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1 Introduction

The largest clique problem (LCP), is the problem to find the largest complete subgraph
of a given graph G. Let G = (V, E) be a graph. A graph g is a subgraph of G, g C G, if
its vertex set V(g) C V and its edges E(g) C E. A subgraph g = (V(g), E(g)) is complete
if for any 4,5 € V(g) then (i,j) € E(g). We will denote by K(G) the set of complete

subgraphs or cliques of G and by MazCl(G) the set of the largest cliques in G:

MazCl(G) = {g € K(G) : [V(9)| = e V(g (1)



where |B| denotes the cardinality of the set B. We call cligue number of the graph G,
w(@), the cardinality of the vertex set of any largest clique in G, i.e., w(G) = |V (g)| with
g € MaxCl(G). Solving the LCP for a given graph G(V, E) implies finding w(G), and
both problems are in fact in the same complexity class. Note that we are not strictly
following the definition in [1] since we are using the term clique also for a non maximal
complete subgraph of G. The LCP is one of the main example of N P-hard problem. It
has been proven (see e.g. [GJ] and references therein) to be polinomially equivalent to the
k-satisfiability problem and it is equivalent to many other well known difficult problems
in combinatorial optimization.

It is well known that the LCP remains difficult also when restricted to typical instances
of Erdés random graphs with finite fixed density p, i.e. of graphs with n vertices, |V| = n,
in which each pair (i,7) € V x V belongs to the edges set E with independent probability

p. In particular it is well known that in such a random graph G it is very easy to find

complete subgraphs g € K(G) of size |g| = — 1122 Z but is difficult to find cliques that exceed
this size, see below. The clique number w(G) is almost deterministic, in a sense that will
be stated more precisely below, and it is roughly speaking twice the size of the cliques that
are easy to find. Recently some progress has been made in [8] to understand the intricated
landscape of the LCP for Erdos random graph, and therefore to show why at the moment
there are no algorithms able to find cliques of a size that exceeds the easy one.

In a previous paper [6] , in collaboration with Antonio Iovanella, two of us introduced
an algorithm to find cliques inspired by the cavity method developed in the study of spin
glasses. This Markov Chain Monte Carlo exhibits very good numerical performances, in
the sense that, although asymptotically it is not able to find cliques larger than the easy
ones, for finite size effects it find cliques very near to the largest also for quite large graphs.
The idea of the algorithm is the following: starting from a non feasible (i.e. non clique)
configuration o of k vertices of V, the algorithm chooses the next configuration assigning
to each new set o’ of k vertices of V a probability proportional to e~ [HO(""’/)*h(k*q(""’/m,
where [ is a parameter called inverse temperature. The function Hy is a non negative
quantity defined by the number of missing edges between the two configurations, i.e. the
number of pairs (i,7) with ¢ € o, j € ¢/ and i # j such that (i,7) ¢ F(G). The quantity
q(o,0’) represents the overlap between o and ¢’ and then k — ¢(o,0’) is the number of

vertices in ¢’ that are not in o. The transition probabilities depend therefore also on the



positive parameter h.

The presence of GHy in the transition probabilities, when [ is large, makes very low
the probability to reach new configurations ¢’ that are badly connected with o, while a
large h depresses the configurations ¢’ with many different vertices with respect to o.

From a statistical mechanics point of view the dynamics above has various interesting
features. First, the dynamics is conservative, since it is defined on the space of configura-
tions with k vertices, moreover since the whole configuration can be renewed in a single
step the resulting MCMC can be considered a canonical (or conservative) probabilistic
cellular automaton (PCA). Rigorous results on canonical PCA are quite rare in the liter-
ature. Second, H(o,0") = Hy + h(k — q) is in some sense the Hamiltonian of a disordered
system of pair of configurations, and the combined action of Hy and h(k— ¢) makes the en-
ergy landscape quite complicate. Third, good numerical performances stimulate a deeper
understanding of the dynamics.

For this reasons we decided to study in more detail the statistical mechanical system
described by the chain in the case of random graphs. We prove several results. First of
all it can be proved rigorously that for suitable values of k, including the interesting case
k = w(G), the annealed analysis corresponds to the quenched one.

Then it can be proved the existence in the plane (3, h) of a nontrivial phase diagram.
More precisely, the system exhibits a first order phase transition while the pair 3, h crosses
a line h.(83). At h > h.() the phase is characterized by pairs of configurations o, ¢’ with
o = ¢’ and with a given density of missing links in o, depending on 3. At h < h.(3) the
phase is characterized by pairs of disjoint configurations o, 0’ with again a particular value
for the density of missing links between ¢ and ¢’ depending on fS.

Moreover, in the region below the critical line h.(3), a second phase transition is
present, and again it has a transparent “physical” interpretation: for temperature T =
% below a critical value T, the system tend to oscillate indefinitely between two fixed
configurations ¢ and o', while above T the new configuration at each step is typically
different from the configurations previously visited by the system.

This detailed control on the features of the system is achieved by a careful evaluation
of the thermodynamics. In particular the proof of the existence of the phase transitions
can be performed in a relatively easy way, computing the annealed partition function of

the system. The self averaging of the system, i.e., the equivalence between quenched and



annealed, is more complicate to prove rigorously, involving the computation of the second
moment of the partition function, and it is more a brute-force computation. We will
present it in some detail in the paper, in an almost pedagogical way, because, as far as
we know, there are few cases in the literature where a phase transition for a disordered
system can be controlled rigorously. Moreover the way we achieve this result, although
based on classical argument like the saddle point method, has some technical details that
are quite interesting and may be useful also in different contexts.

Of course this analysis gives important information on the choice of the parameter
used in simulation, and in a following paper we will discuss its application to the study of
the convergence to equilibrium of the dynamics.

To be more precise we need now some definition.

1.1 Random graphs and the clique number

In this section we fix definitions and notations on random graphs and we recall well known
results on the clique number.

For all p € [0, 1] consider the probability space given by an infinite sequence of indepen-
dent Bernoulli variables of parameter p, i.e., w € Q:= {0,1}", w = (a1, as, ...,a;, ...) with
a; € {0,1}, with o-algebra generated by A{ ={w: a=j}, j=0,1 and with probability

measure
P(w: a;, =ji1,...aqiy, = jk) =Pj---pj, Wwithpi =p, pgo=1—p.

Given a set of vertices V = {1,...,n} we associate to it the probability space 2, given by
the first (g) Bernoulli variables in ) describing the edges between vertices in V', with the
obviuos ordering (1,2),(1,3),(2,3),....,(1,n),(2,n), ..., (n—1,n). In this way we represent
with € the probability space usually denoted by G(N,p), i.e., the infinite random graph.

For any G € G(N,p) and n € N we denote by G,, the subgraph of G spanned by
the set V, := {1,2,...,n}, i.e., the subgraph of G containing all the edges of G that join
two vertices in V,,. By definition G, is €2, measurable. We will denote by P and E the
probability and the mean value respectively, on this probability space.

The following well known result on the clique number can be found in [1](Corollary

11.2, pg 286):



Proposition 1.1 For a.e. G € G(N,p) there is a constant mo(G) such that if n > moy(G)
then
3

w(Gp) — 2log, n + 2logy logy n — 210gb(g) -1 < 3

with b == =

The main tool in the proof of this Proposition is the study of the random variable Y,.(n)
defined as the number of complete subgraphs of G, with r vertices, i.e., the number of

r-cliques in G,, with the second moment method . Indeed its mean value is given by:

EY,(n) = <n>p(g) =: f(r,n) ~ b"1os n—%

with b := %. The function f(r,n), as a function of r, has its maximum in r ~ log, n and
drops rather suddenly below 1, by increasing r, say at r ~ 2log, n. Moreover, again by an

explicit calculation, Y,.(n) satisfies the following inequality

varY,(n

e <™+ 2088

when (1 + n)logyn < r < 3logyn, for n € (0,1). With the Borel-Cantelli lemma, it is
easy to show that, given € € (0, ) for almost every graph G € G(N, p) there is a constant

mo(G) such that if n > my(G) and n!. < n < n,4q then w(G,) = r, with
ny :=max{n e N: f(r,n) <r 1)} p/ :=min{n e N: f(r,n) > ri*e}. (2)

Indeed the size k of the interesting cliques can be parametrized by a real ¢ € (1,2] since

the relation between n and the size k of the cliques that we want to study is given by

Inl
Inn = k— /p, with ¢ € (1,2].
c

As emerges in (2) it’s more efficient to use k as parameter, instead of n, to study the

asymptotic behavior for large graphs and so for any ¢ > 1 we define

Inne, Inl/p
S = {(mohso ¢ Jim 20 11D, ®)
c
This means that if we define ¢, = k 1?1 n/ P we consider sequences ny, such that limy,_,. ¢, = €.

This is actually a particular asymptotic regime that could be generalized.



Let Y be a random function on the probability space ) associating to a pair (n, k) a
random variable Y (n, k) on §,, depending on k, for instance the number of k cliques in

G, considered before.

Definition 1.2 A random function Y on the probability space ) is called c-asymptotically

self averaging, if the random variables ]EY("’“k)

EY (ng k) COnverge almost surely to 1 for any (nk)r>o

in Sz as k — oo, uniformly in Sz.

This means that there exists  C Q with P(Q) = 1 such that for every w € Q and any

(nk)k>0 € Sg the random variable EY (k)

converges to 1.
Note that, by the Borel-Cantelli lemma a sufficient condition for self-averaging is the

following;:
varY (ng, k) —a_olk)
LARAY o 4
GO W

for some a > 1 with o(k) uniform in (ny) € Sz. Indeed for any € > 0 we have that

P<\ Y(n, k)

EY (n.k) — 1| > & for some n = ng, (ng)k=o € SE> <

ki o 1 Y k) o L pinle a1y po(k)
¢ 2" gy k) S 2

Inl/p
Innyg
Y(nkvk) _

is summable on k, since (ng)r~o € Sz implies that ¢ := k converges to ¢, so that with

at most finitely many exception on k, we have that | 1] < e for any (ng)k>0 € Sz.
We also note that if Z is c-asymptotically self averaging we have that In Z(ng, k) —

InEZ(ng, k) converges almost surely to 0.

1.2 The cavity algorithm

Let V ={1,...,n} and define for each unordered pair in V" x V'

(5)

We consider the space X := {0, 1}{1""’”} of lattice gas configurations on V' and we
will denote by the same letter a configuration o € X and its support ¢ € V. On this
configuration space X we can consider an Ising Hamiltonian with an antiferromagnetic

interaction between non-neighbor sites:



H(O‘) = Z Jijo-io-j - hZO'Z (6)

1,JEV, i#£j eV

where h > 0. It is immediate to prove that when h < 2 the minimal value of H(o)
is obtained on configurations with support on the vertices of a maximum clique. In
the case of a random graph G, i.e., when the interaction variables J;; are i.i.d.r.v., the
Hamiltonian (6) is similar to the Hamiltonian of the Sherrington-Kirkpatrick(SK) model.
The main differences are that we use lattice gas variables instead of spin variables and,
more important, the interaction is given by Bernoulli variables.

For each o € X we define its cavity field (or molecular field) as the field created in

each site i by all the sites in the configuration o:

hi(o) =Y Jjoj+h(l—0;)  VieV. (7)
J#i

We consider the canonical case, i.e., for any integer k < n we define the canonical

configuration space
Xén) ={oex®. Zai =k} (8)
eV

)

For each pairs of configurations o, 0’ € Xén we can define the pair hamiltonian:

H(o,0') = Z Jijoio + hZ(l —0i)ol = Z hi(o)o! 9)
i,jEV,i#] i i

This hamiltonian is non-negative and vanishes when o = ¢’ and its support is a k-clique.

For every 0,0’ € Xén) the transition probabilities of the cavity algorithm are given by:

P , e*ﬁH(O’,O”) e*ﬁH(O’,O”)
(0,0") = ZTG/\.’k e—BH(o,T) - Zy ’ (10)

with
Ze = e PHlEM, (11)

TEXk

By an immediate computation we can check that the detailed balance condition w.r.t.

)

. . n
the invariant measure on X,g

7ﬁH(077—)
ZTEXIEM €

ulo) = 5

Z
= (12)
roex" e~PHT) 7



is verified with partition function Z:

Znk)=2(x") = 3 Z,= Y Pl (13)

UGX,ETL) U,TEXIEn)

We will denote by x(.) the mean w.r.t. this stationary measure. For large 3, this stationary
measure is exponentially concentrated on cliques.

Note that at each step all the sites are updated; this dynamics could be considered
a canonical version of probabilistic cellular automata (PCA). Given a fixed configuration

)

o the probability measure on X,En given by 7,(.) := P(0,.) can be considered in the
frame of the Fermi statistics. Indeed the cavity fields h;(o) have values €, = [+ rh with

1€{0,1,...,k} and r € {0,1}. We define
Iip:={ieV: hi(o)=1+h} 1=0,..k. (14)

By equation (9) we have

H(o,1) = Z hi(o)T; = Z elr Z T =: Zelﬂ,nl,r (15)
i Lr i€y, Lr

where n;, denotes the occupation of the level (or cell) (I,r). On the other hand each
level consists of g;, := |Z;,| subcells (or sublevels) containing at most one particle since
for every i € Z;, we have 7; € {0,1}. This means that instead of configurations in Xén)
we can consider the occupation numbers of the levels {n;,};=o, .k r—01. This statistical
system is called a Fermi gas, see [4] for more detail on sampling for the Fermi statistics,
and thus on the realization of this single step of the dynamics.

As far as the energy levels corresponding to sites not in o, i.e., with r = 1, are
concerned, we have that their number of sublevels, g;1 = [{i € V : hi(0) =+ h}|, is
“almost deterministic”, as discussed in [6]. Indeed they follow a binomial law, and precise
results can be found in Lemma 5.4 in Section 5.

A final remark on probability measures can be useful. The invariant measure pu(o) is
not a Gibbs measure, as usual with PCA, but we can define a Gibbs measure on pairs

1 _—BH(o,0")

of configurations, i.e., on Xén) X Xén) as pz(o,0') = e with the same partition

function Z(n,k) given in (13). Actually the invariant measure p can be considered the

o~ BH(o,.)

marginal of . The probability measure 7, (.) = 7 introduced above in the discus-




(n)

sion on the Fermi statistics can be considered as the conditioned measure on X, since

we have the relation:

1.3

p2(o,7) = plo)mo (7). (16)

Results

The main results presented in this paper are summarized by the following:

Theorem 1.3 For each p € (0,1) and 8 € (0, ]

i)

iii)

Inl/p

o > 1, defining h = %, there is a critical

let n and k be integers such that ¢ := k
value of h defined by

he =5 (122 o)+ RU2D) a7)

with f(8) := —In[p+ (1 — p)e P for which

In(EZ(x™)) {k?MJrk—f(zmw—mnmo(k) if h'> he
n - ~ ~ ~
g 22U/ | ok — BRE? — f(B)K? — 2kInk +o(k) if h < he
(18)
ifce(1,2]
varZ(X(n))
k > < n—Zeo(k) (19)
(EZ(x"))

with o(k) independent of n and c, so that the partition function Z is ¢-asymptotically

self averaging for ¢ € (1,2];

the line he corresponds to a first order phase transition, in particular the phase
with h > he is characterized by configurations o with H(o,0) ~ k2f(23) and the
phase with h < he is characterized by pairs of disjoint configurations (o,0") with

H(o,0") ~ K> f'(8) + k*h;

if @ € (1,2] and for any (ng)iso € Se and h # hg define the entropy S(ng, k) =
_Zoexén’“) (o) In(u(o)), then IS—QS(nk,k) converges almost surely to the following

non random function:

Inl/p _ @ + Bf'(26) in the parameter region (A) : h > hg

2% — f(B) + B (B) in the region (B): h < he and > 3; (20)
Inl/p in the region (C) : h < hg and B < B3;

C

@l
I

10
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(E)

T

Figure 1: Phase dygram for the cavity algorithm

where Bz is a zero of the function

_Inl/p
- c

() £(8) + Bf(B) (21)

so that also S(ny, k) is c-asymptotically self-averaging. The function § is discontin-

1
Be

corresponding to a “low temperature phase transition”. The asymptotic value of the

uous along the line h = hz and has a discontinuity in its first derivative at Ty =

~ ~ 2lnl/p
entropy in the phase h < hz and 8 < Bz is maximal since \X,gn’“)] = e

The phase diagram is summarized in Figure 1.
Remark 1.4 We can write

Z=> e PPNy (22)
E

with E running on all the possible values of the energy H(o,T) and Ng being the number
of pairs of configurations o,7 with H(o,7) = E. For [ = oo this implies that Z = Njy.
Hence the self-averaging of Z implies the self-averaging of the number of cliques of any

size k corresponding to ¢ € (1,2]. This generalizes the Bollobas result quoted above.

Remark 1.5 Even though the relevant case for the clique problem is ¢ € (1,2], for ¢ > 2

we can prove (see Appendiz C) that, with 3. < oo the unique solution of

F(26:) ~ 3 F(4F) = -1/

for all 3 < B, we still have the estimate (19). Therefore quenched quantities behave like

annealed ones for 3 < B.. In addition we can prove the existence of a second value for the

11



inverse temperature, say Bc > (3. such that for 3 > Bc and 3 > 230, respectively for h > he
and h < iLc, quenched quantities certainly differ from annealed ones. Indeed if Bc > 3, is

such that
f(QBc) - 2Bcf,(4ﬁc) = % In 1/]),

the estimated entropy for pe obtained from the annealed quantities turns out to be asymp-
totically negative, i.e., for (nk)g>o in Sz,

op

1 OME[Z(ny, k
kEIJIrlooﬁ (lnE[Z(nk,k)] - BM> <0

for B > BE in the case h > hz and 3 > 235 in the case h < hz. Then, for B > ﬁ} and
8> 235 respectively, quenched quantities certainly differ from annealed ones. We actually
expect a third phase transition at these temperatures: conversely, for § < B@ and B < 235

respectively, quenched quantities should behave like quenched ones.

Notation:
For notation convenience in what follows we adopt the following simplification: given ¢ > 1

and (ng)g>o € Sz we write n = ng and ¢ = ¢,
2 The annealed partition function Z

In the case of random graphs is not difficult to compute the annealed partition function:
Z.=EZ = E[ 3 e*ﬁH(gvﬂ]. (23)
o,TEX}

Let I := o N7, and ¢ be the overlap ¢q := |I|. We denote by Hy(o, ) the first part of

the pair hamiltonian, i.e., the pair hamiltonian evaluated for h = 0:
Ho(o‘, T) = Z Jz‘jO'iU;- = Z Jij(O'iTj + O'jTZ') (24)
1,JEV,i#£] {i.5}

The quantity o;7; + o;7; takes values 0,1,2 as given in Table 1, where we denote by
S:=0\Il,T:=7\Iand C := (cUT)" So o;7j + 07 = 1 for {i,j} in the set of unordered
pairs & = (S x U (T'x 1)U (S xT') and o;7j + 07, = 2 for {i,j} € & = I x I. By using

12



Ol |||
O =N = -
oo~
olo|o|lol O

S
I
T
C

Table 1: Values of o;7; + 0;7;

the independence of the random variables J;; we can conclude:

Z:i Z e~ Phk=q) H Ee~Ais H Ee— 267,

=0 0,7€X},: |I|=¢ {i.j}e& {i,j}e&
Since Ee #7ii = ¢=/B) and Ee=2%i = /20 with f(8) = —In[p+ (1 — p)e ?)] and
defining
n 2k —q\ (2(k —q)
=1 2
6 HK%—Q)( q ><k—q ] (25)
we have
k k
Z=3 £O(@) ,—Bh(k—0)—F(8)2a(k—a)+(k—q)*)—F28) L5 _ N7 ,0(a)+®(q) (26)
q=0 q=0
with
—1
9(q) = ~Bh(k — q) — F(B)(K* — ) — F(29) 101 (27)

We collect in Appendix A the main properties of the function f(03).
As far as the entropic term © is concerned we can use the Stirling formula n! =
(%)”n% 97e9(@7) to obtain the following asymptotic behaviors for m and k large with

m = o(n) and g < k:

2
n m m

= Inn —ml | — =Inn— — — 2

<m> exp{mInn —mlnm+m+o(m)}, In(n—m)=Inn - +(’)(n2) (28)

k
<g> =exp{klnk — (k—g)In(k —g) —glng + o(k)}. (29)
With the definition Inn = k‘w we can write:

O(q) = (Qk—q)kw—|—2/<:—q—qlnq—2(/<:—q)ln(k—q)+0(k:)

13



We can estimate Z for large k with the saddle point method looking for the maximum
of the function ©(q) + ®(¢). Indeed InZ = maxyep4(©(q) + (¢)) + O(Ink) We have

©(q)+®(q) = a(q) — b(q), where a(q) is a polynomial with degree less or equal 2, i.e., with

alg) = @k - k2 ok g g q) — (B2 - ) - F2m) DY

q(q —
2 b

and b(q) the remaining part:
b(q) = qIng+2(k — q) In(k — q) + o(k)

By noting that f(() is a concave function so that f(3) — @ > 0 we have that a(q)
is a convex parabola, and so with maximum in 0 or k, while b(q) is non negative and
|b(q)| < 4k1nk. We have that, for sufficiently large &, the maximum of a(q) is obtained in
Gmaz = k if h > he, (see equation (17) for the definition of Bc) and in ¢mae = 0 if b < he.
By simple calculations we have that these points k and 0 correspond to the maximum also
for the function O(q)+®(q) = a(q) —b(q) when h > h. and h < h,, respectively. Indeed in
the two different cases it is immediate to verify that in a neighborhood of g4, i.€., in the
intervals [k — k%, k] and [0, k%] with a € (0, 1), respectively, the following estimates hold
for the variations of the functions a and b: for sufficiently large k, there exists a positive
€ such that
Aa(g)] = la(g +1) — a(g)| > ek, [Ab(g)] = o(k)

and for ¢ outside these intervals a(q) < a(@maz) — k'™, so that a(q) — b(q) < a(q) <

a(Qmaaz) - 5k1+a < a(Qmaaz) - b(QmaJ:)-

Summarizing we have, for h > h:

In(

InZ = k2% +k— f(zﬁ)M

—klnk + o(k) (30)
and for h < iLc

InZ = 2#M + 2k — Bhk? — f(B)k? — 2kInk + o(k) (31)

For large k we obtain that k—lg In Z is a continuous function with a discontinuous derivative
in 3 when h = h,, corresponding to a line of a first order phase transition as discussed in

Section 4.
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j\é | S’ | S | ST |sC | IS | I | IT” | IC’ | TS | TP | TT' | TC’ | CS’ | CT | CT” | CC’
SS’ 0 1 0 1 2 2 1 1 2 2 1 0 1 1 0
SI’ 1 0 2 3 2 1 2 3 2 1 1 2 1 0
ST’ 0 0 2 2 1 1 2 2 1 1 1 1 0 0
SC’ 0 1 1 1 1 1 1 1 1 0 0 0 0
IS’ 2 3 3 2 1 2 2 1 0 1 1 0
I 4 3 2 2 3 2 1 1 2 1 0
I 2 2 2 2 1 1 1 1 0 0
I 2 1 1 1 1 0 0 0 0
TS’ 0 1 1 0 0 1 1 0
Tr 2 1 0 1 2 1 0
TT 0 0 1 1 0 0
TC 0 0 0 0 0
CS’ 0 1 1 0
Cr 2 1 0
cT’ 0 0
cC’ 0

Table 2: The value of o7 + 07 + o7} + o7/ for different i, j

3 The asymptotic self-averaging of 7

The proof of self averaging of Z is a crude calculation based on elementary arguments. We

first evaluate the second moment of Z proving that asymptotically it behaves like Z2. An

varZ

upper bound for *25= is obtained with a more detailed computation based on the same

tools.

3.1 The second moment of 7

We evaluate the second moment of Z:

E(ZQ) _ E( Z efﬁ[H(O',T)‘FH(G'/,T/)]). (32)

o, 1,0 ,T’EXIER)

By defining, as before, ¢ = |0 N 7| (and similarly ¢') we have

H(o,7)+H(d',7') = Z Jij(oiTj + o7 + UZ'-TJ/» + O’;-TZ-I) —h(2k —q—q') (33)
{i.5}

The quantity o;7; + o;7; + 0;7} + 0’7 takes values 0,1,2,3,4 as in the Table 2, where
we use the previous notation, ie., I :=ocnN7, S :=0\l, T :=7\I, C := (0 U7)® and
similarly for the sets I’, 8", 7" and C’. We also use the notation SS’ for the set SN S’ and
so on. The table is symmetric due to the symmetry in the exchange ¢ < j so we write only

the upper triangle. For every [ € {1,2,3,4} again we denote by & the set of unordered

pairs {i,j} where 0;7; + 07 + o7} + o7 = [. By the table we have: & = II' x IT',

15



I
T

NS
Qo O DN
©o|o|w

Table 3: Index of the intersections

Es=(SI' xtI"YUIS" x IT"YU(II'x IT"YU(II' x TI'), and so on. With these notations

we can write for the second moment of Z:

k k
E(ZQ) — Z Z e—ﬂh(Zk—q—Q') Z H Ee—ﬁJij x
q=0 ¢'=0 o,7: |oNt|=q, {i,j}€&1
o', 7' lo'nT!|=q'
x H ]EefQBJij H Ee*?),@ahj H Ee*45]ij (34)
{i,7}e& {i,7}€&3 {i,j}€&4

For shortness we will denote by g, the cardinality of the intersection of the different subsets
involved in this table, where the index r € {1,2,...,9} is fixed in Table 3, e.g g1 := |SS5’|.

The cardinalities g, have the following constraints:

g1+9+93<k—q, g1+9g5+96<q, gr+gst+gs<k—gq, (35)

Graut+g<k—d, @+o+9<d, gG+g+g<k—¢q. (36)

The cardinality of the sets given by intersections with C or C’ is obtained by difference:

gs = |SC'| =k —q— (g1 +g2+gs), g9 :=I|5Cl=k—q¢ —(g1+ga+g7), (37)

gr = 10" =q—(9a+95+96), gr:=I|I'Cl=q — (92 + 95+ g8), (38)
gr = |TC'| =k —q— (97 +gs+ ), gr:=|T'Cl=k—qd —(93+396+99), (39
By defining g = g1 + g2 + ... + g9 and M (g1, ..., g9, 1, q,q") the multinomial coefficient

n!
a1l..99'9slgrlgrgs g g ! (n — (4k —q — ¢’ — g))!

M(gla -y 99, M, 4, q/) =

16



we can write

where the sum over g1, ..., g9 satisfies the constraints (35), (36) and g1 + g2+ ... + g9 = g
and with ® defined in (27) and ¥ given by:

9

V= W (2/28) ~ 7(49)) + 5 3 0eC

r=1
where the coefficients C). are defined as follows:

C1 = (2/(8) = £(28)) (95 + 96 + 95 + 90) (41)

Cs = <2f(5) - f(%)) (94 + g5 + g7 + g8) (42)

Cr = <2f(5) - f(%)) (92 + 93 + 95 + o) (43)

Cy = (2£(8) = £(260)) (91 + g2 + 91+ 95) (44)

=<2f >g4+96+97+99 +(f( + f(26) - )g5+98 (45)
=<2f >g2+93+98+99 +(f )+ f(28) — )g5+96 (46)
=<2f >g1+gz+g7+gs +(f )+ f(28) — )g4+g5 (47)
<2f ) (91 + 93+ 94+ 96) + (f + f(28) — ﬁ)) (92 +95)  (48)

- 2f(ﬂ)—f(2ﬁ)>(91+93+g7+99)+<f(6)+f(26)—f(3ﬁ)>(gz+g4+gﬁ+gs) (49)

/N

We denote by P the region of parameters q,¢, g, g1, ..., go defined by the constraints
0<q¢<k0<q¢ <k g=gi+..4goand (35) and (36).

Lemma 3.1 For any 8 € (0,00) and for any q,q, g1, ..-,99,9 € P and for ¢ < 2 we have

U(g,q,91,-99.9) < ¥(q,q', 9,95) (50)

where

g5(95 — 1)
2

g

(2728) ~ 148)) + 5 (F(8) + 728) ~ F38)) (5 A9) + 95)(9 — ) (51)

17



The proof of Lemma 3.1 is given in Appendix C.

As far as the entropic term is concerned we can write

Z n!

<
I adladlarlarlaalam am ! (n — —a—d —ao) &
gt 0 g g0 T199195'9119T 95/ g1 g\ (n — (4k — g — ¢’ — g))

< exp{(4h—g—q¢'~g)nn—In ((4-9)(d' ~9)!) ~2In (k= g—9)!(k—q' —g)!) +8} = ¢

(52)
where the sum is under the condition g1 + g2 + 93+ 94 + g6 + 97 + gs + g9 = g — g5 and
with the notation m! = 1 if m < 1 and where, for the sum of g, with r £ 5, we used the

estimate
8995

1 8
Z loladaaclaladlaal ( )! s e
91,92,93,94,96,97,98,99 91°92:9394-96:97-98-99- 9= 95)

With these estimates we can write
kE  k (Ck—q)A2k—q') ghgAg _
E(Z?) < Z Z Z Z £92(a:4'.9.95)+2(0)+2(¢')+¥(q.4',9,95) (53)
q=0 ¢’

=0 9=0 95=0

To evaluate this sums again we look for the maximum of the exponent. Define for notation

convenience ®P3(q,q") = ®(q) + ().

Lemma 3.2 The mazimum of the function ©y + ®o 4+ U on the parameter region defined
by the constraints is obtained for ¢ = ¢ i.e., for ¢ = ¢, 9,95 in the three dimensional

polyhedron P defined by
0<q<k, gs5<g<2k—q, 0<g5<q (54)

and represented in Figure 2. Moreover (O2 + ®2 + ¥)(q,q, g, g5) reaches its mazimum on

P in (k,k,0,0) if h > he and in (0,0,0,0) if h < he.

The proof of Lemma 3.2 is given again in Appendix C. Note that when g = 0 and
g = ¢’ we have the expected relations ©, = 20 + (’)(%), and ¥ = 0.

With these lemmas we immediately obtain

InE(Z?%) = max _(Oy+ @5+ ¥)(q,q,9,95) + O(lnk) = 2InEZ + O(In k) (55)
4,9,95€P

18



Figure 2: The polyhedron P

3.2 Self averaging

To evaluate the quantity % we can write
ko kb (2k=a)n@k=q) 1 2(0)+2(¢)
nle
(E2)* =
;q,zzo gz:;) glg;gg g1l..99'9s'grlgrgs g lgr ! (n — (4k — ¢ — ¢’ — g))!

and note that, as in the case of the clique number, the terms corresponding to ¢ = 0 and
g = 1 are identical in E(Z?) and in (EZ)?, indeed ¥ = 0 not only for g = 0 but also in

the case g = 1. Therefore

varZ < i zk: zk: e(:)2+‘1>2+\11 (56)
Az

Lemma 3.3 The mazimum of the function (O + ®2 + V)(q,q’,9,95) on the parameter

region P with the additional constraint g > 2 is equal to

i
!

{—f(2ﬁ)k(l<:—1)~|—(2k—2)1nn—21n(l<:—2)!~|—o(k) if h > he
—20hk — 2f(B)k? + (4k — 2)Inn — 4In(k — 2)! + o(k) if h < h,

The proof of this Lemma is analogous to that of Lemma 3.2 given in the Appendix C.
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With this Lemma we conclude the self averaging result. Consider first the case h > he:

k(k—1)

gexp{—Q[klnn+k—f(2B) —klnk+0(k)]+

—FB)k(k —1) + (2k — 2)Inn — 2In(k — 2)! + o(k)} <

k2
gexp{—2k+2klnk—21nn—2(k—2)1n( )+o(kz)}:

e

= exp{ ~2ln +ok)} = ¢ 2mrrol®

and using the asymptotic In % ~ % we obtain the self averaging in this case. In the case

h < ﬁc the calculation is similar:

(1)152)22 < exp { -2 [%hm + 2k — Bhk* — f(B)k* — 2k Ink + o(k)]

—28hk — 2f (B)k? + (4k — 2)Inn — AIn(k — 2)! + o(k)}

k—2
e

< exp{ — 4k +4kIlnk —2Ilnn — 4(k — 2) In( )+ o(kz)} < 72 mntolk)

4 Phase transition across h.(T)

By the previous results on the self averaging of Z with

(57)

we can conclude that the line iLc(T) represented in Figure 1 corresponds to a line of a
first order phase transition. Indeed the function In Z turns out to be continuous with a
discontinuous derivative in 3 when h = h, and we have —% InZ = po(H(o,7)) converges

almost surely to

2 £ 2 iN T
9, Z{kf(2ﬂ)+o(k) fh > h (58)

“op E2(f'(3) + h) + o(k?) if h < he
By the convexity property of the function In Z we can conclude with standard argu-
ments that % limg_,ooIn Z = limy_, o % In Z and so the same result can be obtained by
evaluating directly the mean E [/@(H (o, T))}

If we look at the model on the state space of couple of configurations, with Gibbs
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measure pg(o,7) = %G_BH (@.7) | the two phases correspond to two different mean energies.

As far as the second derivative is concerned we have
52 —k2f7(28) + o(k?) ifh>h

— InZ =vary,(H) = 17(26) & - ~C (59)
96 —R2f7(B) + o(k?)  if h < he
and again the same result can be obtained by evaluating directly the mean on the J;; of
the variance w.r.t. the pair measure us.

In a similar way we can study the overlap ¢(o,7) by computing %ln Z. Indeed
p2(q(o, 7)) = k + 42 In Z; we obtain

Bk 8k

1 (0 ifh>h,
31112{ (60)

Pk oh koifh <,
so that the two phases have not only different mean energies but also different mean

overlap.

5 A low temperature phase transition

We prove in this section the last claim of our main theorem. The proof is divided in
three steps. First, we made a few prelimiray remarks on the computation of the annealed
partition function Z and we deduce an almost sure concentration property of the Gibbs
measure pg. Second, we translate this concentration property in a concentration property
of the marginal law u. Last, we evaluate the free entropy of the measure 7, for the typical

configurations o by proving a last large deviation estimate.

5.1 Concentration of the Gibbs measure

An alternative way to compute the annealed partition function consists in counting the
mean number N(q,l1,l3) of pairs of configurations (o, 7) with a given overlap ¢ = |I| :=
|o N 7|, a given number [; of missing links inside I, and a given number s of missing links

between I and T := 7 \ 0, between S := o \ 7 and T, as well as S and I. We get

k
Z = Z Z 6_6[2l1+l2+h(k_q)]j\/’(q’ ll,l2)' (61)
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To evaluate N (q,l1,l2) we use the following argument. Consider the obvious extension of

the definition (24) of Hy(o,7) to a generic pair A, B of subsets of V:

Ho(A,B)= Y Jij1a(i)15()).

i, €V, i#]

For a € {0,....,k} and [ € {0,...,ka} let A:={A Co°: |A| =a, and Hy(A,o) =}, then

n—k\ (ak ak— ak[IM1/P 1 (i,

where we denote by I, the large deviation functional

1—=x

Ip:xG[O,l]l—mUlnlm +(1-2)n (63)

-p p

In Appendix A the main properties of this function are recalled; we just mention here
that the function I,(x) is related to the function f(f) used in section 2 by a Legendre
transform, indeed we are doing the same computation of Z by using different variables. A

similar computation can be given for subsets of o and so we can easily conclude that

N(q,li,12) =ni(g, li)nsr(q,l2)

with
n q(g—1) 20y
nr(q,! :<>exp— I 64
n—gq 2(k —q) 9 o Iy
pu— _ _ I S

nsata.t) =y %) (YD)l - A2} 9

and so
N (gl Iy) = @@L 1, 0)— (2~ Iy 2) ol (66)
with ©(q) defined in (25), x; = q(?,l_ln and xzo = kgl—fqg, The sums over [; and Iy can

be written as sums over x1 and zy and can be estimated with the saddle point method.
We then obtain for Z the expression given in (30) and (31) by using the fact that f is
the Legendre transform of —I. In the previous sections we used a different approach
to estimate Z and Z because this decomposition becomes not easily dealt with as soon
as second moment estimates are involved. However, the decomposition proposed here is

useful to prove a concentration property for the Gibbs measure pus.
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Three simple remarks will be used in what follows.

Remark 5.1 As far as equation (62) is concerned, we note that the set of values of density

of missing links having positive entropy is given by

X.:={z€]0,1]:

U e, (67)

Remark 5.2 Note that by the definition of cavity field (7) we have

> hi(S) =D hi(T) = Ho(S,T)

€T €S

so that Hy(S,T) = Zier hi(S);Zies hi(T)

Remark 5.3 The the density of missing links is typically constant in subsets of a given
set. More precisely let A and B be a pair of subsets of V' with |A| = ak, |B| = bk with
a,b >0 and let p € (0,1). Then for every Ay C A with |A1| = a1k, a1 € (0,a) and for
every p1 # p there exists §(p1) > 0 such that

P(Ho(A1, B) = prabk?|Ho(A, B) = pabk?) < e~2(etk”
The proof is an immediate consequence of the convexity of I, if we note that
P(Ho(Al,B) = plalbk2|H0(A,B) = pabk2) =

= P(H()(Al, B) = plalbk:z, H(](AQ, B) = pg(a — al)ka)eakaIp(p)+o(k2) S

< e~ a1bk?*Ip(p1)—(a—a1)bk?Ip(p2)+abk>Ip(p)+o(k?)

with As := A\A; and ps = p—= a1

a—ai —P1 a—ay *

For (o,7) in X,gn) X X,gn), let us denote again the overlap by ¢(o,7) and by Hy(o,T)

the number of missing links between ¢ and 7. We define also
Qo,7):={ieT: hy(S) g X Ju{ieS: h(T) & X.} (68)

that is the set of points in SUT with non-typical number of missing links to the other set,

and let g(o,7) := |Q(o,7)|. Even if the energy H(o,7) does not depend on this parameter
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g(o,7), as we will show in Section 5.3, the value of g(o,7) is crucial to perform entropy

estimates at low temperature when h < he. We then set, for any § > 0,

B {[1—5,1] if h > he,
T8 ifh<he
Hy e { [f'(28) =6, f'(268) + 4] if h > h 70)
[f/(B) =6, f'(B) +d]  ifh<he.
and

_ [0,1] if h>hs or h<hzand T > Ty,

[1-26,1] if h<hzand T < T..

With these intervals of parameters we can define a set of typical pairs of configuration:

q - 1
Sy g = 2 5 pm, 2407) __ale7) 1,
2,6 {(077) €& x A € s, 30k — q(0,7)) € 9s, 2 o(o,7) € Hs
(72)
where we define % = 0 when ¢(o,7) = k. By the self-averaging property of Z we
have
1 1
c — - _ﬁH(UvT) — _ﬁH(UvT)
E [p2(X54)] =E ~ > oe = 5 d e . (73)
(U,T)EZE’(; (U,T)EZE’(;

Now, using the previous decomposition (61) and the fact that I, is strictly convex and
more precisely that Izl)/ > 2, we get, with the saddle point method, and using the remarks
5.1, 5.2, 5.3 that

E [u2(55,5)] < ™K (74)

for k large enough and a suitable constant C. Indeed

SEEEPR TS v Wb o A

q 07 7k; 1'16[0 1] xQE[O 1]

1

70

Z Z !~ B[2l1+12+h(k—q ]N(q,l1,l2) + 6720521@2 (75)

q=0,....,k 1 €[0,1] x2€[0,1]

where the sums )" are with the restriction given by o € (3q)¢, i.e., > g=0..x 18 with
the condition ¢ ¢ Qs and Z;Z are with the condition x; is such that I,(z1) + 208z, >
f(28) + C(d) in the case h > h, and in the case h < h, with the condition z9 is such
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that Ip(z2) + Bzo > f(B) + C(5), with C(d) > %minxe[oﬂ I, (z) > %2. Moreover

—2062k?

the last term e estimates the mean of the measure of the pairs (o,7) such that

q(o—k’T) € 9y, Ho(a T) € Hs but W ¢ Qs. This can be obtained only in the case
h < BE and T < T, and in this regime we have that f'(8) ¢ X. and the main contribution
to Z is given by pairs of disjoint sets S and T with |Ho(S,T) — f'(8)| < BJ for a suitable
constant B. By remarks 5.1 and 5.2 we can conclude that S (and T) can be decomposed
into two disjoint parts S = S; U So, with |S;| > 0k with different density of missing link
to T'. The estimate then follows by remark 5.3.

We conclude, with Markov inequality and Borel-Cantelli lemma, that, almost surely,
2S5 5) < e” 0K (76)
for k large enough.

5.2 Concentration of the marginal measure p

Starting from a5 we want to define a set X5 of typical configurations in X,gn) with the
property that o € X5 implies that 7, is concentrated on the configurations 7 such that
(0,7) € Xo5.

(n)

To give a precise definition of this set 35 we can proceed as follows. For all o in X},

and « , @ and p in [0, 1], define

So(a, @, p) = le In {T € Xé") : Q(sz 7) = q, 2?1550’_2) = aQ, HO;JQ’ ™) = P}' (77)
¢U(aadap) = So(a’d’p) —ﬁ(p—k;b(l _a)) (78)
¢ = max{¢s(a,a,p): a,a,pe|0,1]} (79)

Since the number of possible values of a, @ and p for which s, («, @, p) can be non-negative
and finite is only polynomial in k, we note that, for all positive d and large enough k, the

quantity In Z, is such that

K¢ <InZ, < kK¢ + 6k, (80)
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We then set, for any § > 0,

Y5 = {a € Xén) . there exist a € Qs, & € Qs, p € Hs such that ¢, (o, &, p) > ¢k — 6}
(81)
Note that for a given positive d, for k large enough and for all ¢ in X¢,

HO (O-’ T)
k2

Mo <{T € Xlgn) : Q(O]; T) € Q(Sa Q(kiqio-(;z—o)',’r) € Q(S’

. H5}> < (g2)

this means that we have a concentration property of 7, implying that for configurations
o ¢ Ys the measure 7, is concentrated on values of (a, @, p) not in Qs x Qs x Hs. Now,

due to (16) we have, for a given § > 0 and k large enough,

(S55) = Do mlo) D0 me(r)+ D mo) D me(r) Z p(SE)(1 - e,

o€Xs 7:(0,T)EXS § oEXS 7:(0,T)EXS §
(83)
We conclude, using the concentration property of u, that, almost surely,
TOHES (84)
for k large enough.
5.3 Conclusion
To estimate the entropy, up to o(k?)
Si=— (o) In(p(o)) =InZ — Zs InZ, =InZ+ pu(F), (85)
Z
O’EXk O'EX]g
where, for any o in X, F(0) := —% In Z,, is the free energy associated with 7, it is enough

to estimate F(o) for all o in ¥s. Indeed, Z is self-averaging and we estimated In Z up to
o(k), moreover we have a polynomial uniform upper bound on F' (polynomial in k), and

an exponential concentration on 5. This implies that almost surely, for any § > 0,
[1(F) = p(F|S5)] < e”@F/, (86)

We will estimate F'(0), i.e., In Z,, uniformely on X5 in the following cases:
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(B) h < hg, and C(3) < 0, ie., T < Tk,

(C) h < hg, and C(B) > 0, ie., T > Ty

For any positive d, by definition of ¥ for k large large enough we have the following

estimate for In Z,, for all o in X,

1
max bo(a,a,p) < ¢p < 5InZ, < ¢y +6 < max bo(a, @, p) + 20.
a€Q;5,6€Q5,0€Hs k a€Q;,a€Q5,0EHs
(87)
We estimate max e, acg, per, Po(@, @, p) in the three different cases.
Case (A): Since s, (a, p) > 0 and
In(1
max  sy(0a,p) < S2L/P) (88)
a€Q;5,a€Q5,0EHs c
we have
~ 1 In(1
B+ I - B(28) < gz, < B8 + 2+ M+ oL 5g)
by using that ¢ goes to ¢, we conclude that, almost surely,
S In(1 2

k—-4o00 ]{?2 C 2
In cases (B) and (C) we will need a concentration result on the numbers of sites i
outside o such that h;(o) = j + hk, i.e., gj1 = |Zj1] (see (14).
Lemma 5.4 Let

Jo:={jeN: %eXc} (91)

with X, defined in (67). With probability 1, for any 6 > 0, if k is large enough then, for

all o in Xén), for j € J. we have:

oo (254 200 (V)] << {52021 (D)) o

for j & J. we have

gj71 S eké. (93)
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Proof: The random variable g; 1 follows a binomial law with parameters n — k < n and

<f> (1= p)iph=i = e~ FIoli/)+o(k), (94)

so that the usual large deviation estimates give

(oo [ )] ))

< e {_k <5 + [Ip (%) _ M] N 0(1)> 6k(6+ﬂn<1/p>/c1p<j/k>1+>} (95)
+

C

and, if In(1/p)/c > 1,(j/k), i.e., j > je

P (gﬂ < exp {k (_5 N In(1/p) I, (%)) }) < exp {_ek(ln(l/p)/c—lp(j/k)-i—o(l))}. (96)

C

Since the number of configurations ¢ is not larger than ek? In(1/p)/ ¢, we obtain our result
with the Borel-Cantelli lemma. U

By Lemma 5.4 we can obtain the following results:

In case (B) T' < Tz i.e.,f'(B) € [0,1]\ X¢, there exists a constant as such that, almost

surely, for all k large enough,

max So(a, @, p) < azd (97)
a€Qs5,6€Q5,0€H s

This immediately follows from (93).

In case (C) T > Tz ie., f'(B) € Xz, there exists a constant ag such that, almost

surely, for all k large enough,

Inl
max so(Q, @, p) < — _/ P_ L7 (8) + asd (98)
a€Qs5,a€Qs5,pEHss C

The proof of this entropy estimates can be found in Appendix D. It is absolutely standard
but we give it not only for completeness but also to show that the point of view of the
Fermi statistics is a useful tool. The main idea is that in the asymptotics & — oo, due
to the convexity property of I, the entropy is essentially due to the sites ¢ with cavity
field h;(o) such that % € (f'(B) + h— 8, f'(B) + h + 6) and the number of such sites is

estimated by Lemma 5.4.
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With the entropy estimates (97) and (98) we can easily complete our proof.

Case (B): By equations (87) and (97) if o is in X, almost surely, for all k£ large enough,
-1 B
—Bf'(B) — B5 — Bh < e InZ, < —Bf(B) + 86 — Bh(1 — &) + azd + 20. (99)

We conclude that, almost surely,

5wy
1 — =2
k—1>r—|r—1c>o k2 C

— f(8) + BF(B)- (100)

Case (C): Again by equations (87) and (98) if o is in Xj, almost surely, for all k large

enough,

1

5 InZ, < —Bf'(8) + 85 — Bh(1 — ) + M — L,(f'(B)) + azd + 20. (101)

We conclude that, almost surely,

LS ,In(l/p) In(1/p) / / In(1/p)
Z > - - = .
Jim 5oL gy CPL g ey 4 s = G (102)
where we used that f is the Legendre transform of —1I,,. The opposite estimate
.5 _In(1/p)
1 — <
kiToo K2 — c
is trivial.
A The functions f(3) and I,(z)
We give here some inequalities for the function f(3) := —In[p+ (1 — p)e?] defined in the

main theorem.
This is a non negative concave function with f(0) =0, limg_.o f(8) =In1/p = I,(0);

from its concavity we immediately obtain the following estimates:

f(B) > ——= Vi > 1

B(B) == f(B) + f(26) — f(38) > 0
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g,

-

Figure 3: The function f(53)

since both the functions F(3) := f(8) — @ and B(f3) are strictly increasing function

vanishing at zero. Moreover we have:

f28) + f(38) > f(B) + f(40)

which is an immediate consequence of concavity, and

£3) + £39) - 128 - T80 5 0

since f(5) + f(368) — £(26) - L42 = 1(8) — L2 + £(3p) — L&2 — LGP again positive
by concavity.

For p € (0,1) and « € [0,1] consider now the binomial large deviation functional
defined in (63), Ip(z) = zln{%; + (1 — z)In %. This is a convex non negative function
with minimum at « = 1 — p and I,(0) = In1/p,I,(1) = In1/(1 — p). By recalling the

asymptotic behavior for the binomial coeflicient:
L
()~ o2 - o et - o) 2
with z = % (see for instance [1] pg.4) we immediately obtain

(?) (1= p)lph~t = e~ Lln@)+o(l)
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Figure 4: The function I,(x) for p = 2/3

The functions f(/) and I,(x) are related by a Legendre transform. Indeed we have

I(z) + Bx > f(B)

where the equality holds only for x = f/(3). By evaluating the critical point of the function
I,(x) + Pz we have

Tp
I'(z)=lh——————— =g
A =TT
ans so the critical point is
(1 _p)e_ﬁ ’
p+(1—pleh )

and this is a minimum due to the convexity of I,(z).

In particular we have

I, (z) = ﬁ > 2

B Proof of Lemma 3.1
Indeed to prove (50) we note that, the coefficients C, in

95(95 — 1) 1<
V= S (e - 1) < 5 e G

defined in equations (41), (45), (42), (46), (49), (47), (43), (48), (44), can be estimated
by using the concavity of the function f(/3) so that 0 < 2f(8) — f(26) < f(B) + f(28) —
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f(3B) =: B. Indeed by using the constraints (35) and (36) we can estimate the coefficient:
Cr<B(kAg) r#5  C5<B(g—gs)

so that

v < gslgs ~ 1)(120) ~ D) £ 2B A g) +95)(0 —05) = B

C Proofs of Lemmas 3.2 and 3.3

Proof of Lemma 3.2 We look now for the maximum of the function

O+ 0+ 0 = (4h—q—¢ —g) nn—1n ((g-9)(¢'~ 9)!) ~2In ((k—g—9)!(k—¢'~9)! ) +-C)

v+ g0~ 0 (720 - L0 4 LBk ng) v g ) (09)

By noting the symmetry of this function in the parameters ¢ and ¢’ and the fact that the
constraints are in the form g < (2k—q) A (2k—¢') and g5 < gA ¢’ A g, we immediately can
conclude that the maximum is obtained for ¢ = ¢’. So we have only to study the function

a(q,9,95) — b(q, 9, g5) on the polytope P where

a(g,9,95) = —26h(k —q) = 2f (B)(k* — ¢°) — f(28)q(g — 1) + g5(95 — 1) (f(%) - @F

1
+5B((kAg) +95)(9 = g5) + (4k — 29 — g) Inn (104)
b(q,9,95) = 2In ((q - g)!> +4In <(/<¢ —q- g)!>> +C (105)
and P (see Figure 2) is defined by the relations:

0<g<2k—¢q, 0<gs<gAqg, 0<¢g<k (106)

We first study the maximum of the function a on P. For g > k the hessian of a is given

by

[4f(B) =2f(26)] 0 0
0 0 iB (107)
0 3B [2f(8) — f(4p) — B]
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and for g < k the hessian of a is given by

[4f(B) =2f(26)] 0 0
0 B iB (108)
0 5B [2(B) — [(48) — B]

Again by the concavity of the function f(/3) in both cases we have a positive eigenvalue
A = 4f(6) — 2f(20) and two real eigenvalues with Ao + A3 > 0 if ¢ < k and A\A3 < 0
if ¢ > k so at least two positive eigenvalues. We can conclude that the maximum of a
is obtained on the edges of P. By studying the function a(x), with x = (¢,9,g5), on
all the edges we easily check that the maximum actually is obtained on the vertices. To
this purpose we used the convexity relations of f(f3) listed in appendix A. By a direct
comparison we obtain that the maximum is obtained in the point X, = (k,0,0) for
h > he and in X, = (0,0,0) for h < h, as soon as f(28) — $F(4B) < M. This
inequality holds for all 8 when ¢ € (1, 2], while in the case ¢ > 2 we can simply add the
hypothesis 3 < 3, to conclude.

Fix now « € (0, 1), in the region PN {g < k*} we have that a(x) — b(x) is a decreasing
function of g at ¢, g5 fixed and large k£, and on the surface ¢ = g5 again is a decreasing
function of g for large k. On the other hand we have for x € P N {g > k“} that a(x) <
a(Xmaz) — b(Xmaz), so that, as in the discussion of Z, by noting that the function b is
non-negative, we can conclude that the points X;,4; correspond to maximal values for the

function a(x) — b(x).
D Proof of equation (98)
We have to estimate
N(o,a.p) = [{r € X" : q(0,7) = ka, Ho(o,7) = k*p} . (109)

for « € [0,9] and p € [f(B) — 6, f'(B) + ¢] with f'(8) € X.. We have Hy(o,7) =
Ho(o,1) + Ho(o,T) and so we get N(0,, p) = 3 ye(p—spt20) N1(0, @, ') N2 (0, v, p') with

Ni(0,0,0) = HA€ V\o s [A] = (1 - a)k, Holo, 4) = (1 — a)p'}],
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_ I P
No(o,a,p)) =|{A €0 : |A| = ak, Hy(o,A) = k;%zwﬂ.
«o

The term N, is easily estimated from above by 2F = ") As far as the term Nj is

concerned we can use the notation of the Fermi statistics and in particular (15), to write

Mead= Y H <fjj]f> (110)

{rnj1ti=o0,1,... .k
Z] 7,1= (1 a)k,
Y jnj1d=k2(1—a)p’

By using the Stirling formula we can approximate the binomial coefficient as follows:

<g> _ 9E(2) o) (111)
n
with
E(x):=xzlnz+ (1 —2)In(1 —x)
obtaining:
g1\ 2
Z H <n 1> exp{maxz —gj.1(E(x5)] + o(k7)}

{nji1}j=0,1,... ki

Sinj=1 )k,

Y jnj1i=k2(1—a)p’
with x = (xj)je{o,l,...,k}, where z; = %, and the maximum is under the constraints

29075 = (1—a)kand 3, gj12;j = k*(1 - a)p’. With the Lagrange multiplier method
and standard computation, we can evaluate this maximum by looking at the maximum of

the function

F(x, A 1) Zgj 1| = &) = A+ g)ag] (112)
which is reached in x with z; = m with A and p solution of the equations
Zgj 1Z; = (1 — a)k and Zgj71fjj =Kk (1 —a)p. (113)
J
In this maximum X we have
S g5a(E(@)] = AL — @)k + (1 — @)k + o(h?). (114)

J
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By Lemma 5.4 we have that for j € J., Z; must be exponentially small in k& and for any

6 > 0 we have

Iml/p 1 (I \—fpd
S giazy = 3 HEEE DAk +O60)
Jj€Je JjEJe

Due to the fact that f/'(3) € X,, this sum is not exponentially small, i.e.,

Inl/p

k[c

() = A~ kud = O(sk)

for some j € J., and so we can conclude that

Inl
max k| nljp

J Jj _,/nl/p
max k| — L () = A= kpo = k|

k c

— f(w)] = A= 0O(k)

that is A\ = k[% — f(u)] + O(dk) and so, by (114) that

Inl/p
c

Ni(o,a,p') < exp { {] J)] + ORI (1 = )k + (1 = a)k?p' } =

= exp (k1 )P () + o] + O(6K?))

By recalling that p' € [p — 9§, p + 28] = [f'(B) — 20, f'(B) + 30] and the Legendre transfor-
mation between f and I, implying that pf’(5) = f(n) — I,(f'(8)) the proof of (97) and
(98) follows straightforward.
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