Jean-Claude Bermond
email: bermond@sophia.inria.fr

Luisa Gargano

Adele A Rescigno
email: rescigno@unisa.it

Gathering with Minimum Completion Time in Sensor Tree Networks

Keywords: Data gathering, omnidirectional antennas, time, tree sensor networks

Data gathering is a fundamental operation in wireless sensor networks in which data packets generated at sensor nodes are to be collected at a base station. In this paper we suppose that each sensor is equipped with an half-duplex interface; hence, a node cannot receive and transmit at the same time. Moreover, each node is equipped with omnidirectional antennas allowing the transmission over distance R. The network is a multi-hop wireless network and the time is slotted so that one-hop transmission of one data item consumes one time slot. We model the network with a graph where the vertices represent the nodes and two nodes are connected if they are in the transmission range of each other. We suppose that the interference range is the same as the transmission range; therefore due to interferences a collision happens at a node if two or more of its neighbors try to transmit at the same time. Furthermore we suppose that an intermediate node should forward a message as soon as it receives it. We give an optimal collision free gathering schedule for tree networks whenever each node has exactly one data packet to send.

Introduction

A wireless sensor network is a multi-hop wireless network formed by a large number of low-cost sensor nodes, each equipped with a sensor, a processor, a radio, and a battery. Due to the many advantages they offer -i.e. low cost, small size, and wireless data transfer -wireless sensor networks become attractive to a vast variety of applications like space exploration, battlefield surveillance, environment observation, and health monitoring.

A basic activity in a sensor network is the systematic gathering of the sensed data at a base station for further processing. A key challenge in such operation is due to the physical limits of the sensor nodes, which have limited power and non-replentishable batteries. It is then important to bound the energy consumption of data dissemination [START_REF] Dasgupta | Topology-aware placement and role assignment for energyefficient information gathering in sensor networks[END_REF][START_REF] Ho | Constrained flow optimization with application to data gathering in sensor networks[END_REF][START_REF] Shen | Sensor information networking architecture and applications[END_REF]. However, an other important factor to consider in data gathering applications is the latency of the information dissemination process. Indeed, the data collected by a node can frequently change thus making essential that they are received by the base station as soon as it is possible without being delayed by collisions [START_REF] Zhu | Delay efficient data gathering in sensor networks[END_REF].

Another application, which motivates this work, concerns the use in telecommunications networks a problem asked by France Telecom about "how to provide Internet connection to a village" (see [START_REF] Bertin | Accès haut débit en zone rurale: une solution "ad hoc[END_REF]). Here we are given a set of communication devices placed in houses in a village (for instance, network interfaces that connect computers to the Internet). They require access to a gateway (for instance, a satellite antenna) to send and receive data through a multi-hop wireless network. Therefore, this problem is the same as data collection in sensor network. Here the main objective is to minimize the delay.

In this paper, we will study optimal-time off-line data gathering in tree networks.

Network model

We adopt the network model considered in [START_REF] Bermond | Hardness and approximation of gathering in static radio networks[END_REF][START_REF] Florens | Lower Bounds on Data Collection Time in Sensory Networks[END_REF][START_REF] Gasieniec | Time efficient centralized gossiping in radio networks[END_REF]. In this model each node is equipped with an half-duplex interface, hence, (i) a node cannot receive and transmit at the same time.

Moreover, each node is equipped with omni directional antennas allowing transmission over a distance R. This implies that for any given node in the network, we can identify its neighbors as those nodes within distance R from it, that is, within its transmission/interference range. In this model, Solving the above dissemination problem is equivalent to solve data gathering in sensor networks. Indeed, let T denote the delay, that is, the largest time-slot used by a personalized broadcast algorithm; a gathering schedule with delay T consists in scheduling a transmission from node y to x during slot t iff the broadcasting algorithm schedules a transmission from node x to y during slot Tt + 1, for any t with 1 ≤ t ≤ T .

It should be noticed that our algorithms are centralized requiring the BS perform a distinct topology learning phase and schedule broadcasting. When requirements are more stringent, these algorithms may no longer be practical. However, they still continue to provide a lower bound on the data collection time of any given collection schedule.

Related work

Much effort has been devoted to the study of efficient data gathering algorithms taking into consideration various aspects of sensor networks [START_REF] Chong | Sensor networks: Evolution, opportunities, and challenges[END_REF]. The problem of minimizing the delay of the gathering process has been recently recognized and studied [START_REF] Bonifaci | Data Gathering in Wireless Networks[END_REF][START_REF] Gargano | Time Optimal Gathering in Sensor Networks[END_REF]. The authors of [START_REF] Florens | Lower Bounds on Data Collection Time in Sensory Networks[END_REF] first afford such a problem; they use the same model for sensor networks adopted in this paper. The main difference with our work is that [START_REF] Florens | Lower Bounds on Data Collection Time in Sensory Networks[END_REF] mainly deals with the case when nodes are equipped with directional antennas, that is, only the designed neighbor of a transmitting node receives the signal while its other neighbors can safely receive from different nodes. Under this assumption, [START_REF] Florens | Lower Bounds on Data Collection Time in Sensory Networks[END_REF] gives optimal gathering schedules for trees. An optimal algorithm for general networks has been presented in [START_REF] Gargano | Collision-free path coloring with application to minimum-delay gathering in sensor networks[END_REF] in the case that each node has one packet of sensed data to deliver.

The work in [START_REF] Zhu | Delay efficient data gathering in sensor networks[END_REF] also deals with the latency of data gathering under the assumption of directional antennas; the difference with [START_REF] Florens | Lower Bounds on Data Collection Time in Sensory Networks[END_REF] is the assumption of the possibility to have multiple channels between adjacent nodes. By adopting this model an approximation algorithm with performance ratio 2 is obtained.

Fast gathering with omnidirectional antennas is considered in [START_REF] Bermond | Optimal Gathering Protocols on Paths under Interference Constraints[END_REF][START_REF] Bermond | Hardness and approximation of gathering in static radio networks[END_REF][START_REF] Bermond | Efficient gathering in radio grids with interference[END_REF][START_REF] Bermond | Optimal gathering algorithms in multi-hop radio tree-networks with interferences[END_REF][START_REF] Bonifaci | An Approximation Algorithm for the Wireless Gathering Problem[END_REF], under the assumption of possibly different transmission and interference ranges, that is, when a node transmits, all the nodes within a fixed distance d T in the graph can receive while nodes within distance d I (d I ≥ d T) cannot listen to other transmissions due to interference (in our paper d I = d T = 1). Lower bounds on the time to gather and NP-hardness proofs are given in [START_REF] Bermond | Hardness and approximation of gathering in static radio networks[END_REF]; an approximation algorithm with approximation factor 4 is also presented. Paper [START_REF] Bonifaci | An Approximation Algorithm for the Wireless Gathering Problem[END_REF] presents an on-line gathering algorithm under the described model.

The case where d T = 1 and where each node has one packet to transmit is solved for the line in [START_REF] Bermond | Optimal Gathering Protocols on Paths under Interference Constraints[END_REF],

for the uniform grids in [START_REF] Bermond | Efficient gathering in radio grids with interference[END_REF] and for trees when furthermore d I = 1 in [START_REF] Bermond | Optimal gathering algorithms in multi-hop radio tree-networks with interferences[END_REF]. All the above papers allow buffering at intermediate nodes.

Several papers deal with the problem of maximize the lifetime of the network through topology aware placement [START_REF] Dasgupta | Topology-aware placement and role assignment for energyefficient information gathering in sensor networks[END_REF][START_REF] Ganesan | Power-efficient sensor placement and transmission structure for data gathering under distortion constraints[END_REF], data aggregation [START_REF] Gupta | Vishal Chowdhary: Efficient gathering of correlated data in sensor networks[END_REF][START_REF] Intanagonwiwat | Directed diffusion for wireless sensor networking[END_REF][START_REF] Krishnamachari | Modeling data-centric routing in wireless sensor networks[END_REF][START_REF] Lindsey | Pegasis: Power-efficient gathering in sensor wireless networks[END_REF], or efficient data flow [START_REF] Floreen | Exact and approximate balanced data gathering in energy-constrained sensor networks[END_REF][START_REF] Ho | Constrained flow optimization with application to data gathering in sensor networks[END_REF][START_REF] Padmanabh | Multicommodoty flow fased maximum lifetime routing in wireless sensor network[END_REF]. Papers [START_REF] Coleri | Energy Efficient Routing with Delay Guarantee for Sensor Networks[END_REF][START_REF] Lindsey | Data gathering algorithms in sensor networks using energy metrics[END_REF][START_REF] Yu | Energy-latency tradeoffs for data gathering in wireless sensor networks[END_REF] consider the minimization of the gathering delay in conjunction with the energy spent to complete the process.

A preliminary version (extended abstract) of this paper appears in [START_REF] Bermond | Gathering with Minimum Delay in Sensor Networks[END_REF].

1.3

Paper Overview.

We consider the model introduced in Section 1.1 and give optimal personalized broadcast schedules in case the graph modeling the network is a tree.

In Section 3 we shortly illustrate an optimal algorithm in case G is a tree with only one subtree.

It is obtained by using the optimal algorithm on the line with the BS s as one of its endpoints. The result on the line was first presented in [START_REF] Florens | Lower Bounds on Data Collection Time in Sensory Networks[END_REF].

In Section 4 we give an optimal algorithm in case the graph is a tree T with one specific data item to be sent to each node and a closed formula (see Theorem 2)

Mathematical Formulation

We now formally formulate the one-to-all personalized broadcast problem. Let G = (V, A) be the communication network and let s ∈ V be a special node that will be called the source.

Each node v ∈ V -{s} is associated with an integer weight w(v) ≥ 0 that represents the number of data items destined to node v. The vector w represents the vector of the weights of the nodes in V .

We need to schedule the transmissions in order to create w(v) collision-free routes from s to node v, for each v ∈ V -{s}. We define the schedule by assigning time-labels to the arcs involved in transmissions: if arc (u, v) ∈ A has label t then u transmits to v at time t.

Definition 1. Let p = (u 0 , • • • , u h) be a path in G.
An increasing labeling L of p is an assignment of integers, L p (u 0 , u 1) . . . , L p (u h-1 , u h), to the arcs of p such that for j = 1, . . . , h -1.

L p (u j , u j+1) = L p (u j-1 , u j) + 1
The labeling is called t-increasing, for some integer t ≥ 1, if it is increasing and L p (u 0 , u 1) = t.

Consider any set P of paths in G from s to (not necessarily pairwise distinct) nodes in V -{s} together with the labellings L p , for p ∈ P. Notice that any arc a ∈ A can belong to any number of paths in P.

Definition 2. The labeling induced by P on the arcs of G consists, for each (u, v) ∈ A of the multisets

L(u, v) = {L p (u, v) | p ∈ P}. Let N (u) be the set of neighbors of u in G, that is, N (u) = {x | (u, x) ∈ A} = {x | (x, u) ∈ A}.
In the above terminology, conditions(i) and (ii) of the Introduction give the following definition.

Definition 3. The labeling L induced by P on the arcs of G is called strictly collision-free (SCF) if L is increasing and, for each (u, v) ∈ A it holds:

-L(u, v) is a set (e.g, any integer has at most one occurrence in L(u, v)),

-L(u, v) ∩ L(v, w) = ∅, for each w ∈ N (v) (condition (i)), -L(u, v) ∩ L(w, z) = ∅, for each w ∈ N (v) ∪ {v}, z ∈ N (w) (condition (ii)).
Definition 4. An instance of SCF labeling is a triple G, w, s where G is the graph, s is the source, and w is the vector of weights of the nodes in G.

A feasible solution for G, w, s is a pair (P, L) where:

• P is a set of w(v) paths (not necessarily distinct) from s to v in G, for each v ∈ V -{s};
• L is an SCF-labeling induced by P.

An optimal solution (P * , L *) is a feasible solution minimizing the largest label given to any arc of

G.

The value attained by the optimal solution (P * , L *) for G, w, s is denoted by T * (G, w, s) (or simply by T * (G) when w and s are clear from the context).

Example. In the tree T of Fig. 1, let w(u) = 1 for each u = s. A feasible solution for T, w, s is the pair (P, L) where P = {p u | p u is the unique path from s to u in T , u = s} and the SCF labeling L is such that each path p u is labeled with a t u -increasing labeling as follows: t b = 1, t e = 2, t f = 4, t c = 5, t g = 6, t d = 8, t s 2 = 9, t h = 10, t a = 11, t ℓ = 12, t s 1 = 13.

As an example, we have

p b = (s, s 1 , a, b), with L p b (s, s 1) = t b = 1, L p b (s 1 , a) = 2, L p b (a, b) = 3 L(s, s 1) = {L p b (s,

Trees with one subtree

In this section we present an optimal algorithm to solve the SCF-labeling problem for an instance G, w, s , where G is a tree T with only one subtree (m = 1) and where node weights are arbitrary non negative integers, that is, w(v) ≥ 0 for each v = s. The optimal algorithm was already given for the line in [START_REF] Florens | Lower Bounds on Data Collection Time in Sensory Networks[END_REF] (Theorem 4.1). For sake of completness we restate, in Fig. 2, the algorithm in our notation since it is a starting point for the algorithm on general trees given in the next section.

The following notation will be used in the algorithm description.

• Set a path (resp. a t-path) to node v: establish a path from s to v together with its increasing labeling (resp. t-increasing labeling);

• A node v = s is completed: if all the required paths from s to v have been set.

An optimal algorithm for a tree T rooted at s, with one subtree and maximum level n can be easily obtained:

1) associate to T , the line L with nodes s = 0, 1, • • • , n, where the node i has a weight w(i) equal to the sum of the weights of the nodes at level i in T (i.e., nodes at distance i from s in T);

2) set a path from s to one of the w(i) nodes at level i in T every time the algorithm for L set one of the w(i) paths to node i in L.

Theorem 1. [START_REF] Florens | Lower Bounds on Data Collection Time in Sensory Networks[END_REF] Let T be a tree with one subtree and let w(i) ≥ 0 be the sum of the weights of nodes at level i for i = 1, . . . , n. Then the optimal gathering time is

T * (T) = max 1≤i≤n M i , where M i =          w(1) + 2w(2) + 3 j≥3 w(j) if i = 1, 2w(2) + 3 j≥3 w(j) if i = 2, i -3 + 3 j≥i w(j) if i ≥ 3.
When w(i) > 0, for i = 1, . . . , n, Theorem 1 provides a simpler form of the optimal label (i.e. minimum time).

Corollary 1. Let T be a tree with one subtree and let w(i) ≥ 1, for i = 1, . . . , n, then

T * (T) = M 1 = w(1) + 2w(2) + 3 n j=3 w(j).

Trees

Let T = (V, E) be any tree and s be a fixed node in T . We assume that each node has exactly one path to be set, i.e., w(v) = 1 for each v ∈ V -{s} (recall that the source has weight w(s) = 0). We will show how to obtain an optimal labeling for T, w, s .

Definition 5. Given a tree T . We shall denote by |T | the size of T in terms of the weights of the nodes in T , that is

|T | = v∈V (T) w(v).
In particular, if

w(u) = 1 for each v ∈ V (T) -{s} then |T | = |V | -1.
Notice that |T | represents the number of paths to be set in T . Since we assume that w(v) = 1

for each v ∈ V -{s} then the algorithms starts with

|T | = |V | -1.
Root T at s and let T 1 , T 2 , • • • , T m be the subtrees of T rooted at the sons of s. Through this section we assume m ≥ 2; the case m = 1 was discussed in Section 3. Definition 6. For each i = 1, . . . , m, we denote by:

s i the son of s which is the root of T i and is at level 1 in T i , α i the number of nodes at level 2 in T i , β i the number of nodes at level 3 or more in T i .

Moreover, we define the shade of subtree T i , for

1 ≤ i ≤ m, as τ i = 1 + 2α i + 3β i .
Let |T i | represent the number of nodes in the subtree T i , For i = 1, . . . , m. We have

|T i | = 1 + α i + β i .
The following definition gives an order on the subtrees based on their shadow. This order will induce a priority between subtrees and will be useful in the algorithm as we will choose among the subtrees to which the source can send a message the one with the highest priority.

Definition 7. (Order of priority) Given i, j = 1, . . . , m with i = j, we say that

-T i ≺ T j if either τ i > τ j or (τ i = τ j and |T i | > |T j |), -T i = T j if both τ i = τ j and |T i | = |T j |(they are not necessarily isomorphic). Definition 8. Let m ≥ 2 and T 1 T 2 . . . T m . Define ǫ T = 1 if T 1 = T 2 0 otherwise and ∆ i,j = |T i | + |T j | + β i -1 if i, j = 1, . . . , m, with i = j 0 if i > m or j > m .
We devote the next subsections to prove the following result.

Theorem 2. Suppose each node of a tree T has one data item and let n denote the number of vertices of T . Let m ≥ 2 and T 1 T 2 . . . T m we have that the optimal gathering time is

T * (T) = max{n -1, τ 1 + ǫ T , ∆ 1,2 , ∆ 2,1 , ∆ 1,3 }.
Recall that if m = 2 then we assume ∆ 1,3 = 0. Furthermore, by Corollary 1, when m = 1 then the number of steps is

T * (T) = τ 1 = 1 + 2α 1 + 3β 1 (coherent with the theorem).
Example (cont.). Let T be the tree in Fig. 1 with BS s. We have:

m = 2, |T 1 | = 5, |T 2 | = 6, α 1 = 1, β 1 = 3, τ 1 = 12, α 2 = 5, β 2 = 0, τ 2 = 11, ǫ T = 0, ∆ 1,2 = 13, ∆ 2,1 = 10 and ∆ 1,3 = 0. Hence, T 1 ≺ T 2 and, by Theorem 2, T * (T) = ∆ 1,2 = 13.
The main idea of the algorithm consists in setting, whenever that is possible, a path to a node in the subtree T i having the largest shade value τ i = 1 + 2α i + 3β i (Definition 6). However, we have to be careful and, even if the algorithm is relatively simple, the proof of the value of gathering time in Theorem 1 is involved.

The algorithm

In order to describe the SCF labeling algorithm, we introduce the following terminology.

• One step: one time-slot.

• A node v = s is completed if a path from s to v has been set.

• Set a path (resp. a t-path) to T i : set a path (resp. a t-path) to a node v in T i which is the furthest from s among all nodes in T i which are not yet completed.

When we set a path to some T i the corresponding value |T i | of the remaining weights in T i will be decreased by one and also α i and β i if they are non zero.

• T i is completed: if a path has been set to each node in T i , that is |T i | = 0. • Step t is called idle if no t-path is set. • T i is available at step t (i.e. a t-path to T i can be set) only if no path was set to a node v in T i at some step t ′ s.t. t ′ < t < t ′ + min{3, ℓ(v)}, where ℓ(v) is the level of v in T . Said otherwise,
if at some step t ′ we set a path to a node v in T i , then T i is not available at step t ′ + j where 1 ≤ j < min{3, ℓ(v)}. In particular if v is at a level at least 3, then T i is not available at steps t ′ + 1 and t ′ + 2.

Unless otherwise stated, in the following we assume that the subtrees are numbered according to the ranking given in Definition 7, that is

T 1 , • • • , T m is a reordering of the subtrees of T such that T 1 • • • T m .
The SCF labeling algorithm is given in Fig. 3. Following is an informal description of the behavior of the algorithm during a generic step t ≥ 1: Let T i be an available subtree that precedes all the other available subtrees of T according to the order relation ; set a t-path to T i ; update the shade of T i .

Example (cont.). The solution (P, L) given in the Example is the same one gets by applying the TREE-labeling algorithm on the tree T of Fig. 1.

The table given in Fig. 4 reports how the TREE-coloring algorithm sets, step by step, the paths from the source s to the nodes of the tree T given in Fig. 1.

In the table we refer to T k , for k = 1, 2, as the subtree rooted at s k . Each row of the table shows for a fixed time t: the ordering of subtrees T 1 and T 2 at the beginning of time-step t; the index k of the subtree to which a t-path is set at time-step t; the algorithm's point corresponding to time-step t; the t-path in T k which is set at time-step t; the updated values of t k , τ k , α k and β k after time-step t.

Recall that at the beginning of the algorithm we have α 1 = 1,

β 1 = 3, τ 1 = 12, α 2 = 5, β 2 = 0, τ 2 = 11.
Furthermore, the minimum step to set a path in T 1 and T 2 is t 1 = t 2 = 1.

Notice that t = 8 corresponds to the special case 2.2.b of the algorithm; in this case all the remaining paths are set.

The TREE-labeling algorithm sets, at step t, a t-path to T i only if T i is available. We can then conclude that Lemma 1. The solution (P, L) returned by algorithm TREE-labeling on T, w, s is feasible.

Preliminary Results

We establish now some facts that will be used to prove the optimality of the proposed algorithm.

The order in which nodes are served by the algorithm implies that (excluding the special case which is considered separately), whenever we refer to a subtree T i we can assume that α i = 0 only if β i = 0 (since the paths to nodes at level 2 in T i are set only after that all the paths to nodes at level at least 3 are set) and that the path to the root of T i is set only when α i = β i = 0.

Fact 1. For any subtree T i with

|T i | > 1 it holds that 2|T i | -1 ≤ τ i ≤ 3|T i | -3. Proof. By definition |T i | = β i + α i + 1 and τ i = 3β i + 2α i + 1. Hence 2|T i | -1 = 2β i + 2α i + 1 ≤ 3β i + 2α i + 1 = τ i ≤ 3β i + 3α i = 3|T i | -3,
where the last inequality follows noticing that

|T i | > 1 implies α i ≥ 1. ⊓ ⊔ Fact 2. Let T i T j .
• If τ i = τ j and T i ≺ T j then α i > α j and β i < β j .

• T i = T j (i.e., τ i = τ j and

|T i | = |T j |) iff α i = α j and β i = β j . Fact 3. If T i T j then β j ≤ |T i | -2 if |T i | ≥ 2 0 otherwise . Proof. Trivially, if |T i | = 1 then β j = 0. Let then |T i | > 1.
If T i T j then τ i ≥ τ j . This implies that 3β i ≥ 3β j + 2α j -2α i . From this we get

|T i | = 1 + α i + β i ≥ 1 + α i + 3β j + 2α j -2α i 3 ≥ β j + 2 3 α j + 1 3 α i + 1.
Hence, noticing that α i ≥ 1, we get

|T i | ≥ β j + 2. ⊓ ⊔
The quantities ∆ i,j = |T i |+|T j |+β i -1, introduced in Definition 8 satisfy the following properties.

Fact 4. For any i, j it holds ∆ i,j -

τ i = |T j | -|T i | Proof.
Recalling that τ i = 3β i + 2α i + 1 and by Definition 8 we have

∆ i,j -τ i = |T i | + |T j | + β i -1 -(1 + 2α i + 3β i) = |T i | + |T j | -2|T i | = |T j | -|T i |. ⊓ ⊔ Fact 5. ∆ i,j ≥ max{|T |, τ 1 + ǫ T } only if either (i = 1 and j = 2, 3
) or (i = 2 and j = 1).

Proof. Assume first either i ≥ 3 or (i = 2 and j ≥ 3). We have

|T | -|T i | -|T j | ≥ |T 1 | or |T | -|T i | -|T j | ≥ |T 2 |. By Fact 3 we know that β i < min{|T 1 |, |T 2 |} -1.
Hence, in any case we get

|T | -∆ i,j = |T | -|T i | -|T j | -β i + 1 > 2, which implies ∆ i,j < |T | ≤ max{|T |, τ 1 + ǫ T }.
Assume now i = 1 and j ≥ 4; supposing, by contradiction, ∆ 1,j ≥ |T | and ∆ 1,j ≥ τ 1 + ǫ T , we have

|T 2 | + |T 3 | ≤ |T | -|T 1 | -|T j | = |T | -∆ 1,j + β 1 -1 ≤ β 1 -1 ≤ |T 1 | -3. (1
)
From the assumption that ∆ 1,j ≥ τ 1 + ǫ T and by Fact 4 we get |T 1 | ≤ |T j |. This, (1), and Fact 1 imply

τ j = 3β j + 2α j + 1 ≥ 2|T j | -1 ≥ 2|T 1 | -1 ≥ 2(|T 2 | + |T 3 |) + 5 > 2 3 (τ 2 + τ 3) + 5 ≥ 4 3 τ 3 + 5 > τ 3
thus contradicting the assumption T 3 T j for any j ≥ 4. ⊓ ⊔

The lower bound

Definition 9. Let T be such that m ≥ 2 and T 1 T 2 . . . T m . Define

M ax(T) = max{|T | = |V | -1, τ 1 + ǫ T , ∆ 1,2 , ∆ 2,1 , ∆ 1,3 }.
where ǫ T and ∆ i,j are defined in Definition 8 and where, if m = 2, then ∆ 1,3 = 0.

Theorem 3. Assuming that m ≥ 2 and T 1 T 2 . . . T m we have T * (T) ≥ M ax(T).

Proof. Any algorithm needs to set a path to each node, hence T * (T) ≥ |T |.

By Definition 6 and Corollary 1, the shade τ i of T i is the minimum label that can be assigned when only paths to the nodes in T i are set. Since paths must be set to all nodes in each

T i , for i = 1, • • • , m,
and

τ 1 ≥ τ 2 ≥ • • • ≥ τ m we have that T * (T) ≥ τ 1 .
Furthermore, if τ 1 = τ 2 , then at least τ 1 + 1 labels are necessary as the first path to T 2 is set only at

step 2. Note that, if τ 1 = τ 2 , but T 1 = T 2 that is |T 1 | > |T 2 |, then by fact 4, ∆ 2,1 -τ 2 = |T 1 |-|T 2 | ≥ 1. So ∆ 2,1 ≥ τ 2 + 1 = τ 1 + 1 and ∆ 2,1 is a better lower bound. If T 1 = T 2 (which implies τ 1 = τ 2), then τ 1 + ǫ T labels are necessary.
Consider now ∆ i,j . For each path to a node at level at least 3 in T i no path to some other node in T i can be set in the following 2 steps. Moreover, at most one of the following two steps can be used to set a path to T j , except for the eventual step in which a path to the root of T j is set and immediately after a path to some other node in T j is set. The remaining step can be used to set a path to some T ℓ with ℓ = i, j. Hence, any algorithm has at least

β i -1 -ℓ =i,j |T ℓ | idle steps, which implies T * (T) ≥ |T | + β i -1 -ℓ =i,j |T ℓ | = ∆ i,j
. By Fact 5, we get that M ax(T) lower bounds

T * (T). ⊓ ⊔ Remark 1.
There are trees for which any of the five parameters in the definition of M ax(T)

represents the unique exact bound and so we will have to distinguish all the cases to prove the optimality. Examples are given below.

• |T | it the unique maximum: Take 3 subtrees

T 1 , T 2 , T 3 with α 1 = α 2 = α 3 = α and β 1 = β 2 = β 3 = 0. Then τ 1 = 1 + 2α < 4 + 3α = |T | and ∆ i,j = |T i | + |T j | -1 < |T |.
Fig. 5a) shows an example of this case with

α 1 = α 2 = α 3 = 3; here |T | = 13, τ 1 + ǫ T = 8, ∆ 1,2 = ∆ 2,1 = ∆ 1,3 = 7.
• τ 1 + ǫ T is the unique maximum: Take 2 subtrees T 1 , T 2 with α 1 = α 2 = 1, β 1 ≥ 3 and with

β 2 ≤ β 1 (so τ 1 ≥ τ 2). Then |T | = 5 + β 1 + β 2 ≤ 5 + 2β 1 < 3 + 3β 1 = τ 1 (as β 1 > 2). ∆ 2,1 ≤ ∆ 1,2 = 3 + 2β 1 + β 2 < 3 + 3β 1 = τ 1 if β 2 < β 1 (here ǫ T = 0), 3 + 3β 1 < τ 1 + ǫ T if β 2 = β 1 (here ǫ T = 1).
β 1 = β 2 = 3; here ǫ T = 1, |T | = 11, τ 1 + ǫ T = 13, ∆ 1,2 = ∆ 2,1 = 12, ∆ 1,3 = 0.
• ∆ 1,2 is the unique maximum: Take 2 subtrees

T 1 T 2 , with α 1 = 1, β 1 ≥ 3, β 2 = 0, α 2 > β 1 + 1 and 2α 2 < 3β 1 + 2 (so τ 2 < τ 1). Then ∆ 2,1 = |T | -2 < |T | < |T | + β 1 -2 = ∆ 1,2 (as β 1 > 2)
and • ∆ 2,1 is the unique maximum: Take 2 subtrees

τ 1 = 3 + 3β 1 < 2 + 2β 1 + α 2 = ∆ 1,2 (as β 1 + 1 < α 2).
T 1 T 2 , with α 2 = 1, β 2 ≥ 3, β 1 = 0, α 1 < 2β 2 + 1 and 2α 1 > 3β 2 + 2 (so τ 1 > τ 2). Then ∆ 1,2 = |T | -2 < |T | < |T | + β 2 -2 = ∆ 2,1 (as β 2 > 2)
and • ∆ 1,3 is the unique maximum: Take 3 subtrees T 1 , T 2 , T 3 , with α 1 = α 2 = 1, β 2 < β 1 -4 (so

τ 1 = 1 + 2α 1 < 2 + α 1 + 2β 2 = ∆ 2,1 (as α 1 < 2β 2 + 1).
τ 1 > τ 2), β 3 = 0, β 1 < α 3 -1 and 2α 3 < 3β 2 + 2 (so τ 2 > τ 3). Then |T | = 6 + β 1 + β 2 + α 3 ; τ 1 = 3 + 3β 1 ; ∆ 1,2 = 3 + 2β 1 + β 2 ; ∆ 2,1 = 3 + β 1 + 2β 2 ; ∆ 1,3 = 2 + 2β 1 + α 3 . So |T | < ∆ 1,3 (as
β 2 < β 1 -4), τ 1 < ∆ 1,3 (as β 1 < α 3 -1) and ∆ 1,2 < ∆ 2,1 < ∆ 1,3 (as β 2 < β 1 < α 3 -1).
τ 1 + ǫ T = 48, ∆ 1,2 = 44, ∆ 2,1 = 44, ∆ 1,3 = 49.

Optimality

We show now that the SFC-labeling algorithm for trees is optimal, that is, the maximum label assigned to any arc of T is T (T) ≤ M ax(T) thus matching the lower bound of Theorem 3.

We first recall that we are in the hypothesis that the weight of each node is 1. The order in which nodes are chosen as end-points of the paths set by the algorithm implies that the largest label assigned to an arc of T is always to be searched among those assigned to the arcs outgoing the root s of T . Therefore, it coincides with the largest t for which a t-path is set in T .

Lemma 2. Let t denote the largest integer such that a t-path is set in T during the execution of the SFC-labeling algorithm. The largest label assigned by the algorithm to any arc of T is T (T) = t.

By the above Lemma, we need to show that the largest t such that a t-path is set in T is upper bounded by M ax(T). The proof will proceed by induction. We will consider the first steps of the algorithm mainly those which send to different subtrees (before the step where we send again to a subtree to which we already sent) and we will apply the induction on the tree T ′ obtained by deleting the vertices completed in these first steps. For that we introduce the following definition.

Definition 10. We denote the fact that the algorithm on T starts by setting k paths to pairwise different subtrees of T (that is, it sets a t-path to some node v i in T i , for i = 1, . . . , k) by

T 1 . . . T k
We denote by T ′ the updated tree, resulting from T 1 . . . T k , that is, T ′ has subtrees

T ′ 1 . . . , T ′ k , T ′ k+1 .
. . , T ′ m , where -T ′ i denotes the updated subtree T i after the i-path to v i has been set (that is, w ′ (v i) = 0 and

|T ′ i | = |T i | -1), for i = 1, . . . , k -T ′ k+1 = T k+1 , . . . , T ′ m = T m .
Notice that the subtrees T ′ 1 . . . , T ′ m , are not necessarily ordered according to the relation . Let

i 1 , i 2 , • • • , i m be a permutation of 1, . . . , m such that T ′ i 1
. . . T ′ im ; we will always consider permutations that maintain the original order on equal subtrees, that is if

T ′ i j = T ′ i ℓ then i j < i ℓ .
We denote by α ′ i , β ′ i , τ ′ i the parameters of T ′ i . In particular (unless the special case k = 2, β 1 = 1,

α 2 = α 1 + 1, β 2 = 0, T 3 = ∅)
we have for i = 1, . . . , k:

α ′ i = α i - 1 if β i = 0, α i ≥ 1 0 otherwise , β ′ i = β i - 1 if β i ≥ 1 0 otherwise , τ ′ i = τ i -                3 if β i ≥ 1 2 if β i = 0, α i ≥ 1 1 if |T i | = 1 0 if T i = ∅ . Fact 6. Assume T 1 . . . T k and that NOT (k = 2, β 1 = 1, α 2 = α 1 + 1, β 2 = 0, T 3 = ∅).
For any

1 ≤ i < j ≤ k. 1) If τ i > τ j then τ ′ i ≥ τ ′ j ; 2) if T i ≺ T j and T ′ j ≺ T ′ i then β j = 0, β i ≥ 2, |T i | < |T j |, and
τ i = τ j + 1.
Proof. Consider first 1). If |T j | = 1, then τ ′ j = 0 and 1) trivially holds; otherwise τ ′ i ≥ τ i -3 and

τ ′ j ≤ τ j -2; so τ ′ i ≥ τ ′ j .
Consider now 2) and assume that T i ≺ T j and T ′ j ≺ T ′ i . By Definition 7 we can have four cases:

-

τ i = τ j with |T i | > |T j |, and τ ′ j = τ ′ i with |T ′ j | > |T ′ i |. This is impossible since it should be both |T i | > |T j | and |T j | = |T ′ j | + 1 > |T ′ i | + 1 = |T i |.
τ i = τ j with |T i | > |T j |, and τ ′ j > τ ′ i . By the algorithm this case can occur only if β j = 0 and

β i ≥ 1.
By Fact 2 this is impossible.

τ i > τ j and τ ′ j > τ ′ i . This is impossible by 1).

-

τ i > τ j and τ ′ j = τ ′ i with |T ′ j | > |T ′ i |. We can have both τ i > τ j and τ ′ j = τ ′ i only if τ ′ i = τ i -3 = τ j -2 = τ ′ j .
Hence we have τ i = τ j + 1 and

β j = 0 < β i . Furthermore, |T ′ j | > |T ′ i | implies |T j | > |T i | and β i ≥ 2 (otherwise, if β i = 1 we would get T ′ i = T ′ j). ⊓ ⊔ Fact 7. Assume T 1 . . . T k with either k ≥ 4 or k = 3 and T 3 T ′ 1 , T ′ 2 : i) |T | ≥ τ 1 + k -2; ii) |T i | ≥ β 1 + 1, for each i = 2, . . . , k; iii) |T i | ≥ β 2 + 1, for each i = 3, . . . , k.
Proof. Let T ′ be the tree resulting after T

1 . . . T k . If |T 1 | = 1 then |T i | = 1 for each i = 1, • • • , k;
hence, i), ii), and iii) hold. We assume then that |T 1 | ≥ 2 which implies α 1 ≥ 1.

We first prove ii). If k ≥ 4 then at steps 4, . . . , k we did not choose T ′ 1 which was available and so

T 2 T 3 . . . T k T ′ 1 . If k = 3, T 3 T ′
1 by hypothesis. So we have

T i T ′ 1
for each i = 2, . . . , k.

Let ∆ = 1 if β 1 ≥ 1 and 0 otherwise .

It can occur either

τ i > τ ′ 1 = τ 1 -2 -∆ or τ i = τ ′ 1 = τ 1 -2 -∆ with |T i | ≥ |T ′ 1 | = |T 1 | -1.
Hence, w.l.o.g. let 1 ≤ ℓ ≤ k be such that

τ 2 ≥ • • • ≥ τ ℓ > τ 1 -2 -∆ and τ ℓ+1 = • • • = τ k = τ 1 -2 -∆ with |T ℓ+1 |, . . . , |T k | ≥ |T 1 | -1. (2)
Recalling that τ i ≥ τ ′ 1 ≥ 1 we get

α i ≥ 1, i = 1, . . . , k.
For any i = 2, . . . , ℓ we have τ i = 3β i + 2α i + 1 ≥ 3β 1 + 2α 1 -∆. We can then deduce that

β i ≥ β 1 + 2 3 α 1 - 2 3 α i - 1 + ∆ 3
and

|T i | = β i + α i + 1 ≥ β 1 + 2 3 α 1 - 2 3 α i - 1 + ∆ 3 + α i + 1 = β 1 + 2 3 α 1 + α i 3 + 2 -∆ 3 ≥ β 1 + 2 3 α 1 + 2 3 , (3)
where the last inequality holds since α i ≥ 1 and ∆ ≤ 1.

From this, recalling that α 1 ≥ 1, we get that |T i | > β 1 + 1 and ii) holds for any i ≤ ℓ.

For i = ℓ + 1, . . . , k, we have |T i | ≥ |T 1 | -1 = β 1 + α 1 ≥ β 1 + 1.
Hence ii) holds for each i = 2, . . . , k.

In the same way we can prove iii). Indeed, if k ≥ 4, then either T ′ 1 T ′ 2 and so

T 4 T ′ 1 T ′ 2 ,
or T ′

2

T ′ 1 and so by Fact 6, β 2 = 0 and so T ′ 2 was available at step 4 and so

T 4 T ′ 2 . If k = 3,
T 3 T ′ 2 by hypothesis; in all the cases, the same proof as above with T 2 instead of T 1 works.

Let us now prove inequality i). By (3) we have that for each i = 2, . . . , ℓ

|T i | ≥ β 1 + 2 3 α 1 + 2 3 = |T 1 | - α 1 3 - 1 3 . (4)
Hence, by (2) and (4) we have

|T | = m i=1 |T i | ≥ k i=1 |T i | = |T 1 | + ℓ i=2 |T i | + k i=ℓ+1 |T i | ≥ |T 1 | + (ℓ -1)(|T 1 | - α 1 3 - 1 3) + (k -ℓ)(|T 1 | -1) = k|T 1 | -k + 1 -(ℓ -1) α 1 -2 3 = τ 1 + (k -3)β 1 + (k -2)α 1 -(ℓ -1) α 1 -2 3 . (5
)
The function in (5) is decreasing in ℓ. Considering its minimum, at ℓ = k, we get

|T | ≥ τ 1 + (k -3)β 1 + (k -2)α 1 -(k -1) α 1 -2 3 .
Recalling that α 1 ≥ 1 and k ≥ 3, we get the desired bound

|T | ≥ τ 1 + k -2. ⊓ ⊔
The following theorem together with the lower bound of Theorem 3 prove Theorem 2.

Denote by T (T) the largest time-label assigned by algorithm TREE-labeling to any arc of T .

Theorem 4. Assume T 1 . . . T m . The solution returned by algorithm TREE-labeling satisfies

T (T) ≤ M ax(T) (6)
Proof. At any step of the algorithm the tree can have any number m ≥ 1 of subtrees of positive weight. When we say that the algorithm sets a t-path to a subtree T i and |T i | = 0 at step t, this means that no t-path is actually set (i.e. t is an idle step).

We first analyze the special case of the algorithm in which m = 2,

β 1 = 1, β 2 = 0, α 2 = α 1 + 1.
The first two steps of the algorithm are T 1 T 2 , where the path set to T 2 is a path to s 2 (the root of T 2).

Let T 0 be the tree resulting after T 1 T 2 , at the third step a path to T 0 2 is set. Hence, the first three steps of the algorithm are:

T 1 T 2 T 0 2 .
Let T 1 be the tree resulting after T 1 T 2 T 0 2 . Next the algorithm on T proceeds as follows

T 1 1 T 1 2 T 2 1 T 2 2 . . . T ℓ 1 T ℓ 2 . . . T α 1 1 T α 1 2 T α 1 +1 1 .
where T ℓ , for ℓ ≥ 2, is the tree resulting from T ℓ-1 after the 2 steps T ℓ-1

1 T ℓ-1 2
. By the hypothesis of this case, we have

ǫ T = 0, |T | = |T 1 | + |T 2 | = 3 + α 1 + α 2 = 3 + 2α 1 + 1 = τ 1 , and ∆ 1,2 , ∆ 2,1 ≤ |T |. Hence, T (T) = 3 + 2α 1 + 1 = τ 1 = M ax(T).
The rest of the proof is devoted to show that T (T) ≤ M ax(T) for each tree. The proof is by induction on the shade of T 1 (recall that T 1 T 2 . . . T m). As a base consider the trees of the special case above and trees T such that τ 1 = 1; in the latter case, we have

|T i | = 1 for each i = 1, . . . , m and T (T) = |T | = M ax(T).
Suppose now that (6) holds for any tree in which the shade of the first subtree (according to the relation) is at most τ 1 -1; we prove that (6) holds for T .

Notice that we are assuming that T does not belong to the special case (i.e., m = 2, β 1 = 1,

β 2 = 0, α 2 = α 1 + 1, T 1 is
available and T 2 is available at the next step) and that |T 1 | ≥ 2.

We separate four cases according to the value attaining M ax(T).

Case 1: M ax(T) = ∆ 1,2 > max{τ 1 + ǫ T , |T |}.
In such a case we know that Let T ′ be the tree resulting after T 1 T 2 T 3 . We will show that after the first 3 steps T 1 T 2 T 3 , the algorithm on T proceeds as on input T ′ and

β 1 > 1, otherwise ∆ 1,2 = |T 1 | + |T 2 | + β 1 -1 ≤ |T |; hence,
M ax(T ′) ≤ M ax(T) -3. (7
)
This will imply the desired inequality

T (T) = 3 + T (T ′) ≤ 3 + M ax(T ′) = M ax(T).
To prove [START_REF] Bonifaci | Data Gathering in Wireless Networks[END_REF] we need to know how the subtrees of T evolve in those of T ′ . To this aim we analize the peculiarities of the subtrees of T and establish the ordering of the subtrees of T ′ (according to the relation). In particular we will show that the two first trees obtained by the algorithm or by considering

T ′ are T ′ 1 ≺ T ′ 2 or T ′ 2 ≺ T ′ 1 .
By definition of ∆ 1,2 and using ∆ 1,2 > |T |, we get

|T | -|T 1 | -|T 2 | < β 1 -1. (8
)
By Fact 4 and using ∆ 1,2 > τ 1 , we get

|T 1 | < |T 2 |. (9
)
|T ′ | = |T | - 3 if |T 3 | > 0 2 otherwise , ǫ T ′ = ǫ T = 0 (since |T 1 | < |T 2 |), τ ′ 1 = τ 1 -3 (as β 1 > 1). (10
)
We note that T ′ 1 = T ′ 2 , since by (9) they have different weights. Furthermore, both sequences of

steps T 1 T 2 T 3 T ′ 1 T ′ 2 and T 1 T 2 T 3 T ′ 2 T ′ 1 are possible during the execution of the algorithm on T . Indeed, in case T ′ 2 ≺ T ′ 1 , by Fact 6, we have β 2 = 0, β 1 ≥ 1 and τ 1 > τ 2 .
If |T 3 | = 0, then T 1 and T 2 are the only subtrees in T ; hence, the possible orderings on the subtrees of T ′ are:

T ′ 1 ≺ T ′ 2 , T ′ 2 ≺ T ′ 1 .
If

|T 3 | = 1, we have |T 4 | ≤ 1.
Hence, by (8) and (9) we get τ ′ 1 , τ ′ 2 > 1 ≥ τ 4 and the possible orderings on the subtrees of T ′ are:

T ′ 1 ≺ T ′ 2 ≺ T ′ 4 = T 4 , T ′ 2 ≺ T ′ 1 ≺ T ′ 4 = T 4 . Now, let |T 3 | > 1.
By [START_REF] Bonifaci | An Approximation Algorithm for the Wireless Gathering Problem[END_REF] and Fact 1, we get

τ 3 ≤ 3|T 3 | -3 ≤ 3(|T | -|T 1 | -|T 2 |) -3 ≤ 3(β 1 -2) -3 ≤ τ 1 -9 -(2α 1 + 1), from which, since α 1 ≥ 1, it follows τ 3 ≤ τ 1 -12 = τ ′ 1 -9. (11)
Moreover, by (8) and (9) we have

|T 2 | ≥ |T 1 | + 1 ≥ β 1 + α 1 + 2 ≥ β 1 + 3 > (|T | -|T 1 | -|T 2 |) + 4 ≥ |T 3 | + |T 4 | + 4; (12)
furthermore by [START_REF] Floreen | Exact and approximate balanced data gathering in energy-constrained sensor networks[END_REF] we have

∆ ′ 1,3 < ∆ 1,2 -3 if |T ′ 3 | ≥ 1 and ∆ ′ 1,4 < ∆ 1,2 -3 if |T ′ 4 | ≥ 1.
and

M ax(T ′) = max{|T ′ |, τ ′ 1 + ǫ T ′ , ∆ ′ 1,2 , ∆ ′ 2,1 , ∆ ′ 1,j (j = 3, 4)} = max{|T | -3, τ 1 -3, ∆ 1,2 -3, ∆ 2,1 -3} = M ax(T) -3.
In case T ′ 2 ≺ T ′ 1 , by Fact 6 we have

β 2 = 0, β 1 ≥ 1 and τ 1 > τ 2 ; hence τ ′ 2 = τ 2 -2 = τ 1 -3 and ∆ ′ 1,2 = ∆ 1,2 -3, ∆ ′ 2,i = |T ′ 2 | + |T ′ i | + β ′ 2 -1 = |T ′ 2 | + |T ′ i | -1 < |T ′ | (i = 1, 3 , 4), where ∆ ′ 2,3 (resp.
∆ ′ 2,4) is to be considered when |T ′ 3 | ≥ 1 (resp. |T ′ 4 | ≥ 1). Hence M ax(T ′) = max{|T ′ |, τ ′ 2 + ǫ T ′ , ∆ ′ 2,1 , ∆ ′ 1,2 , ∆ ′ 1,j (j = 3, 4)} = max{|T | -3, τ 1 -3, ∆ 1,2 -3, } = M ax(T) -3. Case 2: M ax(T) = ∆ 2,1 > max{τ 1 + ǫ T , |T |}.
We first notice that by definition of ∆ 2,1 and using ∆ 2,1 > |T |, we get

2 ≤ |T | -|T 1 | -|T 2 | + 2 ≤ β 2 , (17)
Using Fact 4 and ∆ 2,1 > τ 1 ≥ τ 2 we get

|T 2 | < |T 1 |.
Moreover, since ∆ 2,1 > τ 1 + ǫ T , we get

|T 1 | + β 1 < |T 2 | + β 2 ,
which also implies T 1 = T 2 and ǫ T = 0.

Finally, from [START_REF] Gupta | Vishal Chowdhary: Efficient gathering of correlated data in sensor networks[END_REF] we have

|T 3 | ≤ |T | -|T 1 | -|T 2 | ≤ β 2 -2
; from this and Fact 1 it follows

τ 3 ≤ 3|T 3 | -3 ≤ 3β 2 -9 ≤ τ 2 -9 if |T 3 | > 1, τ 3 = 1 < β 2 ≤ τ 2 -3 if |T 3 | = 1. (18)
We distinguish now two subcases on the value of β 1 , this will lead to prove [START_REF] Bertin | Accès haut débit en zone rurale: une solution "ad hoc[END_REF].

• β 1 ≥ 1.
The first tree steps of the algorithm are therefore T 1 T 2 T 3 (as in Case 1, if |T 3 | = 0 then the third step is idle). Let T ′ be the tree resulting after T 1 T 2 T 3 .

From [START_REF] Gupta | Vishal Chowdhary: Efficient gathering of correlated data in sensor networks[END_REF] and recalling that τ

′ 1 = τ 1 -3 ≥ τ 2 -3 = τ ′ 2
, we obtain that in the tree T ′ :

T ′ 1 ≺ T ′ 2 ;
recalling that τ ′ 4 = τ 4 ≤ τ 3 (in the case |T 4 | = 0) and by using [START_REF] Gasieniec | Time efficient centralized gossiping in radio networks[END_REF] we have that

if |T 3 | ≥ 1 then T ′ 2 ≺ T ′ 3 , T ′ 4 .
Hence, after the first 3 steps the algorithm on T proceeds as on input T ′ . For T ′ we have:

T ′ 1 ≺ T ′ 2 ≺ T ′ 3 or T ′ 1 ≺ T ′ 2 ≺ T ′ 4 = T 4 ≺ T ′ 3 .
Moreover,

|T ′ | = |T |- 3 if |T 3 | > 0 2 otherwise , ǫ T ′ = ǫ T = 0 (since |T 1 | = |T 2 |), τ ′ 1 = τ 1 -3 (since β 1 > 0). ∆ ′ 1,2 = ∆ 1,2 -3, ∆ ′ 2,1 = ∆ 2,1 -3, ∆ ′ 1,3 = ∆ 1,3 -3 if |T 3 | > 0; Moreover, if T ′′ 2 ≺ T ′′ 1 τ ′′ 2 = τ 2 -3 ≤ τ 1 -3 ≤ ∆ 2,1 -4 = M ax(T) -4.
Finally,

∆ ′′ 1,2 , ∆ ′′ 1,3 , ∆ ′′ 1,4 < |T ′′ | (since β 1 = 0), ∆ ′′ 2,1 = ∆ 2,1 -4,
and, by Fact 3,

∆ ′′ 2,3 , ∆ ′′ 2,4 ≤ |T ′′ 2 | + |T ′′ 3 | + |T ′′ 4 | + β ′′ 2 -1 ≤ |T ′′ 2 | + |T ′′ 3 | + |T ′′ 4 | + |T ′′ 1 | -3 < |T ′′ |.
Notice that ∆ ′′ 1,3 and ∆ ′′ 2,3 are to be considered if

|T ′′ 3 | > 0, and ∆ ′′ 1,4 and ∆ ′′ 2,4 if |T 4 | > 0.
Summarizing, it holds M ax(T ′′) ≤ ∆ 2,1 -4 = M ax(T) -4. Therefore,

T (T) = 4 + (T ′′) ≤ 4 + M ax(T ′′) ≤ M ax(T). Case 3: M ax(T) = ∆ 1,3 > max{τ 1 + ǫ T , |T |}.
In this case we have β 1 > 1, otherwise ∆ 1,3 ≤ |T |; hence, the first tree steps of the algorithm are

T 1 T 2 T 3 .
By definition of ∆ 1,3 and using Fact 4, we get like in Case 1

|T | -|T 1 | -|T 3 | < β 1 -1, (20)
|T 1 | < |T 3 |. (21)
By [START_REF] Intanagonwiwat | Directed diffusion for wireless sensor networking[END_REF] and Fact 1, we get

τ 3 ≤ τ 2 ≤ 3|T 2 | -3 ≤ 3(|T | -|T 1 | -|T 3 |) -3 ≤ 3β 1 -9 ≤ (τ 1 -3) -9 = τ 1 -12.
from which it follows

τ ′ 2 ≤ τ 2 ≤ τ 1 -12 ≤ τ ′ 1 -9, τ ′ 3 ≤ τ 3 ≤ τ 2 ≤ τ ′ 1 -9. (22)
Moreover, if |T 4 | ≥ 1 then by (20) and (21) we have

|T 3 | ≥ |T 1 | + 1 ≥ β 1 + α 1 + 2 ≥ β 1 + 3 ≥ (|T | -|T 1 | -|T 3 |) + 5 ≥ |T 2 | + |T 4 | + 5;
which, by Fact 1 (recall that β 1 > 1 implies |T 1 | > 3 and so by (21), we have |T 3 | > 4), implies

τ 3 ≥ 2|T 3 | -1 ≥ 2(|T 2 | + |T 4 |) + 9 ≥ 4 min{|T 2 |, |T 4 |} + 9.
By Definition 6, we trivially have 4|T 4 | ≥ τ 4 and 4|T 2 | ≥ τ 2 ≥ τ 4 ; then we get

τ 2 ≥ τ 3 ≥ τ 4 + 9. (23)
Let T ′ be the tree resulting after T 1 T 2 T 3 . Recalling that β 1 ≥ 2 and using (22) and (23), we have

τ ′ 1 = τ 1 -3, τ 4 < τ ′ 2 ≤ τ 2 ≤ τ ′ 1 -9, τ 4 < τ ′ 3 ≤ τ 3 ≤ τ 2 ≤ τ ′ 1 -9. (24
)
From this we obtain that the only possible orderings of the first subtrees of T ′ are:

T ′ 1 ≺ T ′ 2 T ′ 3 , T ′ 1 ≺ T ′ 3 ≺ T ′ 2 .
We notice that both sequences of steps

T 1 T 2 T 3 T ′ 1 T ′ 2 T ′ 3 and T 1 T 2 T 3 T ′ 1 T ′ 3 T ′ 2 are possible
during the execution of the algorithm on T . Hence, after the first 3 steps, the algorithm on T proceeds as on input

T ′ ; indeed if T ′ 3 ≺ T ′ 2 , Fact 6 implies β 3 = 0.
For T ′ we have: 22) and (24)), τ ′ 1 = τ 1 -3 (by (24)),

|T ′ | = |T | -3, ǫ T ′ = ǫ T = 0 (by (
∆ ′ 1,2 ≤ ∆ 1,2 -3, ∆ ′ 2,1 ≤ ∆ 2,1 -3 if β 2 > 0, |T ′ | otherwise. Furthermore, if T ′ 2 ≺ T ′ 3 then ∆ ′ 1,3 ≤ ∆ 1,3 -3, if otherwise T ′ 3 ≺ T ′ 2 then
, by Fact 6, we have that β 3 = 0 and

∆ ′ 3,1 = |T ′ 3 | + |T ′ 1 | -1 < |T ′ |.
In conclusion, M ax(T ′) ≤ M ax(T) -3 and

T (T) = 3 + T (T ′) ≤ 3 + M ax(T ′) ≤ M ax(T).
Case 4: M ax(T) = max{τ 1 + ǫ T , |T |}.

Let k be the largest integer such that the first k distinct steps of the algorithm are

T 1 T 2 . . . T k ,
and, letting T ′ be the tree resulting after T 1 T 2 . . . k , it holds T k+1 T ′ i , for some 1 ≤ i ≤ k.

Therefore the k first trees are different and the (k + 1)-th has been already chosen.

• assume that either ≥ 4 or k = 3 and

T 3 T ′ 1 , T ′ 2 .
Let the ordering on T ′ be such that T ′ i has the largest shade among all the subtrees of T ′ , followed by T ′ j and by some T ′ ℓ , i.e.,

T ′ i T ′ j T ′ ℓ .
Moreover, we have that during the execution of the algorithm on T , any sequences of steps

T 1 T 2 . . . T k T ′ i T ′ j is possible, for any 1 ≤ i ≤ k -1 and j = i. Indeed a)
Any of the subtrees T ′ 1 , T ′ 2 , . . . , T ′ k-2 is available at step k +1 and i can assume any value among 1, . . . , k -2. Moreover, if

T ′ k-1 ≺ T ′ 1 then Fact 6 implies β k-1 = 0; hence T ′ k-1 is available at step k + 1 and i = k -1 can hold. b) if either T ′ k ≺ T ′ 1 or T ′ k ≺ T ′ 2
then by Fact 6 we have β k = 0, and this implies that T ′ k is available at step k + 2 and j can assume value k.

We now distinguish two cases according to the value of i.

-Let i ≤ k -1.
By a) and b), we have that after the first k steps T 1 T 2 . . . T k , the algorithm on T proceeds as on input T ′ . For T ′ we

|T ′ | = |T | -k, τ ′ = τ i 2 = τ 1 -3 if i ≥ 2 (by Fact 6), τ ′ 1 = τ 1 -3 if β 1 ≥ 1 τ ′ 1 = τ 1 -2 if β 1 = 0.
furthermore, Fact 7),

β 1 , β 2 < |T 3 |, . . . , |T k | ; β 1 < |T 2 | (by
β i = β j = 0 when 2 ≤ i ≤ k -1 and 3 ≤ j ≤ k (by Fact 6 since T ′ i T ′ j ≺ T ′ 1 or T ′ 2), β j ≤ |T 1 | -2, |T 2 | -2 for j > k (by Fact 3 since T 1 , T 2 T j).
These inequalities imply that

∆ ′ i,j , ∆ ′ j,i , ∆ ′ i,ℓ ≤ |T ′ |.
Hence,

M ax(T ′) = max{|T ′ |, τ ′ i + ǫ T ′ } ≤      max{|T | -k, τ 1 -3 + ǫ T ′ } if i ≥ 2 or i = 1 and β 1 ≥ 1, max{|T | -k, τ 1 -2 + ǫ T ′ } if i = 1 and β 1 = 0. By i) of Fact 7, we have that |T | -k ≥ τ 1 -2; therefore, M ax(T ′) = |T | -k unless i = 1,
β 1 = 0, and ǫ T ′ = 1.
us consider then i = 1, β 1 = 0, and

T ′ 1 = T ′ j (so T 1 = T j This implies that |T | ≥ |T 1 | + . . . + |T j | + . . . + |T k | ≥ 2|T 1 | + k -2 = 2(α 1 + 1) + k -2 = 2α 1 + k = τ 1 + k -1
and M ax(T ′) = |T |k, holds also in this case.

Using the inductive hypothesis on T ′ , we can then conclude that

T (T) = k + T (T ′) ≤ k + M ax(T ′) ≤ |T | ≤ M ax(T).
-Let i = k.

In this case we have

T ′ k ≺ T ′ 1 , T ′ 2 , . . . , T ′ k-1 .
Hence, by Fact 6 we get β 1 , . . . , β k-1 ≥ 1 and

β k = 0 that imply T ′ 1 . . . T ′ k-1 .
Since a to T ′ k cannot be set at k + 1, obtain that the first k + 1 steps of the algorithm are

T 1 T 2 . . . T k T ′ 1 .
Let T ′′ be the tree resulting after T 1 T 2 . . . T k T ′ 1 . After the first k + 1 steps, the algorithm on T proceeds as on input

T ′′ T ′′ k ≺ T ′′ j T ′′ l
(and we have j = 2 or j = k + 1)

i.e., the subtree with largest shade is T ′′ k followed by T ′′ j , T ′′ l in this order.

Moreover,

|T ′′ | = |T | -k -1, τ ′′ k = τ ′ k = τ k -2 = τ 1 -3 (by Fact 6) .
We also have ǫ T ′′ = 0. Indeed, if j = 2, then

T ′′ k ≺ T ′′ 2 and if j = k + 1, T ′′ k+1 = T ′′ k implies
T ′′ k+1 ≺ T ′ 1 and therefore T ′′ k+1 should have been chosen at step k +1 contradicting the definition of k.

∆ ′′ k,j , ∆ ′′ k,l < |T ′′ | (since β k = 0), ∆ ′′ j,k ≤ |T ′′ k | + |T ′′ j | + |T ′′ 1 | -3 ≤ |T ′′ | -3 (by Fact 3)
Hence, by using i) of Fact 7 we get M ax(T

′′) = max{|T ′′ |, τ ′′ k + ǫ T ′′ , ∆ ′′ k,j , ∆ ′′ j,k , ∆ ′′ k,l } ≤ max{|T | -k -1, τ 1 -3} = |T | -k -1 = |T ′′ | and T (T) = k + 1 + T (T ′′) ≤ k + 1 + M ax(T ′′) ≤ k + 1 + |T ′′ | = |T | ≤ M ax(T).
• Assume now that k = 3 and either T

′ 1 ≺ T 3 or T ′ 2 ≺ T 3
(here, eventually T 3 = ∅, but excluding the special base case T 3 = ∅, β 1 = 1, β 2 = 0, α 2 = α 1 + 1).

Suppose that β 1 = 0: since k = 3, we can deduce that T 3 ≺ T ′ 1 . Therefore, the hypothesis of this case implies T ′ 2 ≺ T 3 ≺ T ′ 1 . Applying Fact 6 to T 1 and T 2 , we get to the contradiction β 1 > 0. Hence, throughout this case we can assume

β 1 1 and τ ′ 1 = τ 1 -3.
We will distinguish two subcases according T 3 = ∅ or not.

-Subcase A :

T 3 = ∅ and so |T ′ | = |T | -3
After T 1 T 2 T 3 , the algorithm on T proceeds as on input T ′ where T ′ i has the largest shade among all the subtrees of T ′ , followed by T ′ j and by some T ′ l , i.e.,

T ′ i T ′ j T ′ l . (25)
Here i can be only 1 or 2; indeed Note, that if i = 2 then, applying Fact 6 to T 1 and T 2 , we get β 2 = 0 and τ ′ 2 = τ 2 -2 = τ 1 -3 and so T ′ 2 is available.

T ′ 1 or T ′ 2 ≺ T ′ 3 (
Concerning j, it can take any value at most 4 and different from i. Note that if j = 3 then T ′ 3 is available since T ′ 3 ≺ T ′ 1 or T ′ 2 and, by Fact 6, β j = 0; if j = 4 then T 4 is obviously available.

Furthermore,

∆ ′ 1,2 = ∆ 1,2 -3, ∆ ′ 2,1 ≤ ∆ 2,1 -3 if β 2 ≥ 1 |T | -3 if β 2 = 0 , ∆ ′ 1,3 ≤ ∆ 1,3 -3.
Moreover, if i = 2 (resp. j = 3) then, by Fact 6, β 2 = 0 (resp. β 3 = 0), and

∆ ′ 2,3 < |T ′ | -1, ∆ ′ 3,2 < |T ′ | -1, ∆ ′ 3,1 < |T ′ | -1.
We notice now that

ǫ T = ǫ T ′ .
Indeed, if ǫ T = 1 then having done T 1 , T 2 , ∅ implies ǫ T ′ = 1; supposing ǫ T = 0 and ǫ T ′ = 1, since β 1 ≥ 1 we would get β 1 = 1,β 2 = 0, α 2 = α 1 + 1 and the special case would hold. The above also implies

(β 1 + β 2 ≥ 2) or (β 1 = 1, β 2 = 0, α 2 < α 1 + 1)
We have then

T (T) ≤ 3 + M ax(T ′) ≤ max{|T | + 1, τ 1 + ǫ T };
and in order to show

T (T) ≤ M ax(T), it is sufficient to show |T | + 1 ≤ τ 1 + ǫ T .
Notice that as

τ i = 2|T i | + β i -1: 2|T | = 2|T 1 | + 2|T 2 | = τ 1 + τ 2 + 2 -β 1 -β 2 .
Hence

|T |+1 = τ 1 + τ 2 2 +2- β 1 + β 2 2 ≤                        τ 1 if β 1 + β 2 ≥ 3 or β 1 = 2, β 2 = 0 (here τ 2 < τ 1 holds) or β 1 = β 2 = 1, ǫ T = 0 (here τ 2 < τ 1 holds) or β 1 = 1, β 2 = 0, α 2 < α 1 + 1 (here τ 2 < τ 1 -1 holds) τ 1 + ǫ T if β 1 = β 2 = 1, ǫ T = 1.
Recall that the last inequality holds since |T | + 1 is an integer and τ 2 ≤ τ 1 .

• Finally, consider the last possible case: k = 2.

This means that the first two steps of the algorithm are T 1 T 2 and at the third step a path to T ′ 1 can be and is set (otherwise we are in the preceding subcase B). Hence, we have T ′ 1 T 3 whenever |T 3 | > 0, and

β 1 = 0, τ ′ 1 = τ 1 -2.

31

Noticing that, by Fact 6, if β 1 = 0 then T ′ 2 ≺ T ′ 1 , we distinguish two cases according to the relation between T ′ 2 and T 3 .

-If T 3 ≺ T ′ 2 then T 3 = ∅ and the only possible orderings of the subtrees of the tree T ′ are:

T ′ 1 T 3 T ′ 2 , T ′ 1 T 3 T 4 .
For T ′ we have --Subcase C: T 3 = ∅ and β 2 ≥ 2.

|T ′ | = |T | -2, ∆ ′ 1,2 , ∆ ′ 1,3 , ∆ ′ 1,
After the 4 steps T 1 T 2 T ′ 1 ∅ the algorithm on T proceeds as on input T ′′ , the possible orderings being

T ′′ 1 T ′′ 2 , T ′′ 2 T ′′ 1 .
Since β 2 ≥ 2 we have ∆ ′′ LINE-labeling (L, w, s)

• Set P = ∅, k = 1.

• while there is a non completed node, do -Let v be the node at the largest level which is not completed -Set a k-path to v in L, call it p v .

-Let P = P ∪ {p v }.

-Let w(v) = w(v) -1.

-Set k = k + min{3, level of v}.

• return (P, L), where L is the labeling induced by P.

Fig. 5b1)

 5b1 Fig. 5b1) shows an example of this case with β 1 = 3 and β 2 = 2; here ǫ T = 0, |T | = 10, τ 1 + ǫ T = 12, ∆ 1,2 = 11, ∆ 2,1 = 10, ∆ 1,3 = 0. Fig. 5b2) shows another example of this case

Fig. 5c)

 5c Fig. 5c) shows an example of this case with β 1 = 3 and α 2 = 5; here |T | = 12, τ 1 + ǫ T = 12, ∆ 1,2 = 13, ∆ 2,1 = 10, ∆ 1,3 = 0.

Fig. 5d)

 5d Fig. 5d) shows an example of this case with α 1 = 6 and β 2 = 3; here |T | = 13, τ 1 + ǫ T = 13, ∆ 1,2 = 11, ∆ 2,1 = 14, ∆ 1,3 = 0.

Fig. 5d)

 5d Fig. 5d) shows an example of this case with β 1 = 15, β 2 = 11 and α 3 = 17; here |T | = 43,

 the first three steps of the algorithm are T 1 T 2 T 3 (including the case |T 3 | = 0, in which case the third step is idle).

 by the hypothesis of this case) and, if |T 4 | > 0 then T ′ 4 ≺ T ′ 1 and T ′ 4 ≺ T ′ 2 imply that T ′ 4 should have been chosen giving k ≥ 4 a contradiction.

4 <-If T ′ 2 T 3 . 3 -- 2 |T 1 , 2 = ∆ ′ 2 , 1 = 4 , 2 < 1 . 1 T ′′ 2 . 4 , ∆ 2 , 1 - 2 , 1 =

 4233212214211242121 |T | -2 (since β 1 = 0) ∆ ′ 3,1 ≤ |T 3 | + |T 1 | + |T 2 | -4 ≤ |T | -4 (since β 3 ≤ max{0, |T 2 | -2} by Fact 3), where ∆ ′ 1,4 is to be considered only if |T 4 | > 0.Hence,M ax(T ′) = max{|T ′ |, τ ′ 1 + ǫ T ′ } = max{|T | -2, τ 1 -2 + ǫ T ′ }. So if ǫ T ′ ≤ ǫ T then we have M ax(T ′) ≤ M ax(T) -2.Suppose now that ǫ T ′ = 1 and ǫ T = 0. We haveT ′ 1 = T 3 , α 3 = α 1 -1, β 1 = 0 = β 3 and |T | ≥ |T 1 | + |T 2 | + |T 3 | = |T 2 | + 2α 1 + 1 ≥ τ 1 + 1; hence, M ax(T ′) = max{|T ′ |, τ ′ 1 + ǫ T ′ } = max{|T | -2, τ 1 -1} = |T | -2 ≤ M ax(T) -2.In any case we getT (T) = 2 + T (T ′) ≤ 2 + M ax(T ′) ≤ M ax(T).We distinguish various cases according to the values of β 2 and the existence or not of T Subcase A :β 2 = 0.Then the algorithm on T proceeds as on input T ′ starting withT ′ 1 , T ′ ′ | = |T | -2, ǫ T ′ = ǫ T ∆ ′ |T 1 | + |T 2 | -3 ≤ |T | -3, ∆ ′ 1,3 ≤ |T | -3.For T ′′ we have|T ′′ | = |T | -4, ∆ ′′ 1,j < |T ′′ | (since β 1 = 0) for j ≥ 2, ∆ ′′ 2,1 = ∆ 2,1 -4, ∆ ′′ 2,j < |T | -4 = |T ′′ | (since β 2 ≤ |T 1 | -2 by Fact 3) for j ≥ 3, ∆ ′′ |T | -4 = |T ′′ | (since β 4 ≤ |T 1 | -2 by Fact 3).To bound M ax(T ′′), we distinguish two cases according to the relation between T ′′ 2 andT ′′ First notice that ǫ T = 0 since β 1 = 0 and β 2 > 0.us first consider T ′′ Noticing thatǫ T ′′ = 1 iff β 2 = 1 and α 2 = α 1 -2and recalling the hypothesisT 3 = ∅, we have if ǫ T ′′ = 1 then |T | ≥ |T 1 | + |T 2 | + |T 3 | > |T 1 | + |T 2 | = 2α 1 + 1 = τ 1 and τ ′′ 1 + ǫ T ′′ = τ 1 -3 ≤ |T | -4 if ǫ T ′′ = 1, τ 1 -4 if ǫ T ′′ = 0.Hence,M ax(T ′′) = max{|T ′′ |, τ ′′ 1 + ǫ T ′′ , ∆ ′′ 24} ≤ M ax(T) -4 if ǫ T ′′ = 1, max{|T | -4, τ 1 -4, ∆ 2,1 -4} ≤ M ax(T) -4 if ǫ T ′′ = 0. (26)Consider now T ′′ 2 ≺ T ′′ 1 . Since T ′′ 2 = T ′′ 1 we have ǫ T ′′ = 0. Furthermore, since T 1 T 2 , β 1 = 0 and β 2 > 0 we have |T 1 | > |T 2 |. Hence, ∆ ′′ |T 1 | + |T 2 | + β 2 -5 ≥ 2|T 2 | + β 2 -4 = 3β 2 + 2α 2 + 2 -4 = τ 2 -3 = τ ′′2 (27) and M ax(T ′′) = max{|T ′′ |, ∆ ′′ 2,1 } = max{|T | -4, ∆ 2,1 -4} ≤ M ax(T) -4. (28) By (26) and (28) we have T (T) = 4 + T (T ′′) ≤ 4 + M ax(T ′′) = M ax(T).

2 , 1 = ∆ 2 , 1 -

 2121 4, ∆ ′′ 2,1 = |T ′′ 1 | + |T ′′ 2 | + β 2 -2 ≥ |T ′′ |, ∆ ′′ 1,2 < |T ′′ | and ǫ T ′′ = ǫ T = 0. So M ax(T ′′) = max{τ ′′ 1 , τ ′′ 2 , ∆ ′′ 2,1 }. If T ′′ 1 T ′′ 2 then τ ′′ 1 = τ 1 -4 and M ax(T ′′) = max{τ 1 -4, ∆ 2,1 -4} = max{τ 1 , ∆ 2,1 } -4 ≤ max{|T |, τ 1 } -4where the last inequality is by the hypothesis of Case 4.

Figure 1 :

 1 Figure 1: A tree T .

Figure 2 :

 2 Figure 2 : The SCF labeling algorithm on a line.

Figure 4 :

 4 Figure 4 : The paths set, step by step, by the TREE-coloring algorithm

Figure 5 :

 5 Figure 5: Trees for which exactly one among |T |, τ 1 + ǫ T , ∆ 1,2 , ∆ 2,1 , ∆ 1,3 is the exact bound.

 s 1), L pc (s, s 1), L p d (s, s 1), L pa (s, s 1), L ps 1 (s, s 1)} = {1, 5, 8, 11, 13},L(s, s 2) = {L pe (s, s 2), L p f (s, s 2), L pg (s, s 2), L p h (s, s 2), L p ℓ (s, s 2), L ps 2 (s, s 2)}

	= {2, 4, 6, 9, 10, 12}.
	Notice that minimizing the largest label assigned to any arc of G is equivalent to minimize the
	time needed by the algorithm. Indeed, one can just consider solutions where all labels in {1, • • • , T }
	are used: If some integer c is never used, we can decrease by 1 the value of each label c ′ ≥ c + 1 in
	the considered feasible solution.

 t subtrees' ordering k algorithm's point t-path t 1 τ 1 α 1 β 1 t 2 τ 2 α 2 β 2

					1 12 1	3 1 11 5	0
	1	T 1 ≺ T 2	1	2.2.a	(s, s 1 , a, b) 4 9	1	2	
	2	T 2 ≺ T 1	2	2.2.a	(s, s 2 , e)		4 9	4	0
	3							
	4	T 2 ≺ T 1	2	2.2.a	(s, s 2 , f)		6 7	3	0
	5	T 1 ≺ T 2	1	2.2.a	(s, s 1 , a, c) 8 6	1	1	
	6	T 2 ≺ T 1	2	2.2.a	(s, s 2 , g)		8 5	2	0
	7							
	8	T 1 ≺ T 2	1	2.2.b	(s, s 1 , a, d)			
	9		2		(s, s 2)			
	10		2		(s, s 2 , h)			
	11		1		(s, s 1 , a)			
	12		2		(s, s 2 , l)			
	13		1		(s, s 1)			

Acknowledgment

We thank the referees for their very conscientious reading of the manuscript and for their very helpful remarks.

* Partially supported by the CRC CORSO with France Telecom, by the European FET project AEOLUS † Work partially done while visiting INRIA at Sophia-Antipolis

From [START_REF] Dasgupta | Topology-aware placement and role assignment for energyefficient information gathering in sensor networks[END_REF] and [START_REF] Floreen | Exact and approximate balanced data gathering in energy-constrained sensor networks[END_REF], we obtain that:

indeed, if we assume T ′ If |T 4 | = 0 then |T ′ 4 | = 0 and we get that the only possible orderings on the the subtrees of T ′ are:

So let now |T 4 | ≥ 1. By [START_REF] Floreen | Exact and approximate balanced data gathering in energy-constrained sensor networks[END_REF] and Fact 1, we get

Since |T 3 | > 1 and |T 4 | ≥ 1, by Definition 6 we trivially have 4|T 4 | > τ 4 and 4|T 3 | > τ 3 ≥ τ 4 ; by [START_REF] Ganesan | Power-efficient sensor placement and transmission structure for data gathering under distortion constraints[END_REF] we get

From (11) and (15) and recalling that τ 1 ≥ τ 2 , we obtain that in the tree T ′ , resulting after

Hence, by the definition of ≺ (cfr. Definition 7), we get that the only possible orderings on the the subtrees of T ′ are:

Hence, after the first 3 steps, the algorithm on T proceeds as on input T ′ . To compute M ax(T ′), we will use [START_REF] Coleri | Energy Efficient Routing with Delay Guarantee for Sensor Networks[END_REF] and distinguish two cases:

Summarizing, it holds M ax(T ′) = M ax(T) -3. Therefore,

The first two steps of the algorithm are T 1 T 2 . Let T ′ be the tree resulting after T 1 T 2 .

Recalling that β 2 ≥ 2 (cfr. [START_REF] Gupta | Vishal Chowdhary: Efficient gathering of correlated data in sensor networks[END_REF]) and that if |T 3 | > 0 then τ 1 -2 > τ 3 (cfr. (18)), we obtain that the first 4 steps of the algorithm are

(where if |T 3 | = 0 then the fourth step is idle). Let T ′′ be the tree resulting after

Using [START_REF] Gasieniec | Time efficient centralized gossiping in radio networks[END_REF] we have

Hence, even if |T 3 | > 0 (and eventually |T 4 | > 0), after the first 4 steps the algorithm on T proceeds as on input T ′′ where the subtrees with largest shade are T ′′ 1 and T ′′ 2 with

followed eventually by T ′′ 3 and T ′′ 4 in some order. Moreover,

Finally, by Fact 5

Summarizing, in all the cases (for any value of h and h ′ we can have with the ordering (25))

it holds

Hence,

and in order to prove T (T) ≤ M ax(T), we point out the relation between max{|T

and thus T (T) ≤ M ax(T). So it remains to

deal with the case where both ǫ T ′ = 1 and ǫ T = 0. We will show that

and this implies that β ′ i = β ′ j . We now prove that β ′ i = β ′ j = 0 and so

Indeed, recalling Fact 6, we have: If i = 2 then β 2 = 0 and this implies β ′ 2 = 0 = β ′ j ; if i = 1 and j ≥ 3 then β j = 0 and this implies β

-Subcase B: T 3 = ∅ and so

(Recall that we are excluding the special base case

Here the algorithm, having done T 1 , T 2 , ∅ , proceeds on T as on input T ′ with either

If T ′′ 2 ≺ T ′′ 1 we have like in the above subcase B the inequality [START_REF] Zhu | Delay efficient data gathering in sensor networks[END_REF], i.e., ∆ ′′ 2,1 ≥ τ ′′ 2 ; and,

Therefore

--Subcase D: T 3 = ∅ and β 2 = 1.

If

If T 2 ≺ T ′ 1 then after the first step T 1 on T , we get that the algorithm continues as having in input a tree T corresponding to the special case considered in the base if

Hence

Conclusion

In this paper we give a relatively simple protocol for trees with w(u) = 1 packet to transmit. The results can be easily extended to the case where all the w(u) are positive (or at least there do not exist three consecutive nodes with weights 0). It might be that the algorithm is optimal for any weight function by replacing τ i with M i (see Theorem 1); but the proof seems more complicated. It will be also interesting to find the complexity of the gathering problem for general graphs without buffering (with buffering it is known to be NP-hard).

[Execute the generic step of the algorithm]

-Set a t-path to T i and call it p -P = P ∪ {p}.

-If ℓ = 1, where ℓ is the length of p, then T i is completed and M = M -{i} .

-If ℓ > 1, then t i = t + min{3, ℓ}, and update T i , i.e.: τ i = τ i -min{3, ℓ},

t = t + 1.

2.2.b else [Special case:

-Set a t-path to T 1 and call it p -Set a (t + 1)-path to s 2 and call it q 1 -Set a (t + 2)-path to T 2 and call it q 2 -P = P ∪ {p, q 1 , q 2 }.

-for i = 1 to α 1

Set a (t + 2i + 1)-path to T 1 and call it p Set a (t + 2i + 2)-path to T 2 and call it q P = P ∪ {p, q}.

-Set a (t + 2α 1 + 3)-path to s 1 and call it p -P = P ∪ {p} -M = ∅ 2.3 else t = t + 1.

return (P, L)

Figure 3 : The SCF labeling algorithm on trees