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Abstract
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1 Introduction

The largest clique problem (LCP), is the problem to find the largest complete subgraph

of a given graph G. Let G = (V,E) be a graph. A graph g is a subgraph of G, g ⊂ G, if

its vertex set V (g) ⊂ V and its edges E(g) ⊂ E. A subgraph g = (V (g), E(g)) is complete

if for any i, j ∈ V (g) then (i, j) ∈ E(g). We will denote by K(G) the set of complete

subgraphs or cliques of G and by MaxCl(G) the set of the largest cliques in G:

MaxCl(G) := {g ∈ K(G) : |V (g)| = max
g′∈K(G)

|V (g′)| (1)
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where |B| denotes the cardinality of the set B. We call clique number of the graph G,

ω(G), the cardinality of the vertex set of any largest clique in G, i.e., ω(G) = |V (g)| with

g ∈ MaxCl(G). Solving the LCP for a given graph G(V,E) implies finding ω(G), and

both problems are in fact in the same complexity class. Note that we are not strictly

following the definition in [1] since we are using the term clique also for a non maximal

complete subgraph of G. The LCP is one of the main example of NP -hard problem. It

has been proven (see e.g. [GJ] and references therein) to be polinomially equivalent to the

k-satisfiability problem and it is equivalent to many other well known difficult problems

in combinatorial optimization.

It is well known that the LCP remains difficult also when restricted to typical instances

of Erdös random graphs with finite fixed density p, i.e. of graphs with n vertices, |V | = n,

in which each pair (i, j) ∈ V × V belongs to the edges set E with independent probability

p. In particular it is well known that in such a random graph G it is very easy to find

complete subgraphs g ∈ K(G) of size |g| = − log n
log p but is difficult to find cliques that exceed

this size, see below. The clique number ω(G) is almost deterministic, in a sense that will

be stated more precisely below, and it is roughly speaking twice the size of the cliques that

are easy to find. Recently some progress has been made in [8] to understand the intricated

landscape of the LCP for Erdös random graph, and therefore to show why at the moment

there are no algorithms able to find cliques of a size that exceeds the easy one.

In a previous paper [6] , in collaboration with Antonio Iovanella, two of us introduced

an algorithm to find cliques inspired by the cavity method developed in the study of spin

glasses. This Markov Chain Monte Carlo exhibits very good numerical performances, in

the sense that, although asymptotically it is not able to find cliques larger than the easy

ones, for finite size effects it find cliques very near to the largest also for quite large graphs.

The idea of the algorithm is the following: starting from a non feasible (i.e. non clique)

configuration σ of k vertices of V , the algorithm chooses the next configuration assigning

to each new set σ′ of k vertices of V a probability proportional to e−β[H0(σ,σ′)+h(k−q(σ,σ′))],

where β is a parameter called inverse temperature. The function H0 is a non negative

quantity defined by the number of missing edges between the two configurations, i.e. the

number of pairs (i, j) with i ∈ σ, j ∈ σ′ and i 6= j such that (i, j) /∈ E(G). The quantity

q(σ, σ′) represents the overlap between σ and σ′ and then k − q(σ, σ′) is the number of

vertices in σ′ that are not in σ. The transition probabilities depend therefore also on the
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positive parameter h.

The presence of βH0 in the transition probabilities, when β is large, makes very low

the probability to reach new configurations σ′ that are badly connected with σ, while a

large h depresses the configurations σ′ with many different vertices with respect to σ.

From a statistical mechanics point of view the dynamics above has various interesting

features. First, the dynamics is conservative, since it is defined on the space of configura-

tions with k vertices, moreover since the whole configuration can be renewed in a single

step the resulting MCMC can be considered a canonical (or conservative) probabilistic

cellular automaton (PCA). Rigorous results on canonical PCA are quite rare in the liter-

ature. Second, H(σ, σ′) = H0 + h(k − q) is in some sense the Hamiltonian of a disordered

system of pair of configurations, and the combined action of H0 and h(k−q) makes the en-

ergy landscape quite complicate. Third, good numerical performances stimulate a deeper

understanding of the dynamics.

For this reasons we decided to study in more detail the statistical mechanical system

described by the chain in the case of random graphs. We prove several results. First of

all it can be proved rigorously that for suitable values of k, including the interesting case

k = ω(G), the annealed analysis corresponds to the quenched one.

Then it can be proved the existence in the plane (β, h) of a nontrivial phase diagram.

More precisely, the system exhibits a first order phase transition while the pair β, h crosses

a line hc(β). At h > hc(β) the phase is characterized by pairs of configurations σ, σ′ with

σ = σ′ and with a given density of missing links in σ, depending on β. At h < hc(β) the

phase is characterized by pairs of disjoint configurations σ, σ′ with again a particular value

for the density of missing links between σ and σ′ depending on β.

Moreover, in the region below the critical line hc(β), a second phase transition is

present, and again it has a transparent “physical” interpretation: for temperature T =

1
β below a critical value Tc the system tend to oscillate indefinitely between two fixed

configurations σ and σ′, while above T the new configuration at each step is typically

different from the configurations previously visited by the system.

This detailed control on the features of the system is achieved by a careful evaluation

of the thermodynamics. In particular the proof of the existence of the phase transitions

can be performed in a relatively easy way, computing the annealed partition function of

the system. The self averaging of the system, i.e., the equivalence between quenched and
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annealed, is more complicate to prove rigorously, involving the computation of the second

moment of the partition function, and it is more a brute-force computation. We will

present it in some detail in the paper, in an almost pedagogical way, because, as far as

we know, there are few cases in the literature where a phase transition for a disordered

system can be controlled rigorously. Moreover the way we achieve this result, although

based on classical argument like the saddle point method, has some technical details that

are quite interesting and may be useful also in different contexts.

Of course this analysis gives important information on the choice of the parameter

used in simulation, and in a following paper we will discuss its application to the study of

the convergence to equilibrium of the dynamics.

To be more precise we need now some definition.

1.1 Random graphs and the clique number

In this section we fix definitions and notations on random graphs and we recall well known

results on the clique number.

For all p ∈ [0, 1] consider the probability space given by an infinite sequence of indepen-

dent Bernoulli variables of parameter p, i.e., ω ∈ Ω := {0, 1}N, ω = (a1, a2, ..., al, ...) with

al ∈ {0, 1}, with σ-algebra generated by Aj
l := {ω : al = j}, j = 0, 1 and with probability

measure

P(ω : ai1 = j1, ...aik = jk) = pj1...pjk
with p1 = p, p0 = 1 − p.

Given a set of vertices V = {1, ..., n} we associate to it the probability space Ωn given by

the first
(n
2

)

Bernoulli variables in Ω describing the edges between vertices in V , with the

obviuos ordering (1, 2), (1, 3), (2, 3), ...., (1, n), (2, n), ..., (n−1, n). In this way we represent

with Ω the probability space usually denoted by G(N, p), i.e., the infinite random graph.

For any G ∈ G(N, p) and n ∈ N we denote by Gn the subgraph of G spanned by

the set Vn := {1, 2, ..., n}, i.e., the subgraph of G containing all the edges of G that join

two vertices in Vn. By definition Gn is Ωn measurable. We will denote by P and E the

probability and the mean value respectively, on this probability space.

The following well known result on the clique number can be found in [1](Corollary

11.2, pg 286):
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Proposition 1.1 For a.e. G ∈ G(N, p) there is a constant m0(G) such that if n ≥ m0(G)

then
∣

∣

∣ω(Gn) − 2 logb n + 2 logb logb n − 2 logb(
e

2
) − 1

∣

∣

∣ <
3

2

with b := 1
p .

The main tool in the proof of this Proposition is the study of the random variable Yr(n)

defined as the number of complete subgraphs of Gn with r vertices, i.e., the number of

r-cliques in Gn with the second moment method . Indeed its mean value is given by:

EYr(n) =

(

n

r

)

p(r
2) =: f(r, n) ≃ br logb n− r2

2

with b := 1
p . The function f(r, n), as a function of r, has its maximum in r ≃ logb n and

drops rather suddenly below 1, by increasing r, say at r ∼ 2 logb n. Moreover, again by an

explicit calculation, Yr(n) satisfies the following inequality

varYr(n)

(EYr(n))2
≤ br4n−2 + 2(EYr)

−1,

when (1 + η) logb n < r < 3 logb n, for η ∈ (0, 1). With the Borel-Cantelli lemma, it is

easy to show that, given ε ∈ (0, 1
2 ), for almost every graph G ∈ G(N, p) there is a constant

m0(G) such that if n ≥ m0(G) and n′
r ≤ n ≤ nr+1 then ω(Gn) = r, with

nr := max{n ∈ N : f(r, n) ≤ r−(1+ε)} n′
r := min{n ∈ N : f(r, n) ≥ r1+ε}. (2)

Indeed the size k of the interesting cliques can be parametrized by a real c ∈ (1, 2] since

the relation between n and the size k of the cliques that we want to study is given by

ln n = k
ln 1/p

c
, with c ∈ (1, 2].

As emerges in (2) it’s more efficient to use k as parameter, instead of n, to study the

asymptotic behavior for large graphs and so for any c̄ > 1 we define

Sc̄ := {(nk)k>0 : lim
k→∞

ln nk

k
=

ln 1/p

c̄
} (3)

This means that if we define ck = k ln 1/p
lnnk

we consider sequences nk such that limk→∞ ck = c̄.

This is actually a particular asymptotic regime that could be generalized.
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Let Y be a random function on the probability space Ω associating to a pair (n, k) a

random variable Y (n, k) on Ωn depending on k, for instance the number of k cliques in

Gn, considered before.

Definition 1.2 A random function Y on the probability space Ω is called c̄-asymptotically

self averaging, if the random variables Y (nk,k)
EY (nk,k) converge almost surely to 1 for any (nk)k>0

in Sc̄ as k → ∞, uniformly in Sc̄.

This means that there exists Ω̃ ⊂ Ω with P(Ω̃) = 1 such that for every ω ∈ Ω̃ and any

(nk)k>0 ∈ Sc̄ the random variable Y (nk,k)(ω)
EY (nk,k) converges to 1.

Note that, by the Borel-Cantelli lemma a sufficient condition for self-averaging is the

following:
varY (nk, k)

(EY (nk, k))2
< n−α

k eo(k) (4)

for some α > 1 with o(k) uniform in (nk) ∈ Sc̄. Indeed for any ε > 0 we have that

P
(

| Y (n, k)

EY (n, k)
− 1| > ε for some n = nk, (nk)k>0 ∈ Sc̄

)

≤

≤ e
k ln 1/p

c
+o(k) 1

ε2
var(

Y (nk, k)

EY (nk, k)
) ≤ 1

ε2
ek ln 1/p

c
(α−1)+o(k)

is summable on k, since (nk)k>0 ∈ Sc̄ implies that ck := k ln 1/p
ln nk

converges to c̄, so that with

at most finitely many exception on k, we have that | Y (nk ,k)
EY (nk,k) −1| < ε for any (nk)k>0 ∈ Sc̄.

We also note that if Z is c̄-asymptotically self averaging we have that ln Z(nk, k) −
ln EZ(nk, k) converges almost surely to 0.

1.2 The cavity algorithm

Let V = {1, ..., n} and define for each unordered pair in V × V

Jij =

{

0 if (i, j) ∈ E

1 if (i, j) /∈ E
(5)

We consider the space X (n) := {0, 1}{1,...,n} of lattice gas configurations on V and we

will denote by the same letter a configuration σ ∈ X (n) and its support σ ⊆ V . On this

configuration space X we can consider an Ising Hamiltonian with an antiferromagnetic

interaction between non-neighbor sites:
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H(σ) :=
∑

i,j∈V, i6=j

Jijσiσj − h
∑

i∈V

σi (6)

where h > 0. It is immediate to prove that when h < 2 the minimal value of H(σ)

is obtained on configurations with support on the vertices of a maximum clique. In

the case of a random graph G, i.e., when the interaction variables Jij are i.i.d.r.v., the

Hamiltonian (6) is similar to the Hamiltonian of the Sherrington-Kirkpatrick(SK) model.

The main differences are that we use lattice gas variables instead of spin variables and,

more important, the interaction is given by Bernoulli variables.

For each σ ∈ X (n) we define its cavity field (or molecular field) as the field created in

each site i by all the sites in the configuration σ:

hi(σ) =
∑

j 6=i

Jijσj + h(1 − σi) ∀i ∈ V. (7)

We consider the canonical case, i.e., for any integer k < n we define the canonical

configuration space

X (n)
k := {σ ∈ X (n) :

∑

i∈V

σi = k} (8)

For each pairs of configurations σ, σ′ ∈ X (n)
k we can define the pair hamiltonian:

H(σ, σ′) =
∑

i,j∈V, i6=j

Jijσiσ
′
j + h

∑

i

(1 − σi)σ
′
i =

∑

i

hi(σ)σ′
i (9)

This hamiltonian is non-negative and vanishes when σ = σ′ and its support is a k-clique.

For every σ, σ′ ∈ X (n)
k the transition probabilities of the cavity algorithm are given by:

P (σ, σ′) =
e−βH(σ,σ′)

∑

τ∈Xk
e−βH(σ,τ)

=
e−βH(σ,σ′)

Zσ
, (10)

with

Zσ =
∑

τ∈Xk

e−βH(σ,τ). (11)

By an immediate computation we can check that the detailed balance condition w.r.t.

the invariant measure on X (n)
k

µ(σ) =

∑

τ∈X
(n)
k

e−βH(σ,τ)

∑

τ,σ∈X
(n)
k

e−βH(σ,τ)
=

Zσ

Z
(12)
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is verified with partition function Z:

Z(n, k) = Z(X (n)
k ) =

∑

σ∈X
(n)
k

Zσ =
∑

σ,τ∈X
(n)
k

e−βH(σ,τ). (13)

We will denote by µ(.) the mean w.r.t. this stationary measure. For large β, this stationary

measure is exponentially concentrated on cliques.

Note that at each step all the sites are updated; this dynamics could be considered

a canonical version of probabilistic cellular automata (PCA). Given a fixed configuration

σ the probability measure on X (n)
k given by πσ(.) := P (σ, .) can be considered in the

frame of the Fermi statistics. Indeed the cavity fields hi(σ) have values el,r = l + rh with

l ∈ {0, 1, ..., k} and r ∈ {0, 1}. We define

Il,1 := {i ∈ V : hi(σ) = l + h} l = 0, ..., k. (14)

By equation (9) we have

H(σ, τ) =
∑

i

hi(σ)τi =
∑

l,r

el,r

∑

i∈Il,r

τi =:
∑

l,r

el,rnl,r (15)

where nl,r denotes the occupation of the level (or cell) (l, r). On the other hand each

level consists of gl,r := |Il,r| subcells (or sublevels) containing at most one particle since

for every i ∈ Il,r we have τi ∈ {0, 1}. This means that instead of configurations in X (n)
k

we can consider the occupation numbers of the levels {nl,r}l=0,...,k, r=0,1. This statistical

system is called a Fermi gas, see [4] for more detail on sampling for the Fermi statistics,

and thus on the realization of this single step of the dynamics.

As far as the energy levels corresponding to sites not in σ, i.e., with r = 1, are

concerned, we have that their number of sublevels, gl,1 = |{i ∈ V : hi(σ) = l + h}|, is

“almost deterministic”, as discussed in [6]. Indeed they follow a binomial law, and precise

results can be found in Lemma 5.4 in Section 5.

A final remark on probability measures can be useful. The invariant measure µ(σ) is

not a Gibbs measure, as usual with PCA, but we can define a Gibbs measure on pairs

of configurations, i.e., on X (n)
k × X (n)

k as µ2(σ, σ′) = 1
Z e−βH(σ,σ′) with the same partition

function Z(n, k) given in (13). Actually the invariant measure µ can be considered the

marginal of µ2. The probability measure πσ(.) = e−βH(σ,.)

Zσ
introduced above in the discus-
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sion on the Fermi statistics can be considered as the conditioned measure on X (n)
k , since

we have the relation:

µ2(σ, τ) = µ(σ)πσ(τ). (16)

1.3 Results

The main results presented in this paper are summarized by the following:

Theorem 1.3 For each p ∈ (0, 1) and β ∈ (0,∞]

i) let n and k be integers such that c := k ln 1/p
ln n > 1, defining h̃ := h

k , there is a critical

value of h̃ defined by

h̃c =
1

β

(f(2β)

2
− f(β) +

ln(1/p)

c

)

(17)

with f(β) := − ln [p + (1 − p)e−β ] for which

ln(EZ(X (n)
k )) =

{

k2 ln(1/p)
c + k − f(2β)k(k−1)

2 − k ln k + o(k) if h̃ > h̃c

2k2 ln(1/p)
c + 2k − βh̃k2 − f(β)k2 − 2k ln k + o(k) if h̃ < h̃c

(18)

ii) if c ∈ (1, 2]

varZ(X (n)
k )

(EZ(X (n)
k ))2

≤ n−2eo(k) (19)

with o(k) independent of n and c, so that the partition function Z is c̄-asymptotically

self averaging for c̄ ∈ (1, 2];

iii) the line h̃c corresponds to a first order phase transition, in particular the phase

with h̃ > h̃c is characterized by configurations σ with H(σ, σ) ∼ k2f ′(2β) and the

phase with h̃ < h̃c is characterized by pairs of disjoint configurations (σ, σ′) with

H(σ, σ′) ∼ k2f ′(β) + k2h̃;

iv) if c̄ ∈ (1, 2] and for any (nk)k>0 ∈ Sc̄ and h̃ 6= h̃c̄ define the entropy S(nk, k) :=

−∑

σ∈X
(nk)

k

µ(σ) ln(µ(σ)), then 1
k2 S(nk, k) converges almost surely to the following

non random function:

s̄ =















ln 1/p
c̄ − f(2β)

2 + βf ′(2β) in the parameter region (A) : h̃ > h̃c̄

2 ln 1/p
c̄ − f(β) + βf ′(β) in the region (B) : h̃ < h̃c̄ and β > βc̄

ln 1/p
c̄ in the region (C) : h̃ < h̃c̄ and β < βc̄

(20)
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Figure 1: Phase dygram for the cavity algorithm

where βc̄ is a zero of the function

C(β) =
ln 1/p

c̄
− f(β) + βf ′(β) (21)

so that also S(nk, k) is c̄-asymptotically self-averaging. The function s̄ is discontin-

uous along the line h̃ = h̃c̄ and has a discontinuity in its first derivative at Tc̄ = 1
βc̄

corresponding to a “low temperature phase transition”. The asymptotic value of the

entropy in the phase h̃ < h̃c̄ and β < βc̄ is maximal since |X (nk)
k | ≍ e

k2 ln 1/p
ck .

The phase diagram is summarized in Figure 1.

Remark 1.4 We can write

Z =
∑

E

e−βENE (22)

with E running on all the possible values of the energy H(σ, τ) and NE being the number

of pairs of configurations σ, τ with H(σ, τ) = E. For β = ∞ this implies that Z = N0.

Hence the self-averaging of Z implies the self-averaging of the number of cliques of any

size k corresponding to c ∈ (1, 2]. This generalizes the Bollobas result quoted above.

Remark 1.5 Even though the relevant case for the clique problem is c ∈ (1, 2], for c > 2

we can prove (see Appendix C) that, with β̄c < ∞ the unique solution of

f(2β̄c) −
1

2
f(4β̄c) =

1

c
ln 1/p,

for all β < β̄c we still have the estimate (19). Therefore quenched quantities behave like

annealed ones for β < β̄c. In addition we can prove the existence of a second value for the
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inverse temperature, say β̂c > β̄c such that for β > β̂c and β > 2β̂c, respectively for h̃ > h̃c

and h̃ < h̃c, quenched quantities certainly differ from annealed ones. Indeed if β̂c > β̄c is

such that

f(2β̂c) − 2β̂cf
′(4β̂c) =

1

c
ln 1/p,

the estimated entropy for µ2 obtained from the annealed quantities turns out to be asymp-

totically negative, i.e., for (nk)k>0 in Sc̄,

lim
k→+∞

1

k2

(

ln E[Z(nk, k)] − β
∂ ln E[Z(nk, k)]

∂β

)

< 0

for β > β̂c̄ in the case h̃ > h̃c̄ and β > 2β̂c̄ in the case h̃ < h̃c̄. Then, for β > β̂c̄ and

β > 2β̂c̄ respectively, quenched quantities certainly differ from annealed ones. We actually

expect a third phase transition at these temperatures: conversely, for β < β̂c̄ and β < 2β̂c̄

respectively, quenched quantities should behave like quenched ones.

Notation:

For notation convenience in what follows we adopt the following simplification: given c̄ > 1

and (nk)k>0 ∈ Sc̄ we write n = nk and c = ck

2 The annealed partition function Z̄

In the case of random graphs is not difficult to compute the annealed partition function:

Z̄ := EZ = E

[

∑

σ,τ∈Xk

e−βH(σ,τ)
]

. (23)

Let I := σ ∩ τ , and q be the overlap q := |I|. We denote by H0(σ, τ) the first part of

the pair hamiltonian, i.e., the pair hamiltonian evaluated for h = 0:

H0(σ, τ) =
∑

i,j∈V, i6=j

Jijσiσ
′
j =

∑

{i,j}

Jij(σiτj + σjτi) (24)

The quantity σiτj + σjτi takes values 0, 1, 2 as given in Table 1, where we denote by

S := σ\I, T := τ\I and C := (σ∪ τ)c. So σiτj + σjτi = 1 for {i, j} in the set of unordered

pairs E1 = (S × I)∪ (T × I)∪ (S×T ) and σiτj + σjτi = 2 for {i, j} ∈ E2 = I × I. By using
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S I T C

S 0 1 1 0

I 1 2 1 0

T 1 1 0 0

C 0 0 0 0

Table 1: Values of σiτj + σjτi

the independence of the random variables Jij we can conclude:

Z̄ =

k
∑

q=0

∑

σ,τ∈Xk : |I|=q

e−βh(k−q)
∏

{i,j}∈E1

Ee−βJij
∏

{i,j}∈E2

Ee−2βJij .

Since Ee−βJij = e−f(β) and Ee−2βJij = e−f(2β) with f(β) = − ln [p + (1 − p)e−β)] and

defining

Θ(q) := ln
[

(

n

2k − q

)(

2k − q

q

)(

2(k − q)

k − q

)

]

(25)

we have

Z̄ =

k
∑

q=0

eΘ(q)e−βh(k−q)−f(β)(2q(k−q)+(k−q)2)−f(2β)
q(q−1)

2 =

k
∑

q=0

eΘ(q)+Φ(q) (26)

with

Φ(q) := −βh(k − q) − f(β)(k2 − q2) − f(2β)
q(q − 1)

2
(27)

We collect in Appendix A the main properties of the function f(β).

As far as the entropic term Θ is concerned we can use the Stirling formula n! =

(n
e )nn

1
2

√
2πeO( 1

12n
) to obtain the following asymptotic behaviors for m and k large with

m = o(n) and g < k:

(

n

m

)

= exp{m ln n − m ln m + m + o(m)}, ln(n − m) = ln n − m

n
+ O(

m2

n2
) (28)

(

k

g

)

= exp{k ln k − (k − g) ln(k − g) − g ln g + o(k)}. (29)

With the definition ln n = k ln(1/p)
c we can write:

Θ(q) = (2k − q)k
ln(1/p)

c
+ 2k − q − q ln q − 2(k − q) ln(k − q) + o(k)

13



We can estimate Z̄ for large k with the saddle point method looking for the maximum

of the function Θ(q) + Φ(q). Indeed ln Z̄ = maxq∈[0,k](Θ(q) + Φ(q)) + O(ln k) We have

Θ(q)+Φ(q) = a(q)− b(q), where a(q) is a polynomial with degree less or equal 2, i.e., with

a(q) = (2k − q)k
ln(1/p)

c
+ 2k − q − βh(k − q) − f(β)(k2 − q2) − f(2β)

q(q − 1)

2
,

and b(q) the remaining part:

b(q) = q ln q + 2(k − q) ln(k − q) + o(k)

By noting that f(β) is a concave function so that f(β) − f(2β)
2 > 0 we have that a(q)

is a convex parabola, and so with maximum in 0 or k, while b(q) is non negative and

|b(q)| ≤ 4k ln k. We have that, for sufficiently large k, the maximum of a(q) is obtained in

qmax = k if h̃ > h̃c, (see equation (17) for the definition of h̃c) and in qmax = 0 if h̃ < h̃c.

By simple calculations we have that these points k and 0 correspond to the maximum also

for the function Θ(q)+Φ(q) = a(q)−b(q) when h̃ > h̃c and h̃ < h̃c, respectively. Indeed in

the two different cases it is immediate to verify that in a neighborhood of qmax, i.e., in the

intervals [k − kα, k] and [0, kα] with α ∈ (0, 1), respectively, the following estimates hold

for the variations of the functions a and b: for sufficiently large k, there exists a positive

ε such that

|∆a(q)| := |a(q + 1) − a(q)| > εk, |∆b(q)| = o(k)

and for q outside these intervals a(q) < a(qmax) − εk1+α, so that a(q) − b(q) ≤ a(q) <

a(qmax) − εk1+α < a(qmax) − b(qmax).

Summarizing we have, for h̃ > h̃c:

ln Z̄ = k2 ln(1/p)

c
+ k − f(2β)

k(k − 1)

2
− k ln k + o(k) (30)

and for h̃ < h̃c

ln Z̄ = 2k2 ln(1/p)

c
+ 2k − βh̃k2 − f(β)k2 − 2k ln k + o(k) (31)

For large k we obtain that 1
k2 ln Z̄ is a continuous function with a discontinuous derivative

in β when h̃ = h̃c, corresponding to a line of a first order phase transition as discussed in

Section 4.

14



j\i SS’ SI’ ST’ SC’ IS’ II’ IT’ IC’ TS’ TI’ TT’ TC’ CS’ CI’ CT’ CC’
SS’ 0 1 1 0 1 2 2 1 1 2 2 1 0 1 1 0
SI’ 2 1 0 2 3 2 1 2 3 2 1 1 2 1 0
ST’ 0 0 2 2 1 1 2 2 1 1 1 1 0 0
SC’ 0 1 1 1 1 1 1 1 1 0 0 0 0
IS’ 2 3 3 2 1 2 2 1 0 1 1 0
II’ 4 3 2 2 3 2 1 1 2 1 0
IT’ 2 2 2 2 1 1 1 1 0 0
IC’ 2 1 1 1 1 0 0 0 0
TS’ 0 1 1 0 0 1 1 0
TI’ 2 1 0 1 2 1 0
TT’ 0 0 1 1 0 0
TC’ 0 0 0 0 0
CS’ 0 1 1 0
CI’ 2 1 0
CT’ 0 0
CC’ 0

Table 2: The value of σiτj + σjτi + σ′
iτ

′
j + σ′

jτ
′
i for different i, j

3 The asymptotic self-averaging of Z

The proof of self averaging of Z is a crude calculation based on elementary arguments. We

first evaluate the second moment of Z proving that asymptotically it behaves like Z̄2. An

upper bound for varZ
Z̄2 is obtained with a more detailed computation based on the same

tools.

3.1 The second moment of Z

We evaluate the second moment of Z:

E(Z2) = E

(

∑

σ,τ,σ′,τ ′∈X
(n)
k

e−β[H(σ,τ)+H(σ′ ,τ ′)]
)

. (32)

By defining, as before, q = |σ ∩ τ | (and similarly q′) we have

H(σ, τ) + H(σ′, τ ′) =
∑

{i,j}

Jij(σiτj + σjτi + σ′
iτ

′
j + σ′

jτ
′
i) − h(2k − q − q′) (33)

The quantity σiτj + σjτi + σ′
iτ

′
j + σ′

jτ
′
i takes values 0, 1, 2, 3, 4 as in the Table 2, where

we use the previous notation, i.e., I := σ ∩ τ , S := σ\I, T := τ\I, C := (σ ∪ τ)c and

similarly for the sets I ′, S′, T ′ and C ′. We also use the notation SS′ for the set S ∩S′ and

so on. The table is symmetric due to the symmetry in the exchange i ↔ j so we write only

the upper triangle. For every l ∈ {1, 2, 3, 4} again we denote by El the set of unordered

pairs {i, j} where σiτj + σjτi + σ′
iτ

′
j + σ′

jτ
′
i = l. By the table we have: E4 = II ′ × II ′,

15



S’ I’ T’

S 1 2 3

I 4 5 6

T 7 8 9

Table 3: Index of the intersections

E3 = (SI ′ × τI ′)∪ (IS′ × Iτ ′)∪ (II ′ × IT ′)∪ (II ′ × TI ′), and so on. With these notations

we can write for the second moment of Z:

E(Z2) =

k
∑

q=0

k
∑

q′=0

e−βh(2k−q−q′)
∑

σ,τ : |σ∩τ |=q,
σ′,τ ′: |σ′∩τ ′|=q′

∏

{i,j}∈E1

Ee−βJij×

×
∏

{i,j}∈E2

Ee−2βJij
∏

{i,j}∈E3

Ee−3βJij
∏

{i,j}∈E4

Ee−4βJij (34)

For shortness we will denote by gr the cardinality of the intersection of the different subsets

involved in this table, where the index r ∈ {1, 2, ..., 9} is fixed in Table 3, e.g g1 := |SS′|.
The cardinalities gr have the following constraints:

g1 + g2 + g3 ≤ k − q, g4 + g5 + g6 ≤ q, g7 + g8 + g9 ≤ k − q, (35)

g1 + g4 + g7 ≤ k − q′, g2 + g5 + g8 ≤ q′, g3 + g6 + g9 ≤ k − q′. (36)

The cardinality of the sets given by intersections with C or C ′ is obtained by difference:

gS := |SC ′| = k − q − (g1 + g2 + g3), gS′ := |S′C| = k − q′ − (g1 + g4 + g7), (37)

gI := |IC ′| = q − (g4 + g5 + g6), gI′ := |I ′C| = q′ − (g2 + g5 + g8), (38)

gT := |TC ′| = k − q − (g7 + g8 + g9), gT ′ := |T ′C| = k − q′ − (g3 + g6 + g9), (39)

By defining g = g1 + g2 + ... + g9 and M(g1, ..., g9, n, q, q′) the multinomial coefficient

M(g1, ..., g9, n, q, q′) =
n!

g1!...g9!gS !gI !gT !gS′ !gI′ !gT ′ !(n − (4k − q − q′ − g))!
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we can write

E(Z2) =
k

∑

q=0

k
∑

q′=0

(2k−q)∧(2k−q′)
∑

g=0

∑

g1,...,g9

M(g1, ..., g9, n, q, q′)eΦ(q)+Φ(q′)+Ψ(q,q′,g,g1,...,g9) (40)

where the sum over g1, ..., g9 satisfies the constraints (35), (36) and g1 + g2 + ... + g9 = g

and with Φ defined in (27) and Ψ given by:

Ψ =
g5(g5 − 1)

2

(

2f(2β) − f(4β)
)

+
1

2

9
∑

r=1

grCr

where the coefficients Cr are defined as follows:

C1 =
(

2f(β) − f(2β)
)

(g5 + g6 + g8 + g9) (41)

C3 =
(

2f(β) − f(2β)
)

(g4 + g5 + g7 + g8) (42)

C7 =
(

2f(β) − f(2β)
)

(g2 + g3 + g5 + g6) (43)

C9 =
(

2f(β) − f(2β)
)

(g1 + g2 + g4 + g5) (44)

C2 =
(

2f(β) − f(2β)
)

(g4 + g6 + g7 + g9) +
(

f(β) + f(2β) − f(3β)
)

(g5 + g8) (45)

C4 =
(

2f(β) − f(2β)
)

(g2 + g3 + g8 + g9) +
(

f(β) + f(2β) − f(3β)
)

(g5 + g6) (46)

C6 =
(

2f(β) − f(2β)
)

(g1 + g2 + g7 + g8) +
(

f(β) + f(2β) − f(3β)
)

(g4 + g5) (47)

C8 =
(

2f(β) − f(2β)
)

(g1 + g3 + g4 + g6) +
(

f(β) + f(2β) − f(3β)
)

(g2 + g5) (48)

C5 =
(

2f(β)−f(2β)
)

(g1 +g3 +g7 +g9)+
(

f(β)+f(2β)−f(3β)
)

(g2 +g4 +g6 +g8) (49)

We denote by P the region of parameters q, q′, g, g1, ..., g9 defined by the constraints

0 ≤ q ≤ k, 0 ≤ q′ ≤ k, g = g1 + ... + g9 and (35) and (36).

Lemma 3.1 For any β ∈ (0,∞) and for any q, q′, g1, ..., g9, g ∈ P and for c ≤ 2 we have

Ψ(q, q′, g1, ..., g9, g) ≤ Ψ̄(q, q′, g, g5) (50)

where

Ψ̄ =
g5(g5 − 1)

2

(

2f(2β) − f(4β)
)

+
1

2

(

f(β) + f(2β)− f(3β)
)

((k ∧ g) + g5)(g − g5) (51)
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The proof of Lemma 3.1 is given in Appendix C.

As far as the entropic term is concerned we can write

∑

g1,g2,g3,g4,g6,g7,g8,g9

n!

g1!...g9!gS !gI !gT !gS′ !gI′ !gT ′ !(n − (4k − q − q′ − g))!
≤

≤ exp{(4k−q−q′−g) ln n− ln
(

(q−g)!(q′−g)!
)

−2 ln
(

(k−q−g)!(k−q′−g)!
)

+8} =: eΘ̄2

(52)

where the sum is under the condition g1 + g2 + g3 + g4 + g6 + g7 + g8 + g9 = g − g5 and

with the notation m! = 1 if m ≤ 1 and where, for the sum of gr with r 6= 5, we used the

estimate
∑

g1,g2,g3,g4,g6,g7,g8,g9

1

g1!g2!g3!g4!g6!g7!g8!g9!
=

8g−g5

(g − g5)!
≤ e8.

With these estimates we can write

E(Z2) ≤
k

∑

q=0

k
∑

q′=0

(2k−q)∧(2k−q′)
∑

g=0

g∧q∧q′
∑

g5=0

eΘ̄2(q,q′,g,g5)+Φ(q)+Φ(q′)+Ψ̄(q,q′,g,g5) (53)

To evaluate this sums again we look for the maximum of the exponent. Define for notation

convenience Φ2(q, q
′) = Φ(q) + Φ(q′).

Lemma 3.2 The maximum of the function Θ̄2 + Φ2 + Ψ̄ on the parameter region defined

by the constraints is obtained for q = q′ i.e., for q = q′, g, g5 in the three dimensional

polyhedron P̄ defined by

0 ≤ q ≤ k, g5 ≤ g ≤ 2k − q, 0 ≤ g5 ≤ q (54)

and represented in Figure 2. Moreover (Θ̄2 + Φ2 + Ψ̄)(q, q, g, g5) reaches its maximum on

P̄ in (k, k, 0, 0) if h̃ ≥ h̃c and in (0, 0, 0, 0) if h̃ < h̃c.

The proof of Lemma 3.2 is given again in Appendix C. Note that when g = 0 and

q = q′ we have the expected relations Θ2 = 2Θ + O( k
n), and Ψ = 0.

With these lemmas we immediately obtain

ln E(Z2) = max
q,g,g5∈P̄

(Θ̄2 + Φ2 + Ψ̄)(q, q, g, g5) + O(ln k) = 2 ln EZ + O(ln k) (55)
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Figure 2: The polyhedron P̄

3.2 Self averaging

To evaluate the quantity varZ
(EZ)2 we can write

(EZ)2 =

k
∑

q=0

k
∑

q′=0

(2k−q)∧(2k−q′)
∑

g=0

∑

g1,...,g9

n! eΦ(q)+Φ(q′)

g1!...g9!gS !gI !gT !gS′ !gI′ !gT ′ !(n − (4k − q − q′ − g))!

and note that, as in the case of the clique number, the terms corresponding to g = 0 and

g = 1 are identical in E(Z2) and in (EZ)2, indeed Ψ = 0 not only for g = 0 but also in

the case g = 1. Therefore

varZ

(EZ)2
≤ 1

Z̄2

k
∑

q=0

k
∑

q′=0

(2k−q)∧(2k−q′)
∑

g=2

g∧q∧q′
∑

g5=0

eΘ̄2+Φ2+Ψ̄ (56)

Lemma 3.3 The maximum of the function (Θ̄2 + Φ2 + Ψ̄)(q, q′, g, g5) on the parameter

region P̄ with the additional constraint g ≥ 2 is equal to

{

−f(2β)k(k − 1) + (2k − 2) ln n − 2 ln(k − 2)! + o(k) if h̃ > h̃c

−2βhk − 2f(β)k2 + (4k − 2) ln n − 4 ln(k − 2)! + o(k) if h̃ < h̃c

The proof of this Lemma is analogous to that of Lemma 3.2 given in the Appendix C.
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With this Lemma we conclude the self averaging result. Consider first the case h̃ ≥ h̃c:

varZ

(EZ)2
≤ exp

{

− 2
[

k ln n + k − f(2β)
k(k − 1)

2
− k ln k + o(k)

]

+

−f(2β)k(k − 1) + (2k − 2) ln n − 2 ln(k − 2)! + o(k)
}

≤

≤ exp
{

− 2k + 2k ln k − 2 ln n − 2(k − 2) ln(
k − 2

e
) + o(k)

}

=

= exp
{

− 2 ln n + o(k)
}

= e−2 lnn+o(k)

and using the asymptotic ln k
k−2 ∼ 2

k we obtain the self averaging in this case. In the case

h̃ < h̃c the calculation is similar:

varZ

(EZ)2
≤ exp

{

− 2
[

2k lnn + 2k − βh̃k2 − f(β)k2 − 2k ln k + o(k)
]

−2βhk − 2f(β)k2 + (4k − 2) ln n − 4 ln(k − 2)! + o(k)
}

≤ exp
{

− 4k + 4k ln k − 2 ln n − 4(k − 2) ln(
k − 2

e
) + o(k)

}

≤ e−2 lnn+o(k)

4 Phase transition across h̃c(T )

By the previous results on the self averaging of Z with

Z̄ =







exp
{

k2
[

ln 1/p
c − f(2β)

2

]

+ o(k2)
}

if h̃ > h̃c

exp
{

k2
[

2 ln 1/p
c − f(β) − βh̃

]

+ o(k2)
}

if h̃ < h̃c

(57)

we can conclude that the line h̃c(T ) represented in Figure 1 corresponds to a line of a

first order phase transition. Indeed the function ln Z̄ turns out to be continuous with a

discontinuous derivative in β when h̃ = h̃c and we have − ∂
∂β ln Z = µ2(H(σ, τ)) converges

almost surely to

− ∂

∂β
ln Z̄

{

k2f ′(2β) + o(k2) if h̃ > h̃c

k2(f ′(β) + h̃) + o(k2) if h̃ < h̃c

(58)

By the convexity property of the function lnZ we can conclude with standard argu-

ments that ∂
∂β limk→∞ ln Z = limk→∞

∂
∂β ln Z and so the same result can be obtained by

evaluating directly the mean E

[

µ2(H(σ, τ))
]

If we look at the model on the state space of couple of configurations, with Gibbs
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measure µ2(σ, τ) = 1
Z e−βH(σ,τ), the two phases correspond to two different mean energies.

As far as the second derivative is concerned we have

∂2

∂β2
ln Z = varµ2(H) =

{

−k2f”(2β) + o(k2) if h̃ > h̃c

−k2f”(β) + o(k2) if h̃ < h̃c

(59)

and again the same result can be obtained by evaluating directly the mean on the Jij of

the variance w.r.t. the pair measure µ2.

In a similar way we can study the overlap q(σ, τ) by computing ∂
∂h̃

ln Z. Indeed

µ2(q(σ, τ)) = k + 1
βk

∂
∂h̃

ln Z; we obtain

− 1

βk

∂

∂h̃
ln Z̄

{

0 if h̃ > h̃c

k if h̃ < h̃c

(60)

so that the two phases have not only different mean energies but also different mean

overlap.

5 A low temperature phase transition

We prove in this section the last claim of our main theorem. The proof is divided in

three steps. First, we made a few prelimiray remarks on the computation of the annealed

partition function Z̄ and we deduce an almost sure concentration property of the Gibbs

measure µ2. Second, we translate this concentration property in a concentration property

of the marginal law µ. Last, we evaluate the free entropy of the measure πσ for the typical

configurations σ by proving a last large deviation estimate.

5.1 Concentration of the Gibbs measure µ2

An alternative way to compute the annealed partition function consists in counting the

mean number N (q, l1, l2) of pairs of configurations (σ, τ) with a given overlap q = |I| :=

|σ ∩ τ |, a given number l1 of missing links inside I, and a given number l2 of missing links

between I and T := τ \ σ, between S := σ \ τ and T , as well as S and I. We get

Z̄ =
k

∑

q=0

q(q−1)
2

∑

l1=0

k2−q2
∑

l2=0

e−β[2l1+l2+h(k−q)]N (q, l1, l2). (61)
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To evaluate N (q, l1, l2) we use the following argument. Consider the obvious extension of

the definition (24) of H0(σ, τ) to a generic pair A,B of subsets of V :

H0(A,B) =
∑

i,j∈V, i6=j

Ji,j1A(i)1B(j).

For a ∈ {0, ..., k} and l ∈ {0, ..., ka} let A := {A ⊂ σc : |A| = a, and H0(A,σ) = l}, then

E|A| =
(

n − k

a

)(

ak

l

)

(1 − p)lpak−l = eak[ ln 1/p
c

−Ip( l
ak

)]+o(k2) (62)

where we denote by Ip the large deviation functional

Ip : x ∈ [0, 1] 7→ x ln
x

1 − p
+ (1 − x) ln

1 − x

p
. (63)

In Appendix A the main properties of this function are recalled; we just mention here

that the function Ip(x) is related to the function f(β) used in section 2 by a Legendre

transform, indeed we are doing the same computation of Z̄ by using different variables. A

similar computation can be given for subsets of σ and so we can easily conclude that

N (q, l1, l2) = nI(q, l1)nS,T (q, l2)

with

nI(q, l1) =

(

n

q

)

exp{−q(q − 1)

2
Ip(

2l1
q(q − 1)

)} (64)

nS,T (q, l2) =

(

n − q

2(k − q)

)(

2(k − q)

k − q

)

exp{−(k2 − q2)Ip(
l2

k2 − q2
)} (65)

and so

N (q, l1, l2) = eΘ(q)−
q(q−1)

2
Ip(x1)−(k2−q2)Ip(x2)+o(k). (66)

with Θ(q) defined in (25), x1 = 2l1
q(q−1) and x2 = l2

k2−q2 , The sums over l1 and l2 can

be written as sums over x1 and x2 and can be estimated with the saddle point method.

We then obtain for Z̄ the expression given in (30) and (31) by using the fact that f is

the Legendre transform of −I. In the previous sections we used a different approach

to estimate Z and Z̄ because this decomposition becomes not easily dealt with as soon

as second moment estimates are involved. However, the decomposition proposed here is

useful to prove a concentration property for the Gibbs measure µ2.
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Three simple remarks will be used in what follows.

Remark 5.1 As far as equation (62) is concerned, we note that the set of values of density

of missing links having positive entropy is given by

Xc := {x ∈ [0, 1] :
ln 1/p

c
> Ip(x)}. (67)

Remark 5.2 Note that by the definition of cavity field (7) we have

∑

i∈T

hi(S) =
∑

i∈S

hi(T ) = H0(S, T )

so that H0(S, T ) =
∑

i∈T hi(S)+
∑

i∈S hi(T )

2

Remark 5.3 The the density of missing links is typically constant in subsets of a given

set. More precisely let A and B be a pair of subsets of V with |A| = ak, |B| = bk with

a, b > 0 and let ρ ∈ (0, 1). Then for every A1 ⊂ A with |A1| = a1k, a1 ∈ (0, a) and for

every ρ1 6= ρ there exists δ(ρ1) > 0 such that

P(H0(A1, B) = ρ1a1bk
2|H0(A,B) = ρabk2) < e−δ(ρ1)abk2

The proof is an immediate consequence of the convexity of Ip if we note that

P(H0(A1, B) = ρ1a1bk
2|H0(A,B) = ρabk2) =

= P(H0(A1, B) = ρ1a1bk
2, H0(A2, B) = ρ2(a − a1)bk

2)eabk2Ip(ρ)+o(k2) ≤

≤ e−a1bk2Ip(ρ1)−(a−a1)bk2Ip(ρ2)+abk2Ip(ρ)+o(k2)

with A2 := A\A1 and ρ2 = ρ a
a−a1

− ρ1
a1

a−a1
.

For (σ, τ) in X (n)
k × X (n)

k , let us denote again the overlap by q(σ, τ) and by H0(σ, τ)

the number of missing links between σ and τ . We define also

Q̄(σ, τ) := {i ∈ T : hi(S) 6∈ Xc} ∪ {i ∈ S : hi(T ) 6∈ Xc} (68)

that is the set of points in S ∪T with non-typical number of missing links to the other set,

and let q̄(σ, τ) := |Q̄(σ, τ)|. Even if the energy H(σ, τ) does not depend on this parameter
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q̄(σ, τ), as we will show in Section 5.3, the value of q̄(σ, τ) is crucial to perform entropy

estimates at low temperature when h̃ < h̃c. We then set, for any δ > 0,

Qδ :=

{

[1 − δ, 1] if h̃ > h̃c̄,

[0, δ] if h̃ < h̃c̄.
(69)

Hδ :=

{

[f ′(2β) − δ, f ′(2β) + δ] if h̃ > h̃c̄,

[f ′(β) − δ, f ′(β) + δ] if h̃ < h̃c̄.
(70)

and

Q̄δ :=

{

[0, 1] if h̃ > h̃c̄ or h̃ < h̃c̄ and T > Tc,

[1 − 2δ, 1] if h̃ < h̃c̄ and T < Tc.
(71)

With these intervals of parameters we can define a set of typical pairs of configuration:

Σ2,δ :=

{

(σ, τ) ∈ X (n)
k ×X (n)

k :
q(σ, τ)

k
∈ Qδ,

q̄(σ, τ)

2(k − q(σ, τ))
∈ Q̄δ,

1

k2
H0(σ, τ) ∈ Hδ

}

(72)

where we define q̄(σ,τ)
2(k−q(σ,τ)) = 0 when q(σ, τ) = k. By the self-averaging property of Z we

have

E
[

µ2(Σ
c
2,δ)

]

= E





1

Z

∑

(σ,τ)∈Σc
2,δ

e−βH(σ,τ)



 =
1

Z̄eo(k)
E





∑

(σ,τ)∈Σc
2,δ

e−βH(σ,τ)



 . (73)

Now, using the previous decomposition (61) and the fact that Ip is strictly convex and

more precisely that I ′′p ≥ 2, we get, with the saddle point method, and using the remarks

5.1, 5.2, 5.3 that

E
[

µ2(Σ
c
2,δ)

]

≤ e−Cδ2k2
(74)

for k large enough and a suitable constant C. Indeed

E
[

µ2(Σ
c
2,δ)

]

≤ 1

Z̄eo(k)

∑

q=0,...,k

′
∑

x1∈[0,1]

∑

x2∈[0,1]

e−β[2l1+l2+h(k−q)]N (q, l1, l2)+

+
1

Z̄eo(k)

∑

q=0,...,k

∑

x1∈[0,1]

′
∑

x2∈[0,1]

′e−β[2l1+l2+h(k−q)]N (q, l1, l2) + e−2Cδ2k2
(75)

where the sums
∑′ are with the restriction given by σ ∈ (Σ2,δ)

c, i.e.,
∑

q=0,...,k
′ is with

the condition q 6∈ Qδ and
∑′

xi
are with the condition x1 is such that Ip(x1) + 2βx1 >

f(2β) + C(δ) in the case h̃ > h̃c and in the case h̃ < h̃c with the condition x2 is such
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that Ip(x2) + βx2 > f(β) + C(δ), with C(δ) ≥ δ2

2 minx∈[0,1] I”p(x) ≥ δ2

2 2. Moreover

the last term e−2Cδ2k2
estimates the mean of the measure of the pairs (σ, τ) such that

q(σ,τ)
k ∈ Qδ,

1
k2 H0(σ, τ) ∈ Hδ but q̄(σ,τ)

2(k−q(σ,τ)) 6∈ Q̄δ. This can be obtained only in the case

h̃ < h̃c̄ and T < Tc and in this regime we have that f ′(β) 6∈ Xc and the main contribution

to Z is given by pairs of disjoint sets S and T with |H0(S, T )− f ′(β)| < Bδ for a suitable

constant B. By remarks 5.1 and 5.2 we can conclude that S (and T ) can be decomposed

into two disjoint parts S = S1 ∪ S2, with |Si| ≥ δk with different density of missing link

to T . The estimate then follows by remark 5.3.

We conclude, with Markov inequality and Borel-Cantelli lemma, that, almost surely,

µ2(Σ
c
2,δ) ≤ e−Cδ2k2/2 (76)

for k large enough.

5.2 Concentration of the marginal measure µ

Starting from Σ2,δ we want to define a set Σδ of typical configurations in X (n)
k with the

property that σ ∈ Σδ implies that πσ is concentrated on the configurations τ such that

(σ, τ) ∈ Σ2,δ.

To give a precise definition of this set Σδ we can proceed as follows. For all σ in X (n)
k

and α , ᾱ and ρ in [0, 1], define

sσ(α, ᾱ, ρ) :=
1

k2
ln

∣

∣

∣

∣

{

τ ∈ X (n)
k :

q(σ, τ)

k
= α,

q̄(σ, τ)

2(k − α)
= ᾱ,

H0(σ, τ)

k2
= ρ

}∣

∣

∣

∣

(77)

φσ(α, ᾱ, ρ) := sσ(α, ᾱ, ρ) − β(ρ + h̃(1 − α)) (78)

φ∗
σ := max {φσ(α, ᾱ, ρ) : α, ᾱ, ρ ∈ [0, 1]} (79)

Since the number of possible values of α, ᾱ and ρ for which sσ(α, ᾱ, ρ) can be non-negative

and finite is only polynomial in k, we note that, for all positive δ and large enough k, the

quantity ln Zσ is such that

k2φ∗
σ ≤ ln Zσ ≤ k2φ∗

σ + δk2. (80)
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We then set, for any δ > 0,

Σδ :=
{

σ ∈ X (n)
k : there exist α ∈ Qδ, ᾱ ∈ Q̄δ , ρ ∈ Hδ such that φσ(α, ᾱ, ρ) ≥ φ∗

σ − δ
}

(81)

Note that for a given positive δ, for k large enough and for all σ in Σc
δ,

πσ

(

{τ ∈ X (n)
k :

q(σ, τ)

k
∈ Qδ,

q̄(σ, τ)

2(k − q(σ, τ)
∈ Q̄δ,

H0(σ, τ)

k2
∈ Hδ}

)

≤ e−δk2/2 (82)

this means that we have a concentration property of πσ implying that for configurations

σ 6∈ Σδ the measure πσ is concentrated on values of (α, ᾱ, ρ) not in Qδ × Q̄δ ×Hδ. Now,

due to (16) we have, for a given δ > 0 and k large enough,

µ2(Σ
c
2,δ) =

∑

σ∈Σδ

µ(σ)
∑

τ :(σ,τ)∈Σc
2,δ

πσ(τ) +
∑

σ∈Σc
δ

µ(σ)
∑

τ :(σ,τ)∈Σc
2,δ

πσ(τ) ≥ µ(Σc
δ)(1 − e−δk2/2).

(83)

We conclude, using the concentration property of µ, that, almost surely,

µ(Σc
δ) ≤ e−Cδ2k2/3 (84)

for k large enough.

5.3 Conclusion

To estimate the entropy, up to o(k2)

S := −
∑

σ∈Xk

µ(σ) ln(µ(σ)) = ln Z −
∑

σ∈Xk

Zσ

Z
ln Zσ = ln Z + βµ(F ), (85)

where, for any σ in Xk, F (σ) := − 1
β ln Zσ is the free energy associated with πσ, it is enough

to estimate F (σ) for all σ in Σδ. Indeed, Z is self-averaging and we estimated ln Z̄ up to

o(k), moreover we have a polynomial uniform upper bound on F (polynomial in k), and

an exponential concentration on Σδ. This implies that almost surely, for any δ > 0,

|µ(F ) − µ(F |Σδ)| ≤ e−Cδ2k2/4. (86)

We will estimate F (σ), i.e., ln Zσ, uniformely on Σδ in the following cases:
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(A) h̃ > h̃c̄,

(B) h̃ < h̃c̄, and C(β) < 0, i.e., T < Tc̄,

(C) h̃ < h̃c̄, and C(β) > 0, i.e., T > Tc̄.

For any positive δ, by definition of Σδ for k large large enough we have the following

estimate for ln Zσ, for all σ in Σδ,

max
α∈Qδ,ᾱ∈Q̄δ,ρ∈Hδ

φσ(α, ᾱ, ρ) ≤ φ∗
σ ≤ 1

k2
ln Zσ ≤ φ∗

σ + δ ≤ max
α∈Qδ,ᾱ∈Q̄δ,ρ∈Hδ

φσ(α, ᾱ, ρ) + 2δ.

(87)

We estimate maxα∈Qδ,ᾱ∈Q̄δ,ρ∈Hδ
φσ(α, ᾱ, ρ) in the three different cases.

Case (A): Since sσ(α, ρ) ≥ 0 and

max
α∈Qδ,ᾱ∈Q̄δ,ρ∈Hδ

sσ(α, ᾱ, ρ) ≤ δ
ln(1/p)

c
(88)

we have

−β(1 + h̃)δ − βf ′(2β) ≤ 1

k2
ln Zσ ≤ −βf ′(2β) + (2 + β)δ + δ

ln(1/p)

c
. (89)

by using that c goes to c̄, we conclude that, almost surely,

lim
k→+∞

S

k2
=

ln(1/p)

c̄
− f(2β)

2
+ βf ′(2β). (90)

In cases (B) and (C) we will need a concentration result on the numbers of sites i

outside σ such that hi(σ) = j + h̃k, i.e., gj,1 = |Ij,1| (see (14).

Lemma 5.4 Let

Jc := {j ∈ N :
j

k
∈ Xc} (91)

with Xc defined in (67). With probability 1, for any δ > 0, if k is large enough then, for

all σ in X (n)
k , for j ∈ Jc we have:

exp

{

k

(

−δ +
ln(1/p)

c
− Ip

(

j

k

))}

≤ gj,1 ≤ exp

{

k

(

δ +
ln(1/p)

c
− Ip

(

j

k

))}

; (92)

for j 6∈ Jc we have

gj,1 ≤ ekδ. (93)
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Proof: The random variable gj,1 follows a binomial law with parameters n − k ≤ n and

(

k

j

)

(1 − p)jpk−j = e−kIp(j/k)+o(k), (94)

so that the usual large deviation estimates give

P

(

gj,1 ≥ exp

{

k

(

δ +

[

ln(1/p)

c
− Ip

(

j

k

)]

+

)})

≤ exp

{

−k

(

δ +

[

Ip

(

j

k

)

− ln(1/p)

c

]

+

+ o(1)

)

ek(δ+[ln(1/p)/c−Ip(j/k)]+)

}

(95)

and, if ln(1/p)/c ≥ Ip(j/k), i.e., j > jc

P

(

gj,1 ≤ exp

{

k

(

−δ +
ln(1/p)

c
− Ip

(

j

k

))})

≤ exp
{

−ek(ln(1/p)/c−Ip(j/k)+o(1))
}

. (96)

Since the number of configurations σ is not larger than ek2 ln(1/p)/c, we obtain our result

with the Borel-Cantelli lemma. �

By Lemma 5.4 we can obtain the following results:

In case (B) T < Tc̄ i.e.,f ′(β) ∈ [0, 1]\Xc̄, there exists a constant a2 such that, almost

surely, for all k large enough,

max
α∈Qδ,ᾱ∈Q̄δ,ρ∈Hδ

sσ(α, ᾱ, ρ) ≤ a2δ (97)

This immediately follows from (93).

In case (C) T > Tc̄ i.e., f ′(β) ∈ Xc̄, there exists a constant a3 such that, almost

surely, for all k large enough,

max
α∈Qδ,ᾱ∈Q̄δ,ρ∈Hδ

sσ(α, ᾱ, ρ) <
ln 1/p

c̄
− Ip(f

′(β)) + a3δ (98)

The proof of this entropy estimates can be found in Appendix D. It is absolutely standard

but we give it not only for completeness but also to show that the point of view of the

Fermi statistics is a useful tool. The main idea is that in the asymptotics k → ∞, due

to the convexity property of Ip, the entropy is essentially due to the sites i with cavity

field hi(σ) such that hi(σ)
k ∈ (f ′(β) + h̃ − δ, f ′(β) + h̃ + δ) and the number of such sites is

estimated by Lemma 5.4.
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With the entropy estimates (97) and (98) we can easily complete our proof.

Case (B): By equations (87) and (97) if σ is in Σδ, almost surely, for all k large enough,

−βf ′(β) − βδ − βh̃ ≤ 1

k2
ln Zσ ≤ −βf ′(β) + βδ − βh̃(1 − δ) + a2δ + 2δ. (99)

We conclude that, almost surely,

lim
k→+∞

S

k2
= 2

ln(1/p)

c̄
− f(β) + βf ′(β). (100)

Case (C): Again by equations (87) and (98) if σ is in Σδ, almost surely, for all k large

enough,

1

k2
ln Zσ ≤ −βf ′(β) + βδ − βh̃(1 − δ) +

ln(1/p)

c
− Ip(f

′(β)) + a3δ + 2δ. (101)

We conclude that, almost surely,

lim
k→+∞

S

k2
≥ 2

ln(1/p)

c̄
− f(β) − ln(1/p)

c
+ Ip(f

′(β)) + βf ′(β) =
ln(1/p)

c̄
. (102)

where we used that f is the Legendre transform of −Ip. The opposite estimate

lim
k→+∞

S

k2
≤ ln(1/p)

c̄

is trivial.

A The functions f(β) and Ip(x)

We give here some inequalities for the function f(β) := − ln [p+(1− p)e−β] defined in the

main theorem.

This is a non negative concave function with f(0) = 0, limβ→∞ f(β) = ln 1/p = Ip(0);

from its concavity we immediately obtain the following estimates:

f(β) >
f(lβ)

l
∀l > 1

B(β) := f(β) + f(2β) − f(3β) > 0
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Figure 3: The function f(β)

since both the functions F (β) := f(β) − f(lβ)
l and B(β) are strictly increasing function

vanishing at zero. Moreover we have:

f(2β) + f(3β) > f(β) + f(4β)

which is an immediate consequence of concavity, and

f(β) + f(3β) − f(2β) − f(4β)

2
> 0

since f(β) + f(3β) − f(2β) − f(4β)
2 = f(β) − f(2β)

2 + f(3β) − f(2β)
2 − f(4β)

2 again positive

by concavity.

For p ∈ (0, 1) and x ∈ [0, 1] consider now the binomial large deviation functional

defined in (63), Ip(x) = x ln x
1−p + (1 − x) ln 1−x

p . This is a convex non negative function

with minimum at x = 1 − p and Ip(0) = ln 1/p, Ip(1) = ln 1/(1 − p). By recalling the

asymptotic behavior for the binomial coefficient:

(

L

l

)

∼ (2π)−1/2[xx(1 − x)1−x]−L(x(1 − x)L)−1/2

with x = l
L (see for instance [1] pg.4) we immediately obtain

(

L

l

)

(1 − p)lpL−l = e−LIp(x)+o(L).
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Figure 4: The function Ip(x) for p = 2/3

The functions f(β) and Ip(x) are related by a Legendre transform. Indeed we have

Ip(x) + βx ≥ f(β)

where the equality holds only for x = f ′(β). By evaluating the critical point of the function

Ip(x) + βx we have

I ′p(x) = ln
xp

(1 − p)(1 − x)
= −β

ans so the critical point is

x0 =
(1 − p)e−β

p + (1 − p)e−β
= f ′(β)

and this is a minimum due to the convexity of Ip(x).

In particular we have

Ip”(x) =
1

x(1 − x)
≥ 2

B Proof of Lemma 3.1

Indeed to prove (50) we note that, the coefficients Cr in

Ψ =
g5(g5 − 1)

2

(

2f(2β) − f(4β)
)

+
1

2

9
∑

r=1

grCr

defined in equations (41), (45), (42), (46), (49), (47), (43), (48), (44), can be estimated

by using the concavity of the function f(β) so that 0 ≤ 2f(β) − f(2β) ≤ f(β) + f(2β) −
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f(3β) =: B. Indeed by using the constraints (35) and (36) we can estimate the coefficient:

Cr ≤ B(k ∧ g) r 6= 5, C5 ≤ B(g − g5)

so that

Ψ ≤ g5(g5 − 1)
(

f(2β) − f(4β)

2

)

+
1

2
B((k ∧ g) + g5)(g − g5) = Ψ̄

C Proofs of Lemmas 3.2 and 3.3

Proof of Lemma 3.2 We look now for the maximum of the function

Θ̄2+Φ2+Ψ̄ = (4k−q−q′−g) ln n−ln
(

(q−g)!(q′−g)!
)

−2 ln
(

(k−q−g)!(k−q′−g)!
)

+C
)

+Φ2 + g5(g5 − 1)
(

f(2β) − f(4β)

2

)

+
1

2
B((k ∧ g) + g5)(g − g5) (103)

By noting the symmetry of this function in the parameters q and q′ and the fact that the

constraints are in the form g ≤ (2k− q)∧ (2k− q′) and g5 ≤ q∧ q′∧g , we immediately can

conclude that the maximum is obtained for q = q′. So we have only to study the function

a(q, g, g5) − b(q, g, g5) on the polytope P̄ where

a(q, g, g5) = −2βh(k − q)− 2f(β)(k2 − q2)− f(2β)q(q − 1) + g5(g5 − 1)
(

f(2β)− f(4β)

2

)

+

+
1

2
B((k ∧ g) + g5)(g − g5) + (4k − 2q − g) ln n (104)

b(q, g, g5) = 2 ln
(

(q − g)!
)

+ 4 ln
(

(k − q − g)!
))

+ C (105)

and P (see Figure 2) is defined by the relations:

0 ≤ g ≤ 2k − q, 0 ≤ g5 ≤ g ∧ q, 0 ≤ q ≤ k (106)

We first study the maximum of the function a on P̄ . For g > k the hessian of a is given

by










[4f(β) − 2f(2β)] 0 0

0 0 1
2B

0 1
2B [2f(β) − f(4β) − B]











(107)
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and for g ≤ k the hessian of a is given by











[4f(β) − 2f(2β)] 0 0

0 B 1
2B

0 1
2B [2f(β) − f(4β) − B]











(108)

Again by the concavity of the function f(β) in both cases we have a positive eigenvalue

λ1 = 4f(β) − 2f(2β) and two real eigenvalues with λ2 + λ3 > 0 if g ≤ k and λ2λ3 < 0

if g > k so at least two positive eigenvalues. We can conclude that the maximum of a

is obtained on the edges of P̄ . By studying the function a(x), with x = (q, g, g5), on

all the edges we easily check that the maximum actually is obtained on the vertices. To

this purpose we used the convexity relations of f(β) listed in appendix A. By a direct

comparison we obtain that the maximum is obtained in the point xmax = (k, 0, 0) for

h̃ > h̃c and in xmax = (0, 0, 0) for h̃ < h̃c as soon as f(2β) − 1
2f(4β) < ln(1/p)

c . This

inequality holds for all β when c ∈ (1, 2], while in the case c > 2 we can simply add the

hypothesis β < β̄c to conclude.

Fix now α ∈ (0, 1), in the region P̄ ∩{g < kα} we have that a(x)− b(x) is a decreasing

function of g at q, g5 fixed and large k, and on the surface g = g5 again is a decreasing

function of g for large k. On the other hand we have for x ∈ P̄ ∩ {g > kα} that a(x) <

a(xmax) − b(xmax), so that, as in the discussion of Z̄, by noting that the function b is

non-negative, we can conclude that the points xmax correspond to maximal values for the

function a(x) − b(x).

D Proof of equation (98)

We have to estimate

N(σ, α, ρ) := |{τ ∈ X (n)
k : q(σ, τ) = kα, H0(σ, τ) = k2ρ}|, (109)

for α ∈ [0, δ] and ρ ∈ [f ′(β) − δ, f ′(β) + δ] with f ′(β) ∈ Xc. We have H0(σ, τ) =

H0(σ, I) + H0(σ, T ) and so we get N(σ, α, ρ) =
∑

ρ′∈[ρ−δ,ρ+2δ] N1(σ, α, ρ′)N2(σ, α, ρ′) with

N1(σ, α, ρ′) = |{A ∈ V \σ : |A| = (1 − α)k, H0(σ,A) = k2(1 − α)ρ′}|,
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N2(σ, α, ρ′) = |{A ∈ σ : |A| = αk, H0(σ,A) = k2α
ρ − ρ′(1 − α)

α
}|.

The term N2 is easily estimated from above by 2k = eo(k2). As far as the term N1 is

concerned we can use the notation of the Fermi statistics and in particular (15), to write

N1(σ, α, ρ′) =
∑

{nj,1}j=0,1,...,k:
∑

j nj,1=(1−α)k,
∑

j nj,1j=k2(1−α)ρ′

∏

j

(

gj,1

nj,1

)

(110)

By using the Stirling formula we can approximate the binomial coefficient as follows:

(

g

n

)

= e−gE(n
g
)+o(k2) (111)

with

E(x) := x ln x + (1 − x) ln(1 − x)

obtaining:

∑

{nj,1}j=0,1,...,k:
∑

j nj,1=(1−α)k,
∑

j nj,1j=k2(1−α)ρ′

∏

j

(

gj,1

nj,1

)

= exp{max
x

∑

j

[−gj,1(E(xj)] + o(k2)}

with x = (xj)j∈{0,1,...,k}, where xj :=
nj,1

gj,1
, and the maximum is under the constraints

∑

j gj,1xj = (1−α)k and
∑

j gj,1xjj = k2(1−α)ρ′. With the Lagrange multiplier method

and standard computation, we can evaluate this maximum by looking at the maximum of

the function

F (x, λ, µ) =
∑

j

gj,1

[

− E(xj) − (λ + µj)xj

]

(112)

which is reached in x̄ with x̄j = 1
1+eλ+µj with λ and µ solution of the equations

∑

j

gj,1x̄j = (1 − α)k and
∑

j

gj,1x̄jj = k2(1 − α)ρ′. (113)

In this maximum x̄ we have

∑

j

[−gj,1(E(x̄j)] = λ(1 − α)k + µ(1 − α)k2ρ′ + o(k2). (114)
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By Lemma 5.4 we have that for j ∈ Jc, x̄j must be exponentially small in k and for any

δ ≥ 0 we have
∑

j∈Jc

gj,1xj =
∑

j∈Jc

ek[ ln 1/p
c

−Ip( j
k
)]−λ−kµ j

k
+O(δk).

Due to the fact that f ′(β) ∈ Xc, this sum is not exponentially small, i.e.,

k[
ln 1/p

c
− Ip(

j

k
)] − λ − kµ

j

k
= O(δk)

for some j ∈ Jc, and so we can conclude that

max
j∈Jc

k[
ln 1/p

c
− Ip(

j

k
)] − λ − kµ

j

k
= k[

ln 1/p

c
− f(µ)] − λ = O(δk)

that is λ = k[ ln 1/p
c − f(µ)] + O(δk) and so, by (114) that

N1(σ, α, ρ′) ≤ exp
{

{k[
ln 1/p

c
− f(µ)] + O(δk)}(1 − α)k + µ(1 − α)k2ρ′

}

=

= exp{k2(1 − α)[
ln 1/p

c
− f(µ) + µρ′] + O(δk2)}

By recalling that ρ′ ∈ [ρ − δ, ρ + 2δ] = [f ′(β) − 2δ, f ′(β) + 3δ] and the Legendre transfor-

mation between f and Ip implying that µf ′(β) = f(µ) − Ip(f
′(β)) the proof of (97) and

(98) follows straightforward.
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Thanks to Prasad Tetali for discussions, bibliographic suggestions and encouragement.

35



References

[1] B. Bollobas Random graph, 2nd ed.,Cambridge University Press, 2001.

[2] F. den Hollander, Large Deviations, AMS - Fields Institute Monographs , Provi-

dence - Rhode Island, 2000.

[3] M. R. Garey, D.S. Johnson, Computer and Intractability: A guide to the theory

of NP-completeness, Freeman, New York, 1976.

[4] A.Gaudilliere, J.Reygner Sampling the Fermi statistics and other conditional

product measures (2009), to appeaer in Annals of the Institute H. Poincaré,
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