines the critical manifold for (B.3) when viewed as a slowly time-dependent system. We get

µ dV 1 dz = B(z)V 1 + µE 1 (z), E 1 (z) = - d dz V * 0 (z) .
The same change procedure also works for any n 1 by setting

v(z) = n j=0 µ j V * j (z) + V n+1 (z) . (B.7)
Then V n+1 (z) satisfies the equation

µ dV n+1 dz = B(z)V n+1 + µ n+1 E n+1 , (B.8) 
where V * n and E n are given inductively by

V * n+1 (z) = B(z) -1 d dz V * n (z), E n+1 (z) = d dz [B(z) -1 E n (z)] .
Remark: Observe that (B.7) is the asymptotic expansion for the slow manifold of (B.3).

The iterative scheme we use here is very convenient for slowly time-dependent systems. Many other methods to calculate slow manifolds for general fast-slow systems have been explored; see [START_REF] Zagaris | Fast and slow dynamics for the computational singular perturbation method[END_REF][START_REF] Zagaris | Two perspectives on reduction of ordinary differential equations[END_REF] and references therein.

Proposition B.3. Assume that the deterministic maximal canard solution x(z) satisfies (B.4). Then the asymptotic expansion (B.7) of v(z) for n 0 has components of order

µ n V * n,1 (z) ≍ µ n V * n,2 (z) ≍ µ n |z| 2n+1 , µ n V * n,3 (z) ≍ µ n |z| 2n .
(B.9)

Proof. First observe that the symmetry (3.12) implies that x(0) = 0 for any maximal canard. Using this fact and the form of the slow flow (3.10), we find that x(z) must have a Taylor expansion with non-vanishing linear term, i.e., and v 2 are of order 1/ √ µ, while all terms for v 3 are of order 1. Therefore we conjecture that

x(z) = x 1 z + x 2 z 2 + • • • (B.
v 1 = O 1 √ µ , v 2 = O 1 √ µ , v 3 = O(1) , (B.11) for - √ µ < z 0 z √ µ.
For z ∈ [z 0 , -√ µ ] the leading-order asymptotics of (B.13) is given by I n (z). Using integration by parts, we get an upper bound

k 1 I n (z) = k 1 µ n-1 z z 0 - µ k 1 t 1 (-t) 2n - k 1 t µ e k 1 (z 2 -t 2 )/2µ dt = µ n 1 (-t) 2n+1 e k 1 (z 2 -t 2 )/2µ z z 0 -µ n z z 0 d dt 1 (-t) 2n+1 e k 1 (z 2 -t 2 )/2µ dt = µ n (-z) 2n+1 - µ n (-z 0 ) 2n+1 e k 1 (z 2 -z 2 0 )/2µ -(2n + 1)I n+1 (z) (B.14) µ n (-z) 2n+1 .
The lower bound follows by inserting the upper bound for I n+1 (z) in (B. [START_REF] Benoît | Chasse au canards[END_REF]. Note that here the condition z z 0 + O(µ|log µ|) is needed to make the term e k 1 (z 2 -z 2 0 )/2µ small. Let us also remark that, in particular, we showed X(-

√ µ) ≍ 1/ √ µ.
Finally, to describe the behaviour for -√ µ < z < 0, we replace z 0 by -√ µ in (B. [START_REF] Benoît | Canards et enlacements[END_REF]).

Then all exponential terms are of order 1, and the integral can be estimated directly. Proof. Throughout the proof we are going to introduce several positive constants c j = O(1) for j ∈ N, whose actual values do not influence the asymptotic result. As a first step, we want to find a symmetric matrix M (z) such that

B(z) T M (z) + M (z)B(z) = -x(z) Id . (B.15)
This can simply be accomplished by solving the six algebraic equations (B.15). We find that

M (z)| µ=0 = 1 64(1 + 3x 2 )   7 + 12x 2 1 + 12x 2 -12x 1 + 12x 2 7 + 64x 2 + 48x 4 -16x(1 + 3x 2 ) -12x -16x(1 + 3x 2 ) 4(3 + 18x 2 )   ,
where we have abbreviated x = x(z). Since (B.10) holds for maximal canards, it is straightforward to check that the matrix M (z) is positive definite, uniformly in µ and z. Therefore it defines a family of quadratic forms

Y n := V T n M (z)V n (B.16)
where V n is defined by (B.7). The quadratic form (B.16) satisfies

c 1 V n 2 Y n (z) c 2 V n 2 .
for some constants c 1 , c 2 > 0. Essentially Y n will act as a Lyapunov function to bound V n . To show this, we compute the derivative. Using (B.15) and (B.8), we get

µ dY n dz = µ dV T n dz M (z)V n + µV T n M (z) dV n dz + µV T n dM dz V n = -x(z)V T n V n + µV T n dM dz V n + µ n E n (z) T M (z)V n + V T n M (z)E n (z) . (B.17)
Lemma B.7. The covariance matrix of ζ 0 z is given by σ 2 V (z), where the matrix elements of V (z) satisfy the system

µ dṽ dz =   2a(z) 0 2̟(z) 0 2a(z) -2̟(z) -̟(z) ̟(z) 2a(z)   =: e B(z) ṽ + E (B.22)
where E vector in R 3 with O(1)-components.

It is already apparent from the form of (B.22) that the analysis of the variational equation simplifies. We can now prove Theorem 6.1, which we restate as follows for convenience.

Theorem B.8 (Theorem 6.1). Suppose (B.4) holds. Then the solution v = (v 1 , v 2 , v 3 ) for (B.3) satisfies the following asymptotics as µ → 0

v 1 ≍ 1 |z| + √ µ , v 2 ≍ 1 |z| + √ µ , v 3 = O(1), (v 1 -v 2 ) = O(1) (B. 23 
)
for z 0 + O(µ|log µ|) z √ µ.
Proof. We work in the coordinates provided by Lemma B.7. Summing the first two equations of (B.22) we get Considering (B.25) as a fast-slow system with slow variable z we find that the critical manifold is given by the equation

µ d dz (ṽ 1 + ṽ2 ) = 2a(z)(ṽ 1 + ṽ2 ) + ẽ1 + ẽ2 , (B.
(ṽ 1 -ṽ2 ) * ṽ * 3 = - 2a(z) 4̟(z) -̟(z) 2a(z) -1 ẽ1 -ẽ2 ẽ3 .
which is of order 1. Observe that (B.25) undergoes a delayed (or dynamic) Hopf bifurcation at z = 0. Thus Neishtadt's theorem on delayed Hopf bifurcations [START_REF] Neȋshtadt | Persistence of stability loss for dynamical bifurcations[END_REF] applies, and shows that solutions of the variational equation satisfy

(ṽ 1 -ṽ2 )(z) = (ṽ 1 -ṽ2 ) * (z) + O(µ), ṽ3 (z) = v * 3 (z) + O(µ)
for z 0 +O(µ|log µ|) z O(1). Now the result (B.23) follows from V (z) = S(z) V (z)S(z) T , by writing V (z) as the sum of a leading term proportional to the identity matrix and a remainder of order 1.

D.1 Diffusion-Dominated Escape

We assume from now on that σ ≪ µ 3/4 , because otherwise stochastic sample paths are no longer localised near deterministic solutions when z = √ µ. We define the set

S(h) = {(ζ, z) : z √ µ, ζ < hρ(z)} , (D.3) where ρ(z) 2 = Tr(F (z)F (z) T ) 4z . (D.4)
The following result is an adaptation of [START_REF] Berglund | Pathwise description of dynamic pitchfork bifurcations with additive noise[END_REF]Proposition 4.7] to the two-dimensional case.

Proposition D.1. Let h, ν > 0, with ν of order 1, satisfy the conditions

σ h c 0 and h σ 2+ν log 1 + ν + h 2 σ 2 1/2 c 1 µ 3/4 σ (D.5)
for some c 0 , c 1 > 0. If c 0 and c 1 are small enough, then there exist T > 0 and C(ν) > 0 such that for any (z 0 , ζ 0 ) ∈ S(h) with z 0 < T ,

P (ζ 0 ,z 0 ) τ S(h) z C(ν) h σ 2ν exp -κ(ν) z 2 -z 2 0 µ (D.6)
holds for all √ µ z 0 z T , where

κ(ν) = 2ν 1 + ν 1 -O 1 ν log(h/σ) . (D.7)
We shall choose the value of the parameter ν later on, while h will be taken of the form h = cσ|log σ|. Then Condition (D.5) reduces to σ|log σ| 2+ν log|log σ| O(µ 3/4 ) , (D.8)

which is slightly stronger than requiring σ ≪ µ 3/4 . The exponent κ(ν) in (D.7) becomes optimal in the limit ν → ∞, but Condition (D.8) becomes more stringent as ν grows large. Note that we have to choose a finite ν anyhow.

Proof of Proposition D.1. Let α(t, s) = t s a(u) du. We define a partition z 0 = s

0 < s 1 < • • • < s N = z of [z 0 , z] by α(s k , s k-1 ) = ∆µ , k = 1, . . . , N -1 , (D.9)
where ∆ > 0 will be chosen later. The Markov property implies that

P τ S(h) z N -1 k=1 P k , (D .10) 
where

P k = sup ζ : ζ hρ(s k-1 ) P ζ,s k-1 sup s k-1 s s k ζ s ρ(s) < h . (D.11)
We shall derive a uniform bound q(∆) for all P k , 1 k N -1. Then (D.10) and the definition (D.9) of the partition imply

P τ S(h) z q(∆) -1 exp - α(z, z 0 ) µ log q(∆) -1 ∆ , (D.12)
and the result will follow from an appropriate choice of ∆. The process ζ s starting at time s k-1 in ζ can be decomposed as

ζ s = ζ k,0 s + ζ k,1 s , with ζ k,0 s = U (s, s k-1 )ζ + σ √ µ s s k-1 U (s, u)F (u) dW u , ζ k,1 s = 1 µ s s k-1 U (s, u)b(ζ u , u) du , (D.13)
where the principal solution U (s, u) of the linear system is given in (C.4). For any decomposition h = H 0 -H 1 , we have

P k sup ζ : ζ hρ(s k-1 ) [P k,0 (ζ, H 0 ) + P k,1 (ζ, H 1 )] , (D.14) 
where

P k,0 (ζ, H 0 ) = P ζ,s k-1 sup s k-1 s s k ζ k,0 s ρ(s) < H 0 , P k,1 (ζ, H 1 ) = P ζ,s k-1 sup s k-1 s s k ζ k,1 s ρ(s) H 1 , sup s k-1 s s k ζ s ρ(s) < h . (D.15)
We start by bounding P k,0 (ζ, H 0 ), using the end-point estimate

P k,0 (ζ, H 0 ) P ζ,s k-1 ζ k,0 s k < H 0 ρ(s k ) πH 2 0 ρ(s k ) 2 (2π) 2 det Cov(ζ k,0 s k ) . (D.16)
The last inequality follows from the fact that the random variable ζ k,0 s k is Gaussian, and we have bounded its density by the normalizing constant. We denote the diagonal matrix elements of V = σ -2 Cov(ζ k,0 s k ) by v 1 and v 2 , and the off-diagonal element by v 3 . Then

det Cov(ζ k,0 s k ) = σ 4 (v 1 v 2 -v 2 3 ) = σ 4 1 4 ((Tr V ) 2 -(v 1 -v 2 ) 2 ) -v 2 3 . (D.17)
As already remarked in the proof of Theorem B.8, the quantities v 1 -v 2 and v 3 remain of order 1 up to some z = T of order 1, as a consequence of Neishtadt's result on delayed Hopf bifurcations. In order to estimate the trace Tr V , we use the fact that ρ(z) is decreasing in (0, T ] for T small enough, owing to the fact that Tr(F (z)F (z) T ) is bounded below by a positive constant, and has a derivative bounded in absolute value. Thus we have, cf. (B.24),

Tr V = 1 µ s k s k-1 e 2α(s k ,u)/µ Tr(F (u)F (u) T ) du = e 2∆ s k s k-1 4u µ e -2α(u,s k-1 )/µ ρ(u) 2 du ρ(s k ) 2 e 2∆ -1 . (D.18)
Substituting (D.18) in (D.17) and then in (D.16) yields

P k,0 (ζ, H 0 ) H 2 0 σ 2 1 e 2∆ -1 1 + O 1 e 4∆ ρ(s k ) 4 . (D.19)
Next we estimate P k,1 . We first obtain the bound

ζ k,1 s∧τ S(h) 1 µ s∧τ S(h) s k-1 U (s, u) b(ζ u , u) du const 1 µ s∧τ S(h) s k-1 e α(s,u)/µ h 2 ρ(u) 2 du const h 2 ρ(s k-1 ) 2 2s k-1 e ∆ , (D.20)
where we have used the fact that the function u → ρ(u) 2 /2u is decreasing, and bounded the integral of (2u/µ) e α(s,u)/µ by e ∆ . Using a Taylor expansion of ρ(s) 2 and the definitions of ρ and of the partition, one finds

ρ(s k-1 ) 2 ρ(s) 2 1 + s -s k-1 ρ(s) 2 sup u∈[s k-1 ,s] |(ρ(u) 2 ) ′ | 1 + O(∆) (D.21) for all s ∈ [s k-1 , s k ].
Together with (D.20), this implies

ζ k,1 s∧τ S(h) ρ(s) const h 2 ρ(s k-1 ) s k-1 √ ∆ e ∆ const h 2 √ ∆ e ∆ µ 3/4 =: H 1 2 , (D.22) which yields P k,1 (ζ, H 1 ) = 0. Substituting H 0 = h + H 1 in (D.19) thus yields P k q(∆) := h 2 σ 2 1 e 2∆ -1 1 + O 1 e 4∆ + O h √ ∆ e ∆ µ 3/4 (D .23) 
for k = 1, . . . , N -1. Finally, we make the choice

∆ = 1 + ν 2 log 1 + ν + h 2 σ 2 .
(D.24)

Bounding P k above amounts to bounding q(∆) -1 below. For this we write

q(∆) -1 = σ 2 h 2 e 2∆ 1 -O(e -2∆ ) -O(e -4∆ ) -O h √ ∆ e ∆ µ 3/4 (D.25) 1 + ν + h 2 σ 2 ν 1 -O σ 2 h 2 1+ν -O h µ 3/4 h σ 1+ν log 1 + ν + h 2 σ 2 1/2 .
Note that the error term O(e -4∆ ) is negligible and no longer appears in the last line. Now by Assumption (D.5), for c 0 and c 1 small enough, we get

q(∆) -1 1 2 1 + ν + h 2 σ 2 ν (D.26) and log q(∆) -1 ∆ 2ν 1 + ν - 2 log 2 (1 + ν) log(1 + ν + h 2 /σ 2 ) =: κ(ν) . (D.27)
Note that κ(ν) is indeed of the form (D.7). The result thus follows from (D.12).

where

β(r, ϕ, z) = O(r 3 ) + O(µr 2 ) + O σ 2 r , F r (r, ϕ, z) = F r (ϕ, z) + O(r) . (D.34)
Proof. Using Itô's formula and the fact that r = r -r2 w(ϕ, z) + O(r 3 ), we obtain

dr = 1 µ a(z)r + r2 2zw(ϕ, z) + b r (ϕ, z) -̟(z) ∂w ∂ϕ + µ ∂w ∂z + O(r 3 ) + O σ 2 r dz + σ √ µ F r (ϕ, z) + r 2w(ϕ, z)F r (ϕ, z) + ∂w ∂ϕ F ϕ (ϕ, z) + O(r 2 ) dW z . (D.35)
It is thus sufficient to show that the equation showing that w(ϕ, z) is also bounded as z → 0.

∂w ∂ϕ (ϕ, z) = a(z) ̟(z) w(ϕ, z) + b r (ϕ, z) ̟(z) (D.
We now define the set

D(η) = (r, ϕ, z) : z √ µ, r < η √ z . (D.40)
Then the nonlinear term β satisfies, on the set R = D(η) \ S(h),

|β(r, ϕ, z)| rz M r2 z + µr z + σ 2 r2 z M ′ η 2 + ηµ 3/4 + 1 |log σ| 2 (D.41)
for some constants M , M ′ . We can thus find, for any 0 < κ < 2, an η = η(κ) such that (for sufficiently small σ and µ) holds as long as the process stays in R.

The following proposition shows that the process is unlikely to stay in R for times significantly larger than (µ|log σ|) 1/2 . Proposition D.4. There exists a constant κ 2 > 0 such that for any initial condition (r 0 , ϕ 0 , z 0 ) ∈ R,

P (r 0 ,ϕ 0 ,z 0 ) τ R > z 2 exp -κ 2 z 2 -z 2 0 µ|log σ| . (D.45) Proof. We introduce a partition z 0 < z 1 < • • • < z N = z of [z 0 , z],
given by

z 2 k+1 -z 2 k = γµ|log σ| for 0 k < N = z 2 -z 2 0 γµ|log σ| . (D.46)
The Markov property implies that

P (r 0 ,ϕ 0 ,z 0 ) τ R > z N -1 k=1 P k , (D .47) 
where 

P k = sup

D.3 Laplace Transforms

In order to combine the results from the two previous subsections, we will use a lemma based on Laplace transforms. In the following we let {x t } t 0 be a time-homogeneous R d -valued Markov process with continuous sample paths. All subsets A ⊂ R d considered below are assumed to have smooth boundary, and to be such that the first-exit time τ A = inf{t 0 : x t ∈ A} is almost surely finite. The Laplace transform of τ A is the non-decreasing function

R ∋ λ → E x e λτ A = 1 + λ ∞ 0 P x τ A > t e λt dt ∈ [0, ∞] .
(D.55)

Note that E x [e λτ A ] 1 for all λ 0. Thus there exists a λ 0 0 such that E x [e λτ A ] < ∞ for all λ < λ 0 . which yields the result.

We will apply this lemma to sets S 1 = S(h 1 ), S 2 = S(h 2 ) and D = D(κ), where h i = c i σ|log σ|, i = 1, 2, with 0 < c 1 < c 2 . We introduce a new time variable t = z 2 , and let x t be the time-homogeneous Markov process ( Optimizing over T , we find that the optimal bound is obtained when e λ 2 T = C 2 /Q(0), which yields (D.64).

Finally, Q(0) can be estimated in a similar way as in the proof of Proposition D.4.

Proposition D.7. We have where g = (g 1 , . . . , g n ) takes values in R n and the process X z is assumed to be adapted to the filtration generated by W z . We will assume that the integrand satisfies G -(z) 2 g(X z , z)g(X z , z) T G + (z) 2 (D. [START_REF] Krupa | Relaxation oscillation and canard explosion[END_REF] almost surely, for deterministic functions G ± (z), and that the integrals 

Q(0) = sup
V ± (z) =

Figure 1 :

 1 Figure 1: Comparison of a deterministic (black) and stochastic (red) time trajectory. The left-half of the figure shows the time series exhibiting a 1 7 MMO; see also the zoom near the SAOs. The right part shows part of the trajectory in three-dimensional phase space and illustrates the early jumps of the stochastic sample path.

Figure 2 :

 2 Figure 2: Planar fold near a singular Hopf bifurcation of (2.6); for (a) and (c) we have fixed ǫ = 0.05. (a) µ = 0.1: The equilibrium point (x 0 , y 0 ) = (µ, µ 2 ) is determined as the intersection of C 0 (grey) and the nullcline {x = µ} (dashed black). The equilibrium is stable and the slow manifolds C a ǫ (red) and C r ǫ (blue) do not interact. (b) µ = 0: Only the slow flow on C 0 (single arrow) and the fast flow (double arrows) are shown. C 0 coincides with a maximal singular canard. (c) µ = -0.1: After the Hopf bifurcation the slow manifolds have "exchanged sides" suggesting an intersection for some µ near 0.

Figure 2 (

 2 Figure2(a) to Figure2(c) we expect that there is a parameter value µ for which the slow manifolds intersect/coincide. This intersection marks what has become known as a canard explosion[START_REF] Krupa | Relaxation oscillation and canard explosion[END_REF][START_REF] Kuehn | From first Lyapunov coefficients to maximal canards[END_REF].

Figure 3 :

 3 Figure 3: Singular limit ǫ = 0 for the normal form (3.8) with µ = 0.15. The attracting manifold C a 0 (red), the fold line L (green) and the repelling manifold C r 0 (blue) partition the critical manifold. Trajectories of the slow (fast) subsystem are indicated by single (double) arrows.

2 ǫFigure 5 :

 25 Figure5: Canards and slow manifolds near a folded node for (3.8) with (µ, ǫ) = (0.08, 0.01) on the cross-section {z = 0}. The primary canard γ s ǫ and the first two secondary canards γ 1,2 ǫ are labeled. We also show a zoom near the primary weak canard γ w 0 . All maximal canards are indicated by black dots.

Theorem 4 . 4 (

 44 Canard spacing). The distance of the k-th secondary canard γ k to the weak canard γ w on Σ 0 is given by O(e -c 0 (2k+1) 2 µ ) as µ → 0 where 0 < c 0 = O(1) is a constant.Proof. By Theorem 3.3, part (C6), the k-th secondary canard makes (2k + 1)/2 twists around the weak canard for z going from z 0 to 0. Using this fact together with the rotational part (4.25) of the solution (4.23) in Theorem 4.3 we find the condition

Figure 6 :

 6 Figure 6: (µ, σ)-parameter plane. (a) The curves σ k (µ) are shown for c 0 = 1. Above the k-th curve we cannot distinguish the oscillation induced by the k-th canard from noisy fluctuations. The regions of different numbers of SAOs are delimited by the curves σ k (µ) and the existence requirements for the k-th canard. The number of visible canards is indicated in rectangular boxes. (b) A zoom of (a) is shown that illustrates the structure of thin regions as µ → 0 and σ → 0.

Figure 7 :

 7 Figure 7: Computation of the canards and covariance tubes near a folded node in System (6.4). A detailed description of the figure can be found in Section 7.1.

Figure 8 :

 8 Figure8: (a) Phase space plot of simulations for(7.1). The deterministic solution (blue) and a stochastic sample path (black) are shown; parameters are given by (7.2) and for the deterministic solution we have σ = 0 = σ ′ . Intersections with the cross-section Σ J (yellow) are shown as thick dots; the SDE sample path is started on the deterministic solution and on Σ J (green dot). The next two intersections are shown as well (violet and red dots). (b) Probability density p(y, z) for 4000 sample paths on Σ J of sample path escapes from the folded node. The deterministic point-mass density is indicated as a bar p det (black).

29
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Figure 9 :

 9 Figure 9: Simulation for the model system (7.1) with parameter values (8.1). The upper plot shows a projection of a deterministic solution (black) and a stochastic sample path (red) into the (x, z)-plane. The lower two plots show the associated time series.

10 ) with x 1 <

 101 0. The proof of (B.9) then proceeds by induction as follows: The base step n = 0 holds by formulas (B.6) and (B.10). The induction step from n -1 to n follows from immediately; we just have to observe the block structure of B(z) -1 . Proposition B.3 is a formal asymptotic result. The asymptotic series (B.7) becomes "disordered" for |z| = O( √ µ), because in this case all the terms for the coordinates v 1

Proposition B. 5 .

 5 Suppose (B.4) holds, and let x(z) be a maximal canard solution. Then solutions to the variational equation (B.3) remain bounded by O(1/(|z| + √ µ)) for z 0 z √ µ.

  [START_REF] Berglund | Noise-induced phenomena in slow-fast dynamical systems. A sample-paths approach[END_REF] and we already know from Proposition B.5 (resp. Lemma B.4) that this yields(ṽ 1 + ṽ2 )(z) ≍ 1 |z| + √ µ for z 0 + O(µ|log µ|) z √ µ.The difference of the first two equations in (B.[START_REF] Berglund | A sample-paths approach to noise-induced synchronization: Stochastic resonance in a double-well potential[END_REF]) and the third equation can be combined as

e

  [START_REF] Lee Deville | Two distinct mechanisms of coherence in randomly perturbed dynamical systems[END_REF] admits a bounded, 2π-periodic solution. Letting c = c(z) = a(z)/̟(z), the general solution of (D.36) can be writtenw(ϕ, z) = w(0, z) e cϕ + ϕ 0 e c(ϕ-ϕ ′ ) b r (ϕ ′ , z) ̟(z) dϕ ′ . -cϕ b r (ϕ, z) ̟(z) dϕ , (D.38)the resulting w(ϕ, z) is indeed 2π-periodic as a function of ϕ.

r 2 k+1 -z 2 k 2 k+1 -z 2 k 2 k

 22222 ,ϕ : (r,ϕ,z k )∈R P k (r, ϕ) , P k (r, ϕ) = P (r,ϕ,z k ) τ R > z k+1 .(D.[START_REF] Gammaitoni | Periodically time-modulated bistable systems: Stochastic resonance[END_REF] Inequality (D.44) (with z 0 replaced by z k ) shows that rz e κ(z 2 -z 2 k )/2µ rz k + σ for z k z τ R , where M k z is the martingaleM k z = z z k e -κ(s 2 -z 2 k )/2µ F r (r s , ϕ s , s) dW s . (D.50)It follows thatP k (r, ϕ) P r + σ √ µ M k z k+1 < η √ z k+1 e -κ(z )/2µ P M k z k+1 < -c|log σ| √ µρ(z k ) + η √ µ σ γκ/2-1 √ z k+1 , (D.51)where we have used r hρ(z k ) = cσ|log σ|ρ(z k ) and e -κ(z )/2µ = σ κγ/2 . Choosing γ > 2/κ, we can guarantee that the term c|log σ| √ µρ(z k ) dominates.Since the noise acting on the system is non-degenerate, we may assume the existence of constants D + D -> 0 such thatD -F r (r, ϕ, z) F r (r, ϕ, z) T D + . (D.52)Thus the variance of M k z k+1 is bounded above byV + = z k+1 z k D + e -κ(s 2 -z 2 k )/µ ds D + -µ 2κz k e -κ(s 2 -z type estimate (cf. Lemma D.8 in Appendix D.4) provides the bound P M k z k+1 < -x e -x 2 /2V + . (D.54) Using (D.53) and (D.54) in (D.51) shows that we may assume P k < 1/2, and the result follows from (D.47) and the definition of N . Note that κ 2 = log 2/γ < (log 2/2)κ.

Lemma D. 5 . 1 E 1 E 2 E 2 E x 1 {τ S c 1 <τ 2 E 1 <τ D } e λτ S c 1 E xτ S c 1 e 1 } e λτ D E x 1 {τ S c 1 <τ D } e λτ R E xτ S c 1 e 1 }

 51122121111111 Choose nested bounded open sets S 1 ⊂ S 2 ⊂ D ⊂ R d . Let R = D \ S 1 and consider the Laplace transformsG D (λ) = sup x∈S x e λτ D , G S (λ) = sup x∈S x e λτ S 2 , G R (λ) = sup x∈∂S x e λτ R , Q(λ) = sup x∈∂S D } e λτ R .(D.56)Let λ be such that G S (λ) and G R (λ) are finite, and assume that Q(λ)G S (λ) < 1. Then G D (λ) is also finite and satisfiesG D (λ) G S (λ)G R (λ) 1 -Q(λ)G S (λ) . (D.57)Proof. For x 0 ∈ S 1 , one necessarily has τ S 2 τ D , and thus the strong Markov property impliesE x 0 e λτ D = E x 0 e λτ S 2 E xτ S 2 e λτ D E x 0 e λτ S 2 sup x∈∂S x e λτ D . (D.58) Similarly, for x ∈ ∂S 2 , since τ R = τ S c 1 ∧ τ D we have E x e λτ D = E x 1 {τ S c λτ D + E x 1 {τ D <τ S c λτ D + E x 1 {τ D <τ S c e λτ R Q(λ)G D (λ) + G R (λ) . (D.59) Now, (D.58) and (D.59) imply G D (λ) G S (λ) Q(λ)G D (λ) + G R (λ) , (D.60)

0 e λt sup x 0 ∈S 1 Pλ/λ 2 2 1Q(λ) sup x∈∂S 2 P

 122 √ t, ζ √ t ). Proposition D.1 yields a control of G S (λ) in the following way. The bound (D.6) translates in terms of the new process x t asP x 0 τ S 2 t C 1 e -λ 1 t , x 0 = (z 0 , ζ z 0 ) , (D.61)whereC 1 = C(ν)(h 2 /σ) 2ν and λ 1 = κ(ν)/µ. It follows that G S (λ) 1 + λ ∞ x 0 τ S 2 t dt 1 + C 1 λ λ 1 -λ (D.62)holds for all λ < λ 1 = κ(ν)/µ. In a similar way, Proposition D.4 yieldsG R (λ) 1 + C 2 λ λ 2 -λ (D.63)for all λ < λ 2 = κ 2 /µ|log σ|, where C 2 = 2. It remains to estimate Q(λ). Let us first show that Q(λ) can be bounded in terms of Q(0).Lemma D.6. For all λ < λ 2 , one hasQ(λ) C -λ/λ 2 Q(0) 1-λ/λ2 . (D.64) Proof. First note that for all T 0, e λτ R e λT +λ ∞ T 1 {τ R >t} e λt dt . (D.65) Plugging this into the definition of Q(λ) yields x τ S c 1 < τ D e λT +λ ∞ T P x τ R > t e λt dt . (D.66) The first term on the right-hand side is bounded by Q(0) e λT . The second one can be estimated by Proposition D.4, yielding Q(λ) Q(0) e λT + C 2 λ λ 2 -λ e -(λ 2 -λ)T . (D.67)

x∈∂S 2 P

 2 x τ S c 1 < τ D σ κ(c 2 -c 1 ) 2 |log σ|z 0 ρ(z 0 ) 2 /D + . (D.68)Proof. Inequality (D.[START_REF] Fox | Stochastic resonance in a double well[END_REF]) and the fact that e κz 2 /2µ /ρ(z) is increasing for sufficiently small z imply rz -h 1 ρ(z) e κ(z 2 -z 2 0 )/2µ (h 2 -h 1 )ρ(z 0 ) + σ R , where M 0 z is the martingale introduced in (D.50). The variance of M 0 z being bounded by D + µ/2κz 0 (cf. (D.53)), the Gaussian tail estimate of Lemma D.8 allows to writeP τ S c 1 < z ∧ τ R = P inf z 0 s z∧τ R rs -h 1 ρ(z) 0 exp -κ (c 2 -c 1 ) 2 D + |log σ| 2 = σ κ(c 2 -c 1 ) 2 |log σ|z 0 ρ(z 0 ) 2 /D + . (D.70)Note that the right-hand side of (D.70) does not depend on z. The result thus follows from taking the limit z → ∞.Proof of Theorem 6.4. Since λ 2 < λ 1 for sufficiently small σ, we set λ = (1 -θ)λ 2 for a fixed 0 < θ < 1. For this λ, we have G R (λ) c > 0. Thus Lemma D.5 can be applied to show that G D (λ) is finite. Finally, by Markov's inequality, P x τ D t = P x e λτ D e λt e -λt G D (λ) , (D.73) which gives the theorem when translated back to the process ζ z .D.4 A Gaussian Tail Estimate for MartingalesLet W z be an n-dimensional standard Brownian motion, and consider the martingale

z 0 G

 0 ± (s) 2 ds (D.[START_REF] Krupa | Local analysis near a folded saddle-node singularity[END_REF] are finite. Note that under these conditions, M z is indeed a continuous martingale.Lemma D.8. For any x > 0, s , s)g(X s , s) T ds (D.78)be the increasing process associated with M z . Then, for any γ ∈ R, the Doléans exponential e γMz-γ 2 [M ]z/2 (D.79) is a martingale. It follows thatP sup 0 s z M s > x = P sup 0 s z e γMs > e γx P sup 0 s z e γMs-γ 2 [M ]s/2 > e γx-γ 2 [M ]z/2 P sup 0 s z e γMs-γ 2 [M ]s/2 > e γx-γ 2 V + (z)/2 e -γx+γ 2 V + (z)/2 E e γMz-γ 2 [M ]z/2 (D.80)by Doob's submartingale inequality. Now the expectation in the last line is equal to 1, and the result follows by optimizing over γ, that is, choosing γ = x/V + (z).

  -s 2 )/2µ F r (r s , ϕ s , s) dW s (D.[START_REF] Fox | Stochastic resonance in a double well[END_REF] 

	where β(r, ϕ, z) 0 in R, implying			
	rz rz 0 e κ(z 2 -z 2 0 )/2µ +	σ √ µ	z 0 z	e κ(z 2
		a(z)r + β(r, ϕ, z) κzr	(D.42)
	holds in R. Thus we have dr = 1 µ	κzr + β(r, ϕ, z) dz +	σ √ µ	F r (r, ϕ, z) dW z ,	(D.43)

Fast-Slow SystemsWe are only going to give a brief introduction to multiple time scale dynamics. A detailed reference covering many more topics is currently being written[START_REF] Kuehn | Multiple Time Scale Dynamics[END_REF]; other, excellent references are[START_REF] Mishchenko | Differential Equations with Small Parameters and Relaxation Oscillations[END_REF][START_REF] Grasman | Asymptotic Methods for Relaxation Oscillations and Applications[END_REF] for asymptotic methods and[START_REF] Fenichel | Geometric singular perturbation theory for ordinary differential equations[END_REF][START_REF] Arnold | Encyclopedia of Mathematical Sciences: Dynamical Systems V[END_REF][START_REF] Jones | Geometric Singular Perturbation Theory: in Dynamical Systems[END_REF] for geometric methods. Many important discoveries were first made using nonstandard analysis[START_REF] Benoît | Chasse au canards[END_REF]

, 38]; in particular,
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A Proof of Theorem 4.3 (Canonical Form) We are going to need the following lemma for the proof of Theorem 4.3.

Lemma A.1. Consider two non-autonomous vector fields F, G : R × R N → R N for (z, X) ∈ R × R N . Suppose that on an open set D, containing (0, X 0 ), both are continuous in z and C 1 in X. Furthermore, suppose for all (z, X) in D we have F (z, X) -G(z, X) < µ .

Let K be a Lipschitz constant for F in X, which is uniform in z. Suppose X(z) and Y (z) solve dX dz = F (z, X) and dY dz = G(z, Y ) with X(0) = X 0 = Y (0), then

Proof. A direct Gronwall-lemma argument suffices; for details see [START_REF] Hirsch | Differential Equations, Dynamical Systems, and an Introduction to Chaos[END_REF], p. 399-400.

The proof of Theorem 4.3 proceeds in several steps that aim at bringing Equation (4.8) into diagonal form [START_REF] Berglund | Adiabatic Dynamical Systems and Hysteresis[END_REF][START_REF] Berglund | Memory effects and scaling laws in slowly driven systems[END_REF].

Proof of Theorem 4.3. As a first step we apply a rescaling

Tr(A(s)) ds u (0) = e z 2 /µ u (0) where u (0) = (u

2 ) are new coordinates. This yields

where now Tr(A 0 (z)) = 0. Therefore the principal solution has determinant 1 and is area preserving. We are going to show that the solution of (A.2) is a rotation up to a small error using a sequence of z-dependent coordinate transformations S j (z). We set u (0) = S 0 (z)u (1) , where S 0 (z) = -z-i ω(z) 1+µ -z+i ω(z) 1+µ 1 1 .

Then S -1 0 A 0 S 0 is diagonal with entries ±2 i ω(z). We get µ du (1) dz = A 1 (z)u (1) ,

where the new matrix A 1 is given by

.

As above we want to have a zero trace so we compute

Hence we consider the scaling

which yields the equation

where overbar denotes complex conjugate and

The next transformation

Instead of a given transformation we now impose the form of the matrices

and their complex conjugates. The first equation determines ρ 1 (z), and thus the second one becomes

If we can show that (A.6) has a bounded solution for times |z| < 1 then our prescribed coordinate change S 2 exists. Now let a(z) = 2z +Re ρ 1 (z) = 2z +O(µ 2 ) and define α(z, z 0 ) by (4.24). Then a last transformation

will bring the equation into canonical form (4.21), with

Composing all transformations, we get u = S(z)ũ, where S(z) = e z 2 /µ S 0 (z)S 1 (z)S 2 (z)S 3 (z) is indeed of the form (4.20).

To prove the existence of bounded solutions for (A.6) note that ρ 2 (z) and ω 2 (z) are bounded away from zero and that they are also have bounded norms for |z| < 1. Now set

Note that F is a vector field with bounded solutions on an O(1)-time scale. Considering F, G as real planar vector fields on R 2 , we can apply Lemma A.1 to conclude that (A.6) admits bounded solutions on time intervals of length 1.

B.2 Lyapunov Function

The results in this section are not as sharp as the results obtained by coordinate changes in Section B. 

where k 1,2 = O(1) are two positive constants, µ > 0, and either n = 0 and z z 0 or n 1 and z 0 z < 0. Then

Proof. The solution of (B.12) can be written as

where

) and dM dz is bounded, we can find constants c 3 , c 4 > 0 such that (B.17) implies

n , we find that the last inequality is equivalent to

Using (B.10) and Lemma B.4 we obtain that for z 0 of order -1,

, this shows that (B.8) is indeed an asymptotic expansion in powers of µ/z 2 for z -√ µ, and in particular all components of v(-√ µ) are of order 1/ √ µ. To complete the proof up to time z = √ µ, we simply apply (B. [START_REF] Berglund | The effect of additive noise on dynamical hysteresis[END_REF]) in the particular case n = 0 (that is, for

In view of our conjecture (B.11), the bound on the covariance provided by Proposition B.5 is not sharp since we have not yet shown that v 3 = O(1).

B.3 Delayed Hopf Bifurcation

To obtain a sharp bound on the covariance we consider a similar coordinate change idea as in Section 4.2. This procedure will give a variational equation for the covariance that has desirable symmetry properties.

Lemma B.6. There exists a linear coordinate change ζ 0 = S(z) ζ0 transforming the linearized SDE (6.6) into

where A(z) is in canonical form

The matrix F (z) is positive definite, with eigenvalues bounded below and above uniformly in z.

Proof. It suffices to apply the coordinate change ζ 0 z = S(z) ζ0 z constructed in the proof of Theorem 4.3 (with an obvious modification due to the fact that x(z) is not necessarily given by the weak canard). The new diffusion coefficient is then given by F (z) = S(z) -1 F 0 .

A computation analogous to the one in the proof of Proposition B.1 then yields C Proof of Theorem 6.2 (Staying in covariance tubes)

Applying the transformation of Lemma B.6 to the nonlinear equation (6.12) and dropping the tildes yields the system

where

). The solution of (C.1) with initial condition ζ z 0 = 0 can be written as

where U (z, s) denotes the principal solution of the time-dependent linear system µ ζ = A(z)ζ. Owing to the particular form of A(z), we have the explicit expression

For a two-by-two matrix M , let M denote its L 2 -operator norm, i.e., M 2 is the largest eigenvalue of M M T .

for all z 0 z √ µ.

Proof. Since U (z, s)U (z, s) T = e -2α(z,s)/µ Id, we have

and the result follows from Lemma B.4.

The next lemma provides bounds on the norms of V (z) and

(C.9)

for all z 0 z √ µ.

Proof. Note that

has eigenvalues given by

The larger eigenvalue is equal to K + (z) 4 , while the smaller one is equal to K -(z) -4 . The result thus follows from the bounds obtained in Theorem B.8.

We can now prove a local version of Theorem 6.2, on a small interval [s, t] ⊂ [z 0 , z].

Proposition C.3. Fix times z 0 s < t z such that α(t, s) O(µ). Then, for all µ and σ small enough, for any 0 < γ < 1,

Proof. The proof is adapted from [24, Section 5.1.2], and we use almost the same notations as there. Let Υ u = U (s, u)ζ u . Then

We can decompose Υ u = Υ 0 u + Υ 1 u , where

The process Υ 0 u is a Gaussian martingale. Lemma 5.1.8 in [START_REF] Berglund | Noise-induced phenomena in slow-fast dynamical systems. A sample-paths approach[END_REF] can thus be applied and provides the bound

For this bound to be useful, we need to show that Q s (u) and Q s (t) are close to each other. Observe that

as a consequence of the definition of U (s, u) and the differential equation satisfied by V (u). Integrating from u to t and multiplying on the left by Q s (u) 2 , we get

O(1) owing to the assumption α(t, s) = O(µ). Thus the integral has order t -u t -s. Furthermore,

As a consequence, we get

Thus there exists an

For any decomposition R = R 0 + R 1 with R 0 , R 1 > 0, we can bound the above probability by P 0 + P 1 , where

P 0 has already been estimated in (C. [START_REF] Benzi | The mechanism of stochastic resonance[END_REF]). Now we want to choose R 1 in such a way that P 1 = 0. For any u t ∧ τ B(r) , we have

We can thus achieve P 1 = 0 by simply choosing R 1 as a sufficiently large constant times ( √ µ + |t|) -3/2 r 2 . This determines R 0 , and the result then follows from (C.16).

We can now complete the proof of Theorem 6.2, which will follow directly from Theorem C.4. There exist constants ∆ 0 , r 0 , µ 0 > 0 such that for all 0 < ∆ < ∆ 0 , all 0 < σ < r < r 0 µ 3/4 , 0 < µ < µ 0 and all 0 < γ < 1,

holds for all z √ µ, where

where

can be estimated by Proposition C.3. We want to choose the partition in such a way that the error terms in P k are bounded uniformly in k. A convenient choice is to define the s k by α(s k+1 , s k ) = ∆µ when s k+1 < -√ µ ,

Using the fact that α(t, s) ≍ |s + t|(t -s) and applying Proposition C.3, one indeed checks that

where the error terms are uniform in k. It remains to estimate the number N of elements of the partition, which will give the prefactor C + . In the case z -√ µ, we simply have

In the case -√ µ z √ µ, we have

and the result follows from the fact that α(z,

Theorem 6.2 is just a reformulation of this result, in which we have chosen γ = 1 -σ 2 /r 2 .

D Proof of Theorem 6.4 (Early Jumps)

We consider again the equation for the difference ζ z between stochastic sample paths and a deterministic reference solution, this time given by the weak canard. In canonical form, we have

where

). The proof of Theorem 6.4 is split into several parts. In Subsection D.1, we show that sample paths are likely to leave a neighbourhood of order slightly (that is, logarithmically) larger than σ/ √ z of the weak canard in a time z of order µ|log µ|. Subsection D.2 analyses the dynamics in a larger neighbourhood of the weak canard, in which the drift term dominates. Subsection D.3 combines the two results to prove the main theorem.

D.2 Averaging and Drift-Dominated Escape

We consider again Equation (D.1), but this time for slightly larger values of ζ . We start by transforming the system to polar coordinates.

Lemma D.2. Consider a system of the form

where W z denotes a two-dimensional Wiener process, and F ξ and F η are row vectors of dimension 2. Then in polar coordinates (ξ = r cos ϕ, η = r sin ϕ), the system becomes

where the new and old diffusion coefficients are related via

while the drift coefficients are given by

Proof. The formulas can be checked directly by applying Itô's formula to (D.29).

Applying this result to (D.1), we obtain a system of the form

Note that the functions b r and b ϕ do not depend on r, owing to the fact that the nonlinearity in the original equation is homogeneous of degree 2. Another important observation is that the average of b r (and b ϕ ) over ϕ is zero. This follows again from homogeneity, combined with (D.31). This observation suggests to simplify (D.32) by an averaging transformation.

Proposition D.3. There exists a function w(ϕ, z), which is bounded, smooth, and 2πperiodic in ϕ, such that r = r + r 2 w(ϕ, z) satisfies the SDE