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ABSTRACT 
Multi-objective optimization is a popular problem in engineering design. In semi-active suspension control, 
comfort and road holding are two essential but conflicting performance objectives. In a previous work, the 
authors proposed an LPV formulation for semi-active suspension control of a realistic nonlinear suspension 
model where the nonlinearities (i.e the bi-viscous and the hysteresis) have been taken into account; an H∞/LPV 
controller to handle the comfort and road holding has been also designed. The present paper aims at improving 
the method of [6] by using Genetic Algorithms (GAs) to select the optimal weighting functions for the H∞/LPV 
synthesis. First, a general procedure for the optimization of weighting function for the H∞/LPV synthesis is 
proposed and then applied to the semi-active suspension control. Thanks to GAs, the comfort and road holding 
conflicting objectives are handled using a single high level parameter and illustrated via the Pareto optimality. 
The simulation results performed on a nonlinear vehicle model emphasize the efficiency of the method. 
 

1. INTRODUCTION 
The H∞ control design approach is an efficient tool for improving the performance 

of a closed-loop system in pre-defined frequency ranges. The key step of the H∞ 
control design relies on the selection of weighting functions which depends on the 
engineer skill and experience. However, this is not always an easy task even with good 
engineers. In many real applications, the difficulty in choosing the weighting functions 
still highly increases because the performance specification is not accurately defined 
i.e it is simply to achieve the best possible performance (optimal design) or to achieve 
an optimally joint improvement of more than one objective (multi-objectives design). 
So the optimization of weighting functions to satisfy the desired performance is still an 
interesting problem. 

In the literature, some works are oriented towards this goal e.g [2] [11] ... They 
propose to consider each system, no matter how complex it is, as a combination of 
sub-systems of the first and second order, for which it is easy to find the weighting 
functions. However, there is no explicit method to find these functions in the general 
case. One popular way to do is to proceed by trial-and-error. Recently, the idea to use 
an optimization tool was proposed in [1] and [12]. The choice of GAs seems natural 
because their formulation is well suited for this type of problematic. 

This paper aims at using GAs to obtain optimal weighting functions for the 
H∞/LPV control of semi-active suspension systems. First, from the frequency based 



industrial performance criteria of suspension systems as defined in [17], an appropriate 
cost function is formulated. This cost function is in fact a convex combination of two 
specifications: passenger comfort and road holding, allowing to tune the suspension 
system using a single high level parameter. Second, the weighting functions are then 
tuned by GAs in such a way that the cost function is minimized. Finally, the best 
weighting functions are chosen for the synthesis of H∞/LPV controller. For 
illustration, the performances of the closed-loop semi-active suspension system 
associated with the controller obtained with GAs will be analyzed to emphasize the 
efficiency the approach. 

It is important to note that this methodology provides a new efficient and generic 
tool for suspension control design, where the industrial performance objectives are 
included in the design procedure (and not evaluated a posteriori). 

The outline is as follows. In Section 2, a brief introduction about multi-objective 
optimization using GAs is presented. The procedure for the optimization of weighting 
functions for H∞/LPV problem using GAs is then introduced in Section 3. In Section 
4, the H∞/LPV control synthesis for semi-active suspensions, presented in [6], is 
recalled. In Section 5, the application of weighting function selection using GAs on the 
H∞/LPV control problem formulated in Section 4 is presented. The results obtained in 
simulations with a nonlinear quarter car model are discussed in Section 6. Finally, 
some conclusions and perspectives are given in Section 7. 
 

2. GENETIC ALGORITHMS AND MULTI-OBJECTIVE OPTIMIZATION 
2.1 Genetic algorithms 

Genetic algorithms have now grown strongly from the first study of [10], a popular 
theory-oriented book of [9] and an application-oriented book of [5]. The algorithms 
are based on the mechanism of the natural selection and have been proven to be very 
effective in optimization with many real applications such as in finance and investment 
strategies, robotics, engineering design, telecommunications... They are likely global 
optimization techniques (despite the high computational expense) (see [13]) using 
probabilistic, multi-points search, random combination (crossover, mutation) and 
information of previous iteration to evaluate and improve the population. A great 
advantage of GAs compared with other searching methods (for example gradient 
methods) is that they search regardless of the nature of the objective functions and 
constraints. 

GAs initializes with a random population. Through the genetic operation: selection, 
crossover and mutation, new population will be obtained. By using selection process, 
the fittest individuals based on their fitness values will be chosen; crossover and 
mutation will be then apply to create the new population. The genetic operation on 
individuals of population continues until the optimization criterion is satisfied or a 
certain number of generations is reached. 

Fitness function - The fitness of an individual is useful for choosing between 
“good” and “bad” individuals. An individual with a high fitness value will has a great 
chance to be selected. 

Selection - This step is to sort and copy individuals by order of satisfaction of the 
fitness function. The higher the value of the fitness, associated to an individual, the 



greater the individual's chances to be selected to participate in the next generation. 
``Proportionate selection" (see [10]) and “tournament selection” (see [15]) are two 
most popular selection methods. 

Crossover - This is the main operation acting on the population of parents. It 
consists of an exchange of parts of chains between two selected individuals (parents) 
to form two new individuals (children). This exchange may be due either to a single 
point or to multiple points. The Fig. 1 is an example for a binary coding crossover. 

Mutation - Mutation operates on a single individual by changing randomly a part of 
it. In the case of binary coding, this is done by reversing one or more bits in a 
chromosome (see Fig. 1). Other methods can be used as determined by subtracting the 
mutation on a gene or replacing it with a random value chosen from a subset of values. 

           
Fig. 1 Crossover and mutation operation 

 
2.2 Multi-objective optimization 

One well-known application of the GAs is to find the optimal solution for the 
multi-objective optimization problem involving multiple and conflicting objectives. 
This is a very popular problem in practice and can be described as follows 

( )

( )
( )

( )

1

2min , 2,

obj

objx C

n

f x
f x

F x n

f x
∈

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M
…

 
where x is called the decision vector, C the set of possible decision vectors (or the 
searching space), and F(x) the objective vector. 

The existence of an ideal solution x* that can minimize simultaneously all 
objective functions 

objn21 ,...ff,f is in fact rarely feasible. Hence, in this case, the 

conception of Pareto-optimal is usually used to describe the solution of multi-
objective optimization problem and it is defined as follows. 
 

Definition 1: Pareto-optimal 
Consider two decision vectors a, b ∈ C. Vector a dominates b if and only if: 

{ } { } )()(:,...,2,1)()(:,...,2,1 bfafnjandbfafni jjobjiiobj <∈∃≤∈∀  
All decision vectors are not dominated by any other decision vector are called non-

dominated or Pareto-optimal. The family of non-dominated vectors is denoted as  
Pareto-set. In the Pareto-set, one cannot improve any objective  without degrading at 
least one other objective. 

(1) 

(2) 



There are many formulations to solve problem (1) like weighted min-max method, 
weighted global criterion method, goal programming methods... see [13] and 
references therein. One of the most popular and simple approaches is the weighted 
sum method which converts the multi-objective problem into a single objective 
problem. In this paper, a particular case of the weighted sum method, where the multi-
objective functions F is replace by the convex combination of objectives, is used 

( )
1 1

min , . , 1
obj objn n

i i i
i i

J f x s t x Cα α
= =

= ∈ =∑ ∑
 

The vector ( )
objnα,...,α,αα 21=  represents the gradient of function J (see Fig. 2). 

By using various set of α, one can generate several points in the Pareto set. It is worth 
noting that the solution of (3) provides a sufficient condition for (1) i.e the minimum 
of (3) is also Pareto optimal point for (1), see [20] and [8]. However it does not 
provide a necessary condition for Pareto optimality. If the Pareto set is not convex, 
there does not exist any α to obtain points which lies in the nonconvex part (see [13]). 

 
Fig. 2 Pareto optimal set 

3. OPTIMIZATION OF WEIGHTING FUNCTIONS FOR H∞/LPV SYNTHESIS 
USING GENETIC ALGORITHM 

3.1  General H∞/LPV problem 
Consider a general LPV system 
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where x∈Rn, u∈Rm, w∈Rq, z∈Rr and y∈Rp are the state, the input, the disturbance 
vectors, the control output and the measured output, respectively. ρ(t)∈Rk is a vector 
of scheduling parameters and assumed to be known (measured or estimated). From 
now on, ρ(t) is simply denoted as ρ. 

It is well-known that to satisfy some required closed-loop performance, one must 
select suitable weighting functions. While the weights on disturbance inputs are 
always defined thanks to the knowledge about their bandwidth and magnitude, the 
selection of weighting functions on control outputs is more difficult and has a key role 
in the synthesis procedure. Without loss of generality, it is assumed that there is no 
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weight on disturbance inputs. The control outputs are weighted as zw(s) = W(s)z(s) 
where the weighting function matrix W(s) has a state-space representation as follows 

w w w w
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Define ν the vector of the weighting functions parameters which need to be 

optimized. 
From (4) and (5), the augmented system used for controller synthesis is written as 
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The LPV controller is defined as follows 
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where xc , y and u are the state, the input and output of the controller, respectively, of 
the controller associated to the system (6); nn

c RA ×∈ ,  ynn
c RB ×∈ ,  nn

c
uRC ×∈  and 

yu nn
c RD ×∈ . 

H∞/LPV problem - The objective of the synthesis is to find an LPV controller K(ρ) 
of the form (7) such that the closed-loop system is quadratically stable and that, for a 
given positive real γ, the L2-induced norm of the operator mapping w into z is bounded 
by γ i.e 
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w
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for all possible trajectories of ρ. 
In this paper, the polytopic approach with quadratic Lyapunov function is 

employed for the synthesis of a H∞/LPV controller. The following is assumed: 
)ρ,...,ρ(ρ 1 kconv∈ , the matrices B2, D12, C2, D21 are parameter independent and D22. 

For known weighting functions and a suitable pre-defined real positive scalar γ, the 
sufficient condition that solves the H∞/LPV problem is giving by Eq. (9)-(10) (see the 
detail of the solution in [19]). It is worth noting that, unlike the original solution, the 
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weighting functions parameter are present in the LMIs problem and will be optimized 
by genetic algorithm 
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The controller 

icK  at vertex i is then reconstructed as 
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where M, N are defined such that MNT=In-XY which can be solved through a singular 
value decomposition and a Cholesky factorization. The global H∞/LPV controller is 
the convex combination of these local controllers (11). 
 
3.2 Optimizing the weighting functions 

Decision vector - Certainly ν is one element of the decision vector. By experience, 
the authors have observed that the real positive scalar γ must be taken into account in 
the decision vector as well. In an usual H∞/LPV problem, the attenuation level γ is to 
be minimized to satisfy the performance objectives (H∞ optimal control problem). 

(9) 

(10) 

(11) 



Thanks to the Genetic Algorithms optimization, the provided methodology will rather 
allow here to minimize a cost function representing the true performance requirement 
objectives. Therefore the optimization problem of interest relies on the minimization 
of this cost function and not on the minimization of γ. We have chosen to let γ as a 
decision parameter (to be determined by the GAs) in order to add more degrees of 
freedom, and then to solve a sub-optimal H∞ control problem. 
To avoid the infeasibility of the LMIs (9)-(10) resulting from the bad (i.e too small) 
value of γ generated by GAs, γ will be decomposed into two positive real elements γmin 
and γga where γmin is the minimal γ satisfying the LMIs (9)-(10), and γga is tuned by 
GAs. Due to the convexity of the LMIs problem, the existence of γmin will ensure the 
feasibility of LMIs (9)-(10) with γ=γmin +γga for all positive real γga.  The minimal 
value γmin can be found by using LMIs toolbox like Yalmip & Sedumi. 

Objective functions - In this paper, the frequency-based objective functions are 
considered. With the remarks above, the performance of the closed-loop systems 
depends on the choice of weighting functions and the real positive scalar γ (and γga). 
Hence, to refer to these implicit dependencies, the objective function can be written as 
J=J(ν, γ). 
 
Proposed weighting function optimization procedure for H∞/LPV synthesis 
Step 1: Initiate with random positive weighting functions ν=ν0 and random positive 
real γga=γ0

ga. 
Step 2: Solve the minimization problem of γ subject to the LMIs (9)-(10) to compute 
the minimal real scalar γmin. Solve again the LMIs (9)-(10) with the couple (ν,γ) where 
γ=γmin +γga. At the end of this step, compute the objective function J=J(ν, γ). 
Step 3: Apply selection procedure. 
Step 4: Apply crossover and mutation to generate new generation: ν =νnew and γga 
=γnew

ga. 
Step 5: Evaluate the new generation:  If the criteria of interest (for example, reaching 
the limit number of generation) are not satisfied,  go to Step 2 with ν =νnew and γga 
=γnew

ga; Else, stop and save the best individual νopt=νnew and γopt=γnew
ga. 

 
4. SEMI-ACTIVE SUSPENSION CONTROL 

4.1 System description 
Consider a simple quarter vehicle model (see Fig. 3) made up of a sprung mass 

(ms) and an unsprung mass (mus). A spring with the stiffness coefficient ks  and a semi-
active damper connect these two masses. The wheel tire is modelled by a spring with 
the stiffness coefficient kt. In this model, zs (respectively zus) is the vertical position of 
ms (respectively mus) and zr is the road profile. It is assumed that the wheel-road 
contact is ensured. 



 
Fig. 3 Model of quarter vehicle with a semi-active damper 

The dynamical equations of a quarter vehicle are governed by: 
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where defsspring zkF =  is the spring force, sdef zz = - usz  the damper deflection 
(assumed to be measured or estimated), and zdef zz && = - usz&  the deflection velocity (can 
be directly computed from defz ). 

In this paper, the behavior of the semi-active suspension is represented using the 
following nonlinear equation, as in 
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where a2, a3, v0 and x0 are constant parameters and a1 is varying according to the 
electrical current in coil (0<a1min<a1<a1max). This model allows fulfilling the 
dissipativity constraint of the semi-active damper. 

In the following, in order to better emphasize the controllable property of the 
damper, a1 will be denoted as the control input, and for simplicity, the damping and 
stiffness parameters are defined respectively by cmr = a2 passive damper damping 

coefficient, 
0

0
2 x
v

akmr =  passive damper stiffness coefficient. 

The quarter vehicle used in this paper is the “Renault Mégane Coupé” model (see 
[21]) whose specific parameters are: ms = 315 kg, mus = 37.5 kg, ks = 29500 N/m, kt = 
210000 N/m. 
The damper model parameters have been chosen according to the MR damper in [16]: 
a2 = 1500 Ns/m, a3 = 129 s/m, v0 = 0.788x10-3 m/s, x0 = 1.195x10-3 m, a1min = 0 N, 
a1max = 400 N 
 
4.2 LPV model formulation [6] 

A control oriented LPV model with input saturation is obtained with two 
scheduling parameters ρ1, ρ2 
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xf, Af, Bf, Cf are states and states-space matrices of a strict low-pass filter which is 
introduced to satisfy the hypothesis for polytopic LPV design. 

Notice also that ρ1, ρ2 are not independent and the relation between them are 
presented in Fig. 4. For the polytopic approach, the polytope (P1,P2,P3,P4) that contain 
the set of (ρ1, ρ2) will be considered. While P3 and P4 are related to the real set of (ρ1, 
ρ2), P1 and P2 in fact do not belong to the set. 

 
Fig. 4 Set of (ρ1, ρ2) (shaded area) 

 
4.3 Suspension Performance Objectives 

The performance objectives for comfort and road holding are obtained following 
ideas from [17]. 

• Confort in high frequencies ([3 − 10] Hz): ∫
10

3
)(/min dffzz rs&& . 

• Confort in low frequencies ([0−4] Hz): ( ))(/σmin fzz rs . 



• Road holding ([0 − 20] Hz): ( ))(/σmin fzz rus  (rebound of wheel) and 

∫
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0
r )(/)z‐(min dffzz rus  (contact force) 

 
5. SEMI-ACTIVE SUSPENSION CONTROL USING GENETIC 

ALGORITHMS 
The procedure for optimizing the weighting functions in Sec. 3 is now applied for 

the LPV semi-active suspension system (14) with the following specifications. 
5.1 Parameterizing weighting functions 

Along with the bounded real positive scalar γ, the following weighting functions 
are used for H∞/LPV  synthesis 
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It is worth noting that the structures of these weighting functions are the same as in 
[6]. 

The parameter encoding is defined as follows 
2

3Parameter Value ( 0.1 0.01 0.001 ) 10
e

a b c d
−

= + + + ×  
where (a, b, c, d, e) ∈[0;9]5. This encoding covers the range [0;100]. 
5.2 Objective and fitness function 

Objective function - In Eq. (3), the value of a weight αi is significant not only 
relative to other weights but also relative to its corresponding objective function. To 
choose accurately the weights, it is better to transform the functions so that they all 
have similar magnitudes [14]. As a result, two single-objective functions 
corresponding to the comfort and road holding are normalized and the overall 
objective function to be minimized is as follows 

Comfort Road Holding(1 )J J Jα α= + −
 

JComfort and JRoad Holding are performance indices corresponding to vertex P3 (Note that 
solutions at P3 and P4 are identical because of the symmetric property of the polytope 
(P1, P2, P3, P4) and defined as follows (according to Sec. 4.3) 
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Remark 1: The feasibility of the new generated elements is not guaranteed because 
of the possible infeasibility of the LMIs (9)-(10). The problem can be overcome by 
repeating the crossover or mutation until the feasible solution is obtained. However, a 
simpler way is to assign a great objective value (for instant J=∞) to these infeasible 
solutions and as a consequence, they will be eliminated by the selection procedure 
after some generations. 

Remark 2: In many cases, to preserve the performance of closed-loop system with 
input saturation, a stable stabilizing controller is required. For LTI systems, this 
problem (usually called strong stabilization problem) has been studied by some 

(15) 

(16) 

(17) 

(18) 



authors such as [3], [4],... Similarly, for the H∞/LPV  control of LPV systems, to 
obtain a stable LPV controller, it suffices to ensure that all local controllers at each 
vertex of the polytope are stable. In this paper, the theoretical solution for the existence 
of a stable LPV controller is not given. However, a stable LPV controller can be 
obtained by eliminating the ``unstable solutions" corresponding to at least one unstable 
local controller during the synthesis. It can be accomplished with GAs by simply 
choosing J=∞ for “unstable solutions”. Due to the “survival of the fittest” property, 
these “unstable solutions” will disappear after some generations.  
To sum up, the objective function is chosen as follows. 
Algorithm 1: Objective value assignment 

if (9)-(10) is feasible then 
if all local controller KCi are stable then 

Calculate J using Eq. 17 and Eq. 18 
else 

J = ∞ 
end 

else 
J = ∞ 

end. 
 

Fitness function - Because the working principle of GAs is the maximization of 
fitness, the following fitness function is used 

12( 0.6)

fitness 12( 0.6)

1 510 10
1 5

J

J

eF
e

− −

− −

−
= −

+  
As seen in Fig. 5, individuals in improved region have the greatest chance to survive 
while ones in degraded region have a very small chance to be selected. 

 

 
Fig. 5 Fitness function (blue line). 
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5.3 Genetic operation 

The selection method used in this paper is the proportionate selection developed by 
[10]. This method assigns to each individual a probability of selection proportional to 
its relative fitness. Proportionate selection can be illustrated by a roulette wheel. The 
crossover happens with a probability of 0.9. And the mutation happens with a very 
small probability 0.095. 

In Fig. 6.a, some Pareto-optimal points, computed for the closed-loop linear system 
at vertex P3, are generated by using different values of α in the range of [0.1;0.99]. 
With α=0.99, the smallest JComfort is obtained; with α=0.1, the smallest JRoad Holding is 
obtained. In Fig. 6.b, these performance indices are computed for a nonlinear quarter 
car model with the H∞/LPV controllers corresponding to each value of α. In both 
figures, a conflicting relation between the comfort (in high frequency) and road 
holding (rebound of wheel) is illustrated. 

Three stable H∞/LPV controllers C1, C2, C3 corresponding to α=0.99, α=0.55, 
α=0.1 (respectively) synthesized with the optimized weighting functions (whose 
parameters are presented in Tab. 1) are chosen for the analysis. Their performance will 
be compared with those of the H∞/LPV controller obtained in [6], the passive soft MR 
Damper (a1=a1min=0 N) and the passive hard MR Damper (a1=a1max=400 N). 

The nonlinear frequency responses using the “variance gain” algorithm (see [18]) 
are presented in Fig. 7 - 10 and the overall evaluation of performance based on the 
criteria given in Sec. \ref{performance-objective} is depicted in Fig. \ref{fig:Overall-
Comparison}. 

The comfort oriented controller C1 is the best one for comfort but not good for road 
holding. 

The road holding (rebound of wheel) oriented controller C3 is best for preventing 
the rebound of wheel in high frequency. It can be seen that this controller has the same 
behavior to that of the hard MR damper. However, it does not guarantee a good 
contact force (because only zus/zr is presented in the criterion for road holding JRoad 

Holding) and a good comfort in high frequency. 
The intermediate controller C2 turns out to be the best one for road holding in both 

rebound of wheel and contact force minimization. Specially, it provides a good 
comfort improvement in high frequency and a medium comfort improvement in low 
frequency. 

 

 



 
 

6. CONCLUSION 
In this paper, a weighting function optimization using GAs for H∞/LPV semi-active 
control problem has been proposed. The input used for this optimization procedure is a 
frequency-based objective function, instead of the disturbance attenuation level γ as in 
conventional H∞/LPV design. The simulation results have shown the efficiency of 
GAs in finding a suitable controller to satisfy some performance objectives. For future 
work, powerful GAs in multi-objective optimization like SPEA2 or NSGA-II will be 
considered and compared with the simple weighted sum of objectives method used in 
this paper. 
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