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Abstract We consider the GARCH-type model: S = σ2Z, where σ2 and Z
are independent random variables. The density of σ2 is unknown whereas the
one of Z is known. We want to estimate the density of σ2 from n observations
of S under some dependence assumption (the exponentially strongly mixing
dependence). Adopting the wavelet methodology, we construct a nonadaptive
estimator based on projections and an adaptive estimator based on the hard
thresholding rule. Taking the mean integrated squared error over Besov balls,
we prove that the adaptive one attains a sharp rate of convergence.
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1 Motivations

We consider the random sequence (Si)i∈Z where, for any i ∈ Z,

Si = σ2
iZi, (1)

(Zi)i∈Z is a sequence of identically distributed random variables with common
known density fZ : [0, 1]→ (0,∞) and (σ2

i )i∈Z is a sequence of identically dis-
tributed random variables with common unknown density fσ2 : [0, 1]→ (0,∞).
For any i ∈ Z, Zi and σ2

i are independent. We suppose that (Si)i∈Z is strictly
stationary and exponentially strongly mixing (to be defined in Section 2). We
aim to estimate fσ2 when only n random variables S1, . . . , Sn are observed.
The model (1) belongs to the family of the GARCH-type time series models
classically encountered in financial models when the volatility process (σ2

i )i∈Z
is unobserved (see for instance Carrasco and Chen (2002) for an overview).
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In the literature, the most common approach is to rewrite (1) as a convolu-
tion model via the logarithmic transformation: lnSi = lnσ2

i +lnZi, i ∈ Z. Then
the density of lnσ2

1 is deconvolved and estimated by using Fourier transform
and nonparametric methods (kernel, splines, wavelets, . . . ). See e.g. Masry
(1991), Comte et al. (2008) and Van Zanten and Zareba (2008). In the inde-
pendent case, methods ans results on the classical density convolution model
can be found in Caroll and Hall (1988), Devroye (1989), Fan (1991), Pensky
and Vidakovic (1999), Fan and Koo (2002), Butucea and Matias (2005), Comte
et al. (2006), Delaigle and Gijbels (2006) and Lacour (2006). However, note
that the density of lnσ2

1 is obviously not fσ2 and the estimation of fσ2 from
lnS1, . . . , lnSn seems not really natural (see for instance (Comte et al. 2008,
3.5)).

In this study, the “direct” estimation of fσ2 from S1, . . . , Sn is investigated.
Adopting a methodology similar to the one of Chaubey et al. (2010a) (for the
density estimation problem under multiplicative censoring), we construct two
new estimators based on wavelet basis. The first one, linear and nonadaptive,
uses projections, and the second one, non-linear and adaptive, uses the hard
thresholding rule introduced by Donoho et al. (1996). We evaluate their per-
formances by determining upper bounds of the mean integrated squared error
(MISE) over a wide range of smoothness function classes: the Besov balls. We
prove that our adaptive estimator attains a sharp rate of convergence.“Sharp”
in the sense that it is close to the one attained by the linear wavelet estimator
constructed to minimize the MISE.

The paper is organized as follows. Assumptions on the model and some
notations are introduced in Section 2. Section 3 briefly describes the wavelet
basis and the Besov balls. The estimators are presented in Section 4. The
results are set in Section 5. Technical proofs are collected in Section 6.

2 Assumptions and notations

Let us now clarify the assumptions made on (1).

Assumption on (Si)i∈Z. For any m ∈ Z, we define the m-th strongly mixing
coefficient of (Si)i∈Z by

am = sup
(A,B)∈FS−∞,0×FSm,∞

|P(A ∩B)− P(A)P(B)| ,

where, for any u ∈ Z, FS−∞,u is the σ-algebra generated by the random

variables . . . , Su−1, Su and FYu,∞ is the σ-algebra generated by the random
variables Su, Su+1, . . ..
We consider the exponentially strongly mixing case i.e. there exist three
known constants, γ > 0, c > 0 and θ > 0, such that, for any m ∈ Z,

am ≤ γexp
(
−c|m|θ

)
. (2)
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This assumption is satisfied by a large class of GARCH processes. See e.g.
Withers (1981), Doukhan (1994), Modha and Masry (1996) and Carrasco
and Chen (2002).
Note that, when θ →∞, we are in the standard i.i.d. case. So (1) becomes
the classical density convolution model.

Assumption of fZ . We suppose that there exists a positive integer ν such
that

fZ(x) =
1

(ν − 1)!
(− lnx)ν−1, x ∈ [0, 1]. (3)

Note that fZ is the density of
∏ν
i=1 Ui, where U1, . . . , Un are n i.i.d. random

variables having the common uniform distribution on [0, 1].
Assumption on fσ2 . We assume w.o.l.g. that the support of fσ2 is [0, 1] and
fσ2 ∈ L2([0, 1]), where

L2([0, 1]) =

{
h : [0, 1]→ R;

(∫ 1

0

h2(x)dx

)1/2

<∞

}
.

Assumption on the density of S1. Note that, thanks to the independence of
σ2
1 and Z1, the density of S1 is

fS(x) =

∫ 1

x

fZ

(
x

y

)
fσ2(y)

1

y
dy, x ∈ [0, 1].

We suppose that there exists a known constant C∗ > 0 such that

sup
x∈[0,1]

fS(x) ≤ C∗. (4)

3 Wavelets and Besov balls

Wavelet basis. Let N be an integer such that N > ν (where ν is the one in
(3)), φ and ψ be the initial wavelets of dbN . In particular, we have
– supp(φ) = supp(ψ) = [1−N,N ],
– φ and ψ are of class Cν .

Set

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

With an appropriate treatments at the boundaries, there exists an integer
τ satisfying 2τ ≥ 2N such that the collection B = {φτ,k(.), k ∈ {0, . . . , 2τ−
1}; ψj,k(.); j ∈ N−{0, . . . , τ − 1}, k ∈ {0, . . . , 2j − 1}}, is an orthonormal
basis of L2([0, 1]). We refer to Cohen et al. (1993).
For any integer ` ≥ τ , any h ∈ L2([0, 1]) can be expanded on B as

h(x) =

2`−1∑
k=0

α`,kφ`,k(x) +

∞∑
j=`

2j−1∑
k=0

βj,kψj,k(x), x ∈ [0, 1],
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where αj,k and βj,k are the wavelet coefficients of h defined by

αj,k =

∫ 1

0

h(x)φj,k(x)dx, βj,k =

∫ 1

0

h(x)ψj,k(x)dx. (5)

Besov balls. Let M > 0, s > 0, p ≥ 1 and r ≥ 1. A function h belongs to
Bsp,r(M) if and only if there exists a constant M∗ > 0 (depending on M)
such that the associated wavelet coefficients (5) satisfy

2τ(1/2−1/p)

(
2τ−1∑
k=0

|ατ,k|p
)1/p

+

 ∞∑
j=τ

2j(s+1/2−1/p)

2j−1∑
k=0

|βj,k|p
1/p


r

1/r

≤ M∗.

In this expression, s is a smoothness parameter and p and r are norm
parameters. For a particular choice of s, p and r, Bsp,r(M) contain the
Hölder and Sobolev balls. See Meyer (1992).

4 Estimators

Estimators of the wavelet coefficients. The first step to estimate fσ2 consists
in expanding fσ2 on B and estimating its unknown wavelet coefficients. For
any positive integer ` and any h ∈ C`([0, 1]), set

T (h)(x) = (xh(x))′, T`(h)(x) = T (T`−1(h))(x), x ∈ [0, 1]. (6)

For any integer j ≥ τ and any k ∈ {0, . . . , 2j − 1},
– we estimate αj,k =

∫ 1

0
fσ2(x)φj,k(x)dx by

α̂j,k =
1

n

n∑
i=1

Tν(φj,k)(Si), (7)

(ν is the one in (3))

– we estimate βj,k =
∫ 1

0
fσ2(x)ψj,k(x)dx by

β̂j,k =
1

n

n∑
i=1

Tν(ψj,k)(Si). (8)

Some statistical properties of α̂j,k and β̂j,k are studied in Propositions 2
and 3.

We consider two wavelets estimators for fσ2 : a linear estimator and a hard
thresholding estimator.
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Linear estimator. Assuming that fσ2 ∈ Bsp,r(M) with p ≥ 2, we define the

linear estimator f̂L by

f̂L(x) =

2j0−1∑
k=0

α̂j0,kφj0,k(x), x ∈ [0, 1], (9)

where α̂j,k is defined by (7) and j0 is an integer which will be chosen later
(see Theorem 1 below).
For a survey on wavelet linear estimators for various density models, we
refer to Chaubey et al. (2010a).

Hard thresholding estimator. We define the hard thresholding estimator f̂H

by

f̂H(x) =

2τ−1∑
k=0

α̂τ,kφτ,k(x) +

j1∑
j=τ

2j−1∑
k=0

β̂j,k1{|β̂j,k|≥κλj}ψj,k(x), (10)

x ∈ [0, 1], where α̂τ,k is defined by (7), β̂j,k by (8), j1 is the integer satisfying

1

2

(
n∗

lnn∗

)1/(2ν+1)

< 2j1 ≤
(

n∗
lnn∗

)1/(2ν+1)

,

n∗ = nθ/(θ+1),

θ is the one in (2), κ is a large enough constant (the one in Proposition 3)
and

λj = 2νj
√

lnn∗
n∗

. (11)

The feature of the hard thresholding estimator is to only estimate the
“large” unknown wavelet coefficients of fσ2 which contain the main char-
acteristics of fσ2 .
For the construction of hard thresholding wavelet estimators in the stan-
dard density model, see e.g. Donoho et al. (1996) and Delyon and Juditsky
(1996), in the (standard) convolution density model, see e.g. Pensky and
Vidakovic (1999) and Fan and Koo (2002), and in the density model under
multiplicative censoring, see Chaubey et al. (2010b).

5 Results

Upper bounds for f̂L and f̂H are given in Theorems 1 and 2 below.

Theorem 1 Consider (1) under the assumptions of Section 2. Suppose that

fσ2 ∈ Bsp,r(M) with s > 0, p ≥ 2 and r ≥ 1. For any q ∈ (0, 1), let f̂L be (9)
with j0 such that

1

2
n1/(2s+2ν+1+q) < 2j0 ≤ n1/(2s+2ν+1+q).
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Then there exists a constant C > 0 such that

E
(∫ 1

0

(
f̂L(x)− fσ2(x)

)2
dx

)
≤ Cn−2s/(2s+2ν+1+q).

Theorem 2 Consider (1) under the assumptions of Section 2. Let f̂H be (10).
Suppose that fσ2 ∈ Bsp,r(M) with r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and
s > (2ν + 1)/p}. Then there exists a constant C > 0 such that

E
(∫ 1

0

(
f̂H(x)− fσ2(x)

)2
dx

)
≤ C

(
lnn∗
n∗

)2s/(2s+2ν+1)

,

where n∗ = nθ/(θ+1) and θ is the one in (2).

The proof of Theorem 2 is based on several probability results (moment in-
equalities, concentration inequality,. . . ) and a suitable decomposition of the
MISE.

Theorem 2 shows that, besides being adaptive, f̂H attains a rate of con-
vergence close to the one of f̂L.

Note that, if we restrict our study to the independent case i.e. θ →∞ and
ν = 1, the rate of convergence attained by f̂H becomes the one for the clas-
sical density model under multiplicative censoring i.e. (lnn/n)2s/(2s+3). See
(Chaubey et al. 2010b, Theorem 5.2) with ρn = 1.

Conclusion and perspectives. We construct a new adaptive estimator
f̂H for fσ2 from (1). It is based on wavelets and thresholding. It attains a
sharp rate of convergence over Besov balls.

A possible perspective of this work is to consider other realistic dependence
conditions (polynomial strongly mixing dependence, associated sequences, . . . ).

Moreover, perhaps we can improve the estimation of fσ2 by considering
other kinds of thresholding rules as the block thresholding one (BlockJS, . . . ).
See e.g. Cai (1999, 2002) and Chesneau et al. (2010). However, to bound the
MISE of such block thresholding estimators (as mentioned in (Van Zanten and
Zareba 2008, 3.3)), it is not immediately clear how to extend some technical
results (Talagrand’s inequality, . . . ) to the dependent case.

All these aspects need further investigations that we leave for a future
work.

6 Proofs

In this section, we consider (1) under the assumptions of Section 2. Moreover,
C denotes any constant that does not depend on j, k and n. Its value may
change from one term to another and may depends on φ or ψ.
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6.1 Auxiliary results

Lemma 1 For any positive integer ` and any h ∈ C`([0, 1]), set

G(h)(x) = −xh′(x), G`(h)(x) = G(G`−1(h))(x).

1. We have
fσ2(x) = Gν(fS)(x), x ∈ [0, 1],

2. Let Tν be (6). We have, for any h ∈ Cν([0, 1]),∫ 1

0

fσ2(x)h(x)dx =

∫ 1

0

fS(x)Tν(h)(x)dx.

Proof of Lemma 1.

1. By definition of fZ and the Binomial theorem, we obtain

fS(x) =

∫ 1

x

fZ

(
x

y

)
fσ2(y)

1

y
dy

=
1

(ν − 1)!

∫ 1

x

(ln y − lnx)
ν−1

fσ2(y)
1

y
dy

=
1

(ν − 1)!

ν−1∑
u=0

(
ν − 1

u

)
(− lnx)u

∫ 1

x

(ln y)ν−1−ufσ2(y)
1

y
dy.

Therefore, using
∑ν−1
u=0

(
ν−1
u

)
(−1)u = 0,

f ′S(x) = − 1

(ν − 1)!

ν−1∑
u=1

(
ν − 1

u

)
u

x
(− lnx)u−1

∫ 1

x

(ln y)ν−1−ufσ2(y)
1

y
dy

− 1

(ν − 1)!

ν−1∑
u=0

(
ν − 1

u

)
(− lnx)u(lnx)ν−1−ufσ2(x)

1

x

= − 1

x

(
1

(ν − 1)!

ν−1∑
u=1

(
ν − 1

u

)
u(− lnx)u−1

∫ 1

x

(ln y)ν−1−ufσ2(y)
1

y
dy

)

− (lnx)ν−1fσ2(x)
1

x

1

(ν − 1)!

ν−1∑
u=0

(
ν − 1

u

)
(−1)u

= − 1

x

(
1

(ν − 1)!

ν−1∑
u=1

(
ν − 1

u

)
u(− lnx)u−1

∫ 1

x

(ln y)ν−1−ufσ2(y)
1

y
dy

)
.

So

G(fS)(x) = −xf ′S(x)

=
1

(ν − 1)!

ν−1∑
u=1

(
ν − 1

u

)
u(− lnx)u−1

∫ 1

x

(ln y)ν−1−ufσ2(y)
1

y
dy.



8 Christophe Chesneau

For any ` ∈ {1, . . . , ν − 1}, proceeding ` times in a similar fashion to the

above i.e. using derivations and the equality
∑ν−1
u=m

(
ν−1
u

)
u!

(u−m)! (−1)u =
(ν−1)!

(ν−m−1)! (−1)m
∑ν−m−1
u=0

(
ν−m−1

u

)
(−1)u = 0, m ∈ {0, . . . , `}, we obtain

G`(fS)(x) =
1

(ν − 1)!

ν−1∑
u=`

(
ν − 1

u

)
u!

(u− `)!
(− lnx)u−`

∫ 1

x

(ln y)ν−1−ufσ2(y)
1

y
dy.

Hence

Gν−1(fS)(x) =

∫ 1

x

fσ2(y)
1

y
dy

and, by a derivation,

fσ2(x) = −x(Gν−1(fS)(x))′ = Gν(fS)(x). (12)

2. Using (12), an integration by parts and the fact that Gν−1(fS)(1) = 0, we
obtain∫ 1

0

fσ2(x)h(x)dx =

∫ 1

0

Gν(fS)(x)h(x)dx

=

∫ 1

0

−x(Gν−1(fS)(x))′h(x)dx

= [−xGν−1(fS)(x)h(x)]
1
0 +

∫ 1

0

Gν−1(fS)(x)(xh(x))′dx

=

∫ 1

0

Gν−1(fS)(x)T (h)(x)dx.

Proceeding ν − 1 times in a similar fashion to the above i.e. using ν − 1
integrations by parts, we have∫ 1

0

Gν−1(fS)(x)T (h)(x)dx =

∫ 1

0

Gν−2(fS)(x)T2(h)(x)dx = . . .

=

∫ 1

0

fS(x)Tν(h)(x)dx.

Therefore ∫ 1

0

fσ2(x)h(x)dx =

∫ 1

0

fS(x)Tν(h)(x)dx.

This ends the proof of Lemma 1.

�

Proposition 1 Let q ≥ 2, for any j ≥ τ and any k ∈ {0, . . . , 2j − 1}, αj,k =∫ 1

0
fσ2(x)φj,k(x)dx and Tν be (6). Then

1.
E (Tν(φj,k)(S1)) = αj,k.
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2.

sup
x∈[0,1]

|Tν(φj,k)(x)| ≤ θ12(2ν+1)j/2,

where θ1 = ν!
∑ν
u=0 supx∈[1−N,N ] |φ(u)(x)|.

3.

E
(
(Tν(φj,k)(S1))2

)
≤ θ222νj ,

where θ2 = C∗ν(ν!)2
∑ν
u=0

∫ N
1−N (φ(u)(y))2dy.

4. for any q ∈ (0, 1), there exists a constant C > 0 such that

V

(
n∑
i=1

Tν(φj,k)(Si)

)
≤ Cn2(2ν+q)j .

These results hold for ψ instead of φ (and, a fortiori, βj,k =
∫ 1

0
fσ2(x)ψj,k(x)dx

instead of αj,k).

Proof of Proposition 1.

1. Since φ ∈ Cν([0, 1]), it follows from Lemma 1 that

E (Tν(φj,k)(S1)) =

∫ 1

0

Tν(φj,k)(x)fS(x)dx =

∫ 1

0

fσ2(x)φj,k(x) = αj,k.

(13)

2. For any u ∈ {0, . . . , ν}, we have (φj,k)(u)(x) = 2(2u+1)j/2φ(u)(2jx − k).
Hence

sup
x∈[0,1]

|Tν(φj,k)(x)| ≤ ν!

ν∑
u=0

sup
x∈[0,1]

|xu(φj,k)(u)(x)|

≤ ν!

ν∑
u=0

2(2u+1)j/2 sup
x∈[1−N,N ]

|φ(u)(x)|

≤ θ12(2ν+1)j/2. (14)

3. Since S1(Ω) = [0, 1], we have

E
(
(Tν(φj,k)(S1))2

)
≤ ν(ν!)2

ν∑
u=0

E
(
S2u
1 ((φj,k)(u)(S1))2

)
≤ ν(ν!)2

ν∑
u=0

E
(

((φj,k)(u)(S1))2
)
. (15)
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Using (4), (φj,k)(u)(x) = 2(2u+1)j/2φ(u)(2jx − k) and doing the change of
variables y = 2jx− k, we obtain

E
(

((φj,k)(u)(S1))2
)

=

∫ 1

0

((φj,k)(u)(x))2fS(x)dx ≤ C∗
∫ 1

0

((φj,k)(u)(x))2dx

≤ C∗2
(2u+1)j

∫ 1

0

(φ(u)(2jx− k))2dx

= C∗2
2uj

∫ 2j−k

−k
(φ(u)(y))2dy

≤ C∗2
2uj

∫ N

1−N
(φ(u)(y))2dy. (16)

Putting (15) and (16) together, we obtain

E
(
(Tν(φj,k)(S1))2

)
≤ C∗ν(ν!)2

ν∑
u=0

22uj
∫ N

1−N
(φ(u)(y))2dy

≤ θ222νj . (17)

4. We have

V

(
n∑
i=1

Tν(φj,k)(Si)

)

= nV (Tν(φj,k)(S1)) + 2

n∑
v=2

v−1∑
`=1

C (Tν(φj,k)(Sv), Tν(φj,k)(S`))

≤ nV (Tν(φj,k)(S1)) + 2

∣∣∣∣∣
n∑
v=2

v−1∑
`=1

C (Tν(φj,k)(Sv), Tν(φj,k)(S`))

∣∣∣∣∣ . (18)

Using (17), we have

V(Tν(φj,k)(S1)) ≤ E
(
(Tν(φj,k)(S1))2

)
≤ C22νj . (19)

The stationarity of (Si)i∈Z implies that∣∣∣∣∣
n∑
v=2

v−1∑
`=1

C (Tν(φj,k)(Sv), Tν(φj,k)(S`))

∣∣∣∣∣
=

∣∣∣∣∣
n∑

m=1

(n−m)C (Tν(φj,k)(S0), Tν(φj,k)(Sm))

∣∣∣∣∣
≤ n

n∑
m=1

|C (Tν(φj,k)(S0), Tν(φj,k)(Sm)) |.
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By the Davydov inequality (see Davydov (1970)), it holds that

|C (Tν(φj,k)(S0), Tν(φj,k)(Sm)) |

≤ 10aqm

(
E
(

(Tν(φj,k)(S0))2/(1−q)
))1−q

≤ 10aqm

(
sup
x∈[0,1]

|Tν(φj,k)(x)|

)2q (
E
(
(Tν(φj,k)(S0))2

))1−q
.

Using (14) and (17) we obtain

|C (Tν(φj,k)(S0), Tν(φj,k)(Sm)) | ≤ Caqm

(
2(2ν+1)j/2

)2q (
22νj

)1−q
≤ C2(2ν+q)jaqm.

Since
∑n
m=1 a

q
m ≤

∑∞
m=1 a

q
m = C, we have∣∣∣∣∣

n∑
v=2

v−1∑
`=1

C (Tν(φj,k)(Sv), Tν(φj,k)(S`))

∣∣∣∣∣ ≤ Cn2(2ν+q)j
n∑

m=1

aqm

≤ Cn2(2ν+q)j . (20)

It follows from (18), (19) and (20) that

V

(
n∑
i=1

Tν(φj,k)(Si)

)
≤ Cn2(2ν+q)j .

The proof of Proposition 1 is complete.

�

Proposition 2 For any integer j ≥ τ and any k ∈ {0, . . . , 2j − 1}, let αj,k =∫ 1

0
fσ2(x)φj,k(x)dx and α̂j,k be (7). Then, for any q ∈ (0, 1),

1. there exists a constant C > 0 such that

E
(

(α̂j,k − αj,k)
2
)
≤ C2(2ν+q)j

1

n
.

2. there exists a constant C > 0 such that

E
(

(α̂j,k − αj,k)
4
)
≤ C2(4ν+1+q)j 1

n
.

These inequalities hold for β̂j,k defined by (8) instead of α̂j,k, and βj,k =∫ 1

0
fσ2(x)ψj,k(x)dx instead of αj,k.

Proof of Proposition 2.
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1. Using Proposition 1, we have

E
(

(α̂j,k − αj,k)
2
)

= E
(

(α̂j,k − E (α̂j,k))
2
)

= V (α̂j,k)

=
1

n2
V

(
n∑
i=1

Tν(φj,k)(Si)

)

≤ C
1

n2
n2(2ν+q)j = C2(2ν+q)j

1

n
. (21)

2. The triangular inequality yields

|α̂j,k − αj,k| ≤ |α̂j,k|+ |αj,k|.

Using again Proposition 1, we obtain

|α̂j,k| ≤
1

n

n∑
i=1

|Tν(φj,k)(Si)| ≤ sup
x∈[0,1]

|Tν(φj,k)(x)| ≤ C2(2ν+1)j/2.

We have supx∈[0,1] |φj,k(x)| ≤ 2j/2 supx∈[1−N,N ] |φ(x)| = C2j/2. So

|αj,k| ≤
∫ 1

0

fσ2(x)|φj,k(x)|dx ≤ C2j/2
∫ 1

0

fσ2(x)dx = C2j/2

≤ C2(2ν+1)j/2. (22)

Therefore

|α̂j,k − αj,k| ≤ C2(2ν+1)j/2. (23)

It follows from (23) and (21) that

E
(

(α̂j,k − αj,k)
4
)
≤ C2(2ν+1)jE

(
(α̂j,k − αj,k)

2
)
≤ C2(4ν+1+q)j 1

n
.

The proof of Proposition 2 is complete.

�

Proposition 3 For any j ∈ {τ, . . . , j1} and any k ∈ {0, . . . , 2j−1}, let βj,k =∫ 1

0
fσ2(x)ψj,k(x)dx, β̂j,k be (8) and λj be (11). Then there exist two constants,

κ > 0 and C > 0, such that

P
(
|β̂j,k − βj,k| ≥ κλj/2

)
≤ C 1

n4∗
,

where n∗ = nθ/(θ+1).

Proof of Proposition 3. Lemma 2 below presents a Bernstein inequality for
exponentially strongly mixing process. This is a slightly modified version of
(Modha and Masry 1996, Theorem 4.2).
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Lemma 2 (Modha and Masry (1996)) Let γ > 0, c > 0, θ > 1 and
(Zi)i∈Z be a stationary process such that, for any m ∈ Z, the associated m-th
strongly mixing coefficient satisfies

am ≤ γexp
(
−c|m|θ

)
.

Let n ∈ N∗, h : R → R be a measurable function and, for any i ∈ Z, Ui =
h(Zi). We assume that there exists a constant M > 0 satisfying |U1| ≤ M <
∞. Then, for any λ > 0, we have

P

(∣∣∣∣∣ 1n
n∑
i=1

Ui

∣∣∣∣∣ ≥ λ
)
≤ 2(1 + 4e−2γ) exp

(
− uλ2nθ/(θ+1)

2 (E (U2
1 ) + λM/3)

)
,

where u = (1/2)(c/8)1/(θ+1).

For any i ∈ {1, . . . , n}, set

Ui = Tν(ψj,k)(Si)− βj,k.

Proposition 1 applied with ψ instead of φ implies that

E (U1) = 0, E
(
U2
1

)
≤ E

(
(Tν(ψj,k)(S1))2

)
≤ θ222νj

and, using (22),

|U1| ≤ sup
x∈[0,1]

|Tν(ψj,k)(x)|+ |βj,k| ≤ (θ1 + sup
x∈[1−N,N ]

|ψ(x)|)2(2ν+1)j/2.

It follows from Lemma 2 applied with U1, . . . , Un, λ = κλj/2 and M = (θ1 +
supx∈[1−N,N ] |ψ(x)|)2(2ν+1)j/2, and the inequality 2j1 ≤ n∗/lnn∗ that

P
(
|β̂j,k − βj,k| ≥ κλj/2

)
= P

(∣∣∣∣∣ 1n
n∑
i=1

Ui

∣∣∣∣∣ ≥ κλj/2
)

≤ C exp

− uκ2λ2jn∗

8
(
θ222νj + κ(θ1 + supx∈[1−N,N ] |ψ(x)|)λj2(2ν+1)j/2/6

)


≤ C exp

− uκ2 lnn∗

8
(
θ2 + κ(θ1 + supx∈[1−N,N ] |ψ(x)|)2j/2

√
lnn∗/n∗/6

)


≤ C
1

n
ρ(κ)
∗

, (24)

where

ρ(κ) =
uκ2

8
(
θ2 + κ(θ1 + supx∈[1−N,N ] |ψ(x)|)/6

) .
Since limx→∞ ρ(x) = ∞, there exists a κ > 0 such that ρ(κ) = 4. Therefore,
for such a κ, we have

P
(
|β̂j,k − βj,k| ≥ κλj/2

)
≤ C 1

n4∗
.

This completes the proof of Proposition 3.
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�

6.2 Proofs of the main results

Proof of Theorem 1. We expand the function fσ2 on B as

fσ2(x) =

2j0−1∑
k=0

αj0,kφj0,k(x) +

∞∑
j=j0

2j−1∑
k=0

βj,kψj,k(x), x ∈ [0, 1],

where

αj0,k =

∫ 1

0

fσ2(x)φj0,k(x)dx, βj,k =

∫ 1

0

fσ2(x)ψj,k(x)dx.

We have, for any x ∈ [0, 1],

f̂L(x)− fσ2(x) =

2j0−1∑
k=0

(α̂j0,k − αj0,k)φj0,k(x)−
∞∑
j=j0

2j−1∑
k=0

βj,kψj,k(x).

Since B is an orthonormal basis of L2([0, 1]), we have

E
(∫ 1

0

(
f̂L(x)− fσ2(x)

)2
dx

)
=

2j0−1∑
k=0

E
(

(α̂j0,k − αj0,k)
2
)

+

∞∑
j=j0

2j−1∑
k=0

β2
j,k.

Using Proposition 2, we obtain

2j0−1∑
k=0

E
(

(α̂j0,k − αj0,k)
2
)
≤ C2j0(2ν+1+q) 1

n
≤ Cn−2s/(2s+2ν+1+q).

Since p ≥ 2, we have Bsp,r(M) ⊆ Bs2,∞(M). Hence

∞∑
j=j0

2j−1∑
k=0

β2
j,k ≤ C2−2j0s ≤ Cn−2s/(2s+2ν+1+q).

Therefore

E
(∫ 1

0

(
f̂L(x)− fσ2(x)

)2
dx

)
≤ Cn−2s/(2s+2ν+1+q).

The proof of Theorem 1 is complete.

�
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Proof of Theorem 2. We expand the function fσ2 on B as

fσ2(x) =

2τ−1∑
k=0

ατ,kφτ,k(x) +

∞∑
j=τ

2j−1∑
k=0

βj,kψj,k(x), x ∈ [0, 1],

where

ατ,k =

∫ 1

0

fσ2(x)φτ,k(x)dx, βj,k =

∫ 1

0

fσ2(x)ψj,k(x)dx.

We have, for any x ∈ [0, 1],

f̂H(x)− fσ2(x)

=

2τ−1∑
k=0

(α̂τ,k − ατ,k)φτ,k(x) +

j1∑
j=τ

2j−1∑
k=0

(
β̂j,k1{|β̂j,k|≥κλj} − βj,k

)
ψj,k(x)

−
∞∑

j=j1+1

2j−1∑
k=0

βj,kψj,k(x).

Since B is an orthonormal basis of L2([0, 1]), we have

E
(∫ 1

0

(
f̂H(x)− fσ2(x)

)2
dx

)
= R+ S + T, (25)

where

R =

2τ−1∑
k=0

E
(

(α̂τ,k − ατ,k)
2
)
, S =

j1∑
j=τ

2j−1∑
k=0

E
((

β̂j,k1{|β̂j,k|≥κλj} − βj,k
)2)

and

T =

∞∑
j=j1+1

2j−1∑
k=0

β2
j,k.

Let us bound R, T and S, in turn.

Using Proposition 2, n∗ < n and 2s/(2s+ 2ν + 1) < 1, we obtain

R ≤ C2τ(2ν+1+q) 1

n
≤ C 1

n
≤ C 1

n∗
≤ C

(
lnn∗
n∗

)2s/(2s+2ν+1)

. (26)

For r ≥ 1 and p ≥ 2, we have Bsp,r(M) ⊆ Bs2,∞(M). Since 2s/(2s+ 2ν + 1) <
2s/(2ν + 1), we have

T ≤ C
∞∑

j=j1+1

2−2js ≤ C2−2j1s ≤ C
(

lnn∗
n∗

)2s/(2ν+1)

≤ C
(

lnn∗
n∗

)2s/(2s+2ν+1)

.
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For r ≥ 1 and p ∈ [1, 2), we have Bsp,r(M) ⊆ B
s+1/2−1/p
2,∞ (M). Since s >

(2ν + 1)/p, we have (s+ 1/2− 1/p)/(2ν + 1) > s/(2s+ 2ν + 1). So

T ≤ C

∞∑
j=j1+1

2−2j(s+1/2−1/p) ≤ C2−2j1(s+1/2−1/p)

≤ C

(
lnn∗
n∗

)2(s+1/2−1/p)/(2ν+1)

≤ C
(

lnn∗
n∗

)2s/(2s+2ν+1)

.

Hence, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2ν + 1)/p}, we
have

T ≤ C
(

lnn∗
n∗

)2s/(2s+2ν+1)

. (27)

We can write the term S as

S = S1 + S2 + S3 + S4, (28)

where

S1 =

j1∑
j=τ

2j−1∑
k=0

E
((

β̂j,k − βj,k
)2

1{|β̂j,k|≥κλj}1{|βj,k|<κλj/2}
)
,

S2 =

j1∑
j=τ

2j−1∑
k=0

E
((

β̂j,k − βj,k
)2

1{|β̂j,k|≥κλj}1{|βj,k|≥κλj/2}
)
,

S3 =

j1∑
j=τ

2j−1∑
k=0

E
(
β2
j,k1{|β̂j,k|<κλj}1{|βj,k|≥2κλj}

)
and

S4 =

j1∑
j=τ

2j−1∑
k=0

E
(
β2
j,k1{|β̂j,k|<κλj}1{|βj,k|<2κλj}

)
.

Let us investigate the bounds of S1, S2, S3 and S4 in turn.
Upper bounds for S1 and S3. We have{

|β̂j,k| < κλj , |βj,k| ≥ 2κλj

}
⊆
{
|β̂j,k − βj,k| > κλj/2

}
,

{
|β̂j,k| ≥ κλj , |βj,k| < κλj/2

}
⊆
{
|β̂j,k − βj,k| > κλj/2

}
and {

|β̂j,k| < κλj , |βj,k| ≥ 2κλj

}
⊆
{
|βj,k| ≤ 2|β̂j,k − βj,k|

}
.

So

max(S1, S3) ≤ C
j1∑
j=τ

2j−1∑
k=0

E
((

β̂j,k − βj,k
)2

1{|β̂j,k−βj,k|>κλj/2}

)
.
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It follows from the Cauchy-Schwarz inequality, Proposition 2 with q ∈ (0,max(1, (2ν+

1)/θ) which implies 2qj ≤ 2qj1 ≤ nq/(2ν+1)
∗ ≤ n/n∗, 2j ≤ 2j1 ≤ n∗ and Propo-

sition 3 that

E
((

β̂j,k − βj,k
)2

1{|β̂j,k−βj,k|>κλj/2}

)
≤
(
E
((

β̂j,k − βj,k
)4))1/2 (

P
(
|β̂j,k − βj,k| > κλj/2

))1/2
≤ C

(
2(4ν+1+q)j 1

n

)1/2(
1

n4∗

)1/2

= C22νj
1

n2∗

(
2(1+q)j

1

n

)1/2

≤ C22νj
1

n2∗
.

Since 2s/(2s+ 2ν + 1) < 1, we have

max(S1, S3) ≤ C
1

n2∗

j1∑
j=τ

2j(1+2ν) ≤ C 1

n2∗
2j1(1+2ν) ≤ C 1

n∗

≤ C
lnn∗
n∗
≤ C

(
lnn∗
n∗

)2s/(2s+2ν+1)

. (29)

Upper bound for S2. Using again Proposition 2 with q ∈ (0,max(1, (2ν+ 1)/θ)

which implies 2qj ≤ 2qj1 ≤ nq/(2ν+1)
∗ ≤ n/n∗, we obtain

E
((

β̂j,k − βj,k
)2)

≤ C2(2ν+q)j
1

n
≤ C22νj

(
2qj

1

n

)
≤ C22νj

1

n∗

≤ C22νj
lnn∗
n∗

.

Hence

S2 ≤ C
lnn∗
n∗

j1∑
j=τ

22νj
2j−1∑
k=0

1{|βj,k|>κλj/2}.

Let j2 be the integer defined by

1

2

(
n∗

lnn∗

)1/(2s+2ν+1)

< 2j2 ≤
(

n∗
lnn∗

)1/(2s+2ν+1)

. (30)

We have

S2 ≤ S2,1 + S2,2,

where

S2,1 = C
lnn∗
n∗

j2∑
j=τ

22νj
2j−1∑
k=0

1{|βj,k|>κλj/2}

and

S2,2 = C
lnn∗
n∗

j1∑
j=j2+1

22νj
2j−1∑
k=0

1{|βj,k|>κλj/2}.
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We have

S2,1 ≤ C
lnn∗
n∗

j2∑
j=τ

2j(1+2ν) ≤ C lnn∗
n∗

2j2(1+2ν) ≤ C
(

lnn∗
n∗

)2s/(2s+2ν+1)

.

For r ≥ 1 and p ≥ 2, since Bsp,r(M) ⊆ Bs2,∞(M),

S2,2 ≤ C
lnn∗
n∗

j1∑
j=j2+1

22νj
1

λ2j

2j−1∑
k=0

β2
j,k ≤ C

∞∑
j=j2+1

2j−1∑
k=0

β2
j,k ≤ C2−2j2s

≤ C

(
lnn∗
n∗

)2s/(2s+2ν+1)

.

For r ≥ 1, p ∈ [1, 2) and s > (2ν + 1)/p, using 1{|βj,k|>κλj/2} ≤ C|βj,k|p/λpj ,
Bsp,r(M) ⊆ Bs+1/2−1/p

2,∞ (M) and (2s+ 2ν + 1)(2− p)/2 + (s+ 1/2− 1/p+ ν −
2ν/p)p = 2s, we have

S2,2 ≤ C
lnn∗
n∗

j1∑
j=j2+1

22νj
1

λpj

2j−1∑
k=0

|βj,k|p

≤ C

(
lnn∗
n∗

)(2−p)/2 ∞∑
j=j2+1

2jν(2−p)2−j(s+1/2−1/p)p

≤ C

(
lnn∗
n∗

)(2−p)/2

2−j2(s+1/2−1/p+ν−2ν/p)p

≤ C

(
lnn∗
n∗

)2s/(2s+2ν+1)

.

So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2ν + 1)/p}, we have

S2 ≤ C
(

lnn∗
n∗

)2s/(2s+2ν+1)

. (31)

Upper bound for S4. We have

S4 ≤
j1∑
j=τ

2j−1∑
k=0

β2
j,k1{|βj,k|<2κλj}.

Let j2 be the integer (30). Then

S4 ≤ S4,1 + S4,2,

where

S4,1 =

j2∑
j=τ

2j−1∑
k=0

β2
j,k1{|βj,k|<2κλj}, S4,2 =

j1∑
j=j2+1

2j−1∑
k=0

β2
j,k1{|βj,k|<2κλj}.
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We have

S4,1 ≤ C

j2∑
j=τ

2jλ2j = C
lnn∗
n∗

j2∑
j=τ

2j(1+2ν) ≤ C lnn∗
n∗

2j2(1+2ν)

≤ C

(
lnn∗
n∗

)2s/(2s+2ν+1)

.

For r ≥ 1 and p ≥ 2, since Bsp,r(M) ⊆ Bs2,∞(M), we have

S4,2 ≤
∞∑

j=j2+1

2j−1∑
k=0

β2
j,k ≤ C2−2j2s ≤ C

(
lnn∗
n∗

)2s/(2s+2ν+1)

.

For r ≥ 1, p ∈ [1, 2) and s > (2ν+1)/p, using β2
j,k1{|βj,k|<2κλj} ≤ Cλ

2−p
j |βj,k|p,

Bsp,r(M) ⊆ Bs+1/2−1/p
2,∞ (M) and (2s+ 2ν + 1)(2− p)/2 + (s+ 1/2− 1/p+ ν −

2ν/p)p = 2s, we have

S4,2 ≤ C

j1∑
j=j2+1

λ2−pj

2j−1∑
k=0

|βj,k|p

= C

(
lnn∗
n∗

)(2−p)/2 j1∑
j=j2+1

2jν(2−p)
2j−1∑
k=0

|βj,k|p

≤ C

(
lnn∗
n∗

)(2−p)/2 ∞∑
j=j2+1

2jν(2−p)2−j(s+1/2−1/p)p

≤ C

(
lnn∗
n∗

)(2−p)/2

2−j2(s+1/2−1/p+ν−2ν/p)p

≤ C

(
lnn∗
n∗

)2s/(2s+2ν+1)

.

So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2ν + 1)/p}, we have

S4 ≤ C
(

lnn∗
n∗

)2s/(2s+2ν+1)

. (32)

It follows from (28), (29), (31) and (32) that

S ≤ C
(

lnn∗
n∗

)2s/(2s+2ν+1)

. (33)

Combining (25), (26), (27) and (33), we have, for r ≥ 1, {p ≥ 2 and s > 0}
or {p ∈ [1, 2) and s > (2ν + 1)/p},

E
(∫ 1

0

(
f̂H(x)− fσ2(x)

)2
dx

)
≤ C

(
lnn∗
n∗

)2s/(2s+2ν+1)

.

The proof of Theorem 2 is complete.

�
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