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aUniversité de Pau et des Pays de l’Adour, Laboratoire de Mathématiques et de leurs Applications - UMR CNRS 5142, Avenue de l’Université,
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Abstract

A new approach has been proposed recently to describe a system deterioration. In this new approach the authors

have considered the degradation as the sum of a gamma process and a Brownian motion, independent of the gamma

process. The Brownian motion may describe, for example, degradation measurement error. In this paper covariates

are introduced in order to take into account environmental effects or systems heterogeneity. From the observation of

n independent items at regular instants over a finite time interval, the model parameters are estimated by a two-stage

least-square method. Asymptotic properties of the estimators are provided. Finally both numerical simulations and

real data applications are supplied to illustrate our method.
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1. Introduction

Modelling the degradation of a system can be done using a stochastic process. Degradation is usually measured at

several times and may be influenced by the system environment. Thus it is necessary to account covariates describing

this environment. Degradation levels can also reflect measurement errors or, for example, minor repairs of the system.

As a consequence, a good statistical model should take into account all these sources of variation.

For certain types of degradation a process involving independent non-negative increments is appropriate, as for

example the gamma process (van Noortwijk (2009)). These kind of processes imply that the system state cannot be

improved over time, and then this system cannot return to its original state without external maintenance actions. The

gamma process can be regarded as a compound Poisson process of gamma-distributed increments in which the Poisson

rate tends to infinity and increment size tend to zero in proportion (Lawless and Crowder (2004)). It was originally

proposed by Abdel-Hameed (1975) in order to describe a degradation phenomenon. This process is frequently used in

the literature since it is preferable from the physics point of view (monotonic deterioration). Moreover the independent

increments property makes the subsequent mathematical treatment quite tractable. In several papers, covariates or

random effects have been incorporated to a gamma process in order to take into account the environment or the

individual heterogeneity. Bagdonavičius and Nikulin (2001) propose an accelerated life test (ALT) model where

covariates modify the time scale of the gamma process. Alternatively Lawless and Crowder (2004) and Crowder and

Lawless (2007) assume that the scale parameter depends on covariates and is also proportional to a random effect.

Let us recall the definition of this process in order to fix our notations. Let ξ ∈ R+ and η = (ηt)t>0 a real-valued

non-decreasing function such that η0 = 0. The stochastic process Y is a gamma process with parameters (ξ, η) if:

1. Y (0) = 0;

2. Y has independent increments;
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3. For 0 ≤ s < t,Y (t) − Y (s) is gamma distributed with parameters (ξ, ηt − ηs).

The probability distribution function of Y (t) is defined by

fY(t)(y) =
ξηt

Γ(ηt)
yηt−1e−ξy1{y≥0},

where Γ(·) is the gamma function and 1{·} is the set indicator function. A special case is mainly considered in the

literature when the function η is linear, say for instance ηt = αt. Indeed, in such case, Y is a stationary process: for any

t ≥ 0 and δ > 0, Y (t + δ) − Y (t) and Y (δ) have the same distribution. Thus Y turns to be a Lévy process. This special

case allows to do many explicit computations. Some non-linear cases have been also studied. The most common

non-linear model is obtained for ηt = αtβ. When dealing with statistical purpose the parameter β is generally assumed

to be known. Lawless and Crowder (2004) considered another case where η is defined by the Paris-Erdogan curve.

For more details on gamma processes see van Noortwijk (2009). Hereafter we only consider the linear case.

Another interesting Markov process used in the literature as a degradation model is the Wiener diffusion process

(Barker (2006); Doksum and Hóyland (1992); Wang (2010); Whitmore (1995) and Whitmore et al. (1998)). The

reason why such Markov processes (the gamma process and the Brownian motion) have been and are still extensively

used is that they belong to a class of time-dependent stochastic processes known as Lévy processes. Let us recall

some basic facts about the Wiener process. A process W is said to be a Brownian motion with drift µ and variance

σ2 if W (t) = σB (t) + µt where B is a standard Brownian motion with variance t. The process W has the following

properties:

1. W (0) = 0;

2. W has continuous sample paths;

3. W has independent increments;

4. For any 0 ≤ s < t, the random variable W (t) −W (s) has normal distribution with mean µ (t − s) and variance

σ2 (t − s).

The drawback of the Gaussian assumption is that it leads to a process with non monotone sample paths. As claimed by

Park and Padgett (2005), this is the reason why this process can be inadequate in modelling monotone deterioration.

The aim of this paper is to propose a model joining the two previously mentioned approaches (the gamma process

and the Brownian motion). Then we assume that covariates only act on the gamma process part involved in our

degradation process. Covariates are incorporated as in Bagdonavičius and Nikulin (2001). From the observation

of n independent items at regular instants over a finite time interval, the model parameters are estimated by a two-

stage least-square method. Asymptotic properties of the estimators are then provided and, finally, both numerical

simulations and real data applications are supplied to illustrate our method.

2. Degradation model

As claimed above a new approach has been proposed recently (see Bordes et al. (2010)) to describe a system

degradation, considering the following degradation process:

∀t ≥ 0 , D (t) = Y (t) + τB (t) ,

where Y is a gamma process with parameters α and ξ (as defined previously) and where B is a Brownian motion. This

model is defined for τ ∈ R and the processes Y and B are assumed to be independent. Without loss of generality, we

can assume that τ ≥ 0 since τB (t) and −τB (t) have the same distribution for all t ≥ 0.

The motivations for considering such a model are the following ones. First, this model joins the gamma process

and the Brownian motion into a single model. Indeed, it is clear that when τ = 0, this model turns to be a gamma

process. Moreover, if α/ξ tends to b > 0 and α/ξ2 tends to 0, then this model converges weakly to a Brownian motion

with positive drift b. Second, measurements of degradation levels reflect measurement errors. Hence, the role of

Brownian motion in this model can be interpreted as measurement errors. Finally, our model can take into account

minor repairs carried out on the system over time that can be responsible of non-monotone degradation. Using this
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model Bordes et al. (2010) assume that n independent items are observed at irregular instants and provide estimators

of the model parameters using the moment method approach.

In this paper, we assume that covariates act on the gamma process part involved in our degradation process.

Covariates are integrated as in Bagdonavičius and Nikulin (2001). Thus if xT =
(
x(1), . . . , x(p)

)
is a vector of p

covariates, conditionally on x our model is defined by

∀t ≥ 0, Dx (t) = Y
(
teβ

T x
)
+ τB (t) ,

where β =
(
β1, . . . , βp

)T
is a vector of unknown parameters. It follows that Y is a stationary gamma process with scale

parameter ξ and shape parameter αeβ
T x. Moreover, we assume that the covariates vector x is an observed value of

a random vector X having density function fX with respect to a σ-finite measure µp on R
p and we denote by FX its

distribution function.

To end this section, we introduce some simulations of the proposed degradation process. Here we consider that

items are subject to a one dimensional covariate. This covariate can take one of three possible values corresponding

to three different solicitations (low, medium and high stress levels). For instance, it can be the temperature as in

NIST/SEMATECH (2010). On Figure 1, simulated trajectories are plotted (dotted lines), along with the three averages

of degradations (solid lines). Parameters are set to ξ = 1, α = 2, β = (−0.5, 0, 0.4) and τ2 = 1.

Figure 1: Simulation example

One can observe that items have to be monitored over a sufficient long time interval in order to make appear the

three distinct groups. Of course, this ”optimal” time interval depends on parameters values which are unknown when

considering real applications.

3. Parameter estimation

We denote by D
(1)
x1
, . . . ,D

(n)
xn

n independent degradation processes such that for any i ∈ {1, . . . , n} and for any t ≥ 0,

D(i)
xi

(t) = Y (i)
(
teβ

T xi

)
+ τB(i) (t) ,

where D
(1)
x1
, . . . ,D

(n)
xn

have the same distribution as Dx in Section 2 and x1, . . . , xn are n independent and identically

distributed (i.i.d.) realizations of X. We suppose that we observe the process D
(i)
xi

at regular instants t j = jT/N for
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j ∈ {0, . . . ,N}. For any 1 ≤ j ≤ N and k > 0, we denote by m
(k)
θ

(xi) the k-th moment of increments

∆D(i)
xi

(
t j

)
= D(i)

xi

(
t j

)
− D(i)

xi

(
t j−1

)
,

where θ =
(
θ(1), θ(2)

)
=

(
(γ, β) ,

(
α, τ2

))
with γ = α/ξ. We assume that θ belongs to Θ = Θ1 × Θ2 ⊂

(
R
∗
+ × R

p
) ×

(
R
∗
+ × R+

)
the parameter space of the model. In the sequel we denote by θ0 =

(
θ

(1)

0
, θ

(2)

0

)
=

(
(γ0, β0) ,

(
α0, τ

2
0

))
the true

value of the model parameter. Hereafter we denote by Eθ
[
ϕ (Dx(t))

]
the conditional mean Eθ

[
ϕ (DX(t)) |X = x

]
for

any real-valued measurable function ϕ.

The first moment is equal to

m
(1)
θ

(xi) = Eθ

[
∆D(i)

xi

(
t j

)]
= Eθ

[
∆D

(i)
Xi

(
t j

)
|Xi = xi

]

=
γT

N
eβ

T xi = m
(1)

θ(1) (xi) .

The second moment is equal to

m
(2)
θ

(xi) = Eθ

[(
∆D(i)

xi

(
t j

))2
]
= Eθ

[(
∆D

(i)
Xi

(
t j

))2
|Xi = xi, θ

(1)
]

= m
(1)

θ(1) (xi)
γ

α
+

(
m

(1)

θ(1) (xi)
)2
+ τ2T/N = m

(2)

θ(2)

(
xi, θ

(1)
)
.

To estimate θ(1) = (γ, β), we minimize the following first regression function

d
(n)

1

(
θ(1)

)
=

n∑

i=1

N∑

j=1

(
∆D(i)

xi

(
t j

)
− m

(1)

θ(1) (xi)
)2
=

n∑

i=1

N∑

j=1

(
∆D(i)

xi

(
t j

)
− γT

N
eβ

T xi

)2

.

Then we set θ̂
(1)
n = arg min

θ(1)∈Θ1

d
(n)

1

(
θ(1)

)
. Once this parameter is estimated, we estimate θ(2) =

(
α, τ2

)
by minimizing

the following second regression function

d
(n)

2

(
θ(2), θ̂(1)

n

)
=

n∑

i=1

N∑

j=1

([
∆D(i)

xi

(
t j

)]2
− m

(2)

θ(2)

(
xi, θ̂

(1)
n

))2

=

n∑

i=1

N∑

j=1

([
∆D(i)

xi

(
t j

)]2
− m

(1)

θ̂
(1)
n

(xi)
γ̂

α
−

(
m

(1)

θ̂
(1)
n

(xi)
)2

− τ2T/N

)2

.

As a consequence θ(2) is estimated by θ̂
(2)
n = arg min

θ(2)∈Θ2

d
(n)

2

(
θ(2), θ̂

(1)
n

)
. The final estimator of θ is therefore θ̂n =

(
θ̂

(1)
n , θ̂

(2)
n

)
. At each stage of our approach, estimators are obtained numerically by using a differentiable optimization

method.

4. Theoretical results

First we denote by d(n) (θ) and d (θ) the two following matrices below:

d(n) (θ) =
1

nN


d

(n)

1

(
θ(1)

)

d
(n)

2

(
θ(2), θ(1)

)
 and d (θ) =


d1

(
θ(1)

)

d2

(
θ(2), θ(1)

)
 ,

where it is established in the proof of Theorem 2 that d1 and d2 are respectively the almost sure limits of d
(n)

1
and d

(n)

2
,

and are respectively defined by:

d1

(
θ(1)

)
=

∫

Rp

Eθ0

[
Dx

(
T

N

)
− m

(1)

θ(1) (x)
]2

fX(x) dµp (x) ,

and

d2 (θ) = d2

(
θ(2), θ(1)

)
=

∫

Rp

Eθ0

[
D2

x

(
T

N

)
− m

(2)

θ(2)

(
x, θ(1)

)]2

fX(x) dµp (x) .
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4.1. Consistency

Let us prove the consistency of
(
θ̂n

)
n≥1

. First we need to show the following lemma. In the sequel ‖ · ‖ denotes the

Euclidean norm.

Lemma 1. Assume that the following conditions are fulfilled:

1. Θ is a compact set;

2. For i ∈ {1, 2}, the application θ 7−→ di (θ) is continuous and satisfies:

• di (θ) ≥ 0 for all θ ∈ Θ,

• d1 and d2 admit unique minima at θ
(1)

0
∈ Θ̊1 and θ0 ∈ Θ̊ respectively.

3. sup
θ∈Θ
‖d(n) (θ) − d (θ) ‖ Pr−−−−→

n→∞
0.

Then, as n tends to infinity, (θ̂n)n≥0 converges in probability to θ0.

P. To ensure that θ̂n converges in probability to θ0, we have to prove that θ̂
(1)
n (respectively θ̂

(2)
n ) converges in

probability to θ
(1)

0
(respectively θ

(2)

0
). First let us check that θ̂

(1)
n

Pr−−−−→
n→∞

θ
(1)

0
.

Without loss of generality, we assume that d1

(
θ

(1)

0

)
= 0. Θ1 is a compact set and B

(
θ

(1)

0
, ǫ

)
⊂ Θ1 is the open ball

with center θ
(1)

0
and radius ǫ > 0. By Assumption 2 there exists η > 0 such that

∀ θ(1) ∈ Bc
(
θ

(1)

0
, ǫ

)
, d1

(
θ(1)

)
≥ η.

Then, if θ̂
(1)
n ∈ Bc

(
θ

(1)

0
, ǫ

)
, we have

d
(n)

1

(
θ̂(1)

n

)
≥ η − sup

θ(1)∈Θ1

∣∣∣∣d(n)

1

(
θ(1)

)
− d1

(
θ(1)

)∣∣∣∣ . (1)

Since θ̂
(1)
n = arg min

θ(1)∈Θ1

d
(n)

1

(
θ(1)

)
and d1

(
θ

(1)

0

)
= 0, we have

d
(n)

1

(
θ̂(1)

n

)
≤ sup
θ(1)∈Θ1

∣∣∣∣d(n)

1

(
θ(1)

)
− d1

(
θ(1)

)∣∣∣∣ . (2)

Inequalities (1) and (2) implies that

{
‖θ̂(1)

n − θ
(1)

0
‖ > ǫ

}
⊆

η < 2 sup
θ(1)∈Θ1

∣∣∣∣d(n)

1

(
θ(1)

)
− d1

(
θ(1)

)∣∣∣∣
 .

and then

Pθ(1)

[
‖θ̂(1)

n − θ
(1)

0
‖ > ǫ

]
≤ Pθ(1)

 sup
θ(1)∈Θ1

∣∣∣∣d(n)

1

(
θ(1)

)
− d1

(
θ(1)

)∣∣∣∣ > η/2
 .

Hence we conclude by Assumption 3 that

lim
n−→∞

Pθ(1)

[
‖θ̂(1)

n − θ
(1)

0
‖ > ǫ

]
= 0,

which means that θ̂
(1)
n

Pr−−→ θ(1)

0
. Next, let us check that θ̂

(2)
n

Pr−−→ θ(2)

0
. Similarly as above Θ2 is a compact set and

B
(
θ

(2)

0
, ǫ

)
⊂ Θ2 is an open ball with center θ

(2)

0
and radius ǫ > 0. By Assumptions 1 and 2 there exists η̃, ǫ̃ > 0 such

that

∀ θ =
(
θ(1), θ(2)

)
∈ Bc (θ0, ǫ̃) , d2 (θ) ≥ η̃.
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Without loss of generality, we assume that d2

(
θ

(1)

0
, θ

(2)

0

)
= 0. Then, for any θ̂n ∈ Bc (θ0, ǫ̃), we have

d
(n)

2

(
θ̂(1)

n , θ̂
(2)
n

)
≥ η̃ − sup

θ∈Θ

∣∣∣d(n)

2
(θ) − d2 (θ)

∣∣∣ . (3)

Because θ̂
(2)
n = arg min

θ(2)∈Θ2

d
(n)

2

(
θ̂(1), θ(2)

)
we have

d
(n)

2

(
θ̂(1)

n , θ̂
(2)
n

)
≤ sup
θ∈Θ

∣∣∣d(n)

2
(θ) − d2 (θ)

∣∣∣ + d2

(
θ̂(1)

n , θ
(2)

0

)
. (4)

Inequalities (3) and (4) implies that

{
‖θ̂(2)

n − θ
(2)

0
‖ > ǫ

}
⊆

{
η̃ < 2 sup

θ∈Θ

∣∣∣d(n)

2
(θ) − d2 (θ)

∣∣∣ + d2

(
θ̂(1)

n , θ
(2)

0

)}
,

and then

Pθ

[
‖θ̂(2)

n − θ
(2)

0
‖ > ǫ

]
≤ Pθ

[
η̃/2 < sup

θ∈Θ

∣∣∣d(n)

2
(θ) − d2 (θ)

∣∣∣ + d2

(
θ̂(1)

n , θ
(2)

0

)]
.

By Assumption 3 we have

sup
θ∈Θ

∣∣∣d(n)

2
(θ) − d2 (θ)

∣∣∣ Pr−−−−→
n→∞

0.

Since θ̂
(1)
n

Pr−−−−→
n→∞

θ
(1)

0
and d2 is continuous at θ0, it follows that d2

(
θ̂

(1)
n , θ

(2)

0

) Pr−−−−→
n→∞

0. Thus we obtain that θ̂
(2)
n

Pr−−→ θ(2)

0
. �

Next, we prove that Assumptions 2 and 3 of Lemma 1 are satisfied in our set-up, leading to consistency.

Theorem 2. Under the following assumptions:

(A1) Θ is a compact set such that θ0 ∈ Θ̊ and β0 , 0;

(A2) X is a bounded random vector;

(A3) LetA ⊂ R
p such that µp

(
A

)
= 0. There exist x1, . . . , xp+1 ∈ A such that

a) ∀i ∈ {1, . . . , p + 1} , fX (xi) > 0

b) For any i ∈ {1, . . . , p + 1} we set x̃T
i
=

(
1 xT

i

)
. Then x̃1, . . . , x̃p+1 are linearly independent.

we have θ̂n
Pr−−−−→

n→∞
θ0.

P. To show that θ̂n converges in probability to θ0 we must check Assumptions 2 and 3 of Lemma 1 since Θ is a

compact set by Assumption (A1). We begin by showing that for i ∈ {1, 2}, θ 7−→ di (θ) is a continuous map.

θ(1) 7−→ d1

(
θ(1)

)
is continuous. We have

d1

(
θ(1)

)
=

∫

Rp

Eθ0

(
Dx

(
T

N

)
− m

(1)

θ(1) (x)
)2

dFX(x)

=

∫

Rp

Eθ0

((
Dx

(
T

N

)
− m

(1)

θ
(1)
0

(x)
)
+

(
m

(1)

θ
(1)
0

(x) − m
(1)

θ(1) (x)
))2

dFX(x)

= d1

(
θ

(1)

0

)
+

∫

Rp

(
m

(1)

θ
(1)
0

(x) − m
(1)

θ(1) (x)
)2

dFX(x).

As d1

(
θ

(1)

0

)
is a constant, let us check the continuity of θ(1) 7−→

∫
Rp

(
m

(1)

θ
(1)
0

(x) − m
(1)

θ(1) (x)
)2

dFX(x).We denote by

f
(1)

θ(1) (x) =

(
γ0T

N
eβ

T
0

x − γT
N

eβ
T x

)2

fX (x) .

6



For any x ∈ R
p, θ(1) 7−→ f

(1)

θ(1) (x) is a continuous function and can be bounded as follows:

∣∣∣ f (1)

θ(1) (x)
∣∣∣ ≤

(
γ0T

N
e‖β0‖.‖x‖ +

γT

N
e‖β‖.‖x‖

)2

fX (x) .

As θ(1) ∈ Θ1 a compact set, then there exist two constants k1, k2 > 0 such that

∣∣∣ f (1)

θ(1) (x)
∣∣∣ ≤ k1ek2‖x‖ fX (x) .

Using Assumption (A2) we deduce that

∣∣∣ f (1)

θ(1) (x)
∣∣∣ ≤ C1 fX (x) ∈ L1

(
µp

)

where C1 is a constant. Hence, applying the dominated convergence theorem, we obtain the continuity of

θ(1) 7−→
∫

Rp

f
(1)

θ(1) (x) dFX (x) .

Finally we deduce that θ(1) 7−→ d1

(
θ(1)

)
is a continuous map. We obtain similarly the continuity of θ =

(
θ

(1)

0
, θ(2)

)
7−→

d2 (θ). Next we prove that d1 admits a unique minimum at θ
(1)

0
.

d1 admits a minimum at θ
(1)

0
∈ Θ̊1. We have

d1

(
θ(1)

)
= d1

(
θ

(1)

0

)
+

∫

Rp

(
m

(1)

θ
(1)
0

(x) − m
(1)

θ(1) (x)
)2

dFX(x).

Thus we deduce that for any θ(1) ∈ Θ1, d1

(
θ

(1)

0

)
≤ d1

(
θ(1)

)
since

∫
Rp

(
m

(1)

θ
(1)
0

(x) − m
(1)

θ(1) (x)
)2

dFX(x) ≥ 0.

Uniqueness of θ
(1)

0
. We see that d1

(
θ

(1)

0

)
= d1

(
θ(1)

)
if

∫
Rp

(
m

(1)

θ
(1)
0

(x) − m
(1)

θ(1) (x)
)2

dFX(x) = 0. Thus to check the

uniqueness of θ
(1)

0
, first note that:

∫

Rp

(
m

(1)

θ
(1)
0

(x) − m
(1)

θ(1) (x)
)2

dFX(x) =

∫

Rp

(
γ0eβ

T
0

x − γeβT x
)2

fX(x)dµp(x) = 0.

From assumption (A3), there exist at least x1, . . . , xp+1 ∈ A ⊂ R
p such that fX (xi) > 0 and µp

(
A

)
= 0, it implies that

for any i ∈ {1, . . . , p + 1}

γ0eβ
T
0

xi = γeβ
T xi (5)

then, for i ∈ {1, . . . , p + 1}

ln γ0 + β
T
0 xi = ln γ + βT xi.

However, the last equality can be written as follows:



1 xT
1

...
...

1 xT
p+1



(
ln γ

β

)
=



ln γ0 + β
T
0

x1

...

ln γ0 + β
T
0

xp+1


⇔

(
ln γ

β

)
=



1 xT
1

...
...

1 xT
p+1



−1 

1 xT
1

...
...

1 xT
p+1



(
ln γ0

β0

)
,

because x̃1, . . . , x̃p+1 are linearly independent, we deduce that γ0 = γ and β0 = β.

7



d2 (θ) admits a minimum at θ0 ∈ Θ̊. We have

d2

(
θ

(1)

0
, θ(2)

)
= d2 (θ0) +

∫

Rp

(
m

(2)

θ
(2)
0

(
x, θ

(1)

0

)
− m

(2)

θ(2)

(
x, θ

(1)

0

))2

dFX (x) .

Thus we deduce that ∀θ(2) ∈ Θ2, d2 (θ0) ≤ d2

(
θ

(1)

0
, θ(2)

)
since

∫

Rp

(
m

(2)

θ
(2)
0

(
x, θ

(1)

0

)
− m

(2)

θ(2)

(
x, θ

(1)

0

))2

dFX (x) ≥ 0.

Uniqueness of θ
(2)

0
. We have

∫

Rp

(
m

(2)

θ
(2)
0

(
x, θ

(1)

0

)
− m

(2)

θ(2)

(
x, θ

(1)

0

))2

dFX (x)

=

∫

Rp


γ2

0
T

Nα0

eβ
T
0

x +

(
γ0T

N
eβ

T
0

x
)2

+ τ2
0

T

N
−
γ2

0
T

Nα
eβ

T
0

x −
(
γ0T

N
eβ

T
0

x
)2

− τ2 T

N


2

dFX (x)

=

∫

Rp


γ2

0
T

Nα0

eβ
T
0

x + τ2
0

T

N
−
γ2

0
T

Nα
eβ

T
0

x − τ2 T

N


2

dFX (x) = 0.

From assumption (A3), there exist at least x1, . . . , xp+1 ∈ A such that fX (xi) > 0 and µp

(
A

)
= 0, it implies that for

any i ∈ {1, . . . , p + 1}

γ2

0

α0

−
γ2

0

α

 eβ
T
0

xi = τ2 − τ2
0. (6)

In this case, if α , α0 then eβ
T
0

xi = eβ
T
0

x j for any i and j. It follows that eβ
T
0 (xi−x j) = 1 for any i , j. This implies that β0

is orthogonal to Span
{
xi − x j; 1 ≤ i < j ≤ p + 1

}
. Thus β0 = 0 which cannot hold since β0 , 0 by Assumption (A1).

Then we deduce that α = α0 and τ2 = τ2
0
. Finally we conclude that d2 (θ) admits a unique minimum at θ0 ∈ Θ̊.

In the sequel we prove a little bit more than Assumption 3 of Lemma 1 since almost sure uniform convergence

results are obtained.

Almost sure convergence of sup
θ1∈Θ1

∣∣∣∣d(n)

1

(
θ(1)

)
− d1

(
θ(1)

)∣∣∣∣ to zero. Taking into account that covariates Xi are uniformly

bounded with respect to i, we have to verify that

sup
θ(1)∈Θ1

∣∣∣∣d(n)

1

(
θ(1)

)
− d1

(
θ(1)

)∣∣∣∣

= sup
θ(1)∈Θ1

∣∣∣∣∣∣∣∣
1

n

n∑

i=1


1

N

N∑

j=1

(
∆D

(i)
Xi

(
t j

)
− m

(1)

θ(1) (Xi)
)2

 − E


1

N

N∑

j=1

Eθ0

(
∆D

(i)
Xi

(
t j

)
− m

(1)

θ(1) (Xi)
)2



∣∣∣∣∣∣∣∣
a.s.−−−−→

n→∞
0.

Let G1 =
{
w ∈ R

p+N 7−→ g
(1)

θ(1) (w) ; θ(1) ∈ Θ1 ⊂ R
p+1

}
be a collection of measurable functions indexed by a bounded

set Θ1 such that g
(1)

θ(1) is defined as follows:

g
(1)

θ(1) (Wi) = g
(1)

θ(1)

(
X

(1)
i
, . . . , X

(p)

i
,D

(i)
Xi

(t1) , . . . ,D
(i)
Xi

(tN)
)

=
1

N

N∑

j=1

(
∆D

(i)
Xi

(
t j

)
− m

(1)

θ(1) (Xi)
)2

=
1

N

N∑

j=1

(
D

(i)
Xi

(
t j

)
− D

(i)
Xi

(
t j−1

)
− γT

N
eβ

T Xi

)2

,
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where Wi =
(
X

(1)
i
, . . . , X

(p)

i
,D

(i)
Xi

(t1) , . . . ,D
(i)
Xi

(tN)
)
, for any i ∈ {1, . . . , n}, are i.i.d. random vectors in R

p+N . Thus our

goal is to check that

sup
θ(1)∈Θ1

∣∣∣∣∣∣∣
1

n

n∑

i=1

g
(1)

θ(1) (Wi) − E

[
g

(1)

θ(1) (Wi)
]
∣∣∣∣∣∣∣

a.s.−−−−→
n→∞

0, (7)

where

E

[
g

(1)

θ(1) (Wi)
]
=

∫

Rp

1

N

N∑

j=1

Eθ0

(
∆D(i)

x

(
t j

)
− m

(1)

θ(1) (x)
)2

fX(x) dµp(x)

=

∫

Rp

Eθ0

(
∆Dx

(
T

N

)
− m

(1)

θ(1) (x)
)2

fX(x) dµp(x).

We note that the convergence in (7) is true whenever G1 is Glivenko-Cantelli (van der Vaart and Wellner (1996)

or van der Vaart (1998)). Note that we have the following decomposition:

∣∣∣g(1)

θ(1) (Wi)
∣∣∣ = 1

N

N∑

j=1

(
∆D

(i)
Xi

(
t j

)
− γT

N
eβ

T Xi

)2

=

∣∣∣∣∣∣∣∣
1

N

N∑

j=1

(
∆D

(i)
Xi

(
t j

))2
− 2

N

N∑

j=1

(
∆D

(i)
Xi

(
t j

)) γT
N

eβ
T Xi +

(
γT

N
eβ

T Xi

)2

∣∣∣∣∣∣∣∣

≤ C1 (Wi) +C2 (Wi) γe
βT Xi +C3

(
γeβ

T Xi

)2
,

where C1 (Wi) and C2 (Wi) only depend on the last N components of Wi and C3 = T/N. Moreover we have that for

any w ∈ R
p+N , θ(1) 7−→ g

(1)

θ(1) (w) is a continuous function. To prove that G1 is Glivenko-Cantelli it is sufficient to show,

using Example 19.8 in van der Vaart (1998), that G1 has an integrable envelope function G1, that is:

• sup
θ(1)∈Θ1

|gθ(1) (w)| ≤ G1 (w) for all w ∈ R
p+N ,

• E [G1 (W1)] < +∞.

In this case, for γ ≤ Υ, we have

∀w ∈ R
p+N ,G1 (w) = C1 (w) +C2 (w)Υe‖β‖×‖x‖ +C3Υ

2e2‖β‖×‖x‖,

where x is the p-component sub-vector of w. Because by (A1) θ(1) = (γ, β) belongs to the compact set Θ1 and since by

(A2) we have ‖ Xi ‖ ≤ κ almost surely, we obtain

E [G1 (W1)] ≤
(
γ2T

Nα
eκ‖β‖ +

(
γT

N
eκ‖β‖

)2

+ τ2 T

N

)
+ Υ

(
γT

N
eκ‖β‖

)
eκ‖β‖ +C3Υ

2e2κ‖β‖ < +∞.

Thus it follows that G1 is Glivenko-Cantelli. By similar arguments we prove also the almost sure convergence of

sup
θ∈Θ

∣∣∣d(n)

2
(θ) − d2 (θ)

∣∣∣ to zero. Finally, applying Lemma 1 we obtain that θ̂n
Pr−−→ θ0 as n→ +∞. �

Remark 1. From Equation (6), the parameter β0 must be different from zero. Indeed if β0 = 0 both γ and β can be

identified by (5), however Equation (6) becomes

γ2
0

α0

−
γ2

0

α
= τ2 − τ2

0,

which is satisfied by many couples
(
α, τ2

)
. Hence if β0 = 0 we lose the identifiability of α and τ2.
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4.2. Asymptotic normality

We now provide the result about asymptotic normality of our estimator. First let us remark that the matrix of

partial derivatives of d
(n)

1
at θ

(1)

0
and of d

(n)

2
at θ0 can be viewed as a sum of independent random vectors



∂d
(n)

1

∂θ(1)

(
θ

(1)

0

)

∂d
(n)

2

∂θ(2)
(θ0)


=

1

n

n∑

i=1

N∑

j=1



−2T N−2eβ
T
0

xi

(
∆D(i)

xi

(
t j

)
− m

(1)

θ(1) (xi)
)

−2T N−2γ0xie
βT

0
xi

(
∆D(i)

xi

(
t j

)
− m

(1)

θ(1) (xi)
)

2T N−2γ2
0α
−2
0 eβ

T
0

xi

((
∆D(i)

xi

(
t j

))2
− m

(2)

θ(2)

(
xi, θ

(1)
))

−2T N−2
((
∆D(i)

xi

(
t j

))2
− m

(2)

θ(2)

(
xi, θ

(1)
))



=
1

n

n∑

i=1

N∑

j=1

Vxi, j.

For any n ≥ 1, we denote by:

I(1)
n (θ) =

∂2d
(n)

1

∂θ(1)∂θ(1)T

(
θ(1)

)
, I(2)

n (θ) =
∂2d

(n)

2

∂θ(2)∂θ(2)T

(
θ(1), θ(2)

)

and

I(3)
n (θ) =

∂2d
(n)

2

∂θ(1)∂θ(2)T

(
θ(1), θ(2)

)
,

three matrices. For 1 ≤ k ≤ 3, we set I
(k)
∞ (θ) = lim

n→∞
I

(k)
n (θ) (provided it exists) and we denote by

I∞ (θ0) =

(
I

(1)
∞ (θ0) 0

I
(3)
∞ (θ0) I

(2)
∞ (θ0)

)
,

which is defined in Appendix A.

Theorem 3. If (A1 − A3) and the following assumptions are fulfilled

(A4) for any θ ∈ Θ, I∞ (θ) is invertible,

(A5) for ρ1 ∈ {0, 1, 2, 4} and ρ2 ∈ {1, . . . , 7}, there exist ǫ > 0 and deterministic functions Eρ1,ρ2
such that:

sup
β∈B(β0,ǫ)

∣∣∣∣∣∣∣
1

n

n∑

i=1

x
⊗ρ1

i
eρ2β

T xi − Eρ1,ρ2
(β)

∣∣∣∣∣∣∣
−−−−−→
n−→∞

0,

where

x
⊗ρ1

i
=



1 si ρ1 = 0,

xi si ρ1 = 1,

xix
T
i

si ρ1 = 2,

xix
T
i

x⊗2
i

si ρ1 = 4.

then we have √
n
(
θ̂n − θ0

) d−−−−−→
n−→∞

N (0,M) ,

where the variance-covariance matrixM is defined by

M =
(
I−1
∞ (θ0)

)T
Σ(∞)I−1

∞ (θ0) ,

and where Σ(∞), defined in Appendix A, is the limit of Σ(n) = 1
n

n∑
i=1

N∑
j=1

Cov
(
Vxi, j

)
when n tends to infinity.

P. Applying a first order Taylor’s expansion to ∂d
(n)

1
/∂θ(1) at θ̂

(1)
n , we obtain that

∂d
(n)

1

∂θ(1)

(
θ̂(1)

n

)
= 0Rp+1 =

∂d
(n)

1

∂θ(1)

(
θ

(1)

0

)
+

∂2d
(n)

1

∂θ(1)∂θ(1) T

(
θ

(1)

n

) (
θ̂(1)

n − θ
(1)

0

)
,

10



where θ
(1)

n belongs to the line segment with extremities θ̂
(1)
n and θ

(1)

0
. Similarly, applying Taylor’s expansion to

∂d
(n)

2
/∂θ(2) at θ̂n, the vector of partial derivatives of d

(n)

2
with respect to θ(2) at θ̂n is given by:

∂d
(n)

2

∂θ(2)

(
θ̂n

)
= 0R2 =

∂d
(n)

2

∂θ(2)
(θ0) +

∂2d
(n)

2

∂θ(2)∂θ(2) T

(
θ̃n

) (
θ̂(2)

n − θ
(2)

0

)
+

∂2d
(n)

2

∂θ(1)∂θ(2) T

(
θ̃n

) (
θ̂(1)

n − θ
(1)

0

)
,

where θ̃n belongs to the line segment with extremities θ̂n and θ0.

Thus one gets that

√
n


I(1)
n

(
θ

(1)

n

)
0

I(3)
n

(
θ̃n

)
I(2)
n

(
θ̃n

)


(
θ̂(1)

n − θ
(1)

0

θ̂(2)
n − θ

(2)

0

)
= −
√

n



∂d
(n)

1

∂θ(1)

(
θ

(1)

0

)

∂d
(n)

2

∂θ(2)
(θ0)


.

Next, using Lindeberg-Feller theorem, we prove that n1/2∂d(n) (θ0) /∂θ satisfies:

√
n



∂d
(n)

1

∂θ(1)

(
θ

(1)

0

)

∂d
(n)

2

∂θ(2)
(θ0)


d−−−−−→

n−→∞
N

(
0,Σ(∞)

)
. (8)

To prove this asymptotic normality, we must check the two conditions of the Lindeberg-Feller theorem (see e.g.

van der Vaart (1998)). Let us recall the first condition of this theorem:

∀ǫ > 0,
n

n2

n∑

i=1

N∑

j=1

Eθ



((
V

(1)
xi, j

)2
+ ‖ V

(2)
xi, j
‖22 +

(
V

(3)
xi, j

)2
+

(
V

(4)
xi, j

)2
)

1

√(
V

(1)
xi , j

)2

+‖V (2)
xi , j
‖2

2
+

(
V

(3)
xi , j

)2

+

(
V

(4)
xi , j

)2

>ǫ
√

n



 −−−−−→n−→∞
0.

We have:

(
V

(1)
xi, j

)2
+ ‖ V

(2)
xi, j
‖22 +

(
V

(3)
xi, j

)2
+

(
V

(4)
xi, j

)2

=
4T 2

N4

(
1 + γ2

0‖xi‖22
)

e2βT
0

xi

(
∆D(i)

xi

(
t j

)
− m

(1)
θ1

(xi)
)2

+
4T 2

N4

1 +
γ4

0

α4
0

e2βT
0

xi


((
∆D(i)

xi

(
t j

))2
− m

(2)
θ2

(
xi, θ

(1)
))2

,

Then it follows that for any ǫ > 0

n

n2

n∑

i=1

N∑

j=1

Eθ



((
V

(1)
xi, j

)2
+ ‖ V

(2)
xi, j
‖22 +

(
V

(3)
xi, j

)2
+

(
V

(4)
xi, j

)2
)

1

√(
V

(1)
xi , j

)2

+‖V (2)
xi , j
‖2

2
+

(
V

(3)
xi , j

)2

+

(
V

(4)
xi , j

)2

>ǫ
√

n





≤ 1

n

n∑

i=1

N∑

j=1

Eθ

[[
c1

(
∆D(i)

xi

(
t j

)
− m

(1)
θ1

(xi)
)2
+ c2

((
∆D(i)

xi

(
t j

))2
− m

(2)
θ2

(
xi, θ

(1)
))2

]

× 1{∣∣∣∣∆D
(i)
xi (t j)−m

(1)
θ1

(xi)
∣∣∣∣>ǫ
√

n
2c1

}
]

+
1

n

n∑

i=1

N∑

j=1

Eθ

[[
c1

(
∆D(i)

xi

(
t j

)
− m

(1)
θ1

(xi)
)2
+ c2

((
∆D(i)

xi

(
t j

))2
− m

(2)
θ2

(
xi, θ

(1)
))2

]

× 1{∣∣∣∣∣
(
∆D

(i)
xi (t j)

)2
−m

(2)
θ2

(xi,θ(1))
∣∣∣∣∣>ǫ
√

n
2c2

}


= B
(n)

1
+ B

(n)

2

11



where, using Assumption (A2), there exist two constants C0,2 (β0) and C2,2 (β0) such that e2βT
0

xi ≤ C0,2 (β0) and

x⊗2
i

e2βT
0

xi ≤ C2,2 (β0), then c1 and c2 are equal to:

c1 =
4T 2

N4

(
C0,2 (β0) + γ2

0C2,2 (β0)
)

and c2 =
4T 2

N4

1 +
γ4

0

α4
0

C0,2 (β0)

 .

Since the Lyapunov condition implies the Lindeberg condition we prove in the sequel that B
(n)

1
+ B

(n)

2
tends to 0 as n

tends to infinity. First it is shown in the proof of Lemma 4 in Bordes et al. (2010) that E

[(
∆D

(i)
xi

(
t j

))q]
= Polq

(
∆t j

)

where Polq denotes a polynomial of order q with respect to ∆t j, the coefficients of which depend only on θ. Here the

process D
(i)
xi

is observed at regular instants. Then

Eθ

[(
∆D(i)

xi

(
t j

))q]
= Polq

(
T

N
eβ

T xi

)
.

Using Assumption (A5) it follows that

1

n

n∑

i=1

N∑

j=1

Eθ

[(
∆D(i)

xi

(
t j

))q]
=

1

n

n∑

i=1

N∑

j=1

Polq

(
T

N
eβ

T xi

)
(9)

tends to a constant independent of i. Next, for any ǫ > 0, we have:

B
(n)

1
≤ c1

√
2c1

ǫ n
√

n

n∑

i=1

N∑

j=1

Eθ

[∣∣∣∣∆D(i)
xi

(
t j

)
− m

(1)
θ1

(xi)
∣∣∣∣
3
]

+
c2

√
2c1

ǫ n
√

n

n∑

i=1

N∑

j=1

Eθ

[((
∆D(i)

xi

(
t j

))2
− m

(2)
θ2

(
xi, θ

(1)
))2 ∣∣∣∣∆D(i)

xi

(
t j

)
− m

(1)
θ1

(xi)
∣∣∣∣
]

≤ c1

√
2c1

ǫ n
√

n

n∑

i=1

N∑

j=1

Eθ

[(
∆D(i)

xi

(
t j

)
− m

(1)
θ1

(xi)
)2 (
∆D(i)

xi

(
t j

)
+ m

(1)
θ1

(xi)
)]

+
c2

√
2c1

ǫ n
√

n

n∑

i=1

N∑

j=1

Eθ

[((
∆D(i)

xi

(
t j

))2
− m

(2)
θ2

(
xi, θ

(1)
))2 (
∆D(i)

xi

(
t j

)
+ m

(1)
θ1

(xi)
)]

which tends to 0 as n tends to infinity. Indeed, by Assumption (A5) and Equality (9), we obtain that:

1

n

n∑

i=1

N∑

j=1

Eθ

[(
∆D(i)

xi

(
t j

)
− m

(1)
θ1

(xi)
)2 (
∆D(i)

xi

(
t j

)
+ m

(1)
θ1

(xi)
)]

and

1

n

n∑

i=1

N∑

j=1

Eθ

[((
∆D(i)

xi

(
t j

))2
− m

(2)
θ2

(
xi, θ

(1)
))2 (
∆D(i)

xi

(
t j

)
+ m

(1)
θ1

(xi)
)]

tend to constants independent of i. Thus, one deduces that B
(n)

1
−−−−−→
n−→∞

0. Similarly, for any ǫ > 0, we have

B
(n)

2
≤ c1

√
2c2

ǫ n
√

n

n∑

i=1

N∑

j=1

Eθ

[∣∣∣∣
(
∆D(i)

xi

(
t j

))2
− m

(2)
θ2

(
xi, θ

(1)
)∣∣∣∣
(
∆D(i)

xi

(
t j

)
− m

(1)
θ1

(xi)
)2
]

+
c2

√
2c2

ǫ n
√

n

n∑

i=1

N∑

j=1

Eθ

[∣∣∣∣
(
∆D(i)

xi

(
t j

))2
− m

(2)
θ2

(
xi, θ

(1)
)∣∣∣∣

3
]

≤ c1

√
2c2

ǫ n
√

n

n∑

i=1

N∑

j=1

Eθ

[((
∆D(i)

xi

(
t j

))2
+ m

(2)
θ2

(
xi, θ

(1)
)) (
∆D(i)

xi

(
t j

)
− m

(1)
θ1

(xi)
)2
]

+
c2

√
2c2

ǫ n
√

n

n∑

i=1

N∑

j=1

Eθ

[((
∆D(i)

xi

(
t j

))2
− m

(2)
θ2

(
xi, θ

(1)
))2 (
∆D(i)

xi

(
t j

))2
+ m

(2)
θ2

(
xi, θ

(1)
)]
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which tends to 0 as n tends to infinity. Indeed, by Assumption (A5) and Equality (9), it follows that:

1

n

n∑

i=1

N∑

j=1

Eθ

[((
∆D(i)

xi

(
t j

))2
+ m

(2)
θ2

(
xi, θ

(1)
)) (
∆D(i)

xi

(
t j

)
− m

(1)
θ1

(xi)
)2
]

and

1

n

n∑

i=1

N∑

j=1

Eθ

[((
∆D(i)

xi

(
t j

))2
− m

(2)
θ2

(
xi, θ

(1)
))2 (
∆D(i)

xi

(
t j

))2
+ m

(2)
θ2

(
xi, θ

(1)
)]

tend to constants independent of i. Thus, one deduces that B
(n)

2
−−−−−→
n−→∞

0.

Next by painful and straightforward calculations, using Assumption (A5), we check the second condition of

Lindeberg-feller Theorem:

Σ(n) =
1

n

n∑

i=1

N∑

j=1

Cov
(
Vxi, j

)
−−−−−→
n−→∞

Σ(∞)

where the entries σ
(∞)
uv (1 ≤ u ≤ v ≤ 4) of the variance-covariance matrix Σ(∞) are given in Appendix A.

Finally, we have:

√
n

(
θ̂(1)

n − θ
(1)

0

θ̂(2)
n − θ

(2)

0

)
= −


I(1)
n

(
θ

(1)

n

)
0

I(3)
n

(
θ̃n

)
I(2)
n

(
θ̃n

)


−1

√
n



∂d
(n)

1

∂θ(1)

(
θ

(1)

0

)

∂d
(n)

2

∂θ(2)
(θ0)


. (10)

Because of Theorem 2 we have θ
(1)

n

Pr−−→ θ(1)

0
and θ̃n

Pr−−→ θ0, then by (A5) we have:

lim
n−→∞


I(1)
n

(
θ

(1)

n

)
0

I(3)
n

(
θ̃n

)
I(2)
n

(
θ̃n

)
 =

(
I

(1)
∞ (θ0) 0

I
(3)
∞ (θ0) I

(2)
∞ (θ0)

)
= I∞ (θ0) ,

which is invertible by (A4). Thus, using Equality (10), Slutsky lemma, Assumption (A5) and (8), it holds that

√
n

(
θ̂(1)

n − θ
(1)

0

θ̂(2)
n − θ

(2)

0

)
d−−−−−→

n−→∞
N (0,M) ,

whereM =
(
I−1
∞ (θ0)

)T
Σ(∞)I−1

∞ (θ0) (entries of the matrices Σ(∞) and I∞ (θ0) are given in Appendix A). �

Remark 2. The matrixM can be estimated by the matrix

M̂ =
(
Î∞
−1

)T

Σ̂(∞) Î∞
−1
,

where the coefficients of matrices Î∞ and Σ̂(∞) are calculated by estimating Eρ1,ρ2
(β0) by n−1

n∑
i=1

x
⊗ρ1

i
eρ2β̂

T
n xi and θT

0
=

(
γ0, β

T
0
, α0, τ

2
0

)
by θ̂Tn =

(
γ̂n, β̂

T
n , α̂n, τ̂

2
n

)
. Another possibility is to estimate Σ(∞) by the empirical variance-covariance

matrix of vectors Vxi, j (where θ is replaced by θ̂n).

Remark 3. In the proof of the above theorem, we obtained asymptotic normality of n1/2∂d(n) (θ0) /∂θ conditional on

covariates Xi, by applying the Lindeberg-Feller theorem. It is a little bit more than necessary since Theorem 3 remains

valid in case we proceed unconditionally on the Xi’s. Indeed, assuming the Xi’s i.i.d., Assumption (A5) holds since by

classical empirical process approach we get:

sup
β∈B(β0,ǫ)

∣∣∣∣∣∣∣
1

n

n∑

i=1

x
⊗ρ1

i
eρ2β

T xi − Eρ1,ρ2
(β)

∣∣∣∣∣∣∣
−−−−−→
n−→∞

0.
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Thus using Assumptions (A1)− (A4) mentioned in Theorem 3, the two conditions of the Lindeberg-Feller theorem are

fulfilled, leading to:

√
n

(
θ̂(1)

n − θ
(1)

0

θ̂(2)
n − θ

(2)

0

)
d−−−−−→

n−→∞
N (0,M) .

5. Numerical illustration and concluding remarks

Bias and MSE.

Here we illustrate our theoretical results through Monte Carlo simulations. The model under consideration is the

same as the one we used in Section 2 to simulate a few trajectories (see Figure 1). We recall that the model parameters

were setted to: ξ = 1, α = 2, β = (−0.5, 0, 0.4) and τ2 = 1. We notice that one coordinate of β has to be fixed to

a given value in order to ensure identifiability. A classical choice here is to set β2 = 0 since it corresponds to the

medium stress level. The number of observations for each item was set to N = 10 instants between 10 and T = 100.

We have computed the empirical bias and the empirical mean squared error (MSE) for 1000 repetitions. Table 1 and

Table 2 report respectively the empirical bias and the empirical MSE for several sample sizes n. During simulations

Table 1: Empirical bias

n 20 50 100 200

γ 4.02e-4 -6.34e-4 8.55e-4 4.51e-4

β1 -1.13e-3 -2.47e-4 1.12e-3 -6.78e-4

β3 -3.56e-4 -5.61e-4 -7.44e-4 -2.69e-4

α 4.81e-1 3.08e-1 1.63e-1 8.66e-2

τ2 -5.92e-2 3.31e-2 1.88e-3 -2.47e-3

ξ 2.41e-1 1.54e-1 8.11e-2 4.32e-2

NCC 4.2% 1.3% 1.1% 0.8%

Table 2: Empirical MSE

n 20 50 100 200

γ 4.91e-3 2.17e-3 9.48e-4 5.91e-4

β1 3.58e-3 1.55e-3 7.02e-4 4.38e-4

β3 2.09e-3 8.55e-4 3.95e-4 2.44e-4

α 7.62e-1 6.42e-1 3.24e-1 1.76e-1

τ2 4.35e-1 2.99e-1 1.71e-1 1.08e-1

ξ 1.94e-1 1.61e-1 8.06e-2 4.41e-2

NCC 10.2% 3.2% 2.2% 1.2%

we have reported a few cases where the convergence of the estimation method failed (see NCC: Non Converging

Cases). We have then calculated the empirical bias and the empirical MSE deleting these cases. Based on results

given in the Tables 1 and 2 and on other results not shown here, we note that the percentage of the NCC decreases

when n increases. However, the situation is better when considering the estimation of γ. It means that the average

of degradation is well estimated whatever the sample size. It is also the case for the parameters β (covariates) and τ

(Brownian motion part). Finally, based on our simulation studies, the larger is n, the better are the estimation results

towards the bias and the MSE.

Asymptotic confidence intervals.

Table 3 summarizes an example of results obtained with 1000 simulations for n = 100,N = 10,T = 10, ξ = 1, α =

2, τ2 = 1, β1 = −0, 5, β2 = 0 and β3 = 0, 4. We estimated the model parameters and we constructed a 95% confidence

intervals for each model parameter. We observe that the true values of each model parameters belong to the limit of

Table 3: Parameter estimation and 95% confidence interval

Parameters γ β1 β3 α τ2

Estimation 2, 006 −0, 494 0, 395 2, 034 0, 991

Confidence interval [0; 4, 36] [−1, 16; 0, 17] [0, 03; 0, 75] [1.81; 2, 26] [0, 91; 1, 06]

the confidence regions.
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Non equidistant observation times.

For the model we introduced, we proposed a methodology to estimate the parameters. The procedure consists in a two-

stage least-square method, and to avoid to much complexity items were assumed to be observed at regular instants.

Of course, our methodology based on the two-stage least-square method can also be applied to items observed at

irregular instants ti j where 0 ≤ j ≤ Ni and 1 ≤ i ≤ n with i indexes items and Ni is the number of observation times

for the ith item. Indeed, to estimate θ(1) = (γ, β), we can minimize the following first regression function

d
(n)

1

(
θ(1)

)
=

n∑

i=1

Ni∑

j=1

(
∆D(i)

xi

(
ti j

)
− m

(1)
i j

(
xi, θ

(1)
))2
=

n∑

i=1

Ni∑

j=1

(
∆D(i)

xi

(
ti j

)
− γ∆ti je

βT xi

)2
,

where ∆D
(i)
xi

(
ti j

)
= D

(i)
xi

(
ti j

)
− D

(i)
xi

(
ti j−1

)
. Then we set θ̂

(1)
n = arg min

θ(1)∈Θ1

d
(n)

1

(
θ(1)

)
. Once this parameter is estimated, we

can estimate θ(2) =
(
α, τ2

)
by minimizing the following second regression function

d
(n)

2

(
θ(2), θ̂(1)

n

)
=

n∑

i=1

Ni∑

j=1

([
∆D(i)

xi

(
ti j

)]2
− m

(2)
i j

(
xi, θ̂

(1)
n , θ

(2)
))2

=

n∑

i=1

Ni∑

j=1

([
∆D(i)

xi

(
ti j

)]2
− m

(1)
i j

(
xi, θ̂

(1)
n

) γ̂
α
−

(
m

(1)
i j

(
xi, θ̂

(1)
n

))2
− τ2∆ti j

)2

.

As a consequence θ(2) is estimated by θ̂
(2)
n = arg min

θ(2)∈Θ2

d
(n)

2

(
θ(2), θ̂

(1)
n

)
. The final estimator of θ is θ̂n =

(
θ̂

(1)
n , θ̂

(2)
n

)
.

Illustrative application.

An example of degradation data can be found on-line, on the website of the National Institute of Standards and Tech-

nology (NIST/SEMATECH (2010)). In this dataset, fifteen components were tested under three different temperatures

65 ◦C, 85 ◦C and 105 ◦C corresponding respectively to regression parameters β1, β2 = 0 and β3. Degradation percent

values were read out at 200, 500 and 1000 hours. We first estimate the model parameters without integrating the co-

variate, using the method of moments proposed in Bordes et al. (2010). Then parameters of the model with covariate

are estimated using the methodology we proposed (two-stage least-square method). Table 4 summarizes results.

Table 4: Pointwise estimation for the NIST dataset

Parameters without covariate with covariate

α 2.403e-3 2.098e-3

ξ 7.599e-2 1.057e-1

τ2 7.671e-2 6.191e-2

β1 -1.251

β3 0.905

Table 5: Average degradation per unit of time

low stress medium stress high stress

5.678e-3 1.985e-2 4.907e-2

As one can expect, we obtained that β̂1 < 0 < β̂3. This is reasonable, since the interpretation of levels of the

covariate. The estimation of τ has decreased from the model without covariate to the one including covariate. Indeed

variability of the observations has been taken into account also in the covariate, implying a less important role of the

Brownian motion. Let us remark also, Table 5, that α̂eβ̂1/ξ̂ < α̂/ξ̂ < α̂eβ̂3/ξ̂ which imply that the degradation mean

increases with respect to covariates.

However we must be careful when dealing with asymptotic properties (consistency and asymptotic normality).

These asymptotic properties require stability conditions of the same type as those given in Bordes et al. (2010). Finally

we have to mention that we can construct asymptotic confidence intervals of any regular function of the parameters

using the δ-method and the estimated variance-covariance matrix mentioned in Remark 2. For example, confidence

intervals may be calculated for α/ξ2, τ2 allowing to test the gamma process with covariates versus the Brownian

motion with positive drift driven by covariates as in Bordes et al. (2010). Classical chi-square type statistics can also

be used in order to test significance (of subset) of covariates.

15



Appendix A. Calculations results

The variance-covariance matrix Σ(∞) is defined by:

σ
(∞)

11
=

4T 3γ2
0

N4α0

E0,3 (β0) +
4T 3τ2

0

N4
E0,2 (β0) ,

σ
(∞)

12
=

4T 3γ3
0

N4α0

E1,3 (β0) +
4T 3γ0τ

2
0

N4
E1,2 (β0) ,

σ
(∞)

13
=

(
8T 3γ7

0

N4α6
0

+
8T 4γ5

0
τ2

0

N5α4
0

)
E0,3 (β0) +

8T 4γ7
0

N5α5
0

E0,4 (β0) ,

σ
(∞)

14
=

(
8T 3γ3

0

N4α2
0

+
8T 4γ0τ

2
0

N5

)
E0,2 (β0) +

8T 4γ3
0

N5α0

E0,3 (β0) ,

σ
(∞)

22
=

4T 3γ4
0

N4α0

E2,3 (β0) +
4T 3γ2

0τ
2
0

N4
E2,2 (β0) ,

σ
(∞)

23
=

(
−

8T 3γ6
0

N4α4
0

−
8T 4γ4

0τ
2
0

N5α2
0

)
E1,3 (β0) −

8T 4γ6
0

N5α3
0

E1,4 (β0) ,

σ
(∞)

24
=

(
8T 3γ4

0

N4α2
0

+
8T 4γ2

0τ
2
0

N5

)
E1,2 (β0) +

8T 4γ4
0

N5α0

E1,3 (β0) ,

σ
(∞)

33
=

8T 4γ4
0τ

4
0

N5α4
0

E0,2 (β0) +

(
16T 4γ6

0
τ2

0

N5α5
0

+
24T 3γ8

0

N4α7
0

)
E0,3 (β0) +

(
16T 5γ6

0
τ2

0

N6α4
0

+
40T 4γ8

0

N5α6
0

)
E0,4 (β0) +

16T 5γ8
0

N6α5
0

E0,5 (β0) ,

σ
(∞)

34
= −

8T 4γ2
0τ

4
0

N5α2
0

E0,1 (β0) +

(
−

16T 4γ4
0τ

2
0

N5α3
0

−
24T 3γ6

0

N4α5
0

)
E0,2 (β0) +

(
−

16T 5γ4
0τ

2
0

N6α2
0

−
40T 4γ6

0

N5α4
0

)
E0,3 (β0) −

16T 5γ6
0

N6α3
0

E0,4 (β0) ,

σ
(∞)

44
=

8τ4
0T 4

N5
+

(
24T 3γ4

0

N4α3
0

+
16T 4γ2

0τ
2
0

N5α0

)
E0,1 (β0) +

(
16T 5γ2

0τ
2
0

N6
+

40T 4γ4
0

N5α2
0

)
E0,2 (β0) +

16T 5γ4
0

N6α0

E0,3 (β0) .

The matrix I∞ (θ0) is defined by:





2T 2

N2
E0,2 (β0)

2T 2γ0

N2
E1,2 (β0)

2T 2γ0

N2
E1,2 (β0)

2T 2γ2
0

N2
E2,2 (β0)


((p+1)×(p+1))

(
0 0

0 0

)

(2×2)



−
4γ3

0
T 2

N2α3
0

E0,2 (β0) −
4γ3

0
T 3

N3α2
0

E0,3 (β0) −
2T 2γ4

0

N2α3
0

E1,2 (β0) −
4T 3γ4

0

N3α2
0

E1,3 (β0)

4T 2γ0

N2α0

E0,1 (β0) +
4T 3γ0

N3
E0,2 (β0)

2T 2γ2
0

N2α0

E1,1 (β0) +
4T 3γ2

0

N3
E1,2 (β0)


(2×(p+1))



2γ4
0T 2

N2α4
0

E0,2 −
2T 2γ2

0

N2α2
0

E0,1 (β0)

−
2T 2γ2

0

N2α2
0

E0,1 (β0) 0


(2×2)



.
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