

Molecular and biological characterization of vascular endothelial growth factor of parapoxviruses isolated from wild Japanese serows ()

Yasuo Inoshima, Naotaka Ishiguro

▶ To cite this version:

Yasuo Inoshima, Naotaka Ishiguro. Molecular and biological characterization of vascular endothelial growth factor of parapoxviruses isolated from wild Japanese serows (). Veterinary Microbiology, 2009, 140 (1-2), pp.63. 10.1016/j.vetmic.2009.07.024. hal-00535919

HAL Id: hal-00535919

https://hal.science/hal-00535919

Submitted on 14 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: Molecular and biological characterization of vascular endothelial growth factor of parapoxviruses isolated from wild Japanese serows (*Capricornis crispus*)

Authors: Yasuo Inoshima, Naotaka Ishiguro

PII: S0378-1135(09)00346-0

DOI: doi:10.1016/j.vetmic.2009.07.024

Reference: VETMIC 4516

To appear in: *VETMIC*

Received date: 4-3-2009 Revised date: 18-7-2009 Accepted date: 31-7-2009

Please cite this article as: Inoshima, Y., Ishiguro, N., Molecular and biological characterization of vascular endothelial growth factor of parapoxviruses isolated from wild Japanese serows (*Capricornis crispus*), *Veterinary Microbiology* (2008), doi:10.1016/j.vetmic.2009.07.024

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Molecular and biological characterization of vascular endothelial growth
2	factor of parapoxviruses isolated from wild Japanese serows ($\it Capricornis$
3	crispus)
4	
5	Yasuo Inoshima*, Naotaka Ishiguro
6	
7	Laboratory of Food and Environmental Hygiene, Department of Veterinary
8	Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
9	
10	*Correspondence author: Yasuo Inoshima
11	Laboratory of Food and Environmental Hygiene, Department of Veterinary
12	Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
13	Tel.: +81 58 293 2863; Fax: +81 58 293 2840
14	E-mail: inoshima@gifu-u.ac.jp.
15	
16	

Abstract

17	Contagious dermatitis in domestic and wild ruminants caused by
18	parapoxvirus (PPV) occurs worldwide. Although PPV infections appear in
19	cattle, sheep and goats, the papular, nodular, pustular and ulcerated skin
20	lesions of wild Japanese serows (Capricornis crispus) are significantly more
21	severe than those of other animals. To determine the factors involved in the
22	severity of these skin lesions, we compared the molecular characteristics of 4
23	PPV isolates from Japanese serows and 2 isolates from sheep in Japan, and
24	also investigated the biological properties of primary endothelial cells from
25	different host species. All of the 6 Japanese isolates harbored a vascular
26	endothelial growth factor (VEGF) gene, which is known as one of the
27	virulence factors of PPVs. Three different amino acid sequences of viral
28	VEGF were identified and the sequence was identical among the 4 isolates
29	from the Japanese serows. The temporal expression pattern of viral VEGF
30	mRNA was almost the same among 3 isolates encoding the 3 different
31	VEGFs in infected cells from different host species. Recombinant forms of
32	the 3 different VEGFs showed the ability to induce vascular permeability
33	and endothelial cell-proliferation. Primary endothelial cells from Japanese
34	serows were most responsive to recombinant viral VEGF compared to cells

35	from cattle, sheep, and goats. These results suggest that not only the
36	biological activity of viral VEGF but also the high responsiveness to viral
37	VEGF of endothelial cells might be involved in the severe proliferative skin
38	lesions induced by PPV infection in Japanese serows.
39	
40	Keywords:
41	Dermatitis
42	Endothelial cells
43	Japanese serow
44	Parapoxvirus
45	VEGF
46	

1. Introduction

4	$\overline{}$	
L	1	
I		

48	Parapoxviruses (PPVs) are the etiological agents of papular
49	stomatitis and pseudocowpox in cattle, and contagious pustular dermatitis in
50	sheep and goats (Damon, 2007; Robinson and Lyttle, 1992). PPV infections in
51	sheep have been known as scabby disease or "orf" among shepherds since the
52	1780s (Robinson and Lyttle, 1992) and the infections are now widespread in
53	both domestic and wild ruminants worldwide. PPV infection of wild
54	Japanese serows (Capricornis crispus) has been common knowledge in Japan
55	since the first outbreak was observed in 1976 (Kumagai et al., 1979). The
56	histopathological features are similar to those of domestic animals (Okada et
57	al., 1984a, b; Suzuki et al., 1986); however, the skin lesions tend to be much
58	more severe. Weakened or dead Japanese serows are frequently found in
59	their natural territories, as they were unable to eat due to such lesions.
60	Generally, the level of severity of the skin lesions is greatest in Japanese
61	serows, moderate in sheep and goats, and low in cattle (Fig. 1). Although
62	PPVs from Japanese serows experimentally infect sheep, goats and cattle,
63	the highly proliferative skin lesions seen in Japanese serows is not
64	reproduced (Masegi et al., 2002; Ogino et al., 1996; Okada et al., 1986). The

65 factors involved in these clinical differences are still unspecified for both the pathogen and host. 66 Previous studies revealed that orf virus, one of the members of PPV, 67 encodes an apparent homologue of the vascular endothelial growth factor 68 (VEGF) gene (Lyttle et al., 1994; Mercer et al., 2002; Rziha et al., 1999), and 69 recent studies have shown that other members of PPV, including 70 pseudocowpoxvirus, bovine papular stomatitis virus and parapoxvirus of red 71 deer in New Zealand, also encode a VEGF gene (Delhon et al., 2004; Ueda et 72 al., 2003, 2007). Cellular VEGF is a potent mitogen for vascular endothelial 73 cells and essential for embryonic vasculogenesis and angiogenesis. VEGF 74 also activates vascular permeability and plays a role in pathological 75 angiogenesis including tumor growth and inflammation (Ferrara, 1999, 76 77 2005; Ferrara and Davis-Smyth, 1997; Robinson and Stringer, 2001; Stacker 78

angiogenesis including tumor growth and inflammation (Ferrara, 1999, 2005; Ferrara and Davis-Smyth, 1997; Robinson and Stringer, 2001; Stacker and Achen, 1999). The histological characteristics of the lesions of PPV infection, such as extensive vascularization, cell proliferation and vacuolar degeneration of epithelial cells, are thought to be the result of viral VEGF activity. Recent studies have demonstrated that PPV lacking functional VEGF causes relatively reduced skin lesions and histopathological changes (Savory et al., 2000; Wise et al., 2007).

79

80

81

82

84	The aim of this study was to determine the factors involved in the
85	severe proliferative skin lesions of PPV infection in Japanese serows. Here,
86	we described the molecular and biological characterization of the VEGF of
87	PPVs from Japanese serows and the responsiveness to VEGF of serow
88	endothelial cells compared with Japanese PPVs from sheep.
89	
90	2. Materials and methods
91	
92	2.1. Viruses and cells
93	Four PPV isolates from Japanese serows and 2 isolates from sheep in
94	Japan were used in this study (Table 1). All isolates were propagated in
95	primary fetal bovine muscle (FBM) cells. Primary FBM, fetal lamb lung
96	(FLL), and vascular smooth muscle cells of Japanese serow (SeSM) were
97	maintained in Eagle's minimum essential medium (Nissui, Tokyo, Japan)
98	supplemented with 0.3% tryptose phosphate broth (Difco, Detroit, MI, USA),
99	10% fetal bovine serum (FBS), 100 $\mu g/ml$ of streptomycin, and 100 U/ml of
100	penicillin. Human umbilical vein endothelial cells (HUVEC) were purchased

USA). Primary aortic endothelial cells of cattle (BAEC), sheep (OAEC), goats

103	(CAEC) and Japanese serows (SeAEC) were isolated from aortic vessels.
104	Endothelial cells were maintained in endothelial cell growth medium-2
105	(EGM-2, Lonza) containing supplements as per the manufacturer's
106	instructions and 10% FBS. Primary skeletal muscle cells of Japanese serow
107	were kindly provided by Dr. T. Ishida (Graduate School of Science, The
108	University of Tokyo, Tokyo, Japan) and were maintained in RPMI 1640
109	(Wako, Osaka, Japan) supplemented with 10% FBS, 100 $\mu g/ml$ of
110	streptomycin, and 100 U/ml of penicillin.
111	
112	2.2. Polymerase chain reaction (PCR) and sequencing
113	For PCR, DNA was extracted from FBM cells infected with each of
114	the isolates using a DNeasy Tissue Kit (Qiagen, Hilden, Germany). PCR for
115	the viral envelope gene using the primers PPP-1 and PPP-4 (Supplementary
116	Table S1) was carried out for identification of PPV species as described
117	previously (Inoshima et al., 2000, 2001a). PCR primers (D27F, 11R and D2R;
118	Supplementary Table S1) were designed for the flanking regions of the viral

VEGF gene of the orf virus strains, NZ2 (DDBJ/EMBL/GenBank accession

no. S67520) (Lyttle et al., 1994), NZ7 (S67522) (Lyttle et al., 1994), D1701

(AY186732) (Rziha et al., 2003), and orf-11 (AY236150). PCR consisted of 9

119

120

122	min at 95°C followed by 40 cycles of 94°C for 1 min, 40°C for 1 min and 72°C
123	for 1 min, with a final extension at 72°C for 5 min. Nucleotide sequences of
124	the viral VEGF gene were determined by direct sequencing of the PCR
125	products. Sequences were obtained from both strands for verification.
126	
127	2.3. Reverse transcription-PCR (RT-PCR)
128	FBM, FLL and SeSM cells were infected with virus at a titer of 10°
129	TCID ₅₀ /ml. Total RNA was extracted from cells at various intervals after
130	virus infection (0, 1, 2, 4, 8, 12, 24, and 36 h) using an RNeasy Mini Kit
131	(Qiagen), and the temporal expression pattern of viral VEGF mRNAs was
132	determined by RT-PCR using the primers VEGF orf-11F, VEGF cons340R
133	VEGF HISF, and VEGF HISR (Supplementary Table S1). After treatment of
134	RNA samples with DNase I (Invitrogen, Carlsbad, CA, USA), RT-PCR was
135	carried out using 0.5 μg of DNase I-treated RNA and a Titan One Tube
136	RT-PCR Kit (Roche Applied Science, Mannheim, Germany) according to the
137	manufacturer's instructions.
138	
139	2.4. Cloning and expression of viral VEGF
140	For the recombinant expression of viral VEGF the VEGF gene was

141	amplified from DNA extracted from virus-infected cells by PCR using
142	primers BamConsSigF, EcoConsR and PstConsR (Supplementary Table S1).
143	PCR products were digested with BamHI and EcoRI, or with BamHI and
144	PstI, and then cloned into the corresponding sites of expression vector
145	pRSET (Invitrogen). Recombinant VEGFs with a hexa-His-tag were
146	expressed in <i>Escherichia coli</i> BL21(DE3)pLysS (Invitrogen) and purified by
147	affinity chromatography on a Ni-chelating column according to the
148	manufacturer's instructions and previous studies (Meyer et al., 1999;
149	Yamamoto et al., 2001). Purified recombinant VEGFs were analyzed by
150	SDS-PAGE followed by Coomassie brilliant blue staining and western blot
151	analysis using anti-His G antibody (R941-25, Invitrogen). The amount of
152	purified recombinant protein was quantified by Lowry's method with DC
153	protein assay reagents (Bio-Rad Laboratories, Hercules, CA, USA).
154	
155	2.5. Miles assay (vascular permeability assay)
156	The vascular permeability activity of recombinant VEGF was
157	detected using guinea pigs according to the Miles assay (Miles and Miles,
158	1952; Ogawa et al., 1998; Wise et al., 1999). Three guinea pigs were used for
159	each recombinant VEGF. Handling of guinea pigs was reviewed and

160	monitored according to the Guidelines for Animal Handling of Gifu
161	University.
162	
163	2.6. Indirect immunofluorescence assay (IFA)
164	Isolated primary cells of cattle, sheep, goats, and Japanese serows
165	(BAEC, OAEC, CAEC, and SeAEC) were confirmed as endothelial cells by
166	IFA and flow cytometry. After fixation by cold acetone, primary cells
167	cultivated on a coverslip were incubated with anti-human von Willebrand
168	factor (vWF) antibody (F 3520, Sigma-Aldrich, St. Louis, MO, USA), washed
169	with phosphate buffered saline (PBS), and then incubated with fluorescein
170	isothiocyanate (FITC)-conjugated goat anti-rabbit IgG antibody (62-6111,
171	Zymed Laboratories, South San Francisco, CA, USA). The same procedure
172	with omission of the primary antibody served as the negative control.
173	
174	2.7. Flow cytometry
175	Primary endothelial cells were incubated with FACS permeabilizing
176	solution 2 (BD Biosciences, San Jose, CA, USA), washed in sorter buffer (2%
177	FBS, 5 mM EDTA and 0.1% sodium azide in PBS), incubated with or without
178	anti-human vWF antibody, washed, and then incubated with

FITC-conjugated goat anti-rabbit IgG antibody. After washing, the cells were analyzed using a FACSCalibur flow cytometer (BD Biosciences).

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

179

180

2.8. Proliferation assay

Cell proliferation was determined with a colorimetric assay using the 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophynyl)-5-(2,4-disulfophynyl)-2H-tetr a-zolium, monosodium salt (WST-8), which measures the number of viable cells. HUVEC and primary endothelial cells were seeded in 96-well plates at 1,000 cells/well. After 24 h, the supernatant was removed and the cells rinsed in PBS. To starve the cells of supplemental VEGF in the culture medium, the cells were cultivated with human endothelial cell serum-free basal medium (Invitrogen) containing 2% FBS overnight. After changing to fresh medium with or without recombinant VEGF, the cells were incubated at 37°C for 2 days. The supernatant was removed and 100 µl/well of fresh medium containing 10% WST-8 solution (Cell Counting Kit-8, Dojindo, Kumamoto, Japan) was added. The cells were incubated for 2 h at 37°C and the absorbance of each well was measured at 450 nm by a plate reader, Multiskan MS-UV (Labsystems, Helsinki, Finland). The proliferation index was determined as the ratio of the absorbance at 450 nm of cells treated with

198	VEGF against the absorbance at 450 nm of untreated cells. Primary skeletal
199	muscle cells of Japanese serow were also treated with recombinant VEGF
200	and used as the control.
201	
202	2.9. Statistical analysis
203	The data were analyzed for statistical significance by parametric
204	non-repeated measures ANOVA and the post hoc test using Dunnett's or
205	SNK tests, and also parametric unpaired Student's t-test.
206	
207	3. Results
208	
209	3.1. Identification and sequences of viral VEGF gene
210	All of the 6 PPV isolates were classified as orf virus by sequence
211	analysis of the viral envelope gene (data not shown). Several PCR primers
212	were first designed to bind outside the viral VEGF gene. However, as already
213	reported by Mercer et al. (2002), these primers were unable to amplify a
214	specific viral VEGF gene (data not shown), indicating sequence variation in
215	the flanking regions of the VEGF gene. The VEGF gene was amplified from
216	all of the 6 PPV isolates using primers D27F and 11R, except for isolate HIS,

217	for which primers D27F and D2R were used. The complete nucleotide
218	sequences of the viral VEGFs were successfully determined by direct
219	sequencing. The deduced amino acid sequences were aligned with each other
220	and with those of the NZ2, D1701 and orf-11 strains by Genetyx ver. 8.2.2.
221	software (Genetyx, Tokyo, Japan) (Fig. 2). Interestingly, among the 4 isolates
222	from the Japanese serows, not only the amino acid sequences but also the
223	nucleotide sequences showed 100% identity. Among the 6 Japanese isolates,
224	the amino acid sequences of VEGF were able to be classified into 3 different
225	types, designated Iwate, HIS and S-1 (S-1 was found in all serow isolates).
226	Sequence identity was also determined using the Genetyx software
227	(Supplementary Table S2). The Iwate and S-1 VEGFs were composed of 137
228	amino acids, with 1 amino acid substitution between them (99.3% identity),
229	whereas HIS was shorter at 132 amino acids and included many amino acid
230	substitutions in the sequence. The identity of the amino acid sequence
231	between Iwate and HIS was 69.8%, and between HIS and S-1 was 70.5%.
232	The Iwate and S-1 VEGFs showed high identity with orf-11 VEGF,
233	conversely HIS VEGF showed higher identity with the NZ2 and D1701
234	VEGFs than Iwate and S-1 (Supplementary Table S2). Eight cysteine
235	residues that are conserved in all members of the VEGF family are also

236	conserved in the sequences of the Iwate, HIS and S-1 VEGFs. The orf virus
237	VEGF utilizes the VEGF receptor 2 and neuropilin-1 (Ogawa et al., 1998,
238	Meyer et al., 1999, Wise et al., 1999). An asparagine residue at the 73
239	position (Iwate VEGF) is conserved in Iwate, HIS and S-1 VEGF; this is an
240	accessible residue on the receptor-binding face of VEGF-A that correlates
241	strongly with binding of the VEGF receptor 2 and is also conserved in PPV
242	VEGFs (Mercer et al., 2002, Ueda et al., 2003, 2007, Inder et al., 2007). The
243	specific mutation corresponding to the binding ability to VEGF receptor 1
244	described by Mercer et al. (Mercer et al., 2002) was not observed at any
245	positions among our 3 VEGF sequences. These results suggested that the
246	Iwate, HIS and S-1 VEGFs bind to VEGF receptor 2 but not to receptor 1, as
247	seen in the other orf viruses. The DNA sequences determined in this study
248	were submitted to DDBJ/EMBL/GenBank under accession numbers
249	AB436805 to AB436810.
250	
251	3.2. Expression of viral VEGF mRNA
252	Expression of VEGF mRNA was detected in the early stage of

infection (Fig. 3). No amplicons were found in PCR products without RT

14

(data not shown). In all cells infected with the Iwate and S-1 VEGFs,

253

255	expression was detected as early as 4 h post-infection. Expression of Hl	S
256	VEGF mRNA occurred slightly later, appearing first at 8 h after infection	on.
257	However, no significant difference was observed among the 3 different	types
258	of cells and the 3 isolates.	

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

3.3. Expression of recombinant VEGF

Viral VEGFs were expressed in *E.coli* as a fusion protein with a hexa-His-tag. The recombinant VEGFs were purified and estimated by SDS-PAGE followed by Coomassie brilliant blue staining and Western blot analysis. As expected from the sequence analysis, recombinant HIS VEGF is smaller in molecular weight than Iwate and S-1 VEGFs. Under reducing conditions with 2-mercaptoehanol, and as estimated using a pre-stained protein marker (P7708, New England Biolabs, Ipswich, MA, USA), the apparent molecular weight of HIS VEGF is about 18 kDa while that of Iwate and S-1 VEGF is about 22 kDa.; under non-reducing conditions the apparent molecular weight of HIS VEGF is about 44 kDa while that of Iwate and S-1 VEGF is about 48 kDa (data not shown). These results indicate that recombinant VEGF forms a homodimer, which is consistent with previous studies (Meyer et al., 1999).

3.4. Vascular permeability activity

The purified recombinant VEGFs were next investigated for their biological activities. Vascular permeability activity was evaluated using the Miles assay. Dose-dependent permeabilization was induced by all of the viral VEGFs, which was statistically different from the PBS control by parametric non-repeated measures ANOVA and Dunnett's test (Fig. 4a). However, among the 3 VEGFs, no statistically significant difference was observed in each dilution by parametric non-repeated measures ANOVA and the SNK test.

3.5. HUVEC-proliferative activity

HUVEC were treated with recombinant VEGF for 2 days. Each VEGF showed mitogenic activity on HUVEC proliferation (Fig. 4b). The proliferation index was determined as the ratio of the absorbance at 450 nm of cells treated with VEGF against the absorbance at 450 nm of untreated cells. When compared at 50 ng/ml of VEGF dilution, the HIS and S-1 VEGFs showed significantly higher activity (P< 0.01) on HUVEC proliferation than the Iwate VEGF (P< 0.05), but no significant difference was observed

between the HIS and S-1 VEGFs by parametric non-repeated measures

ANOVA and the SNK test (Fig. 4b). Statistically identical results were
obtained using 10 ng/ml of VEGF.

Primary endothelial cells were isolated from the aortas of cattle,

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

293

294

295

3.6. Isolation and identification of primary endothelial cells

sheep, goats, and Japanese serows. Isolated endothelial cells were sometimes retrieved with smooth muscle cells. To purify endothelial cells, several possible antibodies for surface markers to endothelial cells, ovine and human CD31, VEGF receptors and plasmalemmal vesicle associated protein-1 were used in a magnetic activated cell sorting (MACS) assay. However, no antibody was successful in the purification of endothelial cells by MACS (data not shown), suggesting that cross-reactivity of commercially available antibodies seems to be weak against animal endothelial cells, or that the expression patterns are different in ruminants or changed by trypsinization. Thus the purity of the primary endothelial cells was estimated using an antibody to vWF by IFA and flow cytometry. Primary endothelial cells were positive for the presence of vWF in the cytoplasm by IFA, whereas serow skeletal muscle cells were negative (Fig. 5a). Endothelial

312	cells showing over 80% purity by flow cytometry (Fig. 5a) were used for the
313	proliferation assay.
314	
315	3.7. Comparison of responsiveness to VEGF
316	Primary endothelial cells from different host species (BAEC, OAEC,
317	CAEC, and SeAEC) were treated with recombinant S-1 VEGF (S-1 was
318	found in all serow isolates) for 2 days. The responsiveness to VEGF was
319	estimated by cell proliferation and was significantly different among the cell
320	types (Fig. 5b). The proliferation index was the lowest in BAECs and the
321	greatest in SeAECs, suggesting that the SeAECs are the most responsive to
322	S-1 VEGF.
323	
324	4. Discussion
325	
326	Japanese serows are a protected ruminant species in Japan. PPV
327	infection among wild Japanese serows has been continuously observed in
328	various areas since the 1970s (Inoshima et al., 1999, 2001b; Kumagai et al.,
329	1979). Proliferative severe skin lesions by PPV infection in Japanese serows
330	are frequently observed in serows in their natural territories, and most of the

affected animals die from debilitation (Okada et al., 1984b; Suzuki et al.,
1986, 1997). In cattle, the mortality due to PPV infection is significantly
lower and the lesions are considerably milder. Previously we isolated several
PPVs from affected Japanese serows and revealed that the PPVs circulating
among wild Japanese serows are mainly orf virus and accidentally bovine
papular stomatitis virus (Inoshima et al., 2001a, 2002). To define the factors
responsible for the severity of PPV-induced lesions in Japanese serows, we
characterized the molecular and biological characteristics of viral VEGF
using 6 Japanese PPV isolates.
At first, we determined the sequence of the VEGF gene from the 6
Japanese PPV isolates. Surprisingly, the amino acid sequences of VEGF
were identical among the Aigelates (C-1 type) from the Iananese servers
were identical among the 4 isolates (S-1 type) from the Japanese serows.
Next, mRNA expression was compared temporally among the 3 VEGF types
Next, mRNA expression was compared temporally among the 3 VEGF types
Next, mRNA expression was compared temporally among the 3 VEGF types (Iwate, HIS and S-1). No significant temporal difference in mRNA expression
Next, mRNA expression was compared temporally among the 3 VEGF types (Iwate, HIS and S-1). No significant temporal difference in mRNA expression was observed among the 3 PPVs. Our results are consistent with previous

IT 01 from a severe fatal outbreak in sheep, and showed that the expression $\,$

350	of VEGF mRNA in cells did not differ chronologically, as estimated by
351	real-time PCR. The current findings revealed that the expression of S-1
352	VEGF mRNA is temporally similar to that of the other types of VEGF, not
353	only in cells from Japanese serows but also in cells from cattle and sheep.
354	Next, the biological activities of the 3 viral VEGFs were compared.
355	Although all 3 VEGFs induced vascular permeabilization, no significant
356	difference was observed at each dilution. In HUVEC-proliferative activity, a
357	significant difference was observed between the S-1 and Iwate VEGFs.
358	Unexpectedly, no significant difference either in vascular permeability or
359	HUVEC-proliferative activity was observed between the S-1 and HIS VEGFs.
360	Although we are unsure of the exact mechanisms involved, there are some
361	possible explanations for these findings. 1) A proline residue at amino acid
362	position 128 of Iwate VEGF is involved in the decrease in
363	HUVEC-proliferation, since the HIS and S-1 VEGFs and previously reported
364	VEGFs from 21 isolates of orf virus except orf-11 (Mercer et al., 2002) have a
365	threonine residue at this position. Amino acid 128 is located in the
366	C-terminal region, which has a threonine/proline-rich unique sequence
367	contributing to the binding of VEGF to cellular co-receptors, neuropilin-1
368	and heparin (Tokunaga et al., 2006). 2) The sequence of the loop 1 region is

369	conserved among the 3 VEGFs, whereas loop 3 of HIS differs from that of the
370	Iwate and S-1 VEGFs. Kiba et al. (2003) demonstrated that the set of the
371	loop 1 and 3 regions is crucial for the formation of the three-dimensional
372	structure important for the high-affinity binding to VEGF receptor 2.
373	Moreover, an arginine residue at amino acid position 115 in the C-terminal
374	region of NZ2 VEGF, which correlates with binding of VEGF to neuropilin-1
375	and heparin (Tokunaga et al., 2006), is glutamine in the Iwate and S-1
376	VEGFs but lysine in the HIS VEGF (Fig. 2). It is conceivable that these
377	differences at loop 3 and the arginine residue, together with other sequence
378	difference between the Iwate and HIS VEGFs, influence the receptor-binding
379	ability and biological activity of HUVEC-proliferation. However, the
380	combined effect of the complex of differences in the loop region, residue and
381	other sequences should be that HUVEC-proliferative activity is not
382	significantly different between the Iwate and HIS VEGFs. Further
383	comparative analyses using other viral and mutated VEGFs are required to
384	clarify the situation. Wise et al. (2003) reported that PPV VEGFs varied in
385	receptor-binding ability and vascular permeability. VEGF has angiogenic
386	activity and Scagliarini et al. (2006) demonstrated that an isolate, IT 01,
387	from a severe fatal outbreak in sheep, produced a higher number of vessels.

Moreover it is reported that, despite extreme variation in sequence, the biological activities of viral VEGF including vascular permeability, proliferation of endothelial cells, and angiogenicity, are conserved (Mercer et al., 2002, 2006; Scagliarini et al., 2006; Wise et al., 2003, 2007). These results suggest that the biological activity to stimulate vascular permeability and HUVEC proliferation should be conserved among the Iwate, HIS and S-1 VEGFs despite sequence variations.

Next, we speculated that Japanese serows are more sensitive to PPV or viral VEGF than the other host species and may be involved in the pathogenesis. Since it was difficult to obtain microvascular endothelial cells from each species involved under the natural conditions of infection, aortic endothelial cells were used in our experiments. A proliferation assay using primary endothelial cells from cattle, sheep, goats and Japanese serows indicated different proliferation properties, in which endothelial cells from Japanese serows showed the greatest response to S-1 VEGF. These results suggest that the high responsiveness of endothelial cells to the viral VEGF may be one of the factors in the severity of skin lesions in Japanese serows. However, the effects on serow cells were not much greater than that on ovine cells. Thus, the severe proliferative skin lesions in Japanese serow most

407	likely result from the combined effects of viral VEGF, other
408	virulence/immune modulator genes such as the genes for viral IL-10
409	(Fleming et al., 2007), viral interferon resistance, and
410	granulocyte/monocytes-colony stimulating factor inhibitory factor (Haig and
411	McInnes, 2002), and host factors such as immune conditions and
412	species-specific factors. It is possible that the orf viruses infecting Japanese
413	serows are much more adapted to Japanese serows than to sheep and cattle,
414	that Japanese serows may have a poorer defense against the infection than
415	sheep and cattle, or that some cellular proteins of serows may interact more
416	efficiently with the viral VEGF promoter or the production of VEGF protein.
417	Taken together, our findings suggest that the biological activities of
418	the viral VEGFs and the responsiveness of endothelial cells to the VEGFs,
419	appear to be factors involved in the severe proliferative skin lesions seen in
420	infected Japanese serows. In addition, other viral and host factors may be
421	involved. Further analyses are required to determine other associated
422	factors, including receptor/co-receptor usage, genetic mutation of immune
423	modulator genes (Rziha et al., 2000), and behavior in, and
424	environmental/physiological conditions of, Japanese serows. Moreover, both
425	in vitro and in vivo analyses using VEGF-deleted recombinant viruses or

426	VEGF-exchanged viruses are required for further interpretation of the role
427	of viral VEGF.
428	
429	Acknowledgements
430	
431	We thank Dr. N. Minamoto (Gifu University, Gifu, Japan), National
432	Institute of Animal Health (Ibaraki, Japan), Dr. T. Ishida (The University of
433	Tokyo), and Wadayama Livestock Hygiene Service Center (Hyogo, Japan) for
434	providing S-1 and the other isolates, for the primary serow skeletal muscle
435	cells and for the photograph of cattle, respectively. We are grateful to Drs. Y.
436	Ohba (Gifu University, Gifu, Japan), Y. Higuchi, M. Noike, M. Yasuda, I.
437	Hosono, K. Koshi, N. Tamura (Seki Public Health Center, Gifu, Japan), H.
438	Nakajima (Northern Meat Sanitary Inspection Center, Okinawa, Japan), M.
439	Fujita (National Livestock Breeding Center, Nagano Branch, Nagano,
440	Japan), Y. Mizuhashi (Takayama City Government, Gifu, Japan), H. Kawabe,
441	H. Okishima, and K. Yagai (Gifu Hunting Association, Japan) for providing
442	aortas of cattle, sheep, goats and Japanese serows. We are also thankful to
443	Drs. K. Murakami (National Institute of Animal Health, Ibaraki, Japan) and
444	H. Hara (Gifu Pharmaceutical University Gifu, Japan) for their technical

445	advice regarding the isolation of primary endothelial cells and cell
446	proliferation assay, respectively. This study was supported in part by a
447	Grant-in-Aid for Scientific Research from the Ministry of Education, Culture,
448	Sports, Science and Technology, Japan.
449	
450	References
451	
452	Damon, I. K., 2007. Poxviruses. In: Knipe, D.M., Howley, P.M. (Eds.), Fields
453	Virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp.
454	2947-2975.
455	Delhon, G., Tulman, E.R., Afonso, C.L., Lu, Z., de la Concha-Bermejillo, A.,
456	Lehmkuhl, H.D., Piccone, M.E., Kutish, G.F., Rock, D.L., 2004.
457	Genomes of the parapoxviruses ORF virus and bovine papular
458	stomatitis virus. J. Virol. 78, 168-177.
459	Ferrara, N., 1999. Molecular and biological properties of vascular endothelial
460	growth factor. J. Mol. Med. 77, 527-543.
461	Ferrara, N., 2005. The role of VEGF in the regulation of physiological and
462	pathological angiogenesis. EXS 94, 209-231.
463	Ferrara, N., Davis-Smyth, T., 1997. The biology of vascular endothelial

464 growth factor. Endocr. Rev. 18, 4-25. Fleming, S.B., Anderson, I.E., Thomson, J., Deane, D.L., McInnes, C.J., 465McCaughan, C.A., Mercer, A.A., Haig, D.M., 2007. Infection with 466 recombinant orf viruses demonstrates that the viral interleukin-10 is a 467 virulence factor. J. Gen. Virol. 88, 1922-1927. 468 Haig, D.M., McInnes, C.J., 2002. Immunity and counter-immunity during 469 infection with the parapoxvirus orf virus. Virus Res. 88, 3-16. 470 Inder, M.K., Ueda, N., Mercer, A.A., Fleming, S.B., Wise, L.M., 2007. Bovine 471 472 papular stomatitis virus encodes a functionally distinct VEGF that binds both VEGFR-1 and VEGFR-2. J. Gen. Virol. 88, 781-791. 473 Inoshima, Y., Morooka, A., Sentsui, H. 2000. Detection and diagnosis of 474parapoxvirus by the polymerase chin reaction. J. Virol. Methods 84, 475476 201-208. Inoshima, Y., Murakami, K., Wu, D., Sentsui, H., 2002. Characterization of 477 parapoxviruses circulating among wild Japanese serows (Capricornis 478 crispus). Microbiol. Immunol. 46, 583-587. 479 Inoshima, Y., Murakami, K., Yokoyama, T., Sentsui, H., 2001a. Genetic 480 481 heterogeneity among parapoxviruses isolated from sheep, cattle and 482Japanese serows (*Capricornis crispus*). J. Gen. Virol. 82, 1215-1220.

483 Inoshima, Y., Shimizu, S., Minamoto, N., Hirai, K., Sentsui, H., 1999. Use of protein AG in an enzyme-linked immunosorbent assay for screening for 484 antibodies against parapoxvirus in wild animals in Japan. Clin. Diagn. 485 Lab. Immunol. 6, 388-391. 486 Inoshima, Y., Yamamoto, Y., Takahashi, T., Shino, M., Katsumi, A., Shimizu, 487 S., Sentsui, H., 2001b. Serological survey of parapoxvirus infection in 488 wild ruminants in Japan in 1996-9. Epidemiol. Infect. 126, 153-156. 489 Kanou, Y., Inoshima, Y., Shibahara, T., Ishikawa, Y., Kadota, K., Ohashi, S., 490 K., K., 2005. 491 Morioka, Yoshida, Yamada, Isolation characterization of a parapoxvirus from sheep with papular stomatitis. 492 JARQ 39, 197-203. 493 Kiba, A., Yabana, N., Shibuya, M., 2003. A set of Loop-1 and -3 structures in 494 the novel vascular endothelial growth factor (VEGF) family member, 495 VEGF-E_{NZ-7}, is essential for the activation of VEGFR-2 signaling. J. Biol. 496 Chem. 278, 13453-13461. 497 Kumagai, T., Shimizu, M., Ito, Y., Kanno, S., Nakagawa, M., Sato, K., 498 499 Mukainakano, K., Ohta, H., 1971. Contagious papular dermatitis of 500 sheep. In: Abstracts of the 71st Meeting of the Japanese Society of Veterinary Science, p. 15. (in Japanese). 501

502 Kumagai, T., Shimizu, M., Ito, Y., Yamamoto, S., Ito, T., Ohyama, S., Toshibe, 503 M., 1979. Contagious pustular dermatitis in Japanese serows in Akita Prefecture. In: Abstracts of the 87th Meeting of the Japanese Society of 504 Veterinary Science, p. 121. (in Japanese). 505 Lyttle, D.J., Fraser, K.M., Fleming, S.B., Mercer, A.A., Robinson, A.J., 1994. 506 507 Homologs of vascular endothelial growth factor are encoded by the poxvirus orf virus. J. Virol. 68, 84-92. 508 Masegi, T., Hori, M., Sakai, H., Inoshima, Y., Yanai, T., 2002. Parapoxvirus 509 infection in wild Japanese serow: a possibility of infection from wild 510 serow to sheep. Jpn. J. Zoo Wildl. Med. 7, 39-43. 511 Mercer, A.A., Ueda, N., Friederichs, S.M., Hofmann, K., Fraser, K.M., 512Bateman, T., Fleming, S.B., 2006. Comparative analysis of genome 513 sequences of three isolates of Orf virus reveals unexpected sequence 514 variation. Virus Res. 116, 146-158. 515 Mercer, A.A., Wise, L.M., Scagliarini, A., McInnes, C.J., Buttner, M., Rziha, 516 H.J., McCaughan, C.A., Fleming, S.B., Ueda, N., Nettleton, P.F., 2002. 517 518 Vascular endothelial growth factors encoded by Orf virus show 519 surprising sequence variation but have a conserved, functionally 520 relevant structure. J. Gen. Virol. 83, 2845-2855.

521 Meyer, M., Clauss, M., Lepple-Wienhues, A., Waltenberger, J., Augustin, H. 522 G., Ziche, M., Lanz, C., Buttner, M., Rziha, H.J., Dehio, C., 1999. A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, 523 mediates angiogenesis via signalling through VEGFR-2 (KDR) but not 524 VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J. 18, 363-374. 525 526 Miles, A.A., Miles, E.M., 1952.Vascular reactions to histamine, histamine-liberator and leukotaxine in the skin of guinea-pigs. J. 527 Physiol. 118, 228-257. 528 Mohan, M., Malayer, J.R., Geisert, R.D., Morgan, G.L., 2001. Expression of 529 retinol-binding protein messenger RNA and retinoic acid receptors in 530 preattachment bovine embryos. Mol. Reprod. Dev. 60, 289-296. 531 Ogawa, S., Oku, A., Sawano, A., Yamaguchi, S., Yazaki, Y., Shibuya, M., 1998. 532 533 A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent 534 mitotic activity without heparin-binding domain. J. Biol. Chem. 273, 535 31273-31282. 536 Ogino, H., Nakabayashi, D., Nabeya, M., Hoshi, K., Okazawa, T., 1996. 537

Prefecture. J. Jpn. Vet. Med. Assoc. 49, 615-618.

Contagious papular dermatitis of Japanese serows in Niigata

538

540 Okada, H.M., Matsukawa, K., Chihaya, Y., 1986. Experimental transmission of contagious pustular dermatitis from a Japanese serow, Capricornis 541 crispus, to a calf and goats. J. Jpn. Vet. Med. Assoc. 39, 578-581. 542 Okada, H.M., Okada, K., Numakunai, S., Ohshima, K., 1984a. Electron 543 microscopy on mucosal and cutaneous lesions in contagious papular 544dermatitis of Japanese Serow (Capricornis crispus). Jpn. J. Vet. Sci. 46, 545 297-302. 546 K., Numakunai, S., Ohshima, 547Okada, H.M., Okada, 1984b. Histopathologic studies on mucosal and cutaneous lesions in contagious 548 papular dermatitis of Japanese serow (Capricornis crispus). Jpn. J. Vet. 549 Sci. 46, 257-264. 550 Palmarini, M., Holland, M.J., Cousens, C., Dalziel, R.G., Sharp, J.M., 1996. 551 Jaagsiekte retrovirus establishes a disseminated infection of the 552 lymphoid tissues of sheep affected by pulmonary adenomatosis. J. Gen. 553 Virol. 77, 2991-2998. 554 Robinson, A.J., Lyttle, D.J., 1992. Parapoxviruses: their biology and 555 556 potential as recombinant vaccines. In: Binns, M., Smith, G.L. (Eds.), Recombinant poxviruses, CRC Press, Boca Raton, pp. 285-327. 557 558 Robinson, C.J., Stringer, S.E., 2001. The splice variants of vascular

endothelial growth factor (VEGF) and their receptors. J. Cell Sci. 114, 559 853-865. 560 Rziha, H.J., Bauer, B., Adam, K.H., Rottgen, M., Cottone, R., Henkel, M., 561 Dehio, C., Buttner, M., 2003. Relatedness and heterogeneity at the 562 near-terminal end of the genome of a parapoxvirus bovis 1 strain (B177) 563 compared with parapoxvirus ovis (Orf virus). J. Gen. Virol. 84, 564 1111-1116. 565 Rziha, H.J., Henkel, M., Cottone, R., Bauer, B., Auge, U., Götz, F., Pfaff, E., 566 Röttgen, M., Dehio, C., Büttner, M., 2000. Generation of recombinant 567 genes suitable for insertion and parapoxviruses: non-essential 568 expression of foreign genes. J. Biotechnol. 83, 137-145. 569 Rziha, H.J., Henkel, M., Cottone, R., Meyer, M., Dehio, C., Buttner, M., 1999. 570 571 Parapoxviruses: potential alternative vectors for directing the immune 572 response in permissive and non-permissive hosts. J. Biotechnol. 73, 235-242. 573 Savory, L.J., Stacker, S.A., Fleming, S.B., Niven, B.E., Mercer, A.A., 2000. 574 Viral vascular endothelial growth factor plays a critical role in orf virus 575 576 infection. J. Virol. 74, 10699-10706. Scagliarini, A., Dal Pozzo, F., Gallina, L., Guercio, A., Vaccari, F., Battilani, 577

578 M., Ciulli, S., Prosperi, S., 2006. In vitro activity of VEGF-E produced by 579 orf virus strains isolated from classical and severe persistent contagious ecthyma. Vet. Microbiol. 114, 142-147. 580 Stacker, S.A., Achen, M.G., 1999. The vascular endothelial growth factor 581 family: signalling for vascular development. Growth Factors 17, 1-11. 582 Suzuki, T., Minamoto, N., Sugiyama, M., Kinjo, T., Suzuki, Y., Sugimura, M., 583 Atoji, Y., 1993. Isolation and antibody prevalence of a parapoxvirus in 584 wild Japanese serows (Capricornis crispus). J. Wildl. Dis. 29, 384-389. 585 Suzuki, Y., Komatsu, T., Yamamoto, Y., Atoii, Y., 1997. Pathology of 586 interdigital glands in a wild Japanese serow (Capricornis crispus) 587 infected with parapoxvirus. J. Vet. Med. Sci. 59, 1063-1065. 588 Suzuki, Y., Sugimura, M., Atoji, Y., Minamoto, N., Kinjo, T., 1986. 589 Widespread of parapox infection in wild Japanese serows, Capricornis 590 crispus. Jpn. J. Vet. Sci. 48, 1279-1282. 591 Tokunaga, Y., Yamazaki, Y., Morita, T., 2006. Localization of heparin- and 592 neuropilin-1-recognitionn sites of viral VEGFs. Biochem. Biophys. Res. 593 594 Commun. 348, 957-962. 595 Ueda, N., Inder, M.K., Wise, L.M, Fleming, S.B., Mercer, A.A., 2007. 596 Parapoxvirus of red deer in New Zealand encodes a variant of viral

597 vascular endothelial growth factor. Virus Res. 124, 50-58. Ueda, N., Wise, L.M., Stacker, S.A., Fleming, S.B., Mercer, A.A., 2003. 598 Pseudocowpox virus encodes a homolog of vascular endothelial growth 599 factor. Virology 305, 298-309. 600 Wise, L.M., Savory, L.J., Dryden, N.H., Whelan, E.M., Fleming, S.B., Mercer, 601 A.A., 2007. Major amino acid sequence variants of viral vascular 602 endothelial growth factor are functionally equivalent during Orf virus 603 infection of sheep skin. Virus Res. 128, 115-125. 604 Wise, L.M., Ueda, N., Dryden, N.H., Fleming, S.B., Caesar, C., Roufail, S., 605 Achen, M.G., Stacker, S.A., Mercer, A.A., 2003. Viral vascular 606 endothelial growth factors vary extensively in amino acid sequence, 607 receptor-binding specificities, and the ability to induce vascular 608 609 permeability yet are uniformly active mitogens. J. Biol. Chem. 278, 38004-38014. 610 Wise, L.M., Veikkola, T., Mercer, A.A., Savory, L.J., Fleming, S.B., Caesar, C., 611 Vitali, A., Makinen, T., Alitalo, K., Stacker, S.A., 1999. Vascular 612 613 endothelial growth factor (VEGF)-like protein from orf virus NZ2 binds

Yamamoto, M., Horiuchi, M., Ishiguro, N., Shinagawa, M., Matsuo, T.,

to VEGFR2 and neuropilin-1. Proc. Natl. Acad. Sci. USA 96, 3071-3076.

614

616	Kaneko, K., 2001. Glycidol degrades scrapie mouse prion protein. J. Vet.
617	Med. Sci. 63, 983-990.
618	
619	Figure legends
620	Fig. 1. Representative lesions of naturally infected PPV animals. (a) Papules
621	and nodules in the gingiva and lip of an affected cow. (b) Scabby papules and
622	nodules around the mouth of an affected goat. (c) Highly proliferative scabby
623	papules, nodules, pustules and ulcers on the lips, muzzle and eye regions of
624	an affected Japanese serow.
625	Fig. 2. Alignment of the deduced amino acid sequences of the viral VEGFs.
626	The sequences of isolates Iwate and HIS from sheep in Japan and isolate S-1
627	from a Japanese serow were aligned with the published sequences as follows:
628	NZ2 (DDBJ/EMBL/GenBank accession nos. BD320268 and S67520), D1701
629	(AF106020) and orf-11 (AY236150). The sequences of the 4 PPV isolates from
630	Japanese serows were identical and denoted as S-1. The eight cysteine
631	residues that are conserved in all members of the VEGF family are indicated
632	above the Iwate sequence as C. The asterisk indicates the accessible
633	asparagine residue on the receptor-binding face of VEGF-A, which correlates
634	strongly with the binding of VEGF receptor 2 and is conserved in the

635	sequences of PPV VEGF's (Mercer et al., 2002, Ueda et al., 2003, 2007, Inder
636	et al., 2007). The arginine residues that correlate with the binding of
637	co-receptors, neuropilin-1 and heparin, in NZ2 VEGF (Tokunaga et al., 2006),
638	are indicated as R. The bars above the Iwate sequence indicate the loop 1
639	and loop 3 regions of the conformational structure of VEGF; these loops are
640	essential for the binding and activation of VEGF receptor 2 (Kiba et al.,
641	2003).
642	Fig. 3. Comparison of the temporal pattern of mRNA expression in vitro.
643	FBM (fetal bovine muscle), FLL (fetal lamb lung) and SeSM (serow smooth
644	muscle) cells were infected with PPV isolates Iwate, HIS, or S-1. RNA
645	samples were collected 0, 1, 2, 4, 8, 12, 24 and 36 h after virus-inoculation. As
646	a control for the reaction, mRNA of the housekeeping gene cellular
647	glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was also amplified
648	using primers as described previously (Mohan et al., 2001; Palmarini et al.,
649	1996). Distilled water (DW) was used as the negative control.
650	Fig. 4. Comparison of the biological activities of the viral VEGFs. (a)
651	Vascular permeability activity of the viral VEGFs by the Miles assay. VEGF
652	was serially diluted in PBS and intradermally injected into the shaved backs
653	of guinea pigs. Dose-dependent vascular permeabilization was observed for

654	all 3 viral VEGFs. No significant difference was observed among the 3
655	VEGFs at each dilution, as determined by parametric non-repeated
656	measures ANOVA and the SNK test. Data represents the mean \pm SD of 3
657	guinea pigs. (b) HUVEC-proliferative activity of viral VEGFs. HUVECs were
658	treated with the viral VEGFs. The proliferation index was determined as the
659	ratio of the absorbance at 450 nm of cells treated with VEGF against the
660	absorbance at 450 nm of untreated cells. Data represents the mean \pm SD of 6
661	evaluations. The HIS and S-1 VEGFs showed significantly higher activity on
662	HUVEC proliferation than the Iwate VEGF at a concentration of 50 ng/ml
663	(* P < 0.05, ** P < 0.01). No significant difference was observed between the
664	HIS and S-1 VEGFs by parametric non-repeated measures ANOVA and the
665	SNK test. No statistically significant differences were observed at a VEGF
666	concentration of 10 ng/ml.
667	Fig. 5. Comparison of the responsiveness of endothelial cells to viral VEGF
668	among different host species. (a) Isolation of primary endothelial cells.
669	Endothelial cells from animals were stained positively for vWF by IFA. Over
670	80% of cells were positive when counted by flow cytometry; these are shown
671	as a dotted line in the flow cytometry panels. BAEC, bovine aortic
672	endothelial cells; OAEC, ovine aortic endothelial cells; CAEC, caprine aortic

endothelial cells; SeAEC, Japanese serow aortic endothelial cells; SeMC, Japanese serow skeletal muscle cells. SeMC were used as control non-endothelial cells. (b) Comparison of the responsiveness to viral VEGF of primary endothelial cells from different host species. Primary endothelial cells were treated with 50 ng/ml of S-1 VEGF for 2 days. The proliferation index was determined as the ratio of the absorbance at 450 nm of cells treated with VEGF against the absorbance at 450 nm of untreated cells. Although no significant difference between OAEC and SeAEC among the 4 cells was observed by parametric non-repeated measures ANOVA and the SNK test, a significant difference (*P< 0.05) was observed between OAEC and SeAEC analyzed by parametric unpaired Student's t-test. Data represents the mean \pm SD of 6 evaluations. BAEC, bovine a ortic endothelial cells; OAEC, ovine aortic endothelial cells; CAEC, caprine aortic endothelial cells; SeAEC, Japanese serow aortic endothelial cells; SeMC, Japanese serow skeletal muscle cells. **P< 0.01.

688

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

689

690

Table 1. Parapoxvirus isolates used in this study

691 Isolate Original host Prefecture Year of isolation

692		References				
693	Iwate	sheep	Iwate	1970		
694		Kumagai et al., 1971				
695	HIS	sheep	Hokkaido	2004		
696		Kanou et al., 2005				
697	S-1	Japanese serow	Gifu	1985		
698	Suzuki et al., 1993					
699	GHF	Japanese serow	Gifu	1999		
700		Inoshima et al., 2002				
701	R-1	Japanese serow	Toyama	1999		
702		Inoshima et al., 2002				
703	Aichi	Japanese serow	Aichi	2000		
704		Inoshima et al., 2002				
705						
706						
707						
708						
709	Supple	ementary data				
710						

Table S1. Primers used in this study				
Primers	Sequence (5' to 3')*			
PPP-1	GTCGTCCACGATGAGCAGCT			
PPP-4	TACGTGGGAAGCGCCTCGCT			
D27F	AATGTAAATWMTAACGCC			
11R	AACCCAGAAACGTCCCGCTAC			
D2R	CGTTTGGATMTGCGGTCC			
VEGF orf-11F	ATGAGGTTGCTCGTCTGC			
VEGF cons340R	CGCACTTTGTATGCTCCACGA			
VEGF HISF	ATGAGGTTGCTCGTCGGCATACTG			
VEGF HISR	CTAGCGGCGTCTTCTGGGCGGCCT			
BamConsSigF	CTGCTG <u>GGATCC</u> GACAGCAGCACAAAAAA			
EcoConsR	CAAAAA <u>GAATTC</u> CTAATAAGCCCTTCGGCG			
PstConsR	CAAAAA <u>CTGCAG</u> CTAATAAGCCCTTCGGCG			
* W, A/T. M, A/C. U	nderlines show restriction enzyme site.			
Supplementary dat	a			

731 Table S2. Identity of VEGF amino acid sequence (%	731	S2. Identity of VEGF amino acid sequence	(%)*
---	-----	--	------

732		Iwate	HIS	S-1	NZ2(BD)	
733	NZ2(S)	D1701	orf-1	1		
734	Iwate	_	70.8	99.3	70.8	
735	70.1	69.3	99.3		·.·O`	
736	HIS		_	70.8	84.2	
737	83.5	89.4	71.3			
738	S-1			_	70.8	
739	70.1	69.3	98.5			
740	NZ2(BD)				_	
741	99.2	83.5	71.3			
742	NZ2(S)					
743	_	82.7	70.6			
744	D1701					
745		-	69.9			
746	orf-11					
747			_			

^{*} NZ2(BD), data from accession no. BD320268. NZ2(S), data from accession

⁷⁴⁹ no. S67520.

Fig. 1. Inoshima et al.

		С	Loop 1	C C	
Iwate	1:MRLLVCILVVVCLLHQHLLNADSSTKKWPE	VLEGSKCKPRPTVLSVN0	EHPELTSQRFNP	PCVTLMRCGG	70
HIS	1:GAYT.S.	.F.S	A	QV	68
S-1	1:				70
NZ2 (BD320268)	1:.KGAYNG.S.	KEI.VP.SE	T		69
NZ2 (S67520)	1:.KGAYNG.S.	KEI.VP.SE	ET		69
D1701	1:.KFGAYT.S.	.F.N.GM.FR.HI)		68
orf-11	1:				69
	cc* c Loo	p3 c (CR	RR	
Iwate	71: CCNDESLECVPTEEANVTMEFMGVGVSSTG	SSVSTQHLEFVEHTKCDO	QPRGGQQTTP	PPRRRRRAY	137
HIS	69:QLA.VSG	GGNGMIK	KLTTTPPT	R.P	132
S-1	71:		T		137
NZ2 (BD320268)	70:VLLA.GSG	G.NGM.R.SK	RFTTTPPT	R.P	133
NZ2 (S67520)	70:VSLLA.GSG	G.NGM.R.SK	RFTTTPPT	R.P	133
D1701	69:QLA.VSG	GGNGMSK	K.PLTTTPPT	R.P	132
orf-11	70:				136

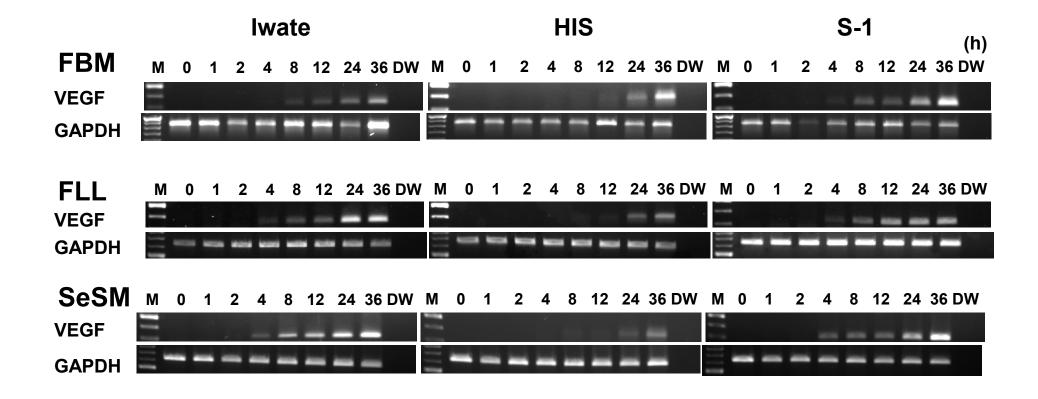
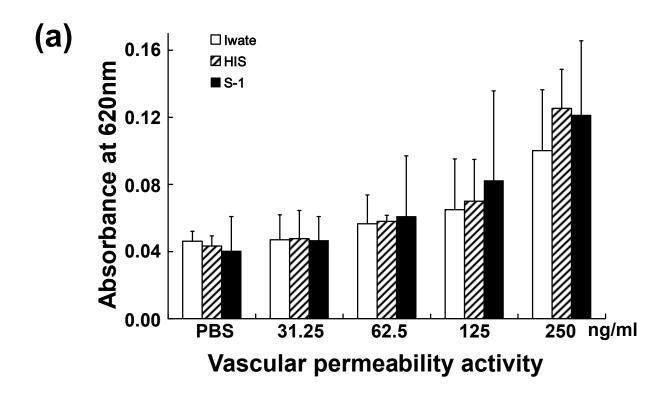



Fig. 3. Inoshima et al.

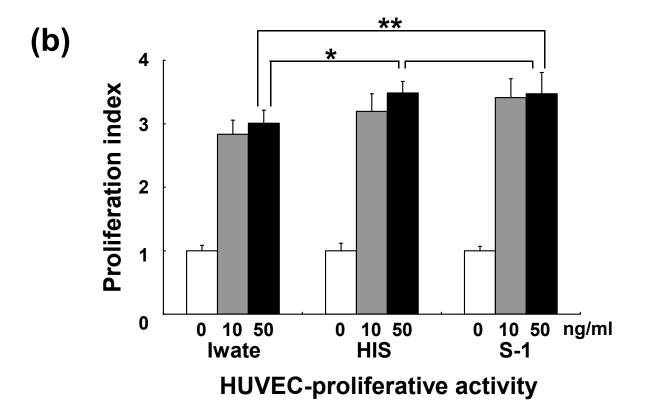


Fig. 4. Inoshima et al.

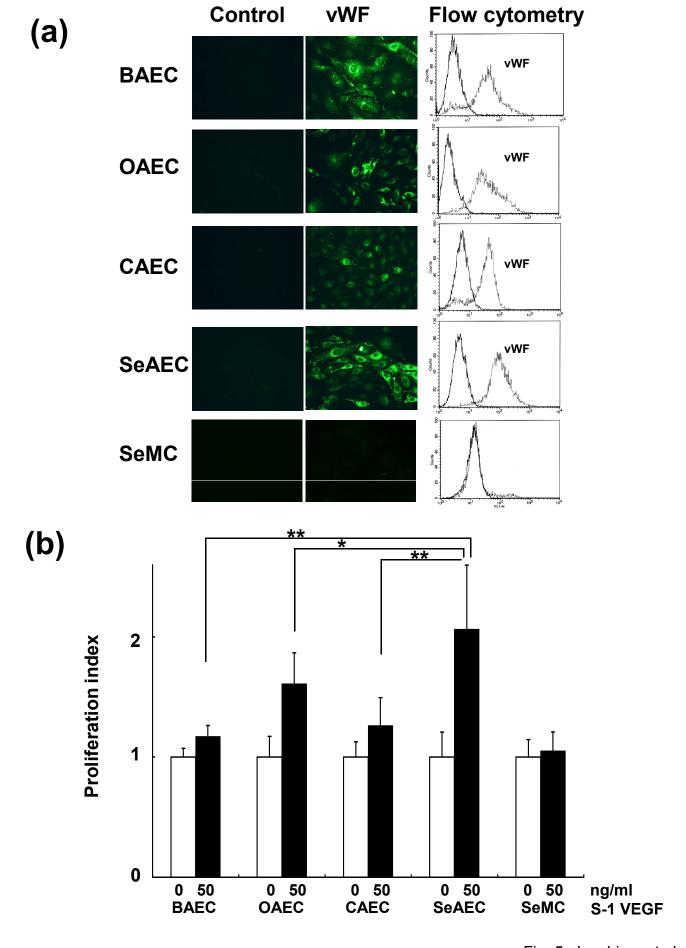


Fig. 5. Inoshima et al.