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By measuring the density fluctuations in a highly elongated weakly interacting Bose gas, we observe and
quantify the transition from the ideal gas to a quasi-condensate regime throughout the dimensional crossover
from a purely 1D to an almost 3D gas. We show that that the entire transition region and the dimensional
crossover are described surprisingly well by the modified Yang-Yang model. Furthermore, we find that at
low temperatures the linear density at the quasi-condensate transition scales according to aninteraction-driven
scenario of a longitudinally uniform 1D Bose gas, whereas athigh temperatures it scales according to the
degeneracy-driven critical scenario of transverse condensation of a 3D ideal gas.

PACS numbers: 03.75.Hh, 67.10.Ba

Low-dimensional (1D or 2D) systems can have physical
properties dramatically different to their 3D counterparts. Ex-
perimental realizations of such systems in recent years have
been particularly exciting in the field of ultracold atomic gases
[1, 2]. Here the reduction of dimensionality is achieved by us-
ing highly anisotropic trapping potentials, in which lowering
the temperature leads to “freezing” out certain motional de-
grees of freedom to the respective ground state. For situations
when the “freezing” is not perfect, an intriguing fundamental
question arises: How the low-dimensional and the 3D physics
get reconciled in the dimensional crossover?

In this paper we address this question for a weakly inter-
acting Bose gas that is confined transversely by a harmonic
trap of frequencyω⊥/2π, but is homogeneous and is in the
thermodynamic limit with respect to the longitudinal direc-
tion. The 1D regime is obtained when the thermal energy
kBT and the chemical potentialµ become much smaller than
the transverse excitation energy~ω⊥. In the absence of inter-
atomic interactions, the homogeneous 1D gas is characterised
by the absence of Bose-Einstein condensation. In the 3D limit,
however, forkBT ≫ ~ω⊥, a sharptransverse condensation
is expected: the atoms accumulate in the transverse ground
state due to the saturation of population in the transversally
excited states, yet the resulting 1D gas is still uncondensed
with respect to the longitudinal states [3]. Incorporating
weak repulsive interactions, one expects, in the 1D limit, a
smoothinteraction-driven transition from the ideal gas regime
towards the so-called quasi-condensate regime [4] character-
ized by suppressed density fluctuations while the phase still
fluctuates. Quasi-condensates can be also created in the 3D
limit [5], as observed experimentally [6, 7]. In this paper
we investigate the nature of the quasi-condensate transition
throughout the whole 1D-3D dimensional crossover.

Our study relies on the measurement of atomic density fluc-
tuations, previously used to identify the two limiting regimes –
the ideal gas and the quasi-condensate [8]. Owing to a higher
measurement precision, we now probe the transition itself,in-
cluding the crossover from a deeply 1D regime withkBT ≪
~ω⊥ to an almost 3D regime withkBT ≃ 3~ω⊥. For our pa-

rameters, the chemical potential becomes non-negligible com-
pared to~ω⊥ only in the quasi-condensate regime so that the
dimensional crossover occuring in the quasi-condensate tran-
sition is relative toT only. Although the atoms in our ex-
periment are trapped longitudinally, we probe the physics of a
longitudinallyhomogeneous gas because the longitudinal con-
finement is sufficiently weak and the density fluctuations are
measured locally. We find that the transition in the entire di-
mensional crossover is well described by the so called modi-
fied Yang-Yang model (MYYM) [9], in which the atoms in the
transverse ground state are treated using the exact thermody-
namic solution of the 1D Bose gas model with contact interac-
tions [10], whereas the atoms in the transverse excited states
are treated as independent ideal 1D Bose gases. This shows
that the quasi-condensate transition maintains its 1D physi-
cal origin even for temperatureskBT > ~ω⊥. Moreover, by
monitoring the linear density at the quasi-condensation transi-
tion, we show that the physics is continuously modified across
the dimensional crossover. In the 1D regime, the transitionis
broad, interaction-driven, and scales as expected from thethe-
ory of weakly interacting gases. In the 3D limit, the transition
is ruled by the ideal gas scenario of transverse condensation
and the transition density no longer depends on the interac-
tion strength. We give a theoretical prediction for the tempera-
ture of this dimensional crossover,TDC , and show that, unless
the interactions are extremely weak,kBTDC ∼ ~ω⊥. Dimen-
sional crossover in other ultracold gas systems has been stud-
ied both theoretically [11–14] and experimentally [15, 16], but
without comparison continuously throughout the crossover.

We conduct our experiment on an atom chip using87Rb
atoms in the|F =2,mF =2〉 hyperfine state. The on-chip cur-
rent carrying micro-wires realise an Ioffe magnetic trap with
a longitudinal oscillation frequency ranging from 5.0 Hz to8
Hz and a transverse oscillation frequency ranging from 3 kHz
to 4 kHz. An ultra-cold gas in thermal equilibrium is prepared
using rf forced evaporation. We then takein situ absorption
images of the atomic cloud using a nearly resonant laser at
λ = 780nm, as detailed in [17]. The imaging spatial reso-
lution in the object plane has an rms width of about 2µm,
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FIG. 1. Density fluctuations across the quasi-condensate transition, forkBT/~ω⊥ = 3.6 (a), 1.0 (b) and 0.09 (c). The measured atom-number
variances in individual pixels,〈δN2〉, as a function of the mean atom number〈N〉 are shown as circles, with the error bars representing the
statistical uncertainty. Different curves are the predictions from theoretical models, rescaled by the resolution factor κ = 0.53, 0.55 and0.4
for (a), (b) and (c), respectively (see text): modified Yang-Yang model (solid), ideal Bose gas (dash-dotted), quasi-condensate (dashed) and the
Poissonian shot-noise level (dotted). The two vertical gray lines give the atom numbersN1 = ∆n1 andN2 = ∆n2 (see text). The insets show
the average density profiles, together with the predictionsfrom the same models (different curves are as in the main graphs). The chemical
potentialµ0 in the trap center is deduced from the fit of the wings of the density profile to the ideal Bose gas EoS for (a), and from the peak
density and the quasi-condensate EoS for (b) and (c). The trap oscillation frequencies are:ω⊥/2π = 3.0 kHz, ω‖/2π = 8.0(5) Hz for (a-b)
andω⊥/2π = 3.9 kHz,ω‖/2π = 4.0(5) Hz for (c). The absolute temperatures areT = 510 nK (a), 160 nK (b), and 18 nK (c).

whereas the camera pixel size is∆ = 4.5µm. By summing
over the transverse pixels, we derive from the images the lon-
gitudinal atomic density profile, thus reducing the notion of a
pixel to a segment of length∆. The absolute calibration of the
density profiles is described in [17]. We perform a statistical
analysis of hundreds of images, taken under the same experi-
mental conditions: for each density profile and pixel, we ex-
tract the atom number fluctuationδN = N−〈N〉, whereN is
the measured number of atoms in the pixel and〈N〉 its mean
value. The fluctuations are binned according to〈N〉 and the
variance〈δN2〉 is computed for each bin. Finally, we subtract
the contribution of the optical shot noise, which is typically
less than 20% of the atomic fluctuations. Figure 1 shows typi-
cal results for〈δN2〉 for three different temperatures, together
with the respective average density profiles. As the images are
blurred due to finite imaging resolution, the measured fluctu-
ations are reduced by a factorκ compared to their true values.
We deduceκ from the measurement of atom numbercorrela-
tions between the adjacent pixels, as explained in [17].

For our experimental parameters, we can use the local den-
sity approximation along the longitudinal dimensionz [18],
since the correlation lengthlc of density fluctuations, the pixel
length∆, and the cloud lengthL satisfylc ≪∆≪L. Thus,
the gas contained in a pixel[z, z + ∆] is well described by
a longitudinally homogeneous system in the thermodynamic
limit, whose local chemical potential isµ(z) = µ0−V (z),
whereV (z) is the longitudinal trapping potential. The ther-
modynamic quantities can be derived from the equation of
state (EoS)n=n(µ, T ) for a longitudinally homogeneous, but
transversely trapped gas, wheren is the linear (1D) density. In
particular,〈N〉=n∆ and the atom-number fluctuations can be
calculated using the thermodynamic relation

〈δN2〉 = kBT∆(∂n/∂µ)T . (1)

Thermometry is done in two alternative ways. For hot gases

[such as in Fig. 1 (a)], assuming a perfectly harmonic longitu-
dinal potential, we deduce the temperature by fitting the wings
of the density profile to the EoS of an ideal Bose gas,

n =
1

λT

∑∞

α=1

eαµ/kBT

√
α

1

(1 − e−α~ω⊥/kBT )2
. (2)

Here,λT =
√

2π~2/mkBT is the thermal de Broglie wave-
length, and the EoS is obtained summing the contributions of
the transverse harmonic oscillator modes.

For the coldest samples, because of the lack of pixels in
the ideal-gas part of the cloud, we deduce the temperature
from the measured fluctuations in the quasi-condensate (cen-
tral) part, using Eq. (1) and the quasi-condensate EoS [19]

µ = ~ω⊥

(√
1 + 4na− 1

)

, (3)

valid in the entire 1D-3D crossover region with respect to
µ, wherea = 5.7 nm is the 3D scattering length. This
fluctuation-based thermometry has an accuracy of about20%,
representing a viable alternative to the thermometry based
on the analysis of density ripples appearing after time-of-
flight [20]. A related fluctuation-based thermometry [21, 22]
uses the knowledge of the longitudinal confining potential to
deduce the gas compressibility∂n/∂µ from the density pro-
files. Although less general because of the assumption of va-
lidity of Eq. (3), our method has the advantage to work in not
perfectly characterised longitudinal potentials, as is often the
case in atom-chip experiments [9, 23].

Onceκ andT are determined, the experimental data for the
atom number fluctuations are compared with different theo-
retical models without any further adjustable parameters.As
we see from Fig. 1, the two main regimes of a weakly interact-
ing Bose gas [18, 24] are clearly identified. First, at low〈N〉
the fluctuations follow the prediction from the ideal gas EoS
(2) (dash-dotted curve). Within this regime, but for nondegen-
erate samples, the fluctuations are Poissonian and follow the



3

shot-noise (dotted) line, as in Fig. 1 (a) for〈N〉 < 200. For
degenerate samples (in the quantum decoherent sub-regime
[18, 24]), atomic bunching due to Bose statistics raises the
fluctuations well above the shot-noise level [8, 25]. The sec-
ond main regime is the quasi-condensate regime, where den-
sity fluctuations are suppressed by the repulsive interactions.
The data in Fig. 1 indeed converge at large〈N〉 towards the
prediction of the quasi-condensate EoS (3) (dashed lines).

To describe the transition between the two main regimes,
we use the modified Yang-Yang model [9], whose EoS is

n = nY Y (µ, T ) +
∑∞

j=1
(j + 1)ne(µj , T ). (4)

Here, the first term describes the atoms in the transverse
ground state treated within the exact thermodynamic solu-
tion of the 1D Bose gas model [10], while the second term
describes the atoms in the transverse excited states, each
treated as an ideal Bose gas with a shifted chemical po-
tential µj = µ − j~ω⊥ and a linear densityne(µj , T ) =
g1/2

(

eµj/kBT
)

/λT , whereg1/2 is a Bose function. Since

a ≪ l⊥ in our experiment, wherel⊥ =
√

~/mω⊥ is the
transverse oscillator length, we useg = 2~ω⊥a [26] as the
effective 1D coupling in the MYYM.

The transition to the quasi-condensate state in a 1D gas oc-
curs when the chemical potential crosses zero [27], over a
width µt = (mg2/~2)1/3(kBT )

2/3 [25]. Neglecting corre-
lations between the different transverse states, one can expect
the excited state 1D gases to remain nearly ideal and hence the
MYYM to correctly describe the quasi-condensate transition
as long asµt≪~ω⊥, orµt/~ω⊥=[(kBT/~ω⊥)(a/l⊥)]

2/3≪
1. Sincea/l⊥ ≃ 0.03 in our experiment, the MYYM can be
expected to be valid up to temperatures significantly larger
than~ω⊥/kB. The experimental data in Fig. 1 are indeed in
remarkable agreement with the MYYM prediction in the en-
tire transition region and for all explored temperatures.

In the quasi-condensate regime, however, the MYYM un-
derestimates the fluctuations at high densities. Indeed, whenµ
is no longer negligible compared to~ω⊥, the repulsive inter-
actions produce transverse swelling of the density profile –an
effect not taken into account in the MYYM. This effect, which
is a manifestation of the dimensional crossover with respect to
µ [15], is, on the other hand, captured by the EoS (3), which
better describes the quasi-condensate regime [see Fig. 1 (b)].

To quantify the quasi-condensate transition we define the
linear densitiesn1 andn2 for which the measured fluctuations
are 20% lower than the predictions of Eqs. (2) and (3), respec-
tively. Plottingn1 andn2 againstkBT/~ω⊥ (see Fig. 2) maps
out the phase diagram and reveals the dimensional crossover
as we now explain.

In the 1D limit,kBT/~ω⊥≪1, the quasi-condensate tran-
sition is expected to occur for a degenerate gas around the
density [24, 27]

nt ≃
[

m(kBT )
2/~2g

]1/3
. (5)

This estimate can be obtained by considering the EoS of a
highly degenerate ideal Bose gasn ≃

√

m(kBT )2/2~2|µ|
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FIG. 2. Phase diagram in the 1D-3D crossover. The data at
kBT/~ω⊥ < 0.8 (> 0.8 kHz) are taken withω⊥/2π = 3.9 kHz
(= 3.0 kHz). The measured transition boundariesn1 (circles) and
n2 (squares) are plotted along with the predictions from the MYYM
(solid gray curves). The dash-dotted curve is the perturbative calcu-
lation ofn1; all other lines are as labeled (see text). The inset shows
the dimensional crossover temperatureTDC versusa/l⊥ (crosses),
fitted with a power law(a/l⊥)−2/11 (dashed line, see text).

[28], and requiring that|µ| becomes of the order of the in-
teraction energygn. In the low-temperature (1D) part of the
phase diagram, we have fitted the rhs of Eq. (5) to both then1

andn2 curves, with two different prefactorsα=0.28 and1.1,
respectively. As we see, the experimental data and the MYYM
follow the scaling law of Eq. (5) quite well in this part of the
diagram. In contrast, the scaling law of the 1D degeneracy
condition,nd=1/λT , does not account for the observed data,
which implies that the quasi-condensate transition is governed
by interactions and not by degeneracy. Note that the transi-
tion begins for a gas that is not highly degenerate, which is a
sign that the data are lying close to the crossover towards the
strongly interacting regime and which explains why the quan-
tum decoherent sub-regime barely exists in Figs. 1 (b)-(c).

In the 3D limit, kBT/~ω⊥ ≫ 1, n1 converges towards the
linear densitync⊥ corresponding to the the ideal gas scenario
of transverse condensation. This occurs when the peak 3D
densityρ0 reaches the thresholdρ0=2.612../λ3

T , giving [29]

nc⊥ = g5/2(1)(kBT/~ω⊥)
2/λT , (6)

whereg5/2(1)= 1.34... For linear densities higher thannc⊥,
atoms accumulate in the transverse ground state, although no
single quantum state is macroscopically occupied. The 3D in-
teraction parameter at the onset of condensation forT < 1 µK
is ρ0a

3 . 10−4, so that interactions have a negligible effect
in this transition. On the other hand, the rationc⊥/nt is of the
order of [(kBT/~ω⊥)(a/l⊥)

2/11]11/6. For our experimental
parameters,(l⊥/a)2/11 ≃ 1.9 so thatnc⊥/nt ≫ 1 as soon as
kBT/~ω⊥ & 3. Thus, one expects a quasi-condensate in the
transverse ground state to emerge immediately after the trans-
verse condensation. As we see from Fig. 2, Eq. (6) and the
MYYM prediction for n1 are indeed in very good agreement



4

with each other at high temperatures.
The transition width(n2 − n1)/2(n1 + n2) is 0.6 in the

1D regime and decreases as the gas becomes more 3D. Deep
in the 3D regime,n2 lacks, however, physical meaning. As
an example, for our experimental parameters and forkBT =
10~ω⊥, one expects only a small fraction of the atoms to be
in the quasi-condensate transverse mode at linear densityn2

and one expects the fluctuations to actually exceed the quasi-
condensate prediction at higher densities [30]. We also note
that in the 1D limit, the Bogoliubov theory within the quasi-
condensate regime [31] predicts that the fluctuations arein-
creased slightly when the density isdecreased – a feature seen
in the MYYM prediction [see Fig. 1 (c)], but which is not re-
solved experimentally.

In Fig. 2, the change of the scaling ofn1 fromT 2/3 [Eq. (5)]
to T 5/2 [Eq. (6)] clearly reveals the dimensional crossover.
This phase diagram depends, however, on the strength of in-
teractions through the scattering lengtha. To investigate this
dependence, we computen1 as a function ofkBT/~ω⊥, for
several values ofa/l⊥, using the standard perturbation theory
with respect to the 3D couplingg3D = 4π~2a/m, which cor-
rectly describes departures from the ideal gas regime. For the
parameters of our experiment, witha/l⊥ ≃ 0.03, this calcu-
lation (dash-dotted curve in Fig. 2) is in qualitative agreement
with the scaling from the 3D to the 1D regime. The disagree-
ment with the data is mainly due to the fact that for such a
(large) value ofa/l⊥, interactions are not negligible even at
linear densities smaller thann1 [32]. If a/l⊥ is decreased,
the crossover towards the 3D behavior takes place at a higher
temperature. More precisely,n1 converges towardsnc⊥ when
nc⊥ ≫ nt, i.e. whenkBT/~ω⊥ ≫ (a/l⊥)

−2/11. By fitting,
for eacha/l⊥, the 1D and 3D asymptotic behavior with the
scaling laws of Eqs. (5) and (6), respectively, we define the
temperature of the dimensional crossoverTDC as the point
where these asymptotes intersect. The inset of Fig. 2 shows
thatTDC scales as(a/l⊥)−2/11 as expected. We also see that
kBTDC becomes significantly larger than~ω⊥ only for ex-
tremely small values ofa/l⊥. In most experimental situations,
however,kBTDC ∼ ~ω⊥, so that the transverse condensation
leads immediately to the formation of a quasi-condensate.

In conclusion, we have mapped out the quasi-condensate
transition throughout the 1D-3D dimensional crossover, for
kBT/~ω⊥ ranging from0.06 to 3.6. We have found that,
whereas the transition is always governed by the 1D physics,
it is activated by the degeneracy-driven transverse conden-
sation in the 3D regime while it is interaction driven in the
1D regime. An extension of this work would be to perform
similar measurements in 2D gases, characterising the 2D-3D
crossover and investigating the breakdown of the scale invari-
ance [33, 34]. For 1D gases, such measurements could also
be used to investigate the crossover between the weakly and
strongly interacting regimes. More generally, this work shows
the power of fluctuation measurements as a test-bed for com-
peting theoretical models for the thermodynamic equation of
state of a given physical system.
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