
HAL Id: hal-00535816
https://hal.science/hal-00535816

Submitted on 8 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gathering with Minimum Completion Time in Sensor
Tree Networks

Jean-Claude Bermond, Luisa Gargano, Adele Rescigno

To cite this version:
Jean-Claude Bermond, Luisa Gargano, Adele Rescigno. Gathering with Minimum Completion
Time in Sensor Tree Networks. Journal of Interconnection Networks, 2010, 11 (1-2), pp.1-33.
�10.1142/S0219265910002714�. �hal-00535816�

https://hal.science/hal-00535816
https://hal.archives-ouvertes.fr

Gathering with Minimum Completion Time in Sensor Tree Networks

Jean–Claude Bermond∗

MASCOTTE
joint project CNRS-INRIA-UNSA

2004 Route des Lucioles
BP 93, F-06902 Sophia-Antipolis

France
E-mail: bermond@sophia.inria.fr

Luisa Gargano†

Dipartimento Informatica ed Applicazioni
Universitá di Salerno
84084 Fisciano (SA)

Italy
E-mail: lg@unisa.it

Adele A. Rescigno

Dipartimento Informatica ed Applicazioni
Universitá di Salerno
84084 Fisciano (SA)

Italy
E-mail: rescigno@unisa.it

∗Partially supported by the CRC CORSO with France Telecom, by the European FET project AEOLUS
†Work partially done while visiting INRIA at Sophia-Antipolis

Abstract

Data gathering is a fundamental operation in wireless sensor networks in which data packets

generated at sensor nodes are to be collected at a base station. In this paper we suppose that

each sensor is equipped with an half–duplex interface; hence, a node cannot receive and transmit

at the same time. Moreover, each node is equipped with omnidirectional antennas allowing the

transmission over distance R. The network is a multi-hop wireless network and the time is slotted

so that one–hop transmission of one data item consumes one time slot. We model the network

with a graph where the vertices represent the nodes and two nodes are connected if they are in

the transmission range of each other. We suppose that the interference range is the same as the

transmission range; therefore due to interferences a collision happens at a node if two or more

of its neighbors try to transmit at the same time. Furthermore we suppose that an intermediate

node should forward a message as soon as it receives it. We give an optimal collision free gathering

schedule for tree networks whenever each node has exactly one data packet to send.

Key words: Data gathering, omnidirectional antennas, time, tree sensor networks.

1 Introduction

A wireless sensor network is a multi-hop wireless network formed by a large number of low-cost

sensor nodes, each equipped with a sensor, a processor, a radio, and a battery. Due to the many

advantages they offer – i.e. low cost, small size, and wireless data transfer – wireless sensor networks

become attractive to a vast variety of applications like space exploration, battlefield surveillance,

environment observation, and health monitoring.

A basic activity in a sensor network is the systematic gathering of the sensed data at a base

station for further processing. A key challenge in such operation is due to the physical limits of

the sensor nodes, which have limited power and non–replentishable batteries. It is then important

to bound the energy consumption of data dissemination [11, 19, 25]. However, an other important

factor to consider in data gathering applications is the latency of the information dissemination

process. Indeed, the data collected by a node can frequently change thus making essential that they

are received by the base station as soon as it is possible without being delayed by collisions [27].

Another application, which motivates this work, concerns the use in telecommunications networks

a problem asked by France Telecom about “how to provide Internet connection to a village”

(see [6]). Here we are given a set of communication devices placed in houses in a village (for

instance, network interfaces that connect computers to the Internet). They require access to a

gateway (for instance, a satellite antenna) to send and receive data through a multi-hop wireless

network. Therefore, this problem is the same as data collection in sensor network. Here the main

objective is to minimize the delay.

In this paper, we will study optimal–time off–line data gathering in tree networks.

1.1 Network model

We adopt the network model considered in [3, 13, 18]. In this model each node is equipped with an

half–duplex interface, hence,

(i) a node cannot receive and transmit at the same time.

Moreover, each node is equipped with omni directional antennas allowing transmission over a distance

R. This implies that for any given node in the network, we can identify its neighbors as those nodes

within distance R from it, that is, within its transmission/interference range. In this model,

1

(ii) a collision happens at a node x if two or more of its neighbors try to transmit at the same time.

However, simultaneous transmissions among pairs of nodes can successfully occur whenever condi-

tions i) and ii) of the above interference model are respected. The time is slotted so that one–hop

transmission of one data item consumes one time slot; the network is assumed to be synchronous.

Moreover, following [13, 16, 27] and contrarily to [3, 5, 18], we assume that no buffering is done

at intermediate nodes, that is each node forwards a message as soon as it receives it. Finally, it is

assumed that the only traffic in the network is due to data to be collected, thus data transmissions

can be completely scheduled.

Summarizing, the network can be represented by means of a directed graph G = (V, A) where

V represents the sensors (devices) nodes and A the set of possible calls; i.e. an arc (u, v) ∈ A if v is

in the transmission/interference range of u. Throughout this paper we assume that all nodes have

the same transmission range, hence the graph G is a directed symmetric graph, i.e., (u, v) ∈ A if

and only if (v, u) ∈ A. The fact that there is no collision can be expressed by the fact that two calls

(u, v) and (u′, v′) are compatible (can be done in the same time slot) iff d(u, v′) ≥ 2 and d(u′, v) ≥ 2

(i.e., both u and v′, and u′ and v have not to be neighbors, by ii)). Note that the interferences

are not necessarily symmetric and we can have d(u, u′) = 1. We implicitely assume that u 6= u′,

that is, a node sends to at most one neighbor. This is not restrictive, as we will consider trees and

personalized broadcast.

The off-line collision–free data gathering problem can be then stated as follows.

Data Gathering. Given a graph G = (V, A) and a base station (BS) s, for each v ∈ V − {s},

schedule the multi-hop transmission of the data items sensed at v to s so that the whole process is

collision–free, and the time when the last data is received by s is minimized.

We will actually study the related one–to-all personalized broadcast problem in which the BS

wants to communicate different data items to each other node in the network.

One–to-all personalized broadcast: Given a graph G and a BS s, for each node v 6= s, schedule

the multi-hop transmission from s to v of the data items destined to v so that the whole process is

collision–free, and the time when the last data item is received at the corresponding destination node

is minimized.

2

Solving the above dissemination problem is equivalent to solve data gathering in sensor networks.

Indeed, let T denote the delay, that is, the largest time–slot used by a personalized broadcast

algorithm; a gathering schedule with delay T consists in scheduling a transmission from node y to

x during slot t iff the broadcasting algorithm schedules a transmission from node x to y during slot

T − t + 1, for any t with 1 ≤ t ≤ T .

It should be noticed that our algorithms are centralized requiring the BS perform a distinct

topology learning phase and schedule broadcasting. When requirements are more stringent, these

algorithms may no longer be practical. However, they still continue to provide a lower bound on the

data collection time of any given collection schedule.

1.2 Related work

Much effort has been devoted to the study of efficient data gathering algorithms taking into consid-

eration various aspects of sensor networks [9]. The problem of minimizing the delay of the gathering

process has been recently recognized and studied [7, 15]. The authors of [13] first afford such a

problem; they use the same model for sensor networks adopted in this paper. The main difference

with our work is that [13] mainly deals with the case when nodes are equipped with directional

antennas, that is, only the designed neighbor of a transmitting node receives the signal while its

other neighbors can safely receive from different nodes. Under this assumption, [13] gives optimal

gathering schedules for trees. An optimal algorithm for general networks has been presented in [16]

in the case that each node has one packet of sensed data to deliver.

The work in [27] also deals with the latency of data gathering under the assumption of directional

antennas; the difference with [13] is the assumption of the possibility to have multiple channels be-

tween adjacent nodes. By adopting this model an approximation algorithm with performance ratio

2 is obtained.

Fast gathering with omnidirectional antennas is considered in [1, 3, 4, 5, 8], under the assumption

of possibly different transmission and interference ranges, that is, when a node transmits, all the

nodes within a fixed distance dT in the graph can receive while nodes within distance dI (dI ≥ dT)

cannot listen to other transmissions due to interference (in our paper dI = dT = 1). Lower bounds

on the time to gather and NP-hardness proofs are given in [3]; an approximation algorithm with

approximation factor 4 is also presented. Paper [8] presents an on–line gathering algorithm under

3

the described model.

The case where dT = 1 and where each node has one packet to transmit is solved for the line in [1],

for the uniform grids in [4] and for trees when furthermore dI = 1 in [5]. All the above papers allow

buffering at intermediate nodes.

Several papers deal with the problem of maximize the lifetime of the network through topology

aware placement [11, 14], data aggregation [17, 20, 21, 22], or efficient data flow [12, 19, 24]. Papers

[10, 23, 26] consider the minimization of the gathering delay in conjunction with the energy spent

to complete the process.

A preliminary version (extended abstract) of this paper appears in [2].

1.3 Paper Overview.

We consider the model introduced in Section 1.1 and give optimal personalized broadcast schedules

in case the graph modeling the network is a tree.

In Section 3 we shortly illustrate an optimal algorithm in case G is a tree with only one subtree.

It is obtained by using the optimal algorithm on the line with the BS s as one of its endpoints. The

result on the line was first presented in [13].

In Section 4 we give an optimal algorithm in case the graph is a tree T with one specific data

item to be sent to each node and a closed formula (see Theorem 2)

2 Mathematical Formulation

We now formally formulate the one-to-all personalized broadcast problem. Let G = (V, A) be the

communication network and let s ∈ V be a special node that will be called the source.

Each node v ∈ V − {s} is associated with an integer weight w(v) ≥ 0 that represents the number

of data items destined to node v. The vector w represents the vector of the weights of the nodes in

V .

We need to schedule the transmissions in order to create w(v) collision–free routes from s to

node v, for each v ∈ V − {s}. We define the schedule by assigning time-labels to the arcs involved

in transmissions: if arc (u, v) ∈ A has label t then u transmits to v at time t.

4

Definition 1. Let p = (u0, · · · , uh) be a path in G. An increasing labeling L of p is an assignment

of integers, Lp(u0, u1) . . . , Lp(uh−1, uh), to the arcs of p such that for j = 1, . . . , h − 1.

Lp(uj , uj+1) = Lp(uj−1, uj) + 1

The labeling is called t-increasing, for some integer t ≥ 1, if it is increasing and Lp(u0, u1) = t.

Consider any set P of paths in G from s to (not necessarily pairwise distinct) nodes in V − {s}

together with the labellings Lp, for p ∈ P. Notice that any arc a ∈ A can belong to any number of

paths in P.

Definition 2. The labeling induced by P on the arcs of G consists, for each (u, v) ∈ A of the

multisets

L(u, v) = {Lp(u, v) | p ∈ P}.

Let N(u) be the set of neighbors of u in G, that is, N(u) = {x | (u, x) ∈ A} = {x | (x, u) ∈ A}.

In the above terminology, conditions(i) and (ii) of the Introduction give the following definition.

Definition 3. The labeling L induced by P on the arcs of G is called strictly collision–free (SCF) if

L is increasing and, for each (u, v) ∈ A it holds:

– L(u, v) is a set (e.g, any integer has at most one occurrence in L(u, v)),

– L(u, v) ∩ L(v, w) = ∅, for each w ∈ N(v) (condition (i)),

– L(u, v) ∩ L(w, z) = ∅, for each w ∈ N(v) ∪ {v}, z ∈ N(w) (condition (ii)).

Definition 4. An instance of SCF labeling is a triple 〈G,w, s〉 where G is the graph, s is the source,

and w is the vector of weights of the nodes in G.

A feasible solution for 〈G,w, s〉 is a pair (P, L) where:

• P is a set of w(v) paths (not necessarily distinct) from s to v in G, for each v ∈ V − {s};

• L is an SCF–labeling induced by P.

An optimal solution (P∗, L∗) is a feasible solution minimizing the largest label given to any arc of

G.

The value attained by the optimal solution (P∗, L∗) for 〈G,w, s〉 is denoted by T ∗(〈G,w, s〉) (or

simply by T ∗(G) when w and s are clear from the context).

5

Example. In the tree T of Fig.1, let w(u) = 1 for each u 6= s. A feasible solution for 〈T,w, s〉 is

the pair (P, L) where P = {pu | pu is the unique path from s to u in T , u 6= s} and the SCF labeling

L is such that each path pu is labeled with a tu-increasing labeling as follows: tb = 1, te = 2, tf = 4,

tc = 5, tg = 6, td = 8, ts2
= 9, th = 10, ta = 11, tℓ = 12, ts1

= 13.

As an example, we have

pb = (s, s1, a, b), with Lpb
(s, s1) = tb = 1, Lpb

(s1, a) = 2, Lpb
(a, b) = 3

L(s, s1) = {Lpb
(s, s1), Lpc(s, s1), Lpd

(s, s1), Lpa(s, s1), Lps1
(s, s1)} = {1, 5, 8, 11, 13},

L(s, s2) = {Lpe(s, s2), Lpf
(s, s2), Lpg(s, s2), Lph

(s, s2), Lpℓ
(s, s2), Lps2

(s, s2)}

= {2, 4, 6, 9, 10, 12}.

Notice that minimizing the largest label assigned to any arc of G is equivalent to minimize the

time needed by the algorithm. Indeed, one can just consider solutions where all labels in {1, · · · , T}

are used: If some integer c is never used, we can decrease by 1 the value of each label c′ ≥ c + 1 in

the considered feasible solution.

3 Trees with one subtree

In this section we present an optimal algorithm to solve the SCF–labeling problem for an instance

〈G,w, s〉, where G is a tree T with only one subtree (m = 1) and where node weights are arbitrary

non negative integers, that is, w(v) ≥ 0 for each v 6= s. The optimal algorithm was already given

for the line in [13] (Theorem 4.1). For sake of completness we restate, in Fig. 2, the algorithm in

our notation since it is a starting point for the algorithm on general trees given in the next section.

The following notation will be used in the algorithm description.

• Set a path (resp. a t–path) to node v: establish a path from s to v together with its increasing

labeling (resp. t–increasing labeling);

• A node v 6= s is completed: if all the required paths from s to v have been set.

An optimal algorithm for a tree T rooted at s, with one subtree and maximum level n can be

easily obtained:

1) associate to T , the line L with nodes s = 0, 1, · · · , n, where the node i has a weight w(i) equal

to the sum of the weights of the nodes at level i in T (i.e., nodes at distance i from s in T);

6

2) set a path from s to one of the w(i) nodes at level i in T every time the algorithm for L set

one of the w(i) paths to node i in L.

Theorem 1. [13] Let T be a tree with one subtree and let w(i) ≥ 0 be the sum of the weights of

nodes at level i for i = 1, . . . , n. Then the optimal gathering time is

T ∗(T) = max
1≤i≤n

Mi, where Mi =

w(1) + 2w(2) + 3
∑

j≥3 w(j) if i = 1,

2w(2) + 3
∑

j≥3 w(j) if i = 2,

i − 3 + 3
∑

j≥i w(j) if i ≥ 3.

When w(i) > 0, for i = 1, . . . , n, Theorem 1 provides a simpler form of the optimal label (i.e.

minimum time).

Corollary 1. Let T be a tree with one subtree and let w(i) ≥ 1, for i = 1, . . . , n, then

T ∗(T) = M1 = w(1) + 2w(2) + 3
∑n

j=3 w(j).

4 Trees

Let T = (V, E) be any tree and s be a fixed node in T . We assume that each node has exactly one

path to be set, i.e., w(v) = 1 for each v ∈ V − {s} (recall that the source has weight w(s) = 0). We

will show how to obtain an optimal labeling for 〈T,w, s〉.

Definition 5. Given a tree T . We shall denote by |T | the size of T in terms of the weights of the

nodes in T , that is

|T | =
∑

v∈V (T)

w(v).

In particular, if w(u) = 1 for each v ∈ V (T) − {s} then |T | = |V | − 1.

Notice that |T | represents the number of paths to be set in T . Since we assume that w(v) = 1

for each v ∈ V − {s} then the algorithms starts with |T | = |V | − 1.

Root T at s and let T1, T2, · · · , Tm be the subtrees of T rooted at the sons of s. Through this section

we assume m ≥ 2; the case m = 1 was discussed in Section 3.

Definition 6. For each i = 1, . . . , m, we denote by:

– si the son of s which is the root of Ti and is at level 1 in Ti,

7

– αi the number of nodes at level 2 in Ti,

– βi the number of nodes at level 3 or more in Ti.

Moreover, we define the shade of subtree Ti, for 1 ≤ i ≤ m, as τi = 1 + 2αi + 3βi.

Let |Ti| represent the number of nodes in the subtree Ti, For i = 1, . . . , m. We have |Ti| =

1 + αi + βi.

The following definition gives an order on the subtrees based on their shadow. This order will

induce a priority between subtrees and will be useful in the algorithm as we will choose among the

subtrees to which the source can send a message the one with the highest priority.

Definition 7. (Order of priority) Given i, j = 1, . . . , m with i 6= j, we say that

– Ti ≺ Tj if either τi > τj or (τi = τj and |Ti| > |Tj |),

– Ti = Tj if both τi = τj and |Ti| = |Tj |(they are not necessarily isomorphic).

Definition 8. Let m ≥ 2 and T1 � T2 � . . . � Tm. Define

ǫT =

{

1 if T1 = T2

0 otherwise
and ∆i,j =

{

|Ti| + |Tj | + βi − 1 if i, j = 1, . . . , m, with i 6= j

0 if i > m or j > m
.

We devote the next subsections to prove the following result.

Theorem 2. Suppose each node of a tree T has one data item and let n denote the number of

vertices of T . Let m ≥ 2 and T1 � T2 � . . . � Tm we have that the optimal gathering time is

T ∗(T) = max{n − 1, τ1 + ǫT , ∆1,2, ∆2,1, ∆1,3}.

Recall that if m = 2 then we assume ∆1,3 = 0. Furthermore, by Corollary 1, when m = 1 then the

number of steps is T ∗(T) = τ1 = 1 + 2α1 + 3β1 (coherent with the theorem).

Example (cont.). Let T be the tree in Fig.1 with BS s. We have: m = 2, |T1| = 5, |T2| = 6,

α1 = 1, β1 = 3, τ1 = 12, α2 = 5, β2 = 0, τ2 = 11, ǫT = 0, ∆1,2 = 13, ∆2,1 = 10 and ∆1,3 = 0.

Hence, T1 ≺ T2 and, by Theorem 2, T ∗(T) = ∆1,2 = 13.

The main idea of the algorithm consists in setting, whenever that is possible, a path to a node

in the subtree Ti having the largest shade value τi = 1 + 2αi + 3βi (Definition 6). However, we have

to be careful and, even if the algorithm is relatively simple, the proof of the value of gathering time

in Theorem 1 is involved.

8

4.1 The algorithm

In order to describe the SCF labeling algorithm, we introduce the following terminology.

• One step: one time–slot.

• A node v 6= s is completed if a path from s to v has been set.

• Set a path (resp. a t-path) to Ti: set a path (resp. a t-path) to a node v in Ti which is the

furthest from s among all nodes in Ti which are not yet completed.

When we set a path to some Ti the corresponding value |Ti| of the remaining weights in Ti will

be decreased by one and also αi and βi if they are non zero.

• Ti is completed: if a path has been set to each node in Ti, that is |Ti| = 0.

• Step t is called idle if no t-path is set.

• Ti is available at step t (i.e. a t–path to Ti can be set) only if no path was set to a node v in Ti

at some step t′ s.t. t′ < t < t′ + min{3, ℓ(v)}, where ℓ(v) is the level of v in T . Said otherwise,

if at some step t′ we set a path to a node v in Ti, then Ti is not available at step t′ + j where

1 ≤ j < min{3, ℓ(v)}. In particular if v is at a level at least 3, then Ti is not available at steps

t′ + 1 and t′ + 2.

Unless otherwise stated, in the following we assume that the subtrees are numbered according to

the ranking given in Definition 7, that is T1, · · · , Tm is a reordering of the subtrees of T such that

T1 � · · · � Tm.

The SCF labeling algorithm is given in Fig.3. Following is an informal description of the behavior of

the algorithm during a generic step t ≥ 1: Let Ti be an available subtree that precedes all the other

available subtrees of T according to the order relation �; set a t–path to Ti; update the shade of Ti.

Example (cont.). The solution (P, L) given in the Example is the same one gets by applying the

TREE-labeling algorithm on the tree T of Fig.1.

The table given in Fig. 4 reports how the TREE-coloring algorithm sets, step by step, the paths

from the source s to the nodes of the tree T given in Fig. 1.

In the table we refer to Tk, for k = 1, 2, as the subtree rooted at sk. Each row of the table shows for

a fixed time t: the ordering of subtrees T1 and T2 at the beginning of time-step t; the index k of the

9

subtree to which a t-path is set at time-step t; the algorithm’s point corresponding to time-step t; the

t-path in Tk which is set at time-step t; the updated values of tk, τk, αk and βk after time-step t.

Recall that at the beginning of the algorithm we have α1 = 1, β1 = 3, τ1 = 12, α2 = 5, β2 = 0,

τ2 = 11. Furthermore, the minimum step to set a path in T1 and T2 is t1 = t2 = 1.

Notice that t = 8 corresponds to the special case 2.2.b of the algorithm; in this case all the remaining

paths are set.

The TREE-labeling algorithm sets, at step t, a t-path to Ti only if Ti is available. We can then

conclude that

Lemma 1. The solution (P, L) returned by algorithm TREE-labeling on 〈T,w, s〉 is feasible.

4.2 Preliminary Results

We establish now some facts that will be used to prove the optimality of the proposed algorithm.

The order in which nodes are served by the algorithm implies that (excluding the special case

which is considered separately), whenever we refer to a subtree Ti we can assume that αi = 0 only

if βi = 0 (since the paths to nodes at level 2 in Ti are set only after that all the paths to nodes at

level at least 3 are set) and that the path to the root of Ti is set only when αi = βi = 0.

Fact 1. For any subtree Ti with |Ti| > 1 it holds that 2|Ti| − 1 ≤ τi ≤ 3|Ti| − 3.

Proof. By definition |Ti| = βi + αi + 1 and τi = 3βi + 2αi + 1. Hence

2|Ti| − 1 = 2βi + 2αi + 1 ≤ 3βi + 2αi + 1 = τi ≤ 3βi + 3αi = 3|Ti| − 3,

where the last inequality follows noticing that |Ti| > 1 implies αi ≥ 1. ⊓⊔

Fact 2. Let Ti � Tj.

• If τi = τj and Ti ≺ Tj then αi > αj and βi < βj.

• Ti = Tj (i.e., τi = τj and |Ti| = |Tj |) iff αi = αj and βi = βj.

Fact 3. If Ti � Tj then βj ≤

{

|Ti| − 2 if |Ti| ≥ 2

0 otherwise
.

10

Proof. Trivially, if |Ti| = 1 then βj = 0. Let then |Ti| > 1. If Ti � Tj then τi ≥ τj . This implies

that 3βi ≥ 3βj + 2αj − 2αi. From this we get

|Ti| = 1 + αi + βi ≥ 1 + αi +
3βj + 2αj − 2αi

3
≥ βj +

2

3
αj +

1

3
αi + 1.

Hence, noticing that αi ≥ 1, we get |Ti| ≥ βj + 2. ⊓⊔

The quantities ∆i,j = |Ti|+|Tj |+βi−1, introduced in Definition 8 satisfy the following properties.

Fact 4. For any i, j it holds ∆i,j − τi = |Tj | − |Ti|

Proof. Recalling that τi = 3βi + 2αi + 1 and by Definition 8 we have

∆i,j − τi = |Ti| + |Tj | + βi − 1 − (1 + 2αi + 3βi) = |Ti| + |Tj | − 2|Ti| = |Tj | − |Ti|.

⊓⊔

Fact 5. ∆i,j ≥ max{|T |, τ1 + ǫT } only if either (i = 1 and j = 2, 3) or (i = 2 and j = 1).

Proof. Assume first either i ≥ 3 or (i = 2 and j ≥ 3). We have |T | − |Ti| − |Tj | ≥ |T1| or

|T | − |Ti| − |Tj | ≥ |T2|. By Fact 3 we know that βi < min{|T1|, |T2|} − 1. Hence, in any case we get

|T | − ∆i,j = |T | − |Ti| − |Tj | − βi + 1 > 2,

which implies ∆i,j < |T | ≤ max{|T |, τ1 + ǫT }.

Assume now i = 1 and j ≥ 4; supposing, by contradiction, ∆1,j ≥ |T | and ∆1,j ≥ τ1 + ǫT , we have

|T2| + |T3| ≤ |T | − |T1| − |Tj | = |T | − ∆1,j + β1 − 1 ≤ β1 − 1 ≤ |T1| − 3. (1)

From the assumption that ∆1,j ≥ τ1 + ǫT and by Fact 4 we get |T1| ≤ |Tj |. This, (1), and Fact 1

imply

τj = 3βj + 2αj + 1 ≥ 2|Tj | − 1 ≥ 2|T1| − 1 ≥ 2(|T2| + |T3|) + 5 >
2

3
(τ2 + τ3) + 5 ≥

4

3
τ3 + 5 > τ3

thus contradicting the assumption T3 � Tj for any j ≥ 4. ⊓⊔

11

4.3 The lower bound

Definition 9. Let T be such that m ≥ 2 and T1 � T2 � . . . � Tm. Define

Max(T) = max{|T | = |V | − 1, τ1 + ǫT , ∆1,2, ∆2,1, ∆1,3}.

where ǫT and ∆i,j are defined in Definition 8 and where, if m = 2, then ∆1,3 = 0.

Theorem 3. Assuming that m ≥ 2 and T1 � T2 � . . . � Tm we have T ∗(T) ≥ Max(T).

Proof. Any algorithm needs to set a path to each node, hence T ∗(T) ≥ |T |.

By Definition 6 and Corollary 1, the shade τi of Ti is the minimum label that can be assigned when

only paths to the nodes in Ti are set. Since paths must be set to all nodes in each Ti, for i = 1, · · · , m,

and τ1 ≥ τ2 ≥ · · · ≥ τm we have that T ∗(T) ≥ τ1.

Furthermore, if τ1 = τ2, then at least τ1 + 1 labels are necessary as the first path to T2 is set only at

step 2. Note that, if τ1 = τ2, but T1 6= T2 that is |T1| > |T2|, then by fact 4, ∆2,1−τ2 = |T1|−|T2| ≥ 1.

So ∆2,1 ≥ τ2 + 1 = τ1 + 1 and ∆2,1 is a better lower bound. If T1 = T2 (which implies τ1 = τ2), then

τ1 + ǫT labels are necessary.

Consider now ∆i,j . For each path to a node at level at least 3 in Ti no path to some other node

in Ti can be set in the following 2 steps. Moreover, at most one of the following two steps can be

used to set a path to Tj , except for the eventual step in which a path to the root of Tj is set and

immediately after a path to some other node in Tj is set. The remaining step can be used to set a

path to some Tℓ with ℓ 6= i, j. Hence, any algorithm has at least βi − 1−
∑

ℓ6=i,j |Tℓ| idle steps, which

implies T ∗(T) ≥ |T | + βi − 1 −
∑

ℓ6=i,j |Tℓ| = ∆i,j . By Fact 5, we get that Max(T) lower bounds

T ∗(T). ⊓⊔

Remark 1. There are trees for which any of the five parameters in the definition of Max(T)

represents the unique exact bound and so we will have to distinguish all the cases to prove the

optimality. Examples are given below.

• |T | it the unique maximum: Take 3 subtrees T1, T2, T3 with α1 = α2 = α3 = α and β1 = β2 =

β3 = 0. Then τ1 = 1 + 2α < 4 + 3α = |T | and ∆i,j = |Ti| + |Tj | − 1 < |T |.

Fig. 5a) shows an example of this case with α1 = α2 = α3 = 3; here |T | = 13, τ1 + ǫT = 8,

∆1,2 = ∆2,1 = ∆1,3 = 7.

12

• τ1 + ǫT is the unique maximum: Take 2 subtrees T1, T2 with α1 = α2 = 1, β1 ≥ 3 and β2 ≤ β1

(so τ1 ≥ τ2). Then |T | = 5 + β1 + β2 ≤ 5 + 2β1 < 3 + 3β1 = τ1 (as β1 > 2).

∆2,1 ≤ ∆1,2 =

{

3 + 2β1 + β2 < 3 + 3β1 = τ1 if β2 < β1 (here ǫT = 0),

3 + 3β1 < τ1 + ǫT if β2 = β1 (here ǫT = 1).

Fig. 5b1) shows an example of this case with β1 = 3 and β2 = 2; here ǫT = 0, |T | = 10,

τ1 + ǫT = 12, ∆1,2 = 11, ∆2,1 = 10, ∆1,3 = 0. Fig. 5b2) shows another example of this case

with β1 = β2 = 3; here ǫT = 1, |T | = 11, τ1 + ǫT = 13, ∆1,2 = ∆2,1 = 12, ∆1,3 = 0.

• ∆1,2 is the unique maximum: Take 2 subtrees T1 T2, with α1 = 1, β1 ≥ 3, β2 = 0, α2 > β1 + 1

and 2α2 < 3β1 + 2 (so τ2 < τ1). Then ∆2,1 = |T | − 2 < |T | < |T | + β1 − 2 = ∆1,2 (as β1 > 2)

and τ1 = 3 + 3β1 < 2 + 2β1 + α2 = ∆1,2 (as β1 + 1 < α2).

Fig. 5c) shows an example of this case with β1 = 3 and α2 = 5; here |T | = 12, τ1 + ǫT = 12,

∆1,2 = 13, ∆2,1 = 10, ∆1,3 = 0.

• ∆2,1 is the unique maximum: Take 2 subtrees T1 T2, with α2 = 1, β2 ≥ 3, β1 = 0, α1 < 2β2 +1

and 2α1 > 3β2 + 2 (so τ1 > τ2). Then ∆1,2 = |T | − 2 < |T | < |T | + β2 − 2 = ∆2,1 (as β2 > 2)

and τ1 = 1 + 2α1 < 2 + α1 + 2β2 = ∆2,1 (as α1 < 2β2 + 1).

Fig. 5d) shows an example of this case with α1 = 6 and β2 = 3; here |T | = 13, τ1 + ǫT = 13,

∆1,2 = 11, ∆2,1 = 14, ∆1,3 = 0.

• ∆1,3 is the unique maximum: Take 3 subtrees T1, T2, T3, with α1 = α2 = 1, β2 < β1 − 4 (so

τ1 > τ2), β3 = 0, β1 < α3 − 1 and 2α3 < 3β2 + 2 (so τ2 > τ3). Then |T | = 6 + β1 + β2 + α3;

τ1 = 3 + 3β1; ∆1,2 = 3 + 2β1 + β2; ∆2,1 = 3 + β1 + 2β2; ∆1,3 = 2 + 2β1 + α3. So |T | < ∆1,3 (as

β2 < β1 − 4), τ1 < ∆1,3 (as β1 < α3 − 1) and ∆1,2 < ∆2,1 < ∆1,3 (as β2 < β1 < α3 − 1).

Fig. 5d) shows an example of this case with β1 = 15, β2 = 11 and α3 = 17; here |T | = 43,

τ1 + ǫT = 48, ∆1,2 = 44, ∆2,1 = 44, ∆1,3 = 49.

4.4 Optimality

We show now that the SFC–labeling algorithm for trees is optimal, that is, the maximum label

assigned to any arc of T is T (T) ≤ Max(T) thus matching the lower bound of Theorem 3.

We first recall that we are in the hypothesis that the weight of each node is 1. The order in

13

which nodes are chosen as end–points of the paths set by the algorithm implies that the largest label

assigned to an arc of T is always to be searched among those assigned to the arcs outgoing the root

s of T . Therefore, it coincides with the largest t for which a t–path is set in T .

Lemma 2. Let t denote the largest integer such that a t–path is set in T during the execution of the

SFC–labeling algorithm. The largest label assigned by the algorithm to any arc of T is T (T) = t.

By the above Lemma, we need to show that the largest t such that a t–path is set in T is upper

bounded by Max(T). The proof will proceed by induction. We will consider the first steps of the

algorithm mainly those which send to different subtrees (before the step where we send again to

a subtree to which we already sent) and we will apply the induction on the tree T ′ obtained by

deleting the vertices completed in these first steps. For that we introduce the following definition.

Definition 10. We denote the fact that the algorithm on T starts by setting k paths to pairwise

different subtrees of T (that is, it sets a t–path to some node vi in Ti, for i = 1, . . . , k) by

〈T1 . . . Tk〉

We denote by T ′ the updated tree, resulting from 〈T1 . . . Tk〉, that is, T ′ has subtrees

T ′
1 . . . , T ′

k, T
′
k+1 . . . , T ′

m, where

- T ′
i denotes the updated subtree Ti after the i–path to vi has been set (that is, w′(vi) = 0 and

|T ′
i | = |Ti| − 1), for i = 1, . . . , k

- T ′
k+1 = Tk+1, . . . , T

′
m = Tm.

Notice that the subtrees T ′
1 . . . , T ′

m, are not necessarily ordered according to the relation �. Let

i1, i2, · · · , im be a permutation of 1, . . . , m such that T ′
i1
� . . . � T ′

im
; we will always consider permu-

tations that maintain the original order on equal subtrees, that is

if T ′
ij

= T ′
iℓ

then ij < iℓ.

We denote by α′
i, β

′
i, τ

′
i the parameters of T ′

i . In particular (unless the special case k = 2, β1 = 1,

α2 = α1 + 1, β2 = 0, T3 = ∅) we have for i = 1, . . . , k:

14

α′
i = αi −

{

1 if βi = 0, αi ≥ 1

0 otherwise
, β′

i = βi −

{

1 if βi ≥ 1

0 otherwise
, τ ′

i = τi −

3 if βi ≥ 1

2 if βi = 0, αi ≥ 1

1 if |Ti| = 1

0 if Ti = ∅

.

Fact 6. Assume 〈T1 . . . Tk〉 and that NOT (k = 2, β1 = 1, α2 = α1 + 1, β2 = 0, T3 = ∅). For any

1 ≤ i < j ≤ k.

1) If τi > τj then τ ′
i ≥ τ ′

j;

2) if Ti ≺ Tj and T ′
j ≺ T ′

i then βj = 0, βi ≥ 2, |Ti| < |Tj |, and τi = τj + 1.

Proof. Consider first 1). If |Tj | = 1, then τ ′
j = 0 and 1) trivially holds; otherwise τ ′

i ≥ τi − 3 and

τ ′
j ≤ τj − 2; so τ ′

i ≥ τ ′
j .

Consider now 2) and assume that Ti ≺ Tj and T ′
j ≺ T ′

i . By Definition 7 we can have four cases:

- τi = τj with |Ti| > |Tj |, and τ ′
j = τ ′

i with |T ′
j | > |T ′

i |. This is impossible since it should be

both |Ti| > |Tj | and |Tj | = |T ′
j | + 1 > |T ′

i | + 1 = |Ti|.

- τi = τj with |Ti| > |Tj |, and τ ′
j > τ ′

i . By the algorithm this case can occur only if βj = 0 and

βi ≥ 1. By Fact 2 this is impossible.

- τi > τj and τ ′
j > τ ′

i . This is impossible by 1).

- τi > τj and τ ′
j = τ ′

i with |T ′
j | > |T ′

i |. We can have both τi > τj and τ ′
j = τ ′

i only if

τ ′
i = τi − 3 = τj − 2 = τ ′

j . Hence we have τi = τj + 1 and βj = 0 < βi. Furthermore, |T ′
j | > |T ′

i |

implies |Tj | > |Ti| and βi ≥ 2 (otherwise, if βi = 1 we would get T ′
i = T ′

j). ⊓⊔

Fact 7. Assume 〈T1 . . . Tk〉 with either k ≥ 4 or k = 3 and T3 � T ′
1, T

′
2:

i) |T | ≥ τ1 + k − 2;

ii) |Ti| ≥ β1 + 1, for each i = 2, . . . , k;

iii) |Ti| ≥ β2 + 1, for each i = 3, . . . , k.

15

Proof. Let T ′ be the tree resulting after 〈T1 . . . Tk〉. If |T1| = 1 then |Ti| = 1 for each i = 1, · · · , k;

hence, i), ii), and iii) hold. We assume then that |T1| ≥ 2 which implies α1 ≥ 1.

We first prove ii). If k ≥ 4 then at steps 4, . . . , k we did not choose T ′
1 which was available and so

T2 � T3 � . . . � Tk � T ′
1. If k = 3, T3 � T ′

1 by hypothesis. So we have

Ti � T ′
1 for each i = 2, . . . , k.

Let ∆ = 1 if β1 ≥ 1 and 0 otherwise .

It can occur either τi > τ ′
1 = τ1 − 2 − ∆ or τi = τ ′

1 = τ1 − 2 − ∆ with |Ti| ≥ |T ′
1| = |T1| − 1.

Hence, w.l.o.g. let 1 ≤ ℓ ≤ k be such that

τ2 ≥ · · · ≥ τℓ > τ1 − 2 − ∆

and

τℓ+1 = · · · = τk = τ1 − 2 − ∆ with |Tℓ+1|, . . . , |Tk| ≥ |T1| − 1. (2)

Recalling that τi ≥ τ ′
1 ≥ 1 we get

αi ≥ 1, i = 1, . . . , k.

For any i = 2, . . . , ℓ we have τi = 3βi + 2αi + 1 ≥ 3β1 + 2α1 − ∆. We can then deduce that

βi ≥ β1 +
2

3
α1 −

2

3
αi −

1 + ∆

3

and

|Ti| = βi +αi +1 ≥ β1 +
2

3
α1 −

2

3
αi −

1 + ∆

3
+αi +1 = β1 +

2

3
α1 +

αi

3
+

2 − ∆

3
≥ β1 +

2

3
α1 +

2

3
, (3)

where the last inequality holds since αi ≥ 1 and ∆ ≤ 1.

From this, recalling that α1 ≥ 1, we get that |Ti| > β1 + 1 and ii) holds for any i ≤ ℓ.

For i = ℓ+1, . . . , k, we have |Ti| ≥ |T1| − 1 = β1 +α1 ≥ β1 +1. Hence ii) holds for each i = 2, . . . , k.

In the same way we can prove iii). Indeed, if k ≥ 4, then either T ′
1 � T ′

2 and so T4 � T ′
1 � T ′

2,

16

or T ′
2 � T ′

1 and so by Fact 6, β2 = 0 and so T ′
2 was available at step 4 and so T4 � T ′

2. If k = 3,

T3 � T ′
2 by hypothesis; in all the cases, the same proof as above with T2 instead of T1 works.

Let us now prove inequality i). By (3) we have that for each i = 2, . . . , ℓ

|Ti| ≥ β1 +
2

3
α1 +

2

3
= |T1| −

α1

3
−

1

3
. (4)

Hence, by (2) and (4) we have

|T | =
m

∑

i=1

|Ti| ≥
k

∑

i=1

|Ti| = |T1| +
ℓ

∑

i=2

|Ti| +
k

∑

i=ℓ+1

|Ti|

≥ |T1| + (ℓ − 1)(|T1| −
α1

3
−

1

3
) + (k − ℓ)(|T1| − 1)

= k|T1| − k + 1 − (ℓ − 1)
α1 − 2

3

= τ1 + (k − 3)β1 + (k − 2)α1 − (ℓ − 1)
α1 − 2

3
. (5)

The function in (5) is decreasing in ℓ. Considering its minimum, at ℓ = k, we get

|T | ≥ τ1 + (k − 3)β1 + (k − 2)α1 − (k − 1)
α1 − 2

3
.

Recalling that α1 ≥ 1 and k ≥ 3, we get the desired bound |T | ≥ τ1 + k − 2. ⊓⊔

The following theorem together with the lower bound of Theorem 3 prove Theorem 2.

Denote by T (T) the largest time-label assigned by algorithm TREE-labeling to any arc of T .

Theorem 4. Assume T1 � . . . � Tm. The solution returned by algorithm TREE-labeling satisfies

T (T) ≤ Max(T) (6)

Proof. At any step of the algorithm the tree can have any number m ≥ 1 of subtrees of positive

weight. When we say that the algorithm sets a t–path to a subtree Ti and |Ti| = 0 at step t, this

means that no t–path is actually set (i.e. t is an idle step).

We first analyze the special case of the algorithm in which m = 2, β1 = 1, β2 = 0, α2 = α1 + 1. The

first two steps of the algorithm are 〈T1T2〉, where the path set to T2 is a path to s2 (the root of T2).

Let T 0 be the tree resulting after 〈T1T2〉, at the third step a path to T 0
2 is set. Hence, the first three

17

steps of the algorithm are: 〈T1T2〉〈T
0
2 〉.

Let T 1 be the tree resulting after 〈T1T2〉〈T
0
2 〉. Next the algorithm on T proceeds as follows

〈T 1
1 T 1

2 〉〈T
2
1 T 2

2 〉 . . . 〈T ℓ
1T ℓ

2〉 . . . 〈Tα1

1 Tα1

2 〉〈Tα1+1
1 〉.

where T ℓ, for ℓ ≥ 2, is the tree resulting from T ℓ−1 after the 2 steps 〈T ℓ−1
1 T ℓ−1

2 〉. By the hypothesis

of this case, we have

ǫT = 0, |T | = |T1| + |T2| = 3 + α1 + α2 = 3 + 2α1 + 1 = τ1, and ∆1,2, ∆2,1 ≤ |T |.

Hence, T (T) = 3 + 2α1 + 1 = τ1 = Max(T).

The rest of the proof is devoted to show that T (T) ≤ Max(T) for each tree. The proof is by

induction on the shade of T1 (recall that T1 � T2 � . . . � Tm). As a base consider the trees of

the special case above and trees T such that τ1 = 1; in the latter case, we have |Ti| = 1 for each

i = 1, . . . , m and T (T) = |T | = Max(T).

Suppose now that (6) holds for any tree in which the shade of the first subtree (according to the

relation �) is at most τ1 − 1; we prove that (6) holds for T .

Notice that we are assuming that T does not belong to the special case (i.e., m = 2, β1 = 1,

β2 = 0, α2 = α1 + 1, T1 is available and T2 is available at the next step) and that |T1| ≥ 2.

We separate four cases according to the value attaining Max(T).

Case 1: Max(T) = ∆1,2 > max{τ1 + ǫT , |T |}.

In such a case we know that β1 > 1, otherwise ∆1,2 = |T1| + |T2| + β1 − 1 ≤ |T |; hence, the first

three steps of the algorithm are 〈T1T2T3〉 (including the case |T3| = 0, in which case the third step

is idle).

Let T ′ be the tree resulting after 〈T1T2T3〉. We will show that after the first 3 steps 〈T1T2T3〉,

the algorithm on T proceeds as on input T ′ and

Max(T ′) ≤ Max(T) − 3. (7)

This will imply the desired inequality T (T) = 3 + T (T ′) ≤ 3 + Max(T ′) = Max(T).

To prove (7) we need to know how the subtrees of T evolve in those of T ′. To this aim we analize

the peculiarities of the subtrees of T and establish the ordering of the subtrees of T ′ (according to

18

the relation �). In particular we will show that the two first trees obtained by the algorithm or by

considering T ′ are T ′
1 ≺ T ′

2 or T ′
2 ≺ T ′

1.

By definition of ∆1,2 and using ∆1,2 > |T |, we get

|T | − |T1| − |T2| < β1 − 1. (8)

By Fact 4 and using ∆1,2 > τ1, we get

|T1| < |T2|. (9)

|T ′| = |T |−

{

3 if |T3| > 0

2 otherwise
, ǫT ′ = ǫT = 0 (since |T1| < |T2|), τ ′

1 = τ1−3 (as β1 > 1). (10)

We note that T ′
1 6= T ′

2, since by (9) they have different weights. Furthermore, both sequences of

steps 〈T1T2T3〉〈T
′
1T

′
2〉 and 〈T1T2T3〉〈T

′
2T

′
1〉 are possible during the execution of the algorithm on T .

Indeed, in case T ′
2 ≺ T ′

1, by Fact 6, we have β2 = 0, β1 ≥ 1 and τ1 > τ2.

If |T3| = 0, then T1 and T2 are the only subtrees in T ; hence, the possible orderings on the

subtrees of T ′ are: T ′
1 ≺ T ′

2, T ′
2 ≺ T ′

1.

If |T3| = 1, we have |T4| ≤ 1. Hence, by (8) and (9) we get τ ′
1, τ

′
2 > 1 ≥ τ4 and the possible

orderings on the subtrees of T ′ are: T ′
1 ≺ T ′

2 ≺ T ′
4 = T4, T ′

2 ≺ T ′
1 ≺ T ′

4 = T4.

Now, let |T3| > 1. By (8) and Fact 1, we get

τ3 ≤ 3|T3| − 3 ≤ 3(|T | − |T1| − |T2|) − 3 ≤ 3(β1 − 2) − 3 ≤ τ1 − 9 − (2α1 + 1),

from which, since α1 ≥ 1, it follows

τ3 ≤ τ1 − 12 = τ ′
1 − 9. (11)

Moreover, by (8) and (9) we have

|T2| ≥ |T1| + 1 ≥ β1 + α1 + 2 ≥ β1 + 3 > (|T | − |T1| − |T2|) + 4 ≥ |T3| + |T4| + 4; (12)

19

From (11) and (12), we obtain that:

T ′
1 ≺ T ′

3, T ′
2 ≺ T ′

3;

indeed, if we assume T ′
2 � T ′

3 we have either |T2| = |T3| or, by Fact 6, |T3| > |T2| contradicting (12).

If |T4| = 0 then |T ′
4| = 0 and we get that the only possible orderings on the the subtrees of T ′

are:

T ′
1 ≺ T ′

2 ≺ T ′
3, T ′

2 ≺ T ′
1 ≺ T ′

3, (13)

So let now |T4| ≥ 1. By (12) and Fact 1, we get

τ2 ≥ 2|T2| − 1 ≥ 2(|T3| + |T4|) + 7 ≥ 4 min{|T3|, |T4|} + 7. (14)

Since |T3| > 1 and |T4| ≥ 1, by Definition 6 we trivially have 4|T4| > τ4 and 4|T3| > τ3 ≥ τ4; by (14)

we get

τ2 ≥ τ4 + 8. (15)

From (11) and (15) and recalling that τ1 ≥ τ2, we obtain that in the tree T ′, resulting after

〈T1T2T3〉:

T ′
1 ≺ T ′

3, T ′
1 ≺ T ′

4 = T4, T ′
2 ≺ T ′

3, T ′
2 ≺ T ′

4 = T4.

Hence, by the definition of ≺ (cfr. Definition 7), we get that the only possible orderings on the

the subtrees of T ′ are:

T ′
1 ≺ T ′

2 ≺ T ′
3, T ′

1 ≺ T ′
2 ≺ T ′

4, T ′
2 ≺ T ′

1 ≺ T ′
3, T ′

2 ≺ T ′
1 ≺ T ′

4. (16)

Hence, after the first 3 steps, the algorithm on T proceeds as on input T ′. To compute Max(T ′),

we will use (10) and distinguish two cases:

In case T ′
1 ≺ T ′

2, then it holds

∆′
1,2 = ∆1,2 − 3, ∆

′

2,1 =

{

∆2,1 − 3 if β2 > 0

|T ′
2| + |T ′

1| − 1 < |T ′| if β2 = 0
;

20

furthermore by (12) we have

∆′
1,3 < ∆1,2 − 3 if |T ′

3| ≥ 1 and ∆′
1,4 < ∆1,2 − 3 if |T ′

4| ≥ 1.

and

Max(T ′) = max{|T ′|, τ ′
1 + ǫT ′ , ∆′

1,2, ∆′
2,1, ∆′

1,j(j = 3, 4)}

= max{|T | − 3, τ1 − 3, ∆1,2 − 3, ∆2,1 − 3}

= Max(T) − 3.

In case T ′
2 ≺ T ′

1, by Fact 6 we have β2 = 0, β1 ≥ 1 and τ1 > τ2; hence τ ′
2 = τ2 − 2 = τ1 − 3 and

∆′
1,2 = ∆1,2 − 3, ∆′

2,i = |T ′
2| + |T ′

i | + β′
2 − 1 = |T ′

2| + |T ′
i | − 1 < |T ′| (i = 1, 3, 4),

where ∆′
2,3 (resp. ∆′

2,4) is to be considered when |T ′
3| ≥ 1 (resp. |T ′

4| ≥ 1). Hence

Max(T ′) = max{|T ′|, τ ′
2 + ǫT ′ , ∆′

2,1, ∆′
1,2, ∆′

1,j(j = 3, 4)}

= max{|T | − 3, τ1 − 3, ∆1,2 − 3, }

= Max(T) − 3.

Case 2: Max(T) = ∆2,1 > max{τ1 + ǫT , |T |}.

We first notice that by definition of ∆2,1 and using ∆2,1 > |T |, we get

2 ≤ |T | − |T1| − |T2| + 2 ≤ β2, (17)

Using Fact 4 and ∆2,1 > τ1 ≥ τ2 we get

|T2| < |T1|.

Moreover, since ∆2,1 > τ1 + ǫT , we get

|T1| + β1 < |T2| + β2,

21

which also implies T1 6= T2 and

ǫT = 0.

Finally, from (17) we have |T3| ≤ |T | − |T1| − |T2| ≤ β2 − 2; from this and Fact 1 it follows

τ3 ≤ 3|T3| − 3 ≤ 3β2 − 9 ≤ τ2 − 9 if |T3| > 1, τ3 = 1 < β2 ≤ τ2 − 3 if |T3| = 1. (18)

We distinguish now two subcases on the value of β1, this will lead to prove (6).

• β1 ≥ 1.

The first tree steps of the algorithm are therefore 〈T1T2T3〉 (as in Case 1, if |T3| = 0 then the

third step is idle). Let T ′ be the tree resulting after 〈T1T2T3〉.

From (17) and recalling that τ ′
1 = τ1 − 3 ≥ τ2 − 3 = τ ′

2, we obtain that in the tree T ′:

T ′
1 ≺ T ′

2;

furthermore, recalling that τ ′
4 = τ4 ≤ τ3 (in the case |T4| 6= 0) and by using (18) we have that

if |T3| ≥ 1 then

T ′
2 ≺ T ′

3, T
′
4.

Hence, after the first 3 steps the algorithm on T proceeds as on input T ′. For T ′ we have:

T ′
1 ≺ T ′

2 ≺ T ′
3 or T ′

1 ≺ T ′
2 ≺ T ′

4 = T4 ≺ T ′
3.

Moreover,

|T ′| = |T |−

{

3 if |T3| > 0

2 otherwise
, ǫT ′ = ǫT = 0 (since |T1| 6= |T2|), τ ′

1 = τ1−3 (since β1 > 0).

∆′
1,2 = ∆1,2 − 3, ∆

′

2,1 = ∆2,1 − 3,

∆′
1,3 = ∆1,3 − 3 if |T3| > 0;

22

similarly, if T4 ≺ T ′
3 , from Fact 5 one has

∆′
1,4 = ∆1,4 − 2 ≤ max{|T |, τ1 + ǫT } − 3 ≤ ∆2,1 − 4.

Summarizing, it holds Max(T ′) = Max(T) − 3. Therefore,

T (T) = 3 + T (T ′) ≤ 3 + Max(T ′) = Max(T).

• β1 = 0.

The first two steps of the algorithm are 〈T1T2〉. Let T ′ be the tree resulting after 〈T1T2〉.

Recalling that β2 ≥ 2 (cfr. (17)) and that if |T3| > 0 then τ1 − 2 > τ3 (cfr. (18)), we obtain

that the first 4 steps of the algorithm are

〈T1T2〉〈T
′
1T

′
3 = T3〉.

(where if |T3| = 0 then the fourth step is idle). Let T ′′ be the tree resulting after 〈T1T2〉〈T
′
1T

′
3〉,

Using (18) we have

τ ′′
4 = τ4 ≤ τ3 ≤ τ2−9 = τ ′

2−6 = τ ′′
2 −6 if |T3| > 1, τ ′′

4 = τ4 = 1 ≤ τ ′′
2 −2 if |T3| = 1. (19)

Hence, even if |T3| > 0 (and eventually |T4| > 0), after the first 4 steps the algorithm on T

proceeds as on input T ′′ where the subtrees with largest shade are T ′′
1 and T ′′

2 with

T ′′
1 ≺ T ′′

2 or T ′′
2 ≺ T ′′

1

followed eventually by T ′′
3 and T ′′

4 in some order. Moreover,

|T ′′| = |T |−

{

4 if |T3| > 0

3 otherwise
, ǫT ′′ = ǫT = 0 (since β2 ≥ 2, β1 = 0), τ ′′

1 = τ1−4 (since β1 = 0),

Therefore |T ′′| ≤ ∆2,1 − 4 = Max(T) − 4 and τ ′′
1 = τ1 − 4 < ∆2,1 − 4 = Max(T) − 4.

23

Moreover, if T ′′
2 ≺ T ′′

1

τ ′′
2 = τ2 − 3 ≤ τ1 − 3 ≤ ∆2,1 − 4 = Max(T) − 4.

Finally,

∆
′′

1,2, ∆
′′

1,3, ∆
′′

1,4 < |T ′′| (since β1 = 0), ∆
′′

2,1 = ∆2,1 − 4,

and, by Fact 3,

∆′′
2,3, ∆

′′

2,4 ≤ |T ′′
2 | + |T ′′

3 | + |T ′′
4 | + β′′

2 − 1 ≤ |T ′′
2 | + |T ′′

3 | + |T ′′
4 | + |T ′′

1 | − 3 < |T ′′|.

Notice that ∆′′
1,3 and ∆′′

2,3 are to be considered if |T ′′
3 | > 0, and ∆′′

1,4 and ∆′′
2,4 if |T4| > 0.

Summarizing, it holds Max(T ′′) ≤ ∆2,1 − 4 = Max(T) − 4. Therefore,

T (T) = 4 + T (T ′′) ≤ 4 + Max(T ′′) ≤ Max(T).

Case 3: Max(T) = ∆1,3 > max{τ1 + ǫT , |T |}.

In this case we have β1 > 1, otherwise ∆1,3 ≤ |T |; hence, the first tree steps of the algorithm are

〈T1T2T3〉.

By definition of ∆1,3 and using Fact 4, we get like in Case 1

|T | − |T1| − |T3| < β1 − 1, (20)

|T1| < |T3|. (21)

By (20) and Fact 1, we get

τ3 ≤ τ2 ≤ 3|T2| − 3 ≤ 3(|T | − |T1| − |T3|) − 3 ≤ 3β1 − 9 ≤ (τ1 − 3) − 9 = τ1 − 12.

24

from which it follows

τ ′
2 ≤ τ2 ≤ τ1 − 12 ≤ τ ′

1 − 9, τ ′
3 ≤ τ3 ≤ τ2 ≤ τ ′

1 − 9. (22)

Moreover, if |T4| ≥ 1 then by (20) and (21) we have

|T3| ≥ |T1| + 1 ≥ β1 + α1 + 2 ≥ β1 + 3 ≥ (|T | − |T1| − |T3|) + 5 ≥ |T2| + |T4| + 5;

which, by Fact 1 (recall that β1 > 1 implies |T1| > 3 and so by (21), we have |T3| > 4), implies

τ3 ≥ 2|T3| − 1 ≥ 2(|T2| + |T4|) + 9 ≥ 4 min{|T2|, |T4|} + 9.

By Definition 6, we trivially have 4|T4| ≥ τ4 and 4|T2| ≥ τ2 ≥ τ4; then we get

τ2 ≥ τ3 ≥ τ4 + 9. (23)

Let T ′ be the tree resulting after 〈T1T2T3〉. Recalling that β1 ≥ 2 and using (22) and (23), we

have

τ ′
1 = τ1 − 3, τ4 < τ ′

2 ≤ τ2 ≤ τ ′
1 − 9, τ4 < τ ′

3 ≤ τ3 ≤ τ2 ≤ τ ′
1 − 9. (24)

From this we obtain that the only possible orderings of the first subtrees of T ′ are:

T ′
1 ≺ T ′

2 � T ′
3, T ′

1 ≺ T ′
3 ≺ T ′

2.

We notice that both sequences of steps 〈T1T2T3〉〈T
′
1T

′
2T

′
3〉 and 〈T1T2T3〉〈T

′
1T

′
3T

′
2〉 are possible

during the execution of the algorithm on T . Hence, after the first 3 steps, the algorithm on T

proceeds as on input T ′; indeed if T ′
3 ≺ T ′

2, Fact 6 implies β3 = 0.

For T ′ we have:

|T ′| = |T | − 3, ǫT ′ = ǫT = 0 (by (22) and (24)), τ ′
1 = τ1 − 3 (by (24)),

25

∆′
1,2 ≤ ∆1,2 − 3, ∆

′

2,1 ≤

{

∆2,1 − 3 if β2 > 0,

|T ′| otherwise.

Furthermore, if T ′
2 ≺ T ′

3 then

∆′
1,3 ≤ ∆1,3 − 3,

if otherwise T ′
3 ≺ T ′

2 then, by Fact 6, we have that β3 = 0 and

∆′
3,1 = |T ′

3| + |T ′
1| − 1 < |T ′|.

In conclusion, Max(T ′) ≤ Max(T) − 3 and

T (T) = 3 + T (T ′) ≤ 3 + Max(T ′) ≤ Max(T).

Case 4: Max(T) = max{τ1 + ǫT , |T |}.

Let k be the largest integer such that the first k distinct steps of the algorithm are

〈T1T2 . . . Tk〉,

and, letting T ′ be the tree resulting after 〈T1T2 . . . Tk〉, it holds Tk+1 6� T ′
i , for some 1 ≤ i ≤ k.

Therefore the k first trees are different and the (k + 1)-th has been already chosen.

• First assume that either k ≥ 4 or k = 3 and T3 � T ′
1, T

′
2. Let the ordering on T ′ be such that T ′

i

has the largest shade among all the subtrees of T ′, followed by T ′
j and by some T ′

ℓ, i.e.,

T ′
i � T ′

j � T ′
ℓ.

Moreover, we have that during the execution of the algorithm on T , any sequences of steps

〈T1T2 . . . Tk〉〈T
′
iT

′
j〉 is possible, for any 1 ≤ i ≤ k − 1 and j 6= i. Indeed

a) Any of the subtrees T ′
1, T

′
2, . . . , T

′
k−2 is available at step k+1 and i can assume any value among

1, . . . , k − 2. Moreover, if T ′
k−1 ≺ T ′

1 then Fact 6 implies βk−1 = 0; hence T ′
k−1 is available at

step k + 1 and i = k − 1 can hold.

26

b) if either T ′
k ≺ T ′

1 or T ′
k ≺ T ′

2 then by Fact 6 we have βk = 0, and this implies that T ′
k is available

at step k + 2 and j can assume value k.

We now distinguish two cases according to the value of i.

- Let i ≤ k − 1.

By a) and b), we have that after the first k steps 〈T1T2 . . . Tk〉, the algorithm on T proceeds

as on input T ′. For T ′ we have:

|T ′| = |T | − k, τ ′
i = τi − 2 = τ1 − 3 if i ≥ 2 (by Fact 6),

τ ′
1 = τ1 − 3 if β1 ≥ 1 τ ′

1 = τ1 − 2 if β1 = 0.

furthermore,

β1, β2 < |T3|, . . . , |Tk| ; β1 < |T2| (by Fact 7),

βi = βj = 0 when 2 ≤ i ≤ k − 1 and 3 ≤ j ≤ k (by Fact 6 since T ′
i � T ′

j ≺ T ′
1 or T ′

2),

βj ≤ |T1| − 2, |T2| − 2 for j > k (by Fact 3 since T1, T2 � Tj).

These inequalities imply that

∆′
i,j , ∆

′
j,i, ∆

′
i,ℓ ≤ |T ′|.

Hence,

Max(T ′) = max{|T ′|, τ ′
i + ǫT ′}

≤

max{|T | − k, τ1 − 3 + ǫT ′} if i ≥ 2 or i = 1 and β1 ≥ 1,

max{|T | − k, τ1 − 2 + ǫT ′} if i = 1 and β1 = 0.

By i) of Fact 7, we have that |T | − k ≥ τ1 − 2; therefore, Max(T ′) = |T | − k unless i = 1,

β1 = 0, and ǫT ′ = 1.

Let us consider then i = 1, β1 = 0, and T ′
1 = T ′

j (so T1 = Tj). This implies that

|T | ≥ |T1| + . . . + |Tj | + . . . + |Tk| ≥ 2|T1| + k − 2 = 2(α1 + 1) + k − 2 = 2α1 + k = τ1 + k − 1

and Max(T ′) = |T | − k, holds also in this case.

27

Using the inductive hypothesis on T ′, we can then conclude that

T (T) = k + T (T ′) ≤ k + Max(T ′) ≤ |T | ≤ Max(T).

- Let i = k.

In this case we have T ′
k ≺ T ′

1, T
′
2, . . . , T

′
k−1. Hence, by Fact 6 we get β1, . . . , βk−1 ≥ 1 and

βk = 0 that imply T ′
1 � . . . � T ′

k−1. Since a path to T ′
k cannot be set at step k + 1, we obtain

that the first k + 1 steps of the algorithm are

〈T1T2 . . . Tk〉〈T
′
1〉.

Let T ′′ be the tree resulting after 〈T1T2 . . . Tk〉〈T
′
1〉. After the first k + 1 steps, the algorithm

on T proceeds as on input T ′′ where

T ′′
k ≺ T ′′

j � T ′′
l (and we have j = 2 or j = k + 1)

i.e., the subtree with largest shade is T ′′
k followed by T ′′

j , T ′′
l in this order.

Moreover,

|T ′′| = |T | − k − 1, τ ′′
k = τ ′

k = τk − 2 = τ1 − 3 (by Fact 6) .

We also have ǫT ′′ = 0. Indeed, if j = 2, then T ′′
k ≺ T ′′

2 and if j = k + 1, T ′′
k+1 = T ′′

k implies

T ′′
k+1 ≺ T ′

1 and therefore T ′′
k+1 should have been chosen at step k+1 contradicting the definition

of k.

∆′′
k,j , ∆

′′
k,l < |T ′′| (since βk = 0), ∆′′

j,k ≤ |T ′′
k | + |T ′′

j | + |T ′′
1 | − 3 ≤ |T ′′| − 3 (by Fact 3)

Hence, by using i) of Fact 7 we get Max(T ′′) = max{|T ′′|, τ ′′
k + ǫT ′′ , ∆′′

k,j , ∆
′′
j,k, ∆

′′
k,l} ≤

max{|T | − k − 1, τ1 − 3} = |T | − k − 1 = |T ′′| and

T (T) = k + 1 + T (T ′′) ≤ k + 1 + Max(T ′′) ≤ k + 1 + |T ′′| = |T | ≤ Max(T).

• Assume now that k = 3 and either T ′
1 ≺ T3 or T ′

2 ≺ T3

28

(here, eventually T3 = ∅, but excluding the special base case T3 = ∅, β1 = 1, β2 = 0, α2 = α1 + 1).

Suppose that β1 = 0: since k = 3, we can deduce that T3 ≺ T ′
1. Therefore, the hypothesis of this

case implies T ′
2 ≺ T3 ≺ T ′

1. Applying Fact 6 to T1 and T2, we get to the contradiction β1 > 0. Hence,

throughout this case we can assume

β1 ≥ 1 and τ ′
1 = τ1 − 3.

We will distinguish two subcases according T3 = ∅ or not.

- Subcase A : T3 6= ∅ and so |T ′| = |T | − 3

After 〈T1T2T3〉, the algorithm on T proceeds as on input T ′ where T ′
i has the largest shade

among all the subtrees of T ′, followed by T ′
j and by some T ′

l , i.e.,

T ′
i � T ′

j � T ′
l . (25)

Here i can be only 1 or 2; indeed T ′
1 or T ′

2 ≺ T ′
3 (by the hypothesis of this case) and, if |T4| > 0

then T ′
4 ≺ T ′

1 and T ′
4 ≺ T ′

2 imply that T ′
4 should have been chosen giving k ≥ 4 a contradiction.

Note, that if i = 2 then, applying Fact 6 to T1 and T2, we get β2 = 0 and τ ′
2 = τ2 − 2 = τ1 − 3

and so T ′
2 is available.

Concerning j, it can take any value at most 4 and different from i. Note that if j = 3 then T ′
3

is available since T ′
3 ≺ T ′

1 or T ′
2 and, by Fact 6, βj = 0; if j = 4 then T4 is obviously available.

Furthermore,

∆′
1,2 = ∆1,2 − 3, ∆′

2,1 ≤

{

∆2,1 − 3 if β2 ≥ 1

|T | − 3 if β2 = 0
, ∆′

1,3 ≤ ∆1,3 − 3.

Moreover, if i = 2 (resp. j = 3) then, by Fact 6, β2 = 0 (resp. β3 = 0), and

∆′
2,3 < |T ′| − 1, ∆′

3,2 < |T ′| − 1, ∆′
3,1 < |T ′| − 1.

29

Finally, by Fact 5

∆′
i,h = ∆i,h − 2 ≤ max{τ1 + ǫT , |T |} − 3 for h = j, l and h ≥ 4,

∆′
4,i = ∆4,i − 2 ≤ max{τ1 + ǫT , |T |} − 3.

Summarizing, in all the cases (for any value of h and h′ we can have with the ordering (25))

it holds

∆′
h,h′ ≤ max{|T |, τ1 + ǫT } − 3.

Hence,

T (T) = 3+T (T ′) ≤ 3+Max(T ′) = 3+max{|T ′|, τ ′
i +ǫT ′ , ∆′

i,j , ∆
′
j,i, ∆

′
i,l} = max{|T |, τ1 +ǫT ′}.

and in order to prove T (T) ≤ Max(T), we point out the relation between max{|T |, τ1 + ǫT ′}

and max{|T |, τ1 + ǫT } = Max(T).

If ǫT ′ = 0 or ǫT ′ = ǫT = 1 we get ǫT ′ ≤ ǫT , and thus T (T) ≤ Max(T). So it remains to

deal with the case where both ǫT ′ = 1 and ǫT = 0. We will show that |T ′| > τ ′
i + ǫT ′ and so

max{|T |, τ1 + ǫT ′} = |T | = max{|T |, τ1 + ǫT }. Indeed, if ǫT ′ = 1 then τ ′
i = τ ′

j and |T ′
i | = |T ′

j |

and this implies that β′
i = β′

j . We now prove that β′
i = β′

j = 0 and so |T ′
i | = |T ′

j | = 1 + α′
i and

|T ′| ≥ |T ′
i |+ |T ′

j | ≥ 2+2α′
i ≥ τ ′

i +1. Indeed, recalling Fact 6, we have: If i = 2 then β2 = 0 and

this implies β′
2 = 0 = β′

j ; if i = 1 and j ≥ 3 then βj = 0 and this implies β′
j = 0 = β′

1; if i = 1

and j = 2 then if β′
2 = β′

1 ≥ 1 it implies β2 = β1 contradicting ǫT = 0 and so β′
2 = 0 = β′

1.

- Subcase B: T3 = ∅ and so |T ′| = |T | − 2.

(Recall that we are excluding the special base case T3 = ∅, β1 = 1, β2 = 0, α2 = α1 + 1.)

Here the algorithm, having done 〈T1, T2, ∅〉, proceeds on T as on input T ′ with either T ′
1 � T ′

2

or T ′
2 ≺ T ′

1 in which case β2 = 0.

Furthermore,

∆′
1,2 = ∆1,2 − 3, ∆′

2,1 ≤

{

∆2,1 − 3 if β2 ≥ 1

|T | − 3 if β2 = 0

and

Max(T ′) ≤ max{|T ′|, max{τ ′
1, τ

′
2} + ǫT ′ , ∆′

1,2, ∆
′
2,1}.

30

We notice now that

ǫT = ǫT ′ .

Indeed, if ǫT = 1 then having done 〈T1, T2, ∅〉 implies ǫT ′ = 1; supposing ǫT = 0 and ǫT ′ = 1,

since β1 ≥ 1 we would get β1 = 1,β2 = 0, α2 = α1 + 1 and the special case would hold. The

above also implies

(β1 + β2 ≥ 2) or (β1 = 1, β2 = 0, α2 < α1 + 1)

We have then

T (T) ≤ 3 + Max(T ′) ≤ max{|T | + 1, τ1 + ǫT };

and in order to show T (T) ≤ Max(T), it is sufficient to show |T | + 1 ≤ τ1 + ǫT .

Notice that as τi = 2|Ti| + βi − 1:

2|T | = 2|T1| + 2|T2| = τ1 + τ2 + 2 − β1 − β2.

Hence

|T |+1 =
τ1 + τ2

2
+2−

β1 + β2

2
≤

τ1 if β1 + β2 ≥ 3

or β1 = 2, β2 = 0 (here τ2 < τ1 holds)

or β1 = β2 = 1, ǫT = 0 (here τ2 < τ1 holds)

or β1 = 1, β2 = 0, α2 < α1 + 1 (here τ2 < τ1 − 1 holds)

τ1 + ǫT if β1 = β2 = 1, ǫT = 1.

Recall that the last inequality holds since |T | + 1 is an integer and τ2 ≤ τ1.

• Finally, consider the last possible case: k = 2.

This means that the first two steps of the algorithm are 〈T1T2〉 and at the third step a path to T ′
1

can be and is set (otherwise we are in the preceding subcase B). Hence, we have T ′
1 � T3 whenever

|T3| > 0, and

β1 = 0, τ ′
1 = τ1 − 2.

31

Noticing that, by Fact 6, if β1 = 0 then T ′
2 6≺ T ′

1, we distinguish two cases according to the

relation between T ′
2 and T3.

- If T3 ≺ T ′
2 then T3 6= ∅ and the only possible orderings of the subtrees of the tree T ′ are:

T ′
1 � T3 � T ′

2, T ′
1 � T3 � T4.

For T ′ we have

|T ′| = |T | − 2, ∆′
1,2, ∆

′
1,3, ∆

′
1,4 < |T | − 2 (since β1 = 0)

∆′
3,1 ≤ |T3| + |T1| + |T2| − 4 ≤ |T | − 4 (since β3 ≤ max{0, |T2| − 2} by Fact 3),

where ∆′
1,4 is to be considered only if |T4| > 0.

Hence,

Max(T ′) = max{|T ′|, τ ′
1 + ǫT ′} = max{|T | − 2, τ1 − 2 + ǫT ′}.

So if ǫT ′ ≤ ǫT then we have Max(T ′) ≤ Max(T) − 2.

Suppose now that ǫT ′ = 1 and ǫT = 0. We have T ′
1 = T3, α3 = α1 − 1, β1 = 0 = β3 and

|T | ≥ |T1| + |T2| + |T3| = |T2| + 2α1 + 1 ≥ τ1 + 1; hence,

Max(T ′) = max{|T ′|, τ ′
1 + ǫT ′} = max{|T | − 2, τ1 − 1} = |T | − 2 ≤ Max(T) − 2.

In any case we get

T (T) = 2 + T (T ′) ≤ 2 + Max(T ′) ≤ Max(T).

- If T ′
2 � T3. We distinguish various cases according to the values of β2 and the existence or not

of T3

- - Subcase A : β2 = 0.

Then the algorithm on T proceeds as on input T ′ starting with T ′
1, T

′
2

|T ′| = |T |−2, ǫT ′ = ǫT ∆′
1,2 = ∆′

2,1 = |T1|+ |T2|−3 ≤ |T |−3, ∆′
1,3 ≤ |T |−3.

32

Hence, Max(T ′) = max{|T ′|, τ ′
1 + ǫT ′} = max{|T | − 2, τ1 + ǫT − 2} = Max(T) − 2 and

T (T) = 2 + T (T ′) ≤ 2 + Max(T ′) = 2 + Max(T) − 2 = Max(T).

- - Subcase B : β2 > 0 and T3 6= ∅.

Then the first 4 steps of the algorithm are

〈T1T2〉〈T
′
1T

′
3〉

where T ′
3 = T3. Let T ′′ be the tree resulting after 〈T1T2〉〈T

′
1T

′
3〉.

First notice that in this case T ′′
1 � T ′′

3 since otherwise by Fact 6 it should be β1 ≥ 2;

furthermore, T ′′
2 = T ′

2 � T ′
3 since T ′

2 � T3 and also T ′′
2 = T ′

2 � T4. Hence, after the first

4 steps the algorithm on T proceeds as on input T ′′. Here, the possible orderings of the

subtrees of the tree T ′′ start with

T ′′
1 � T ′′

2 , T ′′
2 � T ′′

1 , T ′′
2 � T4.

For T ′′ we have

|T ′′| = |T | − 4,

∆′′
1,j < |T ′′| (since β1 = 0) for j ≥ 2,

∆′′
2,1 = ∆2,1 − 4,

∆′′
2,j < |T | − 4 = |T ′′| (since β2 ≤ |T1| − 2 by Fact 3) for j ≥ 3,

∆′′
4,2 < |T | − 4 = |T ′′| (since β4 ≤ |T1| − 2 by Fact 3).

To bound Max(T ′′), we distinguish two cases according to the relation between T ′′
2 and

T ′′
1 . First notice that ǫT = 0 since β1 = 0 and β2 > 0.

Let us first consider T ′′
1 � T ′′

2 . Noticing that

ǫT ′′ = 1 iff β2 = 1 and α2 = α1 − 2

33

and recalling the hypothesis T3 6= ∅, we have

if ǫT ′′ = 1 then |T | ≥ |T1| + |T2| + |T3| > |T1| + |T2| = 2α1 + 1 = τ1

and

τ ′′
1 + ǫT ′′ =

{

τ1 − 3 ≤ |T | − 4 if ǫT ′′ = 1,

τ1 − 4 if ǫT ′′ = 0.

Hence,

Max(T ′′) = max{|T ′′|, τ ′′
1 + ǫT ′′ , ∆′′

2,1}

≤

max{|T | − 4, ∆2,1 − 4} ≤ Max(T) − 4 if ǫT ′′ = 1,

max{|T | − 4, τ1 − 4, ∆2,1 − 4} ≤ Max(T) − 4 if ǫT ′′ = 0.
(26)

Consider now T ′′
2 ≺ T ′′

1 . Since T ′′
2 6= T ′′

1 we have ǫT ′′ = 0. Furthermore, since T1 � T2,

β1 = 0 and β2 > 0 we have |T1| > |T2|. Hence,

∆′′
2,1 = |T1| + |T2| + β2 − 5 ≥ 2|T2| + β2 − 4 = 3β2 + 2α2 + 2 − 4 = τ2 − 3 = τ ′′

2 (27)

and

Max(T ′′) = max{|T ′′|, ∆′′
2,1} = max{|T | − 4, ∆2,1 − 4} ≤ Max(T) − 4. (28)

By (26) and (28) we have

T (T) = 4 + T (T ′′) ≤ 4 + Max(T ′′) = Max(T).

- - Subcase C: T3 = ∅ and β2 ≥ 2.

After the 4 steps 〈T1T2〉〈T
′
1∅〉 the algorithm on T proceeds as on input T ′′, the possible

orderings being

T ′′
1 � T ′′

2 , T ′′
2 � T ′′

1 .

Since β2 ≥ 2 we have ∆′′
2,1 = ∆2,1 − 4, ∆′′

2,1 = |T ′′
1 |+ |T ′′

2 |+β2 − 2 ≥ |T ′′|, ∆′′
1,2 < |T ′′| and

ǫT ′′ = ǫT = 0. So Max(T ′′) = max{τ ′′
1 , τ ′′

2 , ∆′′
2,1}.

If T ′′
1 � T ′′

2 then τ ′′
1 = τ1−4 and Max(T ′′) = max{τ1−4, ∆2,1−4} = max{τ1, ∆2,1}−4 ≤

max{|T |, τ1} − 4 where the last inequality is by the hypothesis of Case 4.

34

If T ′′
2 ≺ T ′′

1 we have like in the above subcase B the inequality (27), i.e., ∆′′
2,1 ≥ τ ′′

2 ; and,

Max(T ′′) = ∆′′
2,1 = ∆2,1 − 4 ≤ max{|T |, τ1} − 4.

Therefore

T (T) = 4 + T (T ′′) ≤ 4 + Max(T ′′) = Max(T).

- - Subcase D: T3 = ∅ and β2 = 1.

If β2 = 1 and T ′
1 � T2 then T ′′

1 ≺ T ′′
2 and since β′′

1 = β′′
2 = 0 we have α′′

1 ≥ α′′
2+1. Therefore

τ ′′
1 = 1 + 2α′′

1 ≥ 1 + α′′
1 + 1 + α′′

2 = |T ′′|. As ∆′′
2,1 = |T ′′| − 1, Max(T ′′) = τ ′′

1 = τ1 − 4 and

T (T) = 4 + T (T ′′) ≤ 4 + Max(T ′′) = τ1 ≤ Max(T).

If T2 ≺ T ′
1 then after the first step 〈T1〉 on T , we get that the algorithm continues as having

in input a tree T corresponding to the special case considered in the base if α′
1 = α2 + 1

and to Subcase B if α′
1 < α2 + 1. For T we have: |T | = |T | − 1, and Max(T) = τ2.

But τ1 6= τ2 ; indeed τ1 = τ2 implies 2α1 = 2α2 +3β2 impossible as β2 = 1. So τ1 ≥ τ2 +1.

Hence

T (T) = 1 + T (T) ≤ 1 + Max(T) ≤ τ1 ≤ Max(T).

⊓⊔

5 Conclusion

In this paper we give a relatively simple protocol for trees with w(u) = 1 packet to transmit. The

results can be easily extended to the case where all the w(u) are positive (or at least there do not

exist three consecutive nodes with weights 0). It might be that the algorithm is optimal for any

weight function by replacing τi with Mi (see Theorem 1); but the proof seems more complicated. It

will be also interesting to find the complexity of the gathering problem for general graphs without

buffering (with buffering it is known to be NP-hard).

Acknowledgment

We thank the referees for their very conscientious reading of the manuscript and for their very helpful

remarks.

35

References

[1] J-C. Bermond, R. Corrêa, M. Yu, “Optimal Gathering Protocols on Paths under Interference Con-

straints”, Discrete Mathematics, 309 (18), (2009) 5574–5587. (A preliminary version has been presented

at CIAC06).

[2] J-C. Bermond, L. Gargano, A. Rescigno, ”Gathering with Minimum Delay in Sensor Networks”, Proc.

SIROCCO, June 2008 (LNCS 5058),(2008) 262–276 .

[3] J-C. Bermond, J. Galtier, R. Klasing, N. Morales, S. Pérennes, “Hardness and approximation of gathering

in static radio networks”, Parallel Processing Letters, 16 (2), (2006) 165–183.

[4] J-C. Bermond, J. Peters, “Efficient gathering in radio grids with interference”, Proc. AlgoTel’05,

Presqu’̂ıle de Giens, (2005) 103–106.

[5] J-C. Bermond, M. Yu, “Optimal gathering algorithms in multi-hop radio tree-networks with interfer-

ences”, Optimal gathering algorithms in multi-hop radio tree networks with interferences. Ad Hoc and

Sensor Wireless Networks, 9 (1-2), (2010) 109–128. (A preliminary version has been presented at ADHO-

CNOW 2008).

[6] P. Bertin, J-F. Bresse, B. Le Sage, “ Accès haut débit en zone rurale: une solution ”ad hoc””, France

Telecom R&D 22, (2005) 16–18.

[7] V. Bonifaci, R. Klasing, P. Korteweg, A. Marchetti-Spaccamela, L. Stougie, “Data Gathering in Wire-

less Networks”, Graphs and Algorithms in Communication Networks, A.Koster and X. Munoz editors,

Springer Monograph, (2010) 357-377.

[8] V. Bonifaci, P. Korteweg, A. Marchetti-Spaccamela, L. Stougie, “An Approximation Algorithm for the

Wireless Gathering Problem”, Operations Research Letters 36 (5), (2008) 605-608.

[9] C-Y Chong , S.P. Kumar, “Sensor networks: Evolution, opportunities, and challenges”, Proc. of the

IEEE 91 (8), (2003) 1247-1256.

[10] S. Coleri, P. Varaiya, “Energy Efficient Routing with Delay Guarantee for Sensor Networks”, Wireless

Networks 13 (2007), 679-690.

[11] K. Dasgupta, M. Kukreja, K. Kalpakis, “Topology-aware placement and role assignment for energy-

efficient information gathering in sensor networks”, Proc. IEEE ISCC’03, (2003) 341-348.

[12] P. Floreen, P. Kaski, J. Kohonen, P. Orponen, “Exact and approximate balanced data gathering in

energy-constrained sensor networks”, Theor. Comput. Sci., 344(1), (2005) 30-46

[13] C. Florens, M. Franceschetti, R.J. McEliece, “Lower Bounds on Data Collection Time in Sensory Net-

works”, IEEE J. on Selected Areas in Communication 22 (6), (2004) 1110–1120.

36

[14] D. Ganesan, R. Cristescu, B. Beferull-Lozano, “Power-efficient sensor placement and transmission struc-

ture for data gathering under distortion constraints”, ACM Trans. on Sensor Networks, 2(2), (2006),

155-181 .

[15] L. Gargano, “Time Optimal Gathering in Sensor Networks”, Proc. SIROCCO 2007 (LNCS 4474), (2007)

7-10.

[16] L. Gargano, A.A. Rescigno, “Collision-free path coloring with application to minimum-delay gathering

in sensor networks”, Discrete Applied Mathematics, 157(8), (2009), 1858-1872.

[17] H. Gupta, V. Navda, S.R. Das,V. Chowdhary, “Vishal Chowdhary: Efficient gathering of correlated data

in sensor networks”, ACM Trans. on Sensor Networks, 4(1), (2008).

[18] L. Gasieniec, I. Potapov, Q. Xin, “Time efficient centralized gossiping in radio networks”, Theor. Comput.

Sci., 383(1), (2007), 45-58.

[19] B. Ho, V.K. Prasanna, “Constrained flow optimization with application to data gathering in sensor

networks”, Proc. of ALGOSENSORS 2004 (LNCS 3121), (2004) 187-200.

[20] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, F. Silva, “Directed diffusion for wireless

sensor networking”, IEEE/ACM Trans. Netw. 11 (1), (2003) 2-16.

[21] B. Krishnamachari, D. Estrin, S. Wicker, “Modeling data-centric routing in wireless sensor networks”,

Proc. of IEEE INFOCOM 2002, (2002).

[22] S. Lindsey, C. Raghavendra, “Pegasis: Power-efficient gathering in sensor wireless networks”, Proc. of

IEEE Aerospace Conference, (2002).

[23] S. Lindsey, C. Raghavendra, K.M. Sivalingam, “Data gathering algorithms in sensor networks using

energy metrics”, IEEE Trans. on Parallel and Distributed Systems, 13 (9), (2002) 924-935.

[24] K. Padmanabh, R. Roy, “Multicommodoty flow fased maximum lifetime routing in wireless sensor net-

work”, Proc. of IEEE ICPADS 2006, (2006) 187-194.

[25] C. Shen, C. Srisathapornphat, C. Jaikaeo, “Sensor information networking architecture and applications”,

IEEE Personal Communications, (2001) 52-59.

[26] Y. Yu, B. Krishnamachari, V. Prasanna, “Energy-latency tradeoffs for data gathering in wireless sensor

networks”, Proc. of IEEE INFOCOM 2004, (2004).

[27] X. Zhu, B. Tang, H. Gupta, “Delay efficient data gathering in sensor networks”, Proc. of MSN 2005

(LNCS 3794), (2005) 380-389.

37

s

s1

s2

a

b c d

e f g h ℓ

Figure 1: A tree T .

LINE-labeling (L,w, s)

• Set P = ∅, k = 1.

• while there is a non completed node, do

- Let v be the node at the largest level which is not completed

- Set a k–path to v in L, call it pv.

- Let P = P ∪ {pv}.

- Let w(v) = w(v) − 1.

- Set k = k + min{3, level of v}.

• return (P, L), where L is the labeling induced by P.

Figure 2 : The SCF labeling algorithm on a line.

38

TREE-labeling (T,w, s) [T has non empty subtrees T1, . . . , Tm and root s]

1. Set P = ∅ and t = 1

Let ti = 1 for i = 1, . . . ,m [ti is the minimum step to set a path to Ti]

Set M = {1, . . . ,m} [M represents the set of subtrees not yet completed]

2. while M 6= ∅

2.1 Rename the indices in M so that for the permuted subtrees T1 � . . . � T|M |

2.2 if there exists i ≤ |M | with ti ≤ t then

Let i be the smallest such index (i.e. t1, . . . , ti−1 > t, Ti � . . . � T|M |).

2.2.a if NOT [Special case: |M | = 2, i = 1, β1 = 1, α2 = α1 + 1, β2 = 0, t2 ≤ t + 1] then

[Execute the generic step of the algorithm]

- Set a t-path to Ti and call it p

- P = P ∪ {p}.

- If ℓ = 1, where ℓ is the length of p, then Ti is completed and M = M − {i} .

- If ℓ > 1, then ti = t + min{3, ℓ}, and update Ti, i.e.: τi = τi − min{3, ℓ},

αi = αi −

{

1 if ℓ = 2

0 otherwise
, βi = βi −

{

1 if ℓ ≥ 3

0 otherwise
.

- t = t + 1.

2.2.b else [Special case: |M | = 2, i = 1, β1 = 1, α2 = α1 + 1, β2 = 0, t2 ≤ t + 1]

- Set a t-path to T1 and call it p

- Set a (t + 1)-path to s2 and call it q1

- Set a (t + 2)-path to T2 and call it q2

- P = P ∪ {p,q1,q2}.

- for i = 1 to α1

Set a (t + 2i + 1)-path to T1 and call it p

Set a (t + 2i + 2)-path to T2 and call it q

P = P ∪ {p,q}.

- Set a (t + 2α1 + 3)-path to s1 and call it p

- P = P ∪ {p}

- M = ∅

2.3 else t = t + 1.

3. return (P, L)

Figure 3 : The SCF labeling algorithm on trees

39

t subtrees’ ordering k algorithm’s point t-path t1 τ1 α1 β1 t2 τ2 α2 β2

1 12 1 3 1 11 5 0

1 T1 ≺ T2 1 2.2.a (s, s1, a, b) 4 9 1 2

2 T2 ≺ T1 2 2.2.a (s, s2, e) 4 9 4 0

3

4 T2 ≺ T1 2 2.2.a (s, s2, f) 6 7 3 0

5 T1 ≺ T2 1 2.2.a (s, s1, a, c) 8 6 1 1

6 T2 ≺ T1 2 2.2.a (s, s2, g) 8 5 2 0

7

8 T1 ≺ T2 1 2.2.b (s, s1, a, d)

9 2 (s, s2)

10 2 (s, s2, h)

11 1 (s, s1, a)

12 2 (s, s2, l)

13 1 (s, s1)

Figure 4 : The paths set, step by step, by the TREE-coloring algorithm

40

a)

b1) b2)

c) d)

e)

β1 = 15 β2 = 11

α3 = 17

Figure 5: Trees for which exactly one among |T |, τ1 + ǫT , ∆1,2, ∆2,1, ∆1,3 is the exact bound.

41

