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Abstract

In this paper, we consider two cases of rolling of one smooth connected com-
plete Riemannian manifold (M, g) onto another one (M, §) of equal dimension
n > 2. The rolling problem (NS) corresponds to the situation where there is
no relative spin (or twist) of one manifold with respect to the other one. As
for the rolling problem (R), there is no relative spin and also no relative slip.
Since the manifolds are not assumed to be embedded into an Euclidean space,
we provide an intrinsic description of the two constraints "without spinning”
and "without slipping” in terms of the Levi-Civita connections V9 and V9.
For that purpose, we recast the two rolling problems within the framework of
geometric control and associate to each of them a distribution and a control
system. We then investigate the relationships between the two control systems
and we address for both of them the issue of complete controllability. For the
rolling (V.S), the reachable set (from any point) can be described exactly in
terms of the holonomy groups of (M, g) and (M , §) respectively, and thus we
achieve a complete understanding of the controllability properties of the cor-
responding control system. As for the rolling (R), the problem turns out to
be more delicate. We first provide basic global properties for the reachable set
and investigate the associated Lie bracket structure. In particular, we point
out the role played by a curvature tensor defined on the state space, that we
call the rolling curvature. In the case where one of the manifolds is a space
form (let say (M,Q)), we show that it is enough to roll along loops of (M, g)
and the resulting orbits carry a structure of principal bundle which preserves
the rolling (R) distribution. In the zero curvature case, we deduce that the
rolling (R) is completely controllable if and only if the holonomy group of
(M, g) is equal to SO(n). In the nonzero curvature case, we prove that the
structure group of the principal bundle can be realized as the holonomy group
of a connection on TM @R, that we call the rolling connection. We also show,
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in the case of positive (constant) curvature, that if the rolling connection is
reducible, then (M, g) admits, as Riemannian covering, the unit sphere with
the metric induced from the Euclidean metric of R"*!. When the two man-
ifolds are three-dimensional, we provide a complete local characterization of
the reachable sets when the two manifolds are three-dimensional and, in par-
ticular, we identify necessary and sufficient conditions for the existence of a
non open orbit. Besides the trivial case where the manifolds (M, g) and (M, §)
are (locally) isometric, we show that (local) non controllability occurs if and
only if (M, g) and (M , g) are either warped products or contact manifolds with
additional restrictions that we precisely describe. Finally, we extend the two
types of rolling to the case where the manifolds have different dimensions.
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1 Introduction

In this paper, we study the rolling of a manifold over another one. Unless otherwise
precised, manifolds are smooth, connected, oriented, of finite dimension n > 2,
endowed with a complete Riemannian metric. The rolling is assumed to be either
without spinning (/N.S) or without spinning nor slipping (R). When both manifolds
are isometrically embedded into an Euclidean space, the rolling problem is classical
in differential geometry (see [30]), through the notions of "development of a manifold”
and "rolling maps”. To get an intuitive grasp of the problem, consider the rolling
problem (R) of a 2D convex surface S; onto another one S, in the euclidean space R?,
for instance the plate-ball problem, i.e., a sphere rolling onto a plane in R3, (cf. [14]
and [22]). The two surfaces are in contact i.e., they have a common tangent plane
at the contact point and, equivalently, their exterior normal vectors are opposite
at the contact point. If v :[0,7] — S; is a C! regular curve on S, one says that
Sp rolls onto S5 along v without spinning nor slipping if the following holds. The
curve traced on S; by the contact point is equal to v and let 4 : [0,7] — S5 be the
curve traced on Sy by the contact point. At time ¢ € [0, T], the relative orientation
of Sy with respect to S is measured by the angle 6(t) between 4(t) and 4(t) in
the common tangent plane at the contact point. The state space () of the rolling
problem is therefore five dimensional since a point in () is defined by fixing a point
on Si, a point on Sy and an angle in S*, the unit circle. The no-slipping condition
says that (t) is equal to 4(t) rotated by the angle 6(t) and the no-spinning condition
characterizes 6(t) in term of the surface elements at ~(t) and 4(¢) respectively. Then,
once a point on S5 and an angle are chosen at time ¢t = 0, the curves 4 and 6 are
uniquely determined. For the rolling (N.S), one must choose two C' regular curves
and 4 on S and S, respectively, and an angle 6 so that one says that S; rolls onto Sy
along v and 4 without spinning if (a) the curves traced on S; and Sy by the contact
point are equal to v and 4 respectively; (b) the no-spin constraint and the initial
condition 6, determine a unique curve 6 which measures the relative orientation of
S, with respect to S; along the rolling. The most basic issue linked to the rolling
problems is that of controllability i.e., to determine, for two given points gj,;; and
(rnal In the state space @), if there exists a curve 7 so that the rolling of S; onto S,
along v steers the system from ¢i,i; t0 ggna. If this is the case for every points gt
and ggna in @, then the rolling of S} onto S is said to be completely controllable.

If the manifolds rolling on each other are two-dimensional, then the controlla-
bility issue is well-understood thanks to the work of [3], [6] and [18] especially. For
instance, in the simply connected case, the rolling (R) is completely controllable if
and only if the manifolds are not isometric. In the case where the manifolds are
isometric, 3] also provides a description of the reachable sets in terms of isometries
between the manifolds.

In particular, these reachable sets are immersed submanifolds of ) of dimension
either 2 or 5. In case the manifolds rolling on each other are isometric convex
surfaces, [18] provides a beautiful description of a two dimensional reachable set:
consider the initial configuration given by two (isometric) surfaces in contact so that
one is the image of the other one by the symmetry with respect to the (common)
tangent plane at the contact point. Then, this symmetry property (chirality) is
preserved along the rolling (R). Note that if the (isometric) convex surfaces are not
spheres nor planes, the reachable set starting at a contact point where the Gaussian



curvatures are distinct, is open (and thus of dimension 5).

From a robotics point of view, once the controllability is well-understood, the
next issue to address is that of motion planning, i.e., defining an effective procedure
that produces, for every pair of points (gnit, gana) in the state space @), a curve
Vaminann SO that the rolling of S; onto Sy along vy, .4, Steers the system from
Ginit 1O Ganar. In [8], an algorithm based on the continuation method was proposed to
tackle the rolling problem (R) of a strictly convex compact surface onto an Euclidean
plane. That algorithm was also proved in [8] to be convergent and it was numerically
implemented in [1] (see also [19] for another algorithm).

To the best of our knowledge, only the rolling (R) was considered in the litter-
ature, eventhough it is the more delicate, as explained below. The rolling problem
(R) is traditionally presented by isometrically embedding the rolling manifolds M
and M in an Euclidean space (cf. [30], [12]) since it is the most intuitive way to
provide a rigorous meaning to the notions of relative spin (or twist) and relative slip
of one manifold with respect to the other one. However, the rolling model will de-
pend in general on the embedding. For instance, rolling two 2D spheres of different
radii on each other can be isometrically embedded in (at least) two ways in R3: the
smaller sphere can roll onto the bigger one either inside of it or outside. Then one
should be able to define rolling without having to resort to any isometric embedding
into an Euclidean space. To be satisfactory, that intrinsic formulation of the rolling
should also allow one to address at least the controllability issue.

The first step towards an intrinsic formulation of the rolling starts with an in-
trinsic definition of the state space ). For n > 3, the relative orientation betwen
two manifolds is deined (in coordinates) by an element of SO(n). Therefore the
state space @ is of dimension 2n + n(n — 1)/2 since it is locally diffeomorphic to
neighborhoods of M x M x SO(n). There are two main approaches for an intrinsic
formulation of the rolling problem (R), first considered by [3] and [6] respectively.
Note that the two references only deal with the two dimensional case but it is not
hard to generalize them to higher dimensions. In [3|, the state space @ is given by

Q={A:T|,M — T|;M | Ao-isometry, 2 € M, & € M},

where "o-isometry” means positively oriented isometry, (see Definition 3.1 below)
while in [6], one has equivalently

Q = (Foon(M) x Foox(M))/A,

~

where Foon(M), Foon(M) be the oriented orthonormal frame bundles of (M, g),
(M, §) respectively, and A is the diagonal right SO(n)-action (see Proposition 3.9
below) .

The next step towards an intrinsic formulation consists of using either the par-
allel transports with respect to V9 and V9 (Agrachev-Sachkov’s approach) or al-
ternatively, orthonormal moving frames and the structure equations (Bryant-Hsu’s
approach) to translate the constraints of no-spinning and no-slipping and derive the
admissible curves, i.e., the curves of () describing the rolling (R), cf. Eq. (14).
Finally, one defines either a distribution or a codistribution depending which ap-
proach is chosen. In the present paper, we adopt the Agrachev-Sachkov’s approach
and we construct an n-dimensional distribution D on () so that the locally abso-
lutely continuous curves tangent to Dy are exactly the admissible curves for the



rolling problem, cf. Definition 3.26. The construction of Dr comes along with the
construction of (local) basis of vector fields, which allow one to compute the Lie
algebraic structure associated to Dg.

One should mention the recent work [9] dealing with an intrinsic formulation of
the rolling problem (R) (see Definition 4 page 18 in the reference therein). However,
that definition does not allow one to parameterize the admissible curves using a con-
trol system and a fortiori to construct a distribution (or a codistribution) associated
to the rolling. Therefore, the computations in that paper related to controllability
issues are all performed by embedding the rolling into an Euclidean space.

We now describe precisely the results of the present paper. In Section 2, are
gathered the notations used throughout the paper. After that, the control systems
associated to the rolling problems (N.S) and (R) are introduced in Section 3. Besides
the state space (), one must define the set of admissible controls. For (N.S), it is
the set of locally absolutely continuous (lL.a.c.) curves on M x M while, for (R),
it is the set of locally absolutely continuous (l.a.c.) curves on M only. As control
systems, we obtain two driftless control systems affine in the control (£)yg and (X)g
for (N.S) and (R) respectively. We also provide, in Appendix A, expressions in local
coordinates for these control systems.

The study of the rolling problem (N S) is the objet of Section 4. We first construct
the distribution Dyg of rank 2n in () so that its tangent curves coincide with the
admissible curves of (3)ys and we provide (local) basis of vector fields for Dys.
The controllability issue is completely addressed since we can describe exactly the
reachable sets of (¥)yg in terms of HY? and HY’, the holonomy groups of V9 and
V9 respectively. We thus derive a necessary and sufficient condition for complete
controllability of (N'S) in terms of the Lie algebras of HY* and HY’. For instance, if
both manifolds M and M are simply connected and non symmetric, then the rolling
problem (NS) is completely controllable in dimension n # 8 if and only if HY’ or
HY’ is equal to SO(n). We conclude that section by computing Lie brackets of
vector fields tangent to Dns.

In Section 5, we start the study of the rolling problem (R). As done for (N.S), we
construct the rolling distribution Dg as a sub-distribution of rank n of Dyg so that
its tangent curves coincide with the admissible curves of (X)z and we provide (local)
basis of vector fields for Dg. We show that the rolling (R) of M over M is symmetric
to that of M over M i.e., the reachable sets are diffeomorphic. Already from these
computations, one can see why we considered the rolling problem (NS): from a
technical point of view, it is much easier to perform Lie brackets computations first
with vector fields spanning Dyg and then specify these computations to vector fields
spanning Dg. Moreover, the complete controllability of (N.S) being a necessary
condition for the complete controllability of (R), one can derive at once that, for
simply connected and non symmetric rolling manifolds, if the rolling problem (1)
is completely controllable in dimension n # 8 then HY’ or HY’ must be equal to
SO(n).

The controllability issue for (R) turns out to be much more delicate than that for
(NS). One reason is that, in general, there is no "natural” principal bundle structure
on mg ¢ @ — M which leaves invariant the rolling distribution Dg. Indeed, if it
were the case, then all the reachable sets would be diffeomorphic and this is not
true in general (cf. the description of reachable sets of the rolling problem (R) for
two-dimensional isometric manifolds). Despite this fact, we prove that the reachable



sets are smooth bundles over M (cf. Proposition 5.2).

We also have an equivariance property of the reachable sets of Di with respect
to the (global) isometries of the manifolds M and M, as well as an interesting result
linking the rolling problem (R) for a pair of manifolds M and M and the rolling
problem (R) associated to Riemannian coverings of M and M respectively. As a
consequence, we have that the complete controllability for the rolling problem (R)
associated to a pair of manifolds M and M is equivalent to that of the rolling problem
(R) associated to their universal Riemannian coverings. This implies that, as far
as complete controllability is concerned, one can assume without loss of generality
that M and M are simply connected. We then compute the first order Lie brackets
of the vector fields generating Dr and find that they are (essentially) equal to the
vector fields given by the vertical lifts of

A

Rol(X,Y)(A) := AR(X,Y) — R(AX, AY) A, (1)

~

where XY are smooth vector fields of M, ¢ = (x,2;A) € @ and R(-,-), R(-,-)
are the curvature tensors of g and g respectively. We call the vertical vector field
defined in Eq. (1) the Rolling Curvature, cf Definition 5.10 below. Higher order Lie
brackets can now be expressed as linear combinations of covariant derivatives of the
Rolling Curvature for the vertical part and evaluations on M of the images of the
Rolling Curvature and its covariant derivatives. A

In dimension two, the Rolling Curvature is (essentially) equal to KM (z)— K™ (%),
where KM(-), KM (.) are the Gaussian curvatures of M and M respectively. At
some point ¢ € Q where KM (z) — KM(3) # 0, one immediately deduces that the
dimension of the evaluation at ¢ of the Lie algebra of the vector fields spanning Dg
is equal to five, (the dimension of ()) and thus the reachable set from ¢ is open in
(). From that fact, one has the following alternative: (a) there exists gy € @ so
that KM — KM = 0 over the reachable set from qQo, yielding easily that M and M
have the same Riemannian covering space (cf. [3] and [6]); (b) all the reachable sets
are open and then the rolling problem (R) is completely controllable. In dimension
n > 3, the Rolling Curvature cannot be reduced to a scalar and it is seems difficult
compute in general the rank of the evaluations of the Lie algebra of the vector fields
spanning Dg.

We however propose several characterizations of isometry between two Rieman-
nian manifolds based on the rolling perspective. The first one refers to a "rolling
against loops” property which assumes that there is a gy = (xg, Zo; Ag) € @ such
that for every loop v on M based at xq, the corresponding rolling curve §p, (7, qo)
on M starting from ¢y is a loop based z,. Then we prove that, under the previ-
ous condition (M, g) and (M, §) have the same universal Riemannian covering, cf.
Theorem 5.28.

The second characterization consists of revisiting the classical Ambrose theo-
rem (see [28] Theorem IIL1.5.1) and showing how the standard argument actually
gets simplified when recast in the rolling context. We also prove a version of the
Cartan-Ambrose-Hicks theorem, Proposition 8.15, by using the rolling model. In
this version, we also also include a condition for certain submersions to exist, not
only (local) geodesic embeddings. Our proofs are in parallel to those presented in
51, 126,

In Section 6, we present controllability results when one of the manifolds, let say
(M ,§G), is a space form i.e., a simply connected complete Riemannian manifold of

7



constant curvature. Our results are actually preliminary and we hope to complete
them in a future version of the present draft. Let us summarize them. The main
feature of this particular case is that there is a principal bundle structure on the
bundle m¢g as : Q — M, which is compatible with the rolling distribution Dg. In the
case M has non-zero constant curvature, this allows us to reduce the problem to a
study of a vector bundle connection VR of the vector bundle wryer : TM®R — M
and its holonomy group, which is a subgroup of SO(n + 1) or SO(n, 1) depending
whether the curvature of M is positive or negative, respectively. If M has zero
curvature i.e., it is the Euclidean plane, the problem reduces to the study of an
affine connection and its holonomy group, a subgroup of SE(n), in the sense of [15].
In all the cases, the fibers over M of the Dg-orbits are all diffeomorphic to the
holonomy group of the connection in question.

In the zero curvature case, we prove that the rolling (R) is completely controllable
if and only if the (Riemannian) holonomy group of V9 is equal to SO(n). This result
is actually similar to Theorem IV.7.1, p. 193 and Theorem IV.7.2, p. 194 in [15]. In
the non-zero curvature case, we only study the rolling onto an n-dimensional sphere.
We prove that if the holonomy group of the rolling connection VR is reducible, then
the sphere endowed with the metric induced by the Euclidean metric of R**! must
be a Riemannian covering space of (M, g).

Section 7 collects our results for the rolling (R) of three-dimensional Riemannian
manifolds. We are able to provide a complete classification of the possible local
structures of a non open orbit, and to each of them, to characterize precisely the
manifolds (M, g) and (M, §) giving rise to such orbits.

Roughly speaking, what we will prove is that the rolling problem (R) is not
completely controllable i.e. Op,(qo) if and only if the Riemannian manifolds (M, g)
and (M, §) are locally of the following types (i.e., in open dense sets):

(i) isometric,
i1) both are warped products with the same warping functions or
pea p pmg
iii) both are of class My with the same 5 > 0.
B

Here, the manifolds of class Mg are defined as three-dimensional Riemannian man-
ifolds carrying a contact structure of particular type, as described in [2] and that we
recall in Appendix D.1. The possible values of the orbit dimension d of a non open
orbit Op,(qo) (i.e. d = dim Op,(qp)) are correspondingly in (i) d = 3, (ii) d = 6
or d = 8 where the latter corresponds to the case where the initial orientation Ag
is "generic" and finally (iii) we have d = 7 or d = 8 where again the latter case
corresponds to a "generic" initial orientation Ag.

Consequently, it follows that the possible orbit dimensions for the rolling of 3D
manifolds are

dim O’DR(QO) S {3, 6,7,8, 9}

where dimension d = 9 corresponds to an open orbit (in Q).
We do not answer here to the question of global structure of (M, g), (M, §) when
the rolling problem (R) is not completely controllable and leave it to a future work.
In Section 8, we show how to extend the formalism developed previously to the
case where the rolling manifolds have different dimensions. In that case, we show



that the rolling of M over M is not anymore symmetric with that of M over M,
which is reasonable. We also provide basic controllability results.

We finally gather in a series of appendices several results either used in the text
or directly related to it. In particular, we show how the Dyg relates to the Sasaki-
metric on the tensor space T*(M) ® T(M). In the final appendix, we provide, for
the sake of completeness, the classical formulation of the rolling problem (R) as
embedded in an Euclidean space.
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2 Notations

For any sets A, B,C and U C A x B and any map F : U — C, we write U, and U®
for the sets defined by {b € B | (a,b) € U} and {a € A | (a,b) € U} respectively.
Similarly, let F, : U, — C and F° : U® — C be defined by F,(b) := F(a,b) and
F®(a) := F(a,b) respectively. For any sets V;,...,V, themap pr; : Vi x---xV,, = V;
denotes the projection onto the i-th factor.

For a real matrix A, we use A; to denote the real number on the i-th row
and j-th column and the matrix A can then be denoted by [A;] If, fqr example,
one has A} = a;; for all 4,7, then one uses the notation A; = (a;)j and thus
A = [(ai;)%]. The matrix multiplication of A = [A%] and B = [Bj] is therefore given
by AB = [( 2 ALB})}]-

Suppose V,W are finite dimensional R-linear spaces, L : V — W is an R-
linear map and F = (v;){%V, G = (w;)HWW are bases of V, W respectively. The
dim W x dim V-real matrix corresponding to L w.r.t. the bases F' and G is denoted
by Mpa(L). In other words, L(v;) =3 _; M pa(L))w; (corresponding to the right
multiplication by a matrix of a row vector). Notice that, if K : W — U is yet another
R-linear map to a finite dimensional linear space U with basis H = (u;)$%Y, then

MF,H<K o L) = MGH(K)MF,G(L).

If (V,g), (W,h) are inner product spaces with inner products g and h, one defines
LTsh : W — V as the transpose (adjoint) of A w.r.t ¢ and h i.e., g(LTorw,v) =
h(w, Lv). With bases F' and G as above, one has Mpg(L)" = Mg g(LTs"), where
T on the left is the usual transpose of a real matrix i.e., the transpose w.r.t standard
Euclidean inner products in RY, N € N.

In this paper, by a smooth manifold, one means a smooth finite-dimensional,
second countable, Hausdorff manifold (see e.g. [17]). A smooth manifold N C M
is an immersed submanifold of M if the inclusion map ¢ : N — M is a smooth
immersion. We call N embedded submanifold if the topology on N induced by the
inclusion ¢ coincides with the manifold topology of N. By a smooth submanifold of
M, we always mean a smooth embedded submanifold.

A smooth bundle (over M) is a smooth map 7 : E — M between two smooth
manifolds £ and M together with a prescribed smooth manifold F' (unique up to
diffeomorphism), called the typical fiber of 7, such that, for each € M, there is
a neighbourhood U of x in M and a smooth diffeomorphism 7 : 7= (U) — U x F



with the property that pr; o 7 = 7| -1). Such maps 7 are called (smooth) local
trivializations of 7.

For any smooth map 7 : £ — M between smooth manifolds £ and M, the set
7 1({x}) = 7 1(x) is called the 7-fiber over x and it is sometimes denoted by E|.,
when 7 is clear from the context. A smooth section of a smooth map 7 : £ — M is
a smooth map s : M — FE such that 7 o s = id,;. The set of smooth sections of 7
is denoted by I'(m). Local sections of 7 are sections defined only on open (possibly
proper) subsets of M. The value s(z) of a section s at z is usually denoted by s|,.

A smooth manifold M is oriented if there exists a smooth (or continuous) section,
defined on all of M, of the bundle of n-forms ma»(ary : A"(M) — M where n =
dim M. Otherwise mentioned, the smooth manifolds considered in this paper are
connected and oriented.

A smooth vector bundle is a smooth bundle where the typical fiber F' is a finite
dimensional R-linear space together with a collection of local trivializations so that
there is a well defined vector space structure on each m-fiber (see [17] for the precise
definition). Some important vector bundles for us over a manifold M are the tangent
bundle mp 0 T(M) — M and different (k,m)-tensor bundles mri vy : T (M) —
M. We will many times write TM := T (M) etc. to ease the notation.

If G is a smooth Lie-group, a smooth bundle 7 : E — M is called a right
principal G-bundle if there exists a smooth right action y : £ x G — F of G on
E (ie., p(p(y,g), h) = u(y, gh) where the product gh is computed in G) such that
mopu=mopr, and p is free (i.e., u(y,g) =y for a y € F implies g = e the identity
of () and transitive on 7-fibers (i.e., for every y,z € 7~ !(x) there is a ¢ € G such
that p(y, g) = z). It follows from the definition that this bundle has G as the typical
fiber. Similarly, using a left action one defines a left principal G-bundle. For short,
by a principal bundle we mean a left or right principal bundle (the side of the action
being clear from context). There is no difference between left and right principal
bundles since a right principal bundle 7 with action o : ExG — FE can be identified
with a left principal bundle 7z with action A : G x E — E; Xg,y) = u(y, g~ ") and
vice versa.

For a smooth map 7 : E — M and y € E, let V|,(7) be the set of all Y € T'|,E
such that 7,(Y) = 0. If 7 is a smooth bundle, the collection of spaces V|,(7), y € E,
defines a smooth submanifold V() of T'(E) and the restriction mpp) : T(E) — E
to V() is denoted by 7y (r. In this case 7y (r) is a vector subbundle of mpg) over
E.

For a smooth manifold M, one uses VF(M) to denote the set of smooth vector
fields on M i.e., the set of smooth sections of the tangent bundle mry) : T(M) — M.
The flow of a vector field Y € VF(M) is a smooth onto map ®y : D — M defined
on an open subset D of R x M containing {0} x M such that %‘by(t, Y) = Yoy (ty)
for (t,y) € D and ®y(0,y) = y for all y € M. As a default, we will take D to be
the maximal flow domain of X.

A subset D C T (M) of the tangent bundle of M is called a smooth distribution
on M if 7TT(M)|D is a smooth vector subbundle of 7pn over M. For x € M, the
fiber mran|p ({z}) is denoted by D], and the common dimension of the spaces D|,,
x € M, is called the rank of the distribution D.

For any distribution D on a manifold M, we use VFp to denote the set of vector
fields X € VF(M) tangent to D (i.e., X|, € D|, for all x € M) and we define
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inductively for k£ > 2
VF% = VEE! 4 [VFp, VEET,

where VF}, := VFp. The Lie algebra generated by VFp is denoted by Lie(D) and
it equals | J, VFp.

For any maps 7 : [a,b] — X, w : [¢,d] — X into a set X such that vy(b) = w(c)
we define

(1), t € la, 0]
wly:la,b+d—c — X; (wU)(t) =
v ] WU {w(t—bJrc), tebbtd—d
A map v : [a,b] - X is a loop in X based at g € X if y(a) = v(b) = xo. In
the space of loops [0,1] — X based at some given point xy, one defines a group

77 99

operation ”.”, concatenation, by

woy =t () Ut w(d)).

This operation gives a group structure on the set of loops of X based at a given
point zy. If N is a smooth manifold and y € N, we use €2,(N) to denote the set
of all piecewise C'-loops [0,1] — N of N based at y. In particular, (,(N),.) is a
group.

A continuous map ¢ : I — M from a real compact interval I into a smooth
manifold M is called absolutely continuous, or a.c. for short if, for every tq € I,
there is a smooth coordinate chart (¢, U) of M such that c(ty) € U and ¢ o ¢|.-11
is absolutely continuous.

Given a smooth distribution D on a smooth manifold M, we call an absolutely
continuous curve ¢ : I — M, I C R, D-admissible if ¢ it is tangent to D almost
everywhere (a.e.) i.e., if for almost all ¢t € I it holds that ¢(t) € D|yy). For xp € M,
the endpoints of all the D-admissible curves of M starting at xq form the set called
D-orbit through xy and denoted Op(xy). More precisely,

Op(xg) = {c(1) | ¢:[0,1] = M, D—admissible, ¢(0) = xo}. (2)

By the Orbit Theorem (see [4]), it follows that Op(x) is an immersed smooth
submanifold of M containing zq. It is also known that one may restrict to piecewise
smooth curves in the description of the orbit i.e.,

Op(xg) = {c(1) | ¢:[0,1] — M piecewise smooth and D—admissible, ¢(0) = xo}.

We call a smooth distribution D’ on M a subdistribution of D if D' € D. An
immediate consequence of the definition of the orbit shows that in this case

OD/(ZL‘Q) C OD(I‘()), Vag € M.

Ifr:E— M,n:F — M are two smooth maps (e.g. bundles), let C*(m,n)
be the set of all bundle maps 7 — 7 i.e., smooth maps g : £ — F such that
nog = m. For a manifold M, let ms, : M x R — M be the projection onto the first
factor i.e., (x,t) — z (i.e., mpp = pry). Recall that there is a canonical bijection
between the set C*°(M) of smooth functions on M and the set C*°(id;, maz, ) given

by f = fo = (z = (2, f(2))).
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Ifrn:E— M,n:F — M are any smooth vector bundles over a smooth manifold
M, f € C>®(m,n) and u, w € 7 '(z), one defines the vertical derivative f at u in the
direction w by

Al F) = (D)) = S|, 7t tw). Q

Here w — (D, f)(u)(w) = v(w)|,(f) is an R-linear map between fibers 7~ 1(z) —
n~H(z).

In a similar way, in the case of f € C*°(FE) and u,w € 7~ '(z), one defines the -
vertical derivative v(w)|,(f) := D, f(u)(w) := Lo f(u+tw) at u in the direction w.
This definition agrees with the above one modulo the canonical bijection C*(F) =
C*>(idg, mg,). This latter definition means that v(w)|, can be viewed as an element
of V],(m) and the mapping w — v(w)|, gives a (natural) R-linear isomorphism
between 7~1(x) and V|, (7) where 7(u) = x. If 4 € T'(7) is a smooth 7-section, let
v(w) be the m-vertical vector field on E defined by v(w)|,(f) = v(@|.)].(f), where
m(u) =x and f € C(E). The same remark holds also locally.

In the case of smooth manifolds M and M ,xe M,z e M , we will use freely and
without mention the natural inclusions (C) and isomorphisms (2): T|,M,T|;M C
T|(way(M x M) = T|,M @® T|zM, T*[,M,T*[s M C T*|@a(M x M) = T*|,M &
T*;M. An element of T| (g3 (M x M) = T|,(M) @ T|;(M) with respect to the
direct sum splitting is denoted usually by (X, X), where X € T|,M, X € T|; M.
Sometimes it is even more convenient to write X + X := (X, X) when we make the
identifications (X,0) = X, (0, X) = X.

Let (M, g), (M, §) be smooth Riemannian manifolds. A map f: M — M is a
local isometry if it is smooth, surjective and for all x € M, f.|, : T|.M — T|f($)M
is an isometric linear map. A bijective local isometry f : M — M is called an
isometry and then (M, g), (M, §) are said to be isometric.

In this text we say that two Riemannian manifolds (M, g), (M,§) are locally
isometric, if there is a Riemannian manifold (N, h) and local isometries F': N — M
and G : N — M which are also covering maps i.e. if they are Riemannian covering
maps. One calls (N, h) a common Riemannian covering space of (M, g) and (M, §).
Notice that being locally isometric is an equivalence relation in the class of smooth
Riemannian manifolds (the fact that we assume F,G to be Riemannian covering
maps, and not only local isometries, implies the transitivity of this relation).

The space M = M x M is a Riemannian manifold, called the Riemannian product
manifold of (M, g), (M, g), when endowed with the product metric g := g @ g. One
often writes this as (M, g) x (M, §).

Let V, V.V (resp. R, I%,E) denote the Levi-Civita connections (resp. the Rie-
mannian curvature tensors) of (M, g), (M, §), (M = M x M,§ = g& §) respectively.
From Koszul’s formula (cf. [17]), one has

Vixx(Y, V)= (VxY,VgY), (4)

when X,Y € VE(M), X,Y € VF(M) and hence from the definition of the Rieman-
nian curvature tensor

~

R((X,X),(Y,Y)(Z,2) = (R(X,Y)Z, R(X,Y)Z), (5)
where XY, Z € T|,M, X,Y,Z € T|; M.

12



For any (k,m)-tensor field 7" on M we define V1" to be the (k,m + 1)-tensor
field such that (see [28], p. 30)

(V) (Xq,..., X, X) = (VXT) (X1, ..., Xn), (6)

Xy, 0, X, X €T, M.

Let v : I — M and X : I — TM be a smooth curve and a smooth vector field
along x respectively i.e., a smooth map such that X(t) € T|,yM forallt € I. A
local extension of X around tg is a vector field X € VF(M) such that there is an
open interval J with to € J C I and )~(|$(t) = X(t) for all t € J. Then one defines
Vi) X as Vi(to))? and it is easily seen that this vector does not depend on the
choice of a local extension of X around t;. The same construction holds true for
tensor fields along the path z(-).

The parallel transport of a tensor Ty € T)%|,() (M) from z(0) to z(t) along an
absolutely continuous curve = : I — M (with 0 € I) and with respect to the
Levi-Civita connection of (M, g) is denoted by (PV?)!(z)Tp. In the notation of the
Levi-Civita connection V¢ (resp. parallel transport PV?), the upper index g (resp.
V9) referring to the Riemannian metric g (resp. the connection V9) is omitted if it
is clear from the context. We also recall the following basic observation.

Proposition 2.1 Let (M,g) be a smooth Riemannian manifold and ¢t — xz(t) an
absolutely continuous (a.c. for short) curve on M defined on an open interval I > 0.
Then the parallel transport T'(t) = (PV*)}(x)Ty along t + x(t) w.r.t g of any (k, m)-
tensor Ty € T% |0y (M) uniquely exists and is absolutely continuous.

Let (z,z): I - M x M be a smooth curve on M X M defined on an open real
interval I containing 0. If (X (t), X(¢)) : I — T(M x M) is a smooth vector field on
M x M along (z,2) i.e., (X(t), X(t)) € T|ww),z)(M x M) then one has

v(a’c(t),i:(t)) (X, X) = (Va'c(t)Xv Véc(t)X) (7)

only if the covariant derivatives on the right-hand side are well defined (see the next
remark).

Remark 2.2 Let M =R, M =R and (c(t), &(t)) = (¢,0), (X(t ),X(t)) = (1,t) and
equip M and M with the Euclidean metrics: g(Y,Z) =Y Z, §(Y,Z) = Y Z. Then the
left hand side of (7) is defined and equals (0, 1) but on the right hand side the covariant
derivative V; t)X Vol is not defined: if Y € VF(M) were a local extension of X
around ¢t = 0 then t = X(t) = Y|s) = Y(0) for all  in some open interval containing
0. This is a contradiction. Note that an extension of (X (t), X(t)) = (1,t) around t = 0
is provided for example by (z, %) — (1,x).

If (N,h) is a Riemannian manifold we define Iso(NN,h) to be the (smooth Lie)
group of isometries of (N, h) i.e., the set of diffcomorphisms F': N — N such that
Fily : T|yN — T|pu)N is an isometry for all y € N, cf. [28], Lemma I11.6.4, p. 118.

It is clear that the isometries respect parallel transport in the sense that for any
absolutely continuous 7 : [a,b] — N and F' € Iso(}V, g) one has (cf. [28], p. 41, Eq.

(3.5))
Flyw o (PY")E(7) = (PY")L(F 07) 0 Fuly ). (8)

The following result is standard.
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Theorem 2.3 Let (N, h) be a Riemannian manifold and for any absolutely continuous
v :10,1] = M, ~v(0) = yo, define

AT ()(8) = / (P™")0(1)4(s)ds € T|,, N, € [0, 1]

Then the map A;}h Dy A;}h (7)(+) is an injection from the set of absolutely continuous
curves [0, 1] — N starting at y, onto an open subset of the Banach space of absolutely
continuous curves [0, 1] — T'|,, N starting at 0.

Moreover, the map AZ)h is a bijection onto the latter Banach space if (and only if)
(N, h) is a complete Riemannian manifold.

Remark 2.4 (i) For example, in the case where 7 is the geodesic ¢ > exp, (1Y)
for Y € T|,,N, one has

AT (D(t) = .

(i) It is directly seen from the definition of AZ)h that it maps injectively (piecewise)
Ck-curves, k = 1,...,00, starting at y, to (piecewise) C*-curves starting at 0.
Moreover, these correspondences are bijective if (N, h) is complete.

(iii) The map AZ)h could be used to give the space of absolutely continuous curves
[0,1] — N starting at yo a structure of a Banach space if (N, h) is complete or
an open subset of a Banach space in the case (IV, h) is not complete.

3 State Space, Distributions and Computational Tools

3.1 State Space

3.1.1 Definition of the state space
After [3], [4] we make the following definition.

Definition 3.1 The state space Q = Q(M, M) for the rolling of two n-dimensional
connected, oriented smooth Riemannian manifolds (M, g), (M, §) is defined as

Q={A:T|,M — T|;M | A o-isometry, = € M, & € M},

where “o-isometry” stands for “orientation preserving isometry” i.e., if (X;), is a pos-
itively oriented g-orthonormal frame of M at = then (AX;)!, is a positively oriented
g-orthonormal frame of M at Z.

The linear space of R-linear mapAA T M — T|mM is canonically isomorphic
to the tensor product 7|, M @ T'|z M. On the other hand, by using the canonical
inclusions 17|, M C T*|(zz) (M x M), T|;M C Tz, (M x M), the space T*|, M ®
T M is canonically included in the space T} (M x M) |(z,2) of (1, 1)-tensors of M x M
at (x, ). These inclusions make T*M @ TM := Ue.2yenrsar T*.M @ T|; M a subset
of T{(M x M) such that Tremerit = i xan| rmerir - T°M @ TM — M x M

is a smooth vector subbundle of the bundle of (1, 1)-tensors T (v airy O1 M x M.
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The state space Q = Q(M, M) can now be described as a subset of T*M @ T'M
as

Q={AeT(M)®T(M)|ws | (x,) € M x M,
JAX ||, = [IX]|,, VX € TI.M, det(4) = 1}.
In the next subsection, we will show that 7q := 7. ;0rplq is moreover a smooth
subbundle of 7.,y though it is not a vector subbundle.

It is also convenient to consider the manifold 7*M @ TM and we will refer to
it as the extended state space for the rolling. This concept of extended state space
naturally makes sense also in the case where M and M are not assumed to be
oriented (or connected).

A point A € T*M @ TM with 7.y 0ri(A) = (2,%) (or A € Q with mo(A) =
(z,z)) will be sometimes denoted by (x, Z; A) to emphasize the fact that A : T'|,M —

A

T|zM. Thus the notation g = (z,#; A) simply means that ¢ = A.

3.1.2 The Bundle Structure of ()

In this subsection, it is shown that 7 is a bundle with typical fiber SO(n). We will
also argue that, even though SO(n) is a Lie-group, the bundle 7 cannot in general
be given a natural (or useful) SO(n)-principal bundle if n > 2 (see also Theorem
4.6). We will now present the local trivializations of .

Definition 3.2 Suppose the vector fields X; € VF(M) (resp. X; € VF(M)), i =
1,...,n form a g-orthonormal (resp. g-orthonormal) frame of vector fields on an open
subset U of M (resp. U of M). We denote I' = (X;)i,, I' = (X;)iL, and for x € U,
€U welet FI, = (Xil.)i-y, Flz = (Xilz)i2; Then a local trivialization 7 = 7, ;. of
Q over U x U induced by F, I is given by
Timg (U x U) = (U x U) x SO(n)
(2,23 A4) = ((2,2), My, g1, (A)),

where My 5 (A = §(AX;, X;) since AXi|, = 3, §(AXi]2, X;12) X 5.

For the sake of clarity, we shall write My z (A) as Mpp(A). Obviously

JAX][, = |IX], for all X € T[,M is equivalent to A"ssA = idg), 5 and thus we
get

MF,F(A)TMF,F(A) = MF,F(ATQ“@)MF,F(A) = MF,F(idT\zM) = idgn,

where T' denotes the usual transpose in gl(n), the set of Lie algebra of n x n-real
matrices. Since det M, z(A) = det(A) = +1, one finally has M. (A) € SO(n).

Remark 3.3 Notice that the above local trivializations 7. s of 7 are just the restric-
tions of the vector bundle local trivializations

(Tr- (anyerny) (U % U) = (U x U) x gl(n)

of the bundle Tope (M)@T (V1) induced by F, F' and defined by the same formula as Th f

In this setting, one does not even have to assume that the local frames F, F are g-
or g-orthonormal. Hence 7 is a smooth subbundle of 7., .,y with @ a smooth

submanifold of T*M ® T M.
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We next spell out the transition functions of the above defined local trivializations
of mg (and also of 7. oy by the above remark). If F' = ((X]), U F = (X)), U")
are other g-, g-orthonormal frames (with UN U’ # 0, UN T’ # 0) and A = [4]] €
SO(n), then

= (), [( At xpack, £0) )

(z,2), [(5(X;, XD)JAl(9(Xi, Xp)iT")
(x,2), Mg g (id gy, i) AMp o (iday,an) )

forzeUNU, 2eUNU". -

Any local trivialization 7 : Wél(U) — U x SO(n) of my defined on an open set
U c M x M would define a principal SO(n)-bundle structure on 7o' (U) (or rather
for WQ‘ﬂc—gl(U)) by the formula (see [31], p. 307)

(@, @5 A), B) = 77 ((2,2), (pry 0 7)(, 23 A) B), (9)

with g : ﬂél(U) x S0(n) — Wél(U) the right SO(n)-action of this principal bundle
structure. However, we will show that if we take for the local trivializations 7 the
ones induced by local orthonormal frames 7 = 7, /- as above, then the (local) actions
po j» defined by the above formula by these different local trivializations 7,  do not
glue up to form a global principal bundle structure for 7y if the dimension n of M
and M is greater than 2. We state this in the following proposition.

Proposition 3.4 The local actions (9) do not render the bundle 7 to a principal
SO(n)-bundle except when n < 2.

Proof. 1f mg were a principal SO(n)-bundle w.r.t local trivializations induced by the
orthonormal frames of M and M, then the right action p : Q x SO(n) — Q of SO(n)
on @ of this principal bundle structure would be given (locally) by (see above)

pl(x, 23 A), B) = 77} ((2, ), (pry o 7)(w, 25 A) B),

for any of the local trivializations 7 = 7, 5 induced by orthonormal local frames
F,F of M, M and any (z,#; A) with z, & in these domains and any B € SO(n).
Equivalently, the above condition could be written as

(pry o 7)(u(q, B)) = (pryo 7)(q) B,

for any ¢ € @) in the domain of definition of 7 and B € SO(n).

The formula for the transition maps of these local trivializations as expressed
before this proposition shows that the action p is not well defined if n > 3. In fact
we would be led to an equation of the type

(pra 0 Ty o) (2, & A)B = (pr3 0 Ty o © T ) (2, 2), (PT3 © 7 ) (7, 85 A) B),
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ie.,

Mo 5/ (A)B = M o (idyy, ) (M o (A) B) Mg (id ey ar) ™
- MFj‘/(A)BMF’,F(idT\zM)

which, by multiplying by M, #(A)~! from the left, is equivalent to
Mg p(idr, ) B = BMpr p(idg),ar) (10)

Since SO(n) is not commutative for n > 3, the left and right hand sides are not
equal in general: they are equal for all B, F, F’ if and only if SO(n) is commutative
i.e. if and only if n € {1,2}. Hence mg is not a principal SO(n)-bundle, at least
w.r.t the trivializations that we used, if n > 3. O

Remark 3.5 If M and M are parallelizable (e.g. if M and M are Lie groups) i.e.,
if there are global frames and hence global orthonormal frames F, F, then one can
introduce a principal SO(n)-bundle structure for g by Eq. (9) even for n > 2. However,
this principal bundle structure then depends on the choice of the global frames F, F
i.e., we might (and could if n > 2) get a different principal bundle structure by the
choosing the orthonormal frames differently. We will define on @ a distribution Dy
(see Definition 3.26) that models the natural constraints for the rolling problem and by
simple computations one can check that in general for n > 3 the distribution Dy is not
invariant with respect to this principal bundle action for 7.

Hence the principal bundle structure on parallelizable manifolds (or, in the general
case, the local principal bundle structures defined by (9)) is (in general) not useful for
the study of the rolling model.

We will also study briefly a less restrictive model of rolling (rolling with spinning
allowed) where one considers a distribution Dys on Q. In this case, it will be shown in
Theorem 4.6 below that in general there cannot be a principal bundle structure for ¢
which leaves Dyg invariant.

Remark 3.6 Clearly the fact that we chose SO(n) to act on the right in (9) does
not affect the conclusion of the previous Proposition: Left local actions (in an obvious
manner) lead to the same conclusion i.e., they don't glue up correctly to give a "natural"
global SO(n)-action.

Indeed, if instead of (9) we tried to define the left SO(n)-action on ) by demanding
that locally

NB, (z,2;A) =71 ((x, %), B(pry o 7)(x, Z; A)),

we still could not define the action globally. Indeed, it is enough to notice that instead
of (10) we would get

BM g, 5(A) =M 5, (i, i) (BM g 1 (A)) Mo (i ar)
=M p(idpy, ) BMps p(A)

BMp p(idg, i) = Mg g (idpy, ) B
which, again, is only true for all B, ', I’ if and only if n € {1,2}.
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Despite the lack of a "natural" principal bundle structure for mg when n > 3, we
may still make use of the vector bundle structure of the ambient bundle Tops (M)ST(N)
(the extended state space).

Notice that any mg-vertical tangent vector (i.e., an element of V|,(7mg)) is of
the form v(B)], for a unique B € T*M @ T'M|(, s where ¢ = (z,i; A) € Q. The
following simple proposition gives the condition when, fora B € T*M QT M |(z,2), the
vector v(B)|q € V]o(Tpuperir) 18 actually tangent to @ i.e., an element of V| (mg).
Proposition 3.7 Let ¢ = (z,2;A) € Q and B € T*(M) ®T(M)|(m7i). Then v(B)|,
is tangent to () (i.e., is an element of V|, (7)) if and only if

§(AX, BY) + §(BX,AY) =0

forall X, Y € T[,M. Denoting T =T, ;, this latter condition can be stated equivalently
as ATB + BT A =0 or more compactly as B € A(so(T|,M))

We will be denoting the (g, §)-transpose operation T,; by T also in the se-
quel. The proposition says that V| s:4)(7mg) is naturally R-linearly isomorphic to
A(so(T|.M)).

Remark 3.8 We may reformulate the fact given by the previous proposition as follows.
Define so(M) = |U,cps 50(T|: M) (with M a Riemannian manifold) i.e.,

so(M)={BeT! (M) | B + B =0}

One sees that so(M) is a closed embedded submanifold of T} (M) = T*M @ TM.
Moreover, the map s (ar) 1= 7rT11(M)|50(M) clearly defines a smooth vector bundle with
typical fiber s0(n), where n = dim(M).

We may pull back 7y with @ map mg 2 := pr; omg : Q@ — M to a smooth
bundle (g )" (Teo(ar)) = (m@ar)*(s0(M)) — @ over Q). Its elements are all pairs
((z,2;A),B) € Q x s0(M) where x = 74y (B) and the bundle map is defined by
(WQ7M>*(7T50(M)><<377i;A>7B) = (.T,i’; A)

Proposition 3.7 shows that the bundle map L : (7 )" (mso(ary) — V(7mg) defined
by L((x,2; A), B) = v(AB)|(3,3;4) is a diffeomorphism.

3.1.3 The State Space as a Quotient

In this subsection, we will show that (the n-dimensional version of) the construction
of the state space for rolling that has been used e.g. in [6] in dimension two is
actually isomorphic to the state space Q.

Proposition 3.9 Let Foon(M), FOON(M) be the oriented orthonormal frame bun-
dles of (M, g), (M, §) (resp. let F(M), F(M) be the frame bundles of M and M).
Denote by u, /i the right SO(n)-actions (resp. right GL(n)-actions) defining the usual
principal bundle structures on these spaces i.e., u((Xg)i_y, [A%]) = (3, AF Xi), and
similarly for fi. Define a diagonal right SO(n)-action

~

At (Foox(M) x Foox(M)) x SO(n) — Foon(M) x Foon(M),
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by (resp. right GL(n)-action A : (F(M) x F(M)) x GL(n) — F(M) x F(M)))
A(((X0), (X)), A) = (p((X2), A), 1((X2), A)).

The map £ : Foon(M) x Foon(M) — Q(M, M) (resp. & : F(M) x F(M) —
T*M @ T M) such that

(X)), (X)) = (Z a; X; Z a; X;)

is a smooth surjective submersion. Moreover, for each ¢ € Q(M, M) (resp. ¢ €
T*M ® TM) the inverse image € '(q) coincides with an orbit of A. Thus ¢ induces
a diffeomorphism € : (Foon(M) X Foon(M))/A — Q(M, M). (resp. € : (F(M) x
F(M))/A = {AeT*M®TM | Ais invertible}).

Proof. The smoothness and surjectivity of £ are obvious and it is also easy to see
that ¢ is a submersion. Thus it is enough to show that £7'(¢) coincides with an
orbit of A. First suppose that

p((X0), A) =D AIXG, p((X)), A)s = AlX;.

Then, for any real numbers a;, -J- Gy, one has ]

E(A(((X0), (X3), A))(Z anXy) = E(u((X3), A), i((X0), A))(Xk: ap X
=§(u((X5), A), A(X Zak (X;), A)s)
:; an(A)ia((X kZak JLATX, = ;akf(k = £((X), (Xi))(; ae X).

This shows that

A{((X2), (X))} x G) € €7HE((X), (X)),
with G = SO(n) (resp. G = GL(n)). The orbits of A all have the same dimension
as SO(n), i.e., =1 (resp. dim GL(n) = n?) and since

2
dim £7Y(q) = dim(Foon (M) x Foox(M)) — dim Q(M, M) = dim SO(n),
for any ¢ € Q(M, M) (resp.
dim €7 (q) = dim(F(M) x F(M)) — dimT*M @ TM = dim GL(n)),
we have that this inclusion is actually an equality. This proves the proposition. [

Remark 3.10 In the above proposition we implicitly assumed that (Foon(M) X
Foon(M))/A (resp. (F(M) x F(M))/A) already has a natural structure of a smooth
manifold namely that of a quotient manifold. But it is easily seen that the action A is
free and proper and hence by a well known result (see [17] Theorem 9.16) it follows that
unique smooth quotient manifold structures for the above quotient sets exist. Hence the
facts established in the above proof guarantee that £ is a diffeomorphism.
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Remark 3.11 Here is the product right action

~

px i (Foon(M) x Foon(M)) x (SO(n) x SO(n)) = Foon(M) x Foon(M)

~

of SO('I?,) X SO('I?,) on FOON(M) X FOON<M) given by

As it is easily seen, it is unfortunately not true that the action 1 x i maps a A-orbit
into a A-orbit, unless the dimension n is equal to two (in which case SO(n) = SO(2)
is commutative) and hence, in the case n > 2, the map p x /i does not induce a map
Q x SO(n) — Q (where Q = (Foon(M) x Foon(M))/A by the above proposition).

This is yet another way of seeing that Q = Q(M, M) cannot be given a "natural"
SO(n)-principal bundle structure for n > 3 i.e., we cannot induce on ) the principal

bundle structures of the frame bundles Foox (M) and Foox (M) if n > 2.

Remark 3.12 Notice that on F'(M) (resp. on Foon(M))one may also consider the
left GL(n) (resp. SO(n)) action A given by A(A, (X;)); = >_, AjX;. Since A} = (ATY!
it is trivial that this is related to the above right action by A(A, (X;)) = u((X;), AT).
Notice that u(\(A, (X)), B) = u(pu((X;),AT), B) = u((X;), ATB) which, if n >
3 and ATB # BAT, is different from \(A, u((X;)), B)) = p(u((X;), B), AT) =
w((X;), BAT). This means that the left and right actions A and z do not "commute".

Another way to define naturally a left actions is to use instead of above A the in-
verse right-action \;(A, (X;)) := u((X;), A71). Also in this case, u(A;(A, (X;)), B) =
p(p((X;), AN, B) = p((X;),A'B) is not equal, if n > 3 and AB # BA, to
M (A u((X5)),B)) = p(p((X:), B), A7) = u((X;), BA™'). On Foon(M) it is clear
that the actions \ and \; coincide.

It was proposed in [9] that one could use the inverse left action on Foon(M) and
the left action on Foon(M) to induce, respectively, left and right actions on Q. How-
ever this is not possible for the following reason (which basically is a repetition of
what has been said above). Suppose ¢ = (z,%;A) € @ and let F, F' € Foon(M),
F,F' € Foon(M) are such that £(F,F) = ¢ and £(F',F’) = q. Then there is a
B € SO(n) such that u(F,B) = F', j(F,B) = E’. By using, for example, the left
SO(n)-action A on Foon(M) we get \(C,F') = NC,u(F,B)) = u(F,BCT) and
also u(M\(C, F),B) = u(F,CTB). But £(\(C, F'), F') = £(\(C, F), F) if and only if
w(N(C, F),B) = \NC, F’") which thus is not true unless C'B = BCT. The case of
the inverse left action (which is just the right action i) on Foon(M) leads to the same
conclusion.

3.2 Distribution and the Control Problems
3.2.1 From Rolling to Distributions

Each point (x,2; A) of the state space Q = Q(M, M) can be viewed as describing
a contact point of the two manifolds which is given by the points x and = of M
and M , respectively, and an isometry A of the tangent spaces T'|, M, T)| +M at this
contact point. The isometry A can be viewed as measuring the relative orientation
of these tangent spaces relative to each other in the sense that rotation of, say, T'| M
corresponds to a unique change of the isometry A from 7|, M to T|$M . A curve
t— (2(t),2(t); A(t)) in Q can then be seen as a motion of M against M such that
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at an instant ¢, 2(t) and Z(t) represent the common point of contact in M and M,
respectively, and A(¢) measures the relative orientation of coinciding tangent spaces
T)oyM, T|5¢(t)M at this point of contact.

In order to call this motion rolling, there are two kinematic constraints that will
be demanded (see e.g. [3], [4] Chapter 24, [8]) namely

(i) the no-spinning condition;
(ii) the no-slipping condition.

In this section, these conditions will be defined explicitly and it will turn out
that they are modeled by certain smooth distributions on the state space ). The
subsequent sections are then devoted to the detailed definitions and analysis of the
distribution Dyg and Dy on the state space @), the former capturing the no-spinning
condition (i) while the latter capturing both of the conditions (i) and (ii).

The first restriction (i) for the motion is that the relative orientation of the two
manifolds should not change along motion. This no-spinning condition (also known
as the no-twisting condition) can be formulated as follows.

Definition 3.13 An absolutely continuous (a.c.) curve

q: I —Q,
t = (x(t), 2(0); A1),

defined on some real interval I = [a, b], is said to describe a motion without spinning of
M against M if, for every a.c. curve [a,b] — T'M; t — X(t) of vectors along t — x(t),
we have

~

VipX(t) =0 = V;,(A(t)X(t)) =0 forae. t€a,b] (11)

(See also [9] for a similar definition.) Notice that Condition (11) is equivalent to
the following: for almost every ¢ and all parallel vector fields X (-) along x(-), one

has

(Va0 A) X (t) = 0.

(This is well defined as mentioned in the paragraph immediately below Eq. (6).)

Since the parallel translation Pj(z) : T'|y0M — T|yuM along z(-) is an (iso-
metric) isomorphism (here X (t) = Pf(x)X(0)), this shows that (11) is equivalent
to

V@W(t))A(t) =0 forae. té€]la,bl. (12)

The second restriction (ii) is that the manifolds should not slip along each other
as they move i.e., the velocity of the contact point should be the same w.r.t both
manifolds. This no-slipping condition can be formulated as follows.

Definition 3.14 An a.c. curve I — Q; t > (x(t), Z(t); A(t)), defined on some real
interval I = [a,b], is said to describe a motion without slipping of M against M if

At)i(t) = z(t) for a.e. t € [a,b]. (13)
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Definition 3.15 An a.c. curve [ — Q; t — (x(t),z(t); A(t)), defined on some real
interval I = [a, ], is said to describe a rolling motion i.e., a motion without slipping or
spinning of M against M if it satisfied both of the conditions (11),(13) (or equivalently
(12),(13)). The corresponding curve t — (x(t), &(t); A(t)) that satisfies these conditions
is called a rolling curve.

It is easily seen that t — q(t) = (z(t),z(t); A(t)), t € [a,b], is a rolling curve if
and only if it satisfies the following driftless control affine system

(1) = u(t),
(X)r z(t) = A(t)u(t), for a.e. t € [a,b]. (14)

V (@, Ay Alt) = 0,

where the control u belongs to U(M), the set of measurable T'M-valued functions u
defined on some interval I = [a, b] such that there exists a.c. y : [a,b] — M verifying
u =g a.e. on [a,b]. Conversely, given any control u € U(M) and gy = (zo, Zo; Ag) €
(), a solution ¢(-) to this control system exists on a subinterval [a,0], a < b < b
satisfying the initial condition g(a) = go. The fact that System (14) is driftless and
control affine can be seen from its representation in local coordinates (see (106) in
Appendix A).

We end up this subsection by the following simple remark.

Remark 3.16 In many cases, it is more convenient to work in the extended state
space T*(M)®T (M) rather than in (its submanifold) @ because Tops (AryeT(a1) 1S @ Vector
bundle. Since the above constraints of motion (11) and (13) can also be formulated
in this space in verbatim, we will sometimes take this more general approach and then

restrict to Q.

3.2.2 The No-Spinning Distribution Dyg

In this section, we build a smooth distribution Dyg on the spaces Q and T*M @ TM
which plays the role of modelling the no-spinning condition for the rolling, see (11).
We will also study the geometry related to this distribution. For more general
constructions and some more general results than the ones in this section, see [13],
[15].

We begin by recalling some basic observations on parallel transport. As noted
in Proposition 2.1, if one starts with a (1, 1)-tensor Ay € T} |(z9,50) (M X M) and has
an a.c. curve ¢ — (x(t),Z(t)) on M x M with 2(0) = xo, #(0) = &, defined on an
open interval I 3 0, then the parallel transport A(t) = Pi(x,%)A exists on I and
determines an a.c. curve. But now, if Ay rather belongs to the subspace T*M Q@ T'M
or Q of T}(M x M), it will actually happen that the parallel translate A(t) belongs
to this subspace as well for all £ € I. This is the content of the next proposition.

Proposition 3.17 Let t — (z(t), (t)) be an absolutely continuous curve in M x M
defined on some real interval I 5 0. Then we have

Ay e T"M @ TM —> A(t) = P, 2)Ag e T*M @ TM Vit eI,
AyeQ = A(t)=Plz,2)AyeQ Vtel,
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and
Pl(x,#)Ag = Pi{(2) 0o Ago P)(x) Vtel. (15)

Proof. Let Y € TlyoM, Y € T|yoyM and let Y (t) = Pi(z)Y, Y(t) = PH(2)Y be
their parallel translates along t — a:( ) and t — (t) respectively. Similarly, choose
w € T*| )M and denote w(t) = Pj(x)w its parallel translate. Then Y (¢), Y(¢) and

w(t) can be viewed as a curves in T(M x M) and T*(M x M) using the canonical

inclusions 1’|, M, T|m(tMCT| (@(),a(0) (M X M), T* Loy M C T | (a(t),2(0)) (M X M).
With AO S T*M®TM|(QC 0),2(0)) C T (M X M)‘(JC(O) (0)) and A( ) Pt<l’,$)A0 S

THM x M)|(x (#),2(+))» we have, for a.e. ¢ (the contractions that use are obvious),

v(x(t t))<A< Jw(+) = (v(ab(t),gé(t))A<')>w<t> + A<t)<vi‘(t)w<')) =0,

and similarly V (60 sty (AC JY'(-)) = 0. It implies that A(t)w(t), At)Y () (as ele-
ments of TH (M x M)) are parallel to t — (&(t), 2(t)) with initial conditions Agw = 0
and A,Y = 0 since Ay € T*M @ TM. By the uniqueness of solutions of ODEs,
this shows that A(t)w(t) = 0 and A(t)Y(t) = 0 for all ¢ € I i.e., since Y,w were
arbitrary, A(t) € T"M ® TM for all t € I.

Suppose next that Ay € Q|((0),2(0)) and denote A(t) = Pj(x,z)A;. Then A, €
T*M @TM and, by what we just proved, A(t) € T*M @ TM for all t € I. Tt follows
that A()Y (t) € T|snM and thus taking its norm w.r.t § allows us to compute a.e.

% IADY @)1l; = 20((V (5(9,0) ALY (1) + A1) Vi Y (), AY (1)) = 0.

The initial condition for |[(A(t)Y (t)|2 at ¢ = 0 is ||( )Y (0)|2 = |IY[|?, since
Ap = A(0) is an isometry (and Y (0) = Y'). Since ||Y (¢ )H also satisfies & [|Y (¢ )H; =0
and the initial condition HY(O)H; = HYH;, we see that HA( )Y (t )”E = HY( )”g for all

t € I (since the maps t — ||A(t)Y(t)||§, t— ||Y(t)||§ were a.c.). Since the parallel
translation P}(z) : T|y0)M — T|swM is a linear (isometric) isomorphism for every
t, this proves that A(t) : T]umM — Tl|asyM is an isometry for every t. Because
t — det(A(t)) is a continuous map I — {—1,+1} and det(A(0)) = det(Ay) = +1
it follows that det(A(t)) = +1 for all ¢. Hence A(t) € @ for all t.

Finally Eq. (15) is proved as follows. Consider B(t) := P¢(#) o Ago P2(x), which
is an a.c. curve in T*M @ TM (or even in Q if Ay € Q) along t — (x(t), (t)). Now
B(0) = Ap and, for Xy € T|,0)M, X(t) := Pj(x)Xo, we have

0 =V (P (#) (Ao Xo)) = Vi (B(HX (1))
=V iy B®))X () + B(t)Van X (1) = (Va0 B1) X (1),

from which it follows, since X, was arbitrary, that V(i,i)(t)B(t) =0 for a.e. t € 1.
Thus t — A(t) and ¢t — B(t) solve the same initial value problem and hence (being
a.c.) are equal A(t) = B(t) i.e.,

Pl(x,2)Ag = PL(3) o Ago PX(x), Vtel,

which is what we wished to prove.
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Let T(M x M) x ;5 (T*(M) @ T(M)) be the total space of the product vec-
tor bundle 7/ v X arear Tr-(nyeran Over Mox M. We will define certain lift

operations corresponding to parallel translation of elements of T*M & TM.

Definition 3.18 The No-Spinning lift is defined to be the map
Das : T(M x M) Xy (TH(M) @ T(M)) — T(T*(M) @ T(M)),

such that, if ¢ = (v,#;4) € T*(M) ® T(M), X € T|,M, X € T|;M and t

(z(t),2(t)) is a smooth curve on in M x M defined on an open interval 1 5 0 s.t.
#(0) = X, 2(0) = X, then one has

d

S (X, X),0) = 2,

Pi(x,2)A € T|,(T*(M) @ T(M)). (16)

The smoothness of the map Zxs can be easily seen by using fiber or local coor-
dinates (see Appendix A). We will usually use a notation Zg(X)|, for Zs(X, q)
when X € T (M x M) and ¢ = (z,3;A) € T*(M) ® T(M). In particular,
when X € VF(M x M), we get a lifted vector field on T*(M) @ T(M) given by
q — Zs(X)|,. The smoothness of Zs(X) for X € VF(M x M) follows immedi-
ately from the smoothness of the map Zys. Notice that, by Proposition 3.17, the
No-Spinning lift map Z\g restricts to

Fs T(M x M) %, 5 Q — TQ,

where T'(M x M) Xy r @ 18 the total space of the fiber product 7o yr. 1) X a1y 41 T-

~

We now define the distribution Dyg on T%(M) ® T(M) and @ capturing the
no-spinning condition (see Eq. (11)).

~

Definition 3.19 The No-Spinning (NS) distribution Dns on T*(M) ® T'(M) is a
2n-dimensional smooth distribution defined pointwise by

Dxs| (,2:4) = <IN (T | (z,2) (M X M))|(;;;,;;:«;A), (17)

~

with (z,2;A) € T*(M) @ T(M). Since Dnslg C T(Q) (by Proposition 3.17) this
distribution restricts to a 2n-dimensional smooth distribution on ) which we also denote
by DNS (instead of DNS‘Q)-

The No-Spinning lift Zygs will also be called Dygs-lift since it maps vectors of
M x M to vectors in Dns.

The distribution Dyg is smooth since Zs(X) is smooth for any smooth vector
field X € VF(M x M). Also, the fact that the rank of Dyg exactly is 2n follows
from the next proposition, which itself follows immediately from Eq. (16).

Proposition 3.20 For every ¢ = (z,4; A) € T*"M @ TM and X € T (@M x M,
one has

(WT*M@)TM)*(gNS (7> lg) = X,

and in particular (7g).(Zs(X)],) = X if ¢ € Q.

24



Thus (77 yre7a )+ (tesp. mg) maps Dys|(z,3;4) isomorphically onto T\(xvj)(MxM)
for every (z,i;A) € T*M @ TM (resp. (z,2;A) € () and the inverse map of
(T marin) < Dxsle (TSP (TQ)«|Dysl,) 18 X = Lis(X)]g-

Remark 3.21 It should now be clear that an a.c. map ¢ — q(t) = (z(t), 2(t); A(t))
in T*M @ T'M or (@ satisfies (11) if and only if ¢ is tangent a.e. to Dyg i.e., for a.e. ¢
it holds that ¢(t) € Dns|q)-

The following basic formula for the lift Zyg will be useful.

Theorem 3.22 For X € T'|(, 1) (M x M) and A e U(7pe prgrn), We have
gNS(YﬂA\(z@) = A* (7) — I/(VYA) |A‘(z’j), (18)

where v denotes the vertical derivative in the vector bundle 7., ., and A, is the
map T(M x M) — T(T*M @ TM).

Proof. Choose smooth paths ¢ : [-1,1] = M, ¢: [-1,1] — M such that (¢(0), é(0)) =
X and take an arbitrary f € C®(T*M @ TM). Define A(t) = P§(c, ¢)Al(z,2)- Then

gNS <7> |A‘(x,5€)

< = 0
= A(0) = A.(=).
0) = A5
Also, it is known that (see e.g. [28], p.29)
Pto(c, é) (A|(c(t)7é(t)) = A|(:v,:i) + tVYA + tQF(t), (19)

with ¢ — F(t) a C>-function | — 1,1[— T*|,M @ T|3M. On the other hand, one
has

— 50 fAewer) — f(B(e, 0)Alwa)
(A.(X) — A*(a))f = lim p
i LU0 O Al sy + P (e, VA + B Pi(c, ) F (1) — (P, ) Ala)
t—0 t

1/ _
=lim - % F(Pi(c,0)Al ) + sPy(c,e) Vg A+ $*Pi(c,e)F(t))ds

t—0 t 0
d — _
:£ SZOf(A|($756) —+ SVYA + SQF(O)) = I/(VYA”A]C

We shall write Eq. (18) from now on with a compressed notation
Ls(X)|a = Au(X) = v(VgA) a.

Remark 3.23 If A € D(7p.yyeram) and ¢ == Ales) € Q (eg. if A € [(mg)),
then on the right hand side of (18), both terms are elements of T)|,(T*M ® T M) but
their difference is actually an element of T'|,Q.

Also, it is clear that Eq. (18) only indicates the decomposition of the map A, w.r.t
to the direct sum decomposition

T(T*M ® TM) = Dns @T*M@)TM V(ﬂ'T*M@TM), (20)
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TQ = Dns ®q V(7). (21)
when A € I'(mg) respectively.

As a trivial corollary of the theorem, one gets the following.

Corollary 3.24 Suppose ¢ — ((t), Z(t); A(t)) is an a.c. curve on T*M @ TM or Q
defined on an open real interval I. Then, for a.e. t € I,

Dns (1), 2(0)) ] g aepacy = A = V(Vawien Dlewswaw)-
Hence t — (x(t), Z(t); A(t)) is tangent to Dys at ty € I if and only if V(i(to)’l&(to))A = 0.

3.2.3 The Rolling Distribution Dy

We next define a subdistribution of Dyg which will correspond to the rolling with
neither slipping nor spinning. Recall that the no-spinning distribution Dyg de-
fined on () models the fact that the admissible curves ¢t — ¢(t) = (z(t), 2(t); A(t))
inscribed on @), i.e., the curves describing the motion of M against M, must ver-
ify the no-spinning condition (11). The latter is equivalent to the condition that
t — q(t) is tangent (a.e.) to Dys, ¢(t) = ZLus (f(t),f(t))}q(t) for a.e. t. As regards
the rolling of one manifold onto another one, the admissible curve ¢(-) must also
verify the no-slipping condition (13) that we recall next. Since ¢(-) is tangent to
Dys, we have A(t) = Pf(x,2)A(0), and hence the no-slipping condition (13) writes
A(t)i(t) = &(t). Tt forces one to have, for a.e. t,

q(t) = As (f(t)a A(t)ft(t)) ’q(t)'

Evaluating at ¢t = 0 and noticing that if ¢y := ¢(0), with gy = (z0, Zo; Ag) € @ and
(0) =: X € T|,,M are arbitrary, we get

Q(O) = gNS(‘Xv AOX)‘QO'
This motivates the following definition.
Definition 3.25 For ¢ = (z,2; A) € @, we define the Rolling lift or Dg-lift as a
bijective linear map
gR : T|$M X Q|(m7i-) — T|qQ,
given by
$R<X’ q) = gNS<X7 AX)|q (22)

This map naturally induces 2% : VF(M) — VF(Q) as follows. For X € VF(M)
we define £z (X), the Rolling lifted vector field associated to X, by

Zr(X) Q= T(Q),
q = Zr(X)lg,
where ZR(X)|, := Zr(X, q).
The Rolling lift map % allows one to construct a distribution on @ (see [7])

reflecting both of the rolling restrictions of motion defined by the no-spinning con-
dition, Eq. (11), and the no-slipping condition, Eq. (13).
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Definition 3.26 The rolling distribution Dy on @ is the n-dimensional smooth dis-
tribution defined pointwise by

DR|($,50;A) - gR(T|J:M)|(J:,i‘;A)7 (23)
for (z,2;A) € Q.

The Rolling lift £ will also be called Dg-lift since it maps vectors of M to
vectors in Dg. Thus an absolutely continuous curve ¢ — ¢(t) = (z(t), Z(t); A(t)) in
@ is a rolling curve if and only if it is a.e. tangent to Dy i.e., ¢(t) € Dg|qq) for a.e.
t or, equivalently, if ¢(t) = Zr(2(t))|qe) for a.c. t.

Define 7y = pry o mg : @@ — M and notice that its differential (7g p). maps
each Dg|(z,3,4), (@, 2; A) € @, isomorphically onto T'|, M. This implies the following
standard result.

Proposition 3.27 For any gy = (xo,%0; Ag) € @ and absolutely continuous v :
[0,a] — M, a > 0, such that ¢(0) = x, there exists a unique absolutely continuous
q:[0,d] = Q, q(t) = (v(t),4(t); A(t)), with 0 < @’ < a (and o’ maximal with the
latter property), which is tangent to Dy a.e. and ¢(0) = go. We denote this unique
curve ¢ by

t = qpr (7, ) (t) = (7(£), ¥pr (75 90) (1); Apg (7, q0) (1)),

and refer to it as the rolling curve with initial conditions (v, qo) or along ~ with initial
position qq. In the case that M is a complete manifold one has o’ = a.

Conversely, any absolutely continuous curve ¢ : [0, a] — @, which is a.e. tangent to
Dg, is a rolling curve along v = mg s © ¢ i.e., has the form ¢p, (7, ¢(0)).

Proof. We need to show only that completeness of (M ,g) implies that ¢’ = a. In
fact, X (t) := Ay fot PY(7)7(s)ds defines an a.c. curve t — X (t) in T|;, M defined on
[0, a] and the completeness of M implies that there is a unique a.c. curve 4 on M
defined on [0, a] such that X (t) = fot PY(4)4(s)ds for all ¢ € [0,a] (see also Remark
3.29 below). Defining A(t) = Pl() o Ag o P(7), t € [0,a] (parallel transports
are always defined on the same interval as the a.c. curve along which the parallel
transport takes place) we notice that ¢ — (y(t),7(t); A(t)) is the rolling curve along
v starting at gy that is defined on the interval [0, a]. Hence ¢’ = a.

0

Of course, it is not important in the previous result that we start the parametriza-
tion of the curve v at t = 0.

Remark 3.28 It follows immediately from the uniqueness statement of the previous
theorem that, if v : [a,b] — M and w : [¢,d] — M are two a.c. curves with v(b) = w(c)
and ¢ € @, then

qpr (W U, @) = qpg (W, gDk (75 90) (D)) U gpg (7, Q0)- (24)

On the group €2, (M) of piecewise differentiable loops of M based at z one has

dpr (w"% qO) = qDR,(w7 qDR(’Y7 QO)(l))'qDR(’% qO)?

where v,w € Q. (M).
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SPe}cializing to (M, g) and (M, g), we WﬂAl write in the sequel A,, and Az, for AY
and AﬁvO respectively, where zg € M, 2o € M.

Remark 3.29 It follows from Proposition 3.17 that, for gy = (20, Zo; Ao) and an a.c.
curve 7 starting from g, the corresponding rolling curve is given by

4Dr (7, 40) (8) = (7(1), A7, (Ao 0 Ay (1)) (8): Py (A7) (Ao 0 Ay (7)) 0 Ag 0 P(7)). (25)

In the case where the curve v on M is a geodesic, we can give a more precise
form of the rolling curve along ~ with a given initial position.

Proposition 3.30 Consider gy = (0, Zo; Ao) € Q, X € T|,,M and v : [0,a] — M;
7(t) = exp,,(tX), a geodesic of (M, g) with v(0) = xo, ¥(0) = X. Then the rolling

curve gpg (7, 90) = (7, ¥px (75 @); Apr (7, @) : [0,d'] = Q, 0 < a’ < a, along 7 with
initial position ¢ is given by

Yr (7, @) () = xPys, (tA40X),  Apy (7, q0)(t) = P5(Ape (7, q0)) © Ag © P (7).
Of course, a' = a if M is complete.

Proof. Let 0 < ' < a such that 4(t) := exp, (tA¢X) is defined on [0, a']. Then, by
proposition 3.17, q(t) := (y(t),5(t); A(t)) with A(t) := Fj(}) o Ago PY(v), t € [0, d],

is a curve on @ and A(t) is parallel to (v,%) in M x M. Therefore ¢t > ¢(t) is
tangent to Dyg on [0,a’] and thus ¢(t) = Lus(§(t), ¥(t))|qw)- Moreover, since v and
A are geodesics,

A)(t) = (F5(7) 0 A)(PY(7)7 (1) = B (1)(AX) = 4(t),

which shows that for ¢ € [0, d'],

q(t) = s (1), AW)Y() gy
= Zr(7(1))

q(t)’

Hence t — ¢(t) is tangent to Dg i.e., it is a rolling curve along ~ with initial position

q(0) = ((0),%(0); A(0)) = (o, Zo; Ao) = o- .

Remark 3.31 If y(t) = exp, (tAoX) and gy = (z0, 20; Ag), the statement of the
proposition can be written in a compact form as

ADR (77 qo)(t) = Pg (5 = m(xo,i‘o)(s(Xa AOX)))A07
for all ¢+ where defined.

The next proposition describes the symmetry of the study of the rolling problem
of (M, g) rolling against (M, g) to the problem of (M, g) rolling against (M, g).

Proposition 3.32 Let 1/); be the rolling distribution in Q = Q(M, M). Then the
map

Q= Q; ux, i A) = (2,2, A7Y)
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is a diffeomorphism of Q onto Q and
L*DR = @T{

In particular, 1(Op,(q)) = Op-(c(q))-

Proof. 1t is obvious that ¢ is a diffeomorphism (with the obvious inverse map) and

for an a.c. path q(t) = (v(t),7(1); A(t)) in Q, (toq)(t) = (3(t),7(1); A()™) is ac.

in ) and for a.e. t,

{A(t) = Fj(%) o A(0) o P(7)

These simple remarks prove the claims.

Remark 3.33 Notice that Definitions 3.25 and 3.26 make sense not only in Q) but
also in the space T*M ® TM. It is easily seen that Dy defined on T*M @ TM by
Eq. (23) is actually tangent to @ so its restriction to () gives exactly Dg on @ as
defined above. Similarly, Propositions 3.27, 3.30 and 3.32 still hold if we replace @) by
T*M @ TM and Q by T*M ® T'M everywhere in their statements.

3.3 Lie brackets of vector fields on ()

In this section, we compute commutators of the vectors fields of T*M @ TM and
() with respect to the splitting of T(T*M ® TM) (resp. TQ) as a direct sum
Dns @ V(T proryr) (tesp. Dns @ V(mg)) as given in Remark 3.23 above. The
main results are Propositions 3.45, 3.45 and 3.47. These computations will serve as
preliminaries for the Lie bracket computations relative to the rolling distribution Dg
studied in the next section. It is convenient to make the computations in T*M QT M
and then to simply restrict the results to Q.

3.3.1 Computational tools

The next lemmas will be useful in the subsequent calculations.

Lemma 3.34 Let (z,2;A) e T"M ® TM~(resp. (z,7; A) € Q). Then there exists
a local 7 07 y-s€Ction (resp. mp-section) A around (z, ) such that Al 3 = A and
vyzi =0 forall X € T‘(m7i-)(M X M)

Proof. Let U be an open neighborhood of the origin of T'|, 5 (M x M), where the

g-exponential map exp : U — M X M is s a diffeomorphism onto its image. Parallel
translate A along geodesics t — exp(tX), X € U, to get a local section A of

~

T*(M)®T(M) in a neighborhood of T = (x, ). More explicitly, one has
Aly = Py (t = oxp(t(exp;) 7' (1)) A,
fory e U. If (z,2; A) € Q, this actually provides a local mg-section. Moreover, we

45 A)
clearly have VA = 0 for all X € T (2,5 (M x M).
U
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Notice that the choice of A corresponding to (x,2; A) is, of course, not unique.

Lemma 3.35 Let A be a smooth local T e i-Section and /~1|(x,56) = A. Then, for
any vector fields X,Y € VF(M x M) such that X[z = (X, X), Y|ws = (V,Y),
one has

(Vs V¥lA)|wa) = —ARX,Y) + RX,V)A+ (Vix714) | .o (26)

Here [V, V5] is given by Vs o V- — Vi 0 Vx and is an R-linear map on the set of
local sections of 7. oy around (z,2).

Proof. For an arbitrary Z € VF(M), which we may interpret as a vector field on
M x M as usual, we calculate

(V5. VA Z = V(VFA) 2) — (V5A)(Vx2) — Vi(V5A) Z) + (V<A) (Vy2)
=V<(Vy(AZ) - AVyZ) — (Vy é)(vY )
+

— Vy(Vx(AZ) — AVxZ) + (V5 A) (Vi 2)
Vi(AZ) — (VA)(VsZ) — AV(V VAV

)(VxZ)+ AVy(VxZ) + (VxA)(Vy Z)
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and evaluating the above quantity at (z, z), we get
(V. V¥lA) Z| 05y = —A(R(X,Y)Z) + R(X,Y)(AZ) + (Vg 71A) Z| (2.0)-

Since the value Z|, can be chosen arbitrarily in 7’|, M, the claim follows.
O

We next define the actions of vectors Zs(X)|, € T|(T*M @ TM), X €
T (@,3) (M x M), and v(B)|, € Vi Trenigrar), B € THiM ® T|:M, on certain
bundle maps instead of just functions (e.g. from C(T*M ® TM)). Recall that if
n: E — N is a vector bundle and y € N, u € E|, = n '(y), we have defined the
isomorphism

d
Uplu = Ely = Vi]u(m);  vylu(v)(f) = a‘of(u—i—tv), Vf e C®(E).

We normally omit the index 7 in v, when it is clear from the context, and simply
write v instead of v, and it is sometimes more convenient to write v(v)|, for v|,(v).
By using this we make the following definition.

Definition 3.36 Suppose B is a smooth manifold, n : E — N a vector bundle,
7:B — N and F': B — F smooth maps such that no FF = 7. Then, for b € B and
V € V|,(7), we define the vertical derivative of F as

VF = V|;“zb)(F*V) S E|’T(b)
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This is well defined since F,V € V|pe)(n). In this matter, we will show the
following simple lemma that will be used later on.

Lemma 3.37 Let N be a smooth manifold, n : £ — N a vector bundle, 7: B — N
a smooth map, @ C B an immersed submanifold and F' : O — E a smooth map such
that no F' = 7|o.

(i) Then for every by € O, there exists an open neighbourhood V' of by in O, an open
neighbourhood V of by in B such that V C V and a smooth map F : V — E

such that 7o F = 7|y and F|y = F|y. We call F a local extension of F' around
bo.

(ii) Suppose 7 : B — N is also a vector bundle and F is any local extension of F
around by as in case (i). Then if v € B|.,) is such that v, (v) € T'|,,O, one has

d. -
vy (V) (F) = a’OF(bo + tv) € Elr ),

where on the right hand side one views ¢ — F(by + tv) as a map into a fixed (i.e.
independent of t) vector space E|r(,) and the derivative < is just the classical
derivative of a vector valued map (and not a tangent vector).

Proof. (i) For a given by, € O, take a neighbourhood W of y, := 7(by) in N such that
there exists a local frame vy, ..., v, of n defined on W (here k = dim £ — dim ).
Since no F = 7|p, it follows that

k
= Z fi(b)vi|7—(b)a \V/b c T_l(W) N O,

for some smooth functions f; : 7' (W)NO — R, i =1,..., k. Now one can choose
a small open neighbourhood V/ of bo in O and an open nelgbourhood V of by in B
such that V c V C 77! (W) and there exist smooth fio.oo, fe 1 V = R extending
the functions f;|y i.e. fz|V = filv,i=1,...,k. To ﬁnish the proof of case (i), it
suffices to define I : V — E by

k
= Z U, 7(b)s Vb € ‘7

(ii) The fact that ¢ — F(by + tv) is a map into a fixed vector space E|p@py) is
clear since F'(by 4 tv) € Bl F oty = Elrottny = Elrpo)- Since Fly = F|y and
V|, (v) € T|p,V, we have Fu\bo( ) = Fu|y(v). Also, t — by + tv is a curve in
E|+), and hence in I, whose tangent vector at ¢ = 0 is exactly v|,(v). Hence

_ d. -
VIF o) (Voo (V) F) = Fivly, (v) = Fivly, (v) = &}OF(bo + tv).

Here on the rightmost side, the derivative =: T is still viewed as a tangent vector of
E at F(b) i.e. t — F(by + tv) is thought of as a map into E. On the other hand,
if one views t — F(by + tv) as a map into a fixed linear space F |7(bo), its derivative
=: D at t = 0, as the usual derivative of vector valued maps, is just D = I/F(lb )(T ).
In the statement, it is exactly D whose expression we wrote as % }OF’ (bo + tv). This
completes the proof. O
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Remark 3.38 The advantage of the formula in case (ii) of the above lemma is that it
simplifies in many cases the computations of 7-vertical derivatives because t — F'(by+tv)
is a map from a real interval into a fixed vector space E|p(,) and hence we may use
certain computational tools (e.g. Leibniz rule) coming from the ordinary vector calculus.

Let O be an immersed submanifold of T7*M @ T'M and write To = 7TT*M®TM|O.
Then if T : @ — T% (M x M) with T MxM)oT =70 (le. T € C (7o, Trw (arxan)))
and if ¢ = (z,2; A) € O and X € T'|(z3) (M x M) are such that Ls(X)]q € T1,0,
we next want to define what it means to take the derivative ZNS( )|, T- Our main
interest will be the case where k = 1, m = 0 i.e. TH(M x M) = T(M x M), but

some arguments below require this shghtly more general setting.
First, for a moment, we take O = T*M @ T'M. Choose some local 7. o

section A defined on a neighbourhood of (z,#) such that Al s = A and define

Zrs(X)|,T = V(T(A) = v(VxA)T € Tyl (M x M), (27)

which is inspired by Eq. (18). Here as usual, T(A) = T o A is a locally defined
(k, m)-tensor field on M x M. )

Notice that this does not depend on the choice of A since if w € T(WTm(MxM)) and
if we write (Tw)(q) := T(q )w|<x # as a full contraction for ¢ = (x,2; A) € T*M®QTM,

whence Tw € C*(T*M ® TM), we may compute (where all the contractions are
full)

— d, — — -
@ — o (T(A+ (V5 A)w)
- . d

Vx((Tw))(4)) = 7 |,(T)(A + tVxA) = T(9)Vxw

(Ls(X)], D)@ =Zs(X)]y(Tw) — T(q) V@, (28)

for all w € F(WT,gn(MxM)) and where Zs(X)|, on the right hand side acts as a

tangent vector to a function 7w € C™(T*M ® TM) as defined in subsection 3.2.2.
Now the right hand side is know to be independent of any choice of local extension
Aof A (ie. fl|(x,53) = A), it follows that the definition of %s(X)|,T is independent
of this choice as well. Alternatively, we could have taken Eq. (28) as the definition
of gNS (X) |qT
Now if @ € T*M ® TM is just an immersed submanifold, we take the formula
(28) as the definition of As(X)|,T.

Definition 3.39 Let @ C T*M ® TM be an immersed submanifold and ¢ =
(z,#;A) € O, X € T|(m (M x M) be such that .,S,”Ns( ) € T),0. Then for

T : O — TE(M x M) such that Tk (i) © T = mo, we define Ls(X)|,T

to be the unique element in T%|(, (M x M)_ such that Eq. (28) holds for every
we P(”Tg"(MxM))v and call it the derivative of 7" with respect to Zxs(X)],.
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We now to provide the (unique) decomposition of any vector field of T*M ® TM
defined over O (not necessarily tangent to it) according to the direct sum (20) i.e.
T(T*M & TM) = Dxs & V(T prorns)-

Proposition 3.40 Let X' € C°(mo, Ty« pyerip) be @ smooth bundle map (i.e. a

vector field of T*M @ T'M along ©) where © € T*M ® T]\z is a smooth immersed
submanifold. Then there are unique smooth bundle maps T' € C* (7o, Ty i)
U € C™(To, T prerar) SUCh that

Xy =As(T(@)lg +v(U@)lg, a€O. (29)

Proof. First of all, there are unique smooth vector fields
Xh’ XU c COO(’]TO, TrT(T*M@TM)),
of T*M & TM along O such that
Xh|q S DNS|q7 Xv|q S V|q(7TT*M®TM)v
for all g € O and X = X" + X¥. Then, we define
T(q) = (mpepraran)«X"le: - Ula) = v (X7],),
where ¢ = (z,2; A) € O and v|, is the isomorphism
.M ® T|xM — V|q(7TT*M®TM)§ B V(B)|q-

This clearly proves the claims. O

Remark 3.41 The previous results shows that to know how to compute the Lie
brackets of two vector fields X', € VF(O) where O ¢ T*M ® TM is an immersed
submanifold (e.g. O = @), one needs, in practice, just to know how to compute the
Lie brackets between vectors fields of the form ¢ — Zs(T(q))l,, Zus(S(q)) and g —

v(U(q))lg: v(V())lg where X, = Zs(T(0)lq +v(U(q))lg and Y]y = Zs(S(a)lg +
v(V(q))|, as above.

Remark 3.42 Notice that if O C T"M ® TM is an immersed submanifold, ¢ =
(x,2;4) € 0, X € T|,0 and T' € C*(7o, Trx (rrxsp)), then we may define the
derivative XT € T* (M x M) by decomposing X = Zs(X)|, + v(U)], for the unique
X € T|(x,53)<M X M) and U € (T*M(X)TM)‘(JC@)

We finish this subsection with some obvious but useful rules of calculation, that
will be useful in the computations of Lie brackets on O C T*M ® TM and we will
make use of them especially in section 7.

Lemma 3.43 Let O C T*M @ TM be an immersed submanifold, ¢ = (z,#; A) € O,
T € C*(mo, Tk (vixany) £ € C*(0), h € C*(R), X € Tz (M x M) such that
Is(X)], € T),0 and finally U € (T*M x TM)\(LQ) such that v(U)|, € T|,O Then

(i) Zs(X)[(FT) = (Ls(X)],F)T(q) + F(q) Lus(X)|, T
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(i) Ls(X)lg(ho F) = I (F(q))Zs(X)| F

(iii) v
(iv) v

)o(FT) = (v(U)]F)T(q) + F(@v(U)|, T

(U
(U)lg(h o F) = W (F(q)v(U)]F

If T : O — TM C T(M x M) such that T(q) € T|,M for all ¢ = (z,&;4) € O
and one writes (see Remark 3.44 below)

(VT(): O —=TM CT(MxM); q=(zx,i;A) — AT(q),

then

(v) LsX))(()T()) = As(X)|,T € T|:M
(vi) v(U)lg(()T()) = UT(q) + Av(U)|,T € T|: M,
where %s(X)|,T,v(U)|,T € T|.M.

Finally, if Y € \{F(M) is considered as a map O — T'M; (2/,3'; A') — Y|,» and if
we write X = (X, X) € T|,M & T|;M, then

(vii)

Ls(X)]Y = VY.

Remark 3.44  (a) In the cases (v) and (vii) we think of 7' : O — T'M, to adapt to

our previous notations, as a map T : @ — pri(T'M) where pr, : M x M — M
is the projection onto the first factor. Here pri(mrys) is a vector subbundle of
Torrxary Which we wrote, slightly imprecisely, as TM C T(M x M) in the
statement of the proposition. Thus T'(¢') € T|.M for all ¢ = (2/,3"; A") € O
just means that pri(mry) o T = 7.

We could write a more extensive list of rules of computation by noticing that
Is(X)], and v(U)|, act by Leibniz-rule to any contraction of T and S where T €
C (0, Trn (vran)): S € C(mo, Tpwt (rrapy)- The rules (i)-(vii) are, though,
sufficient for our needs. "

Proof. In what follows, we choose a small open neighbourhood V' of ¢ in O, a small
open neighbourhood 1:/ of ¢ in T"M ® TM such that V' C V asmooth T : V —
T(M x M) such that T|, = Ty and (M A1) oT = T yreryr]v and a smooth map
F:V — R such that F|y = F|y. These are provided by Lemma 3.37.

For the case (i) we take some w € I'(T"(M x M)) and compute

1'(0)

(Zas (O FT))& = s (X, (FT@) — F(g)T(q) V0
= s (X)|o( )T ()] 0y + Fq)-Las(X)|o(T) — F(q)T(q)V 5@
:(3N8<7>|q<F)T<Q> + F(Q)£NS<7)‘qT)w|(x,i).

For (ii), take ¢t — T'(t) = (v(t),7(t); A(t)) be any curve in O with I'(0) = g,
= ZNS(X”q- Since gNS(X |q

), € T|,0 =T|,V, we may compute that
Ds(X)|g(ho F) = Ls(X)|g(ho F)

d - d
== lo(h o F)YAWM) — = |(ho F)(A+ tV5A())
d. -

W (P(0) S|, AW — B (F(0) S|, F (A + 195A()
= (F(0)) s () (F) = (P () Zs (D)o ().
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To prove (iii), notice that (ﬁ’%)h/ = (FT)|y and hence

v(U)|,(FT) = v(U)|(FT) = —| F(A + tU)T(A + tU)

d

:(d—} F(A+tU))T( )+ F(q)

(
=(W(U)],F)T(g) + F(@)(U)],T = (V)| F)T(q) + Flg)v(U)|T.

To prove (iv), take a curve I in O with I'(0) = ¢, I'(0) = v(U)|, and compute

d d
v(U)lg(ho F) = = | h(F(L())) = B(F(0) 3|, F (D) = X' (F(g)w(U)]o(F).
Let us prove (v) and (vi). We take a small open neighbourhood V of ¢ in O,
a small open neighbourhood Vof gin T"M ® TM such that V C V a smooth
T :V — TM such that T|y = T|y and T(¢') € T|»M for all ¢ = («/,3'; A") € V.
Such an extension T of T is provided by Lemma 3.37 by taking by = ¢, T = Tpe yrorirs

d
b o

]0 A+tU)

~

n = prt(wrar) with pr, : M x M = M the projection onto the first factor (see also
Remark 3.44 above). Then taking t — T'(t) = (v(t),7(t); A(t)) to be any curve in
O with T'(0) = ¢, I'(0) = Zs(X)|,, we have

Zs(X)]o(()T()) = Zas(X)]o(()T()
=V (AWT(A())) — %IO(A IV AC)T(A+tVA())

=(VxA()T(q) + AVx(T(A())) — (VAT (q) — 3}0 (A+tVxA(-)
—AZs(X)|, T = A%s(X)|,T

where the first and the last steps follow from the facts that (TNl = (T
and T'|y = T'|y. This gives (v). ) ) X )
To prove (vi) we observe that (\)7'(-) : V. — T'M satisfies ((:\)T'(:))|v = ((-)T(-))|v

which allows us to compute
U)o (7)) = D)o (OTC) = S (A+ )T (A +10)
((;i | (A+tU))T(q) + A(;i |, T(A+tU) = UT(q) + Av(U)|,T

—UT(q) + Av(U)|,T.

Finally, we prove (vii). Suppose that Y € VF(M). Then the map O —
TM; («,3"; A') = Y|, is nothing more than Y opr; omp where pry : MxM — Mis
the pI“OJeCtIOIl onto the first factor. Take a local 7.y, y-section A with A| @z) = A
Then since Y o pry o mp =Y 0 pry © Ty serirlo, We have

Las(X)|o(Y o pry 0 mo) = Las(X)[g(Y 0 pry © e g
_ 4 .
ZV(X,X)(Y O PI'y O T prerar © A) — a}O(Y 0PIy O Ty pserar) (A + V5 A).

But (Y o pry o Ty peris © MA@ sy = Y] = (Y,0)| s for all («/,3) and (Y opr; o
Tope rrir) (A + tVxA) = Y|, for all t and hence

"%NS<7>|(]<Y opr;o 7T(9) = v()(7)2)(}/, O) —0=VyxY.
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3.3.2 Computation of Lie brackets

We now embark into the computation of Lie brackets.

Proposition 3.45 Let O C T*M&T M be an immersed submanifold, T = (T, T),S =
(S,5) € C=(mo, Trarary) with Zs(T(0))|q, Zis(S(q))lg € T|,O forallq = (,3; A) €
O. Then, for every ¢ € O, one has

[ Zas(T()), Zus(S()]lg =Zs (Lus(T(a))oS — Zs(S(a)IoT)|,
+v(AR(T(q), S(q)) — R(T(a), S(a))A)],

, (30)

with both sides tangent to O.

Proof. We will deal first with the case where O is an open subset of T*M ® TM.
Take a local . o pyy] section A around (z, &) such that Az = A, VA|4 = 0;
see Lemma 3.34. In some expressions we will write ¢ = A for clarity.

Let fe C®(T*M ® TM) By using the definition of #xg and v, one obtains

Las(T(A)]o(Ls(S(- A
= T(ABsSAN|3() — S Bs A+ T D) iy a6

= T(A)(S(A)(f(A)) - E}of(A +1V540A4))
d, = - bt ~ — ~
= = |oSA+ V7 DA+ V75 4))
8 . 1 Sl ~ P— ~
+ Otds }Of(A - th(A)A + 5V§(A+ﬁ7(A)A)(A + tVT(A)A))).

Here, we use the fact that VA = 0 for all X € T4 (M x M) and the fact that 2

and T'(A) commute (as the obvious vector fields on M x M x R with points (z, &, ))
to write the last expression in the form

T(ASA(FA)) ~ SLTAFA + T2 A) — 5,

S(A)(f(A+1V74)A))
0? — _ -
+ % ‘Of(A + Sth(A)(vT(A)A))) .

By interchanging the roles of T and S and using the definition of commutator of
vector fields, we get from this

[As(T()), Zxs(S)la(f)

~[T(A) S () + ],

82
—%} F(A+ stV (Vs A)))

=T, SN + S| T 50 (Trn Ao )

F(A+ stVga (Vi A))

)
o(F(A) + (V500 Ve D)la(F) = vV (Vs A))lo(f)
) = v([Vra), Vs ]fl))| (f).
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Using Lemma 3.35, we get that the last line is equal to

[T(A), S(A))lw.a (£ (A))
~(Vir(h) 5o A — AR(T(A), S(A)) + R(T(A), S(A)A)y( /),

from which, by using the definition of Zxg, linearity of v(-)|, and arbitrariness of
feC>(T*M®TM), we get

[(Zs(T()), Zas(S()Ily = Zas([T(A), S(A))]
— (AR(T(A), S(A)) = R(T(A), S(A4))A)l,-

Finally,
d d
S A+ 1V~ A S(A) =
=0
— — ~ d
dt‘o ( + VS(Q) ) dt‘O ( ) O’

since T(q), S(q) € T|(z,3)(M X M) and hence by Eq. (77),
[T(A), S(A)] = Vi) (S(A)) = Vi, (T(A)) = Zus(T(9))14S — Lus(S (@)1 T-

The claim thus holds in this case (i.e. when O is an open subset of T*M @ TM)

Now we let O C T*"M @ T'M to be an immersed submanifold and 7,5 : O —
T(M x M) are such that, for all ¢ = (z,2; A) € O, T(x,%; A), S(x,%; A) belong to
Tt (M % M) and Zis(T(0))]y Zis(S(a)l, belons to T1,0.

For a fixed ¢ = (x,2;A) € O, we may, thanks to Lemma 3.37 (taking 7 =
Trenmerir: 1= Traxins bp = qand F' = T or F' = S there) take a small open
neighbourhood V of ¢ in O, a neighbourhood V' of ¢ in @ such that V' C V and
some extensions T, 5 : V — T(M x M) of Ty, S|y with T(x',&'; A"), S(, i A') €
T (@ 21y (M % M) for all («/,2"; A') € € V. Then since As(T())|y = Ls(T()|v,

Is(S()v = “s(S(4)|v, we may compute, because of what has been shown
already;,

(Zus(T), Ls(S)]lg = [%s Dlv, Zs (S)v]la = (Zis(T), Ls(S)]1v)lq

= Ls (Ses(T(9))]4S — Zs(S(a),T) |, + V(AR(T(q), S(q)) — R(T(q), 5(9))A)

)

q

where in the last line we used that %(q) = T(q) = (T(¢),T(q)), ?(q) = S(q) =

(S(a), 5(a)).
Take any W € F(?TTm(MXM ). Since “s(T(q))|, € T),0 = T|,V by assumption

(
and since (Sw)|y = (Sw)|v, we have Ais(T(q))]q(5w) = Zs(T(q))lg (Sw)\v. But
then Eq. (28) i.e. the definition of Zxs(7(q))|,S implies that

)
(As(T(@)yS)@ = Zs(T(a))l,(S%) = S(a) V@
— As(T(0))14(50) — S(0) Vi@ = (Ls(T())],5)@
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Rl

ie. .,S,”NS(T(q)ﬂqg = “is(T(q Nlq S and similarly Zys(S(q ))\qT = Zs(S(q Nlq
This shows that on @ we have the formula

[ Zas(T), Zus (S)]lg =Zs (s (T())S — Zus(S())l, T,
+v(AR(T(q), S(a)) — R(T(q),5(q))A)

where both sides belong to T'|,0 (since the left hand side obviously belongs to 7'|,0).
U

q7

Proposition 3.46 Let O C T*M ® T'M be an immersed submanifold, T = (T, T) €
C®(mo, Tporxan )y U € C%(To, Tppreryr) be such that, for all ¢ = (2, 2; 4) € O,

Zs(T(9))lg € T1,0, v(U()l, € T140.

Then

[As(TC), vU)ly = —Las(wU (@)Dl + v(Zrs(T(@)gU)lg,
with both sides tangent to O.

Proof. As in the proof of Proposition 3.45, we will deal first with the case where O
is an open subset of T*M ® T'M. Take a local 7. 07y section A around (z,Z)
such that fl|(x,i) = A, Viu(x,@ = 0; see Lemma 3.34. In some expressions we will

write ¢ = A for clarity. B
Let f € C(T*M @ TM). Then Ls(T(A))|q(v(U(-))(f)) is equal to

TA) AU () = Gl O+ Trg D) e, 20,

which is equal to T'(A) (U(U(fl)) ‘A(f)) once we recall that %(A)A = 0. In addition,
one has

AUAN|(BsTOND) = Tl Bas A+ A0

==, T(A+tU(A))(f(A+tU (4)))

~ 9eailo ’ F(A+tU(A) + sV wa (121 +tU(A)))

T(A+tU(A))(f(A+tU(A))) -

} S(A+tU(A) + Sth(AthU(A))(U(A)))’

o1

8875

Since vT(A_’_tU(A))A - O
We next simplify the first term on the last line to get

L) T(A 4+ 10(A) (F(A + 1U(A))
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and then, for the second term, one obtains

62
M‘of(

:%‘of*|qy<%‘o(tU<A) + Sth(AHU(A))(U(A))))
:% ‘Of*|qV(U(A) + SWT(A)(U(A)))) ‘q

= S (FaAU A, + Lo (T UCAN) )
= 1 (T (U g = 1Ty (U
Therefore one deduces
ATOLATONIN) = @IS + AT VLS
AU AT +1(TrnUAN)], ()
BTN + (T 01 D)1, ).

where the last line follows from the definition of Zyg and the fact that
v, WU (A))‘QTA = 0. Finally, Eq. (27) implies

A -+ tU(A) + stV A+tU(A))<U<A>>)

q

Vi (U(A) = Vi (U(A) = v(VrgA) U = Zis(T(A))],U.

Thus the claimed formula holds in the special case where O is an open subset of
T*M @ TM.

More generally, let O C T"M ® TM be an immersed submanifold, and T =
(T,T): O = T(M x M) =TM xTM, U: O — T*M x TM as in the statement
of this proposition.

For a fixed ¢ = (z,2;A) € O, Lemma 3.37 implies the existence of a neigh-

bourhood V of ¢ in @, a neighbourhood V of ¢ in "M ® TM and smooth T :
V = T(M x M), U : V — T*M & TM such that T(z,#; A) € T (e,3) (M x M),
Uz, 2;A) € (T"M ® T]\}[)|(x,@) and T|y = T|y, Uly = Uly (for the case of an
extension U of U, take in Lemma 3.37, T = Ty yroripy 1 = TR (Mx AT F =1U,
bo = q).

In the same way as in the proof of Proposition 7?7, we have [As(T), v(U)]], =

[Zus(T), v(U)], and Zas(T(9)|,U = Zs(T(q))|,U. Hence by what was already

shown above,

s (T), v(U)]ly = —Zs (XU (@)Dl + v(Zrs(T(@) V)l

We are left to show that V(U(q))b%

show that v(v(U(q))|,T )\T =v(v(U(q))|q
then

v (U (@)|T) 7 f —(T*V(U(Q))Iq)fZV(U(Q))I (fof) (U(Q))Iq(foT)

v(U(q))|,T and for that, it suffices to
)|T(q)- Indeed, if f € C°(T(M x M)),



where at the 3rd equality we used the fact that (fo%)\v = (foT)|y and v(U(q))|, €
T|,0 =T|,V. This completes the proof.
U

Finally, we derive a formula for the commutators of two vertical vector fields.

Proposition 3.47 Let O C T*M ® TM be an immersed submanifold and U,V €
C®(mo, Treperar) be such that v(U(q))lq, v(V(q))|q € T'|4O for all ¢ € O. Then

(U)), v (Ve =v (e (U@)lV = v(V(a)lU)ls (31)

Proof. Again we begin with the case where O is an open subset of T"M @ T M and
write ¢ = (x,2; A) € O simply as A. Let f € C°(T*M @ TM). Then,

V(U)o (v(V())(f)) = %IOV(V(A + tU(A))|arew(a(f)
:8f—;9’0f(A +tU(A) + sV(A+tU(A)))

:%}Of*|qy<%]0(tU(A) +sV(A+ tU(A)))>

q
d
= |o o (U(A) + sr(U(A)]V ),
:f*V(V(U(A))|qV) |q = V(V(U(A))|qv)|qf-
from which the result follows in the case that O is an open subset of T*M @ T M.
The case where O is only an immersed submanifold of 7*M ®T' M can be treated

by using Lemma 3.37 in the same way as in the proofs of Propositions 3.45, 3.46.
O

As a corollary to the previous three propositions, we have the following.

Corollary 3.48 Let O C T*M ® TM be an immersed submanifold and X,) €
VF(O). Letting for ¢ € O,

Xl = Zxs(T(@)lg +v(U@)lg, Vg = Zs(S(0))lg +v(V(0)lg,

to be the unique decompositions given by Proposition 3.40. Writing T = (T, T) S =
(S, S) corresponding to T'(M x M) =TM x T M, we get

(X, y”q :(ZNS(X|q§)|q + V(X|qv)|q) - (gNS(y|qT)|q + V(y|qU)|q)
+v(AR(I(q), S(9)) — R(T(q), S(a))A)l,
(for the notation, see the second remark after Proposition 3.40).

Proof. We will assume that T', S, U,V are, temporarily in the course of computations
below, extended by Lemma 3.37 to an open neighbourhood O of ¢ in T*M ® T'M.
By abuse of notation, we don’t give new names for them. Then Propositions 3.45,
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3.46 and 3.47 we obtain

4 Study of the Rolling problem (NS5)

We next parameterize the set of all absolutely continuous curves which are tangent
to the distribution Dyg as a driftless control affine system.

An a.c. curve t — q(t) = (x(t), 2(t); A(t)) in @ describes a rolling motion of M
against M without spinning if and only if §(t) = Zs(#(t), 2(t))|4@) for a.e. t. This
can be expressed equivalently by saying that ¢(-) is a solution of a control affine
driftless system

(1) = u(t),
(X)ns z(t) = u(t), , forae. t€]a,b, (32)

Viuw.am)A(-) =0

where the control (u, @) belongs to the set U([a, b], M) x U([a, b], M). The fact that
System (32) is driftless and control affine can also be seen from its representation in
local coordinates; see (106) in Appendix A.

In the rest of the section, we investigate the structure of the reachable sets
associated to (¥)ys and relate them to the holonomy groups of the Riemannian

manifolds (M, g) and (M, g).

4.1 Description of the Orbits of (X)yg

We begin this section by recalling some standard definitions and introducing some
notation concerning the subsequent subsections. If (N, h) is a Riemannian manifold,
then the holonomy group H Vh\y of it at y is defined by

HY"|, = {(PY")5(7) | v € Q,(N)},

and it is a subgroup O(7'|,N) of all h-orthogonal transformations of T'|,N. If N is
oriented, then one can easily prove that HV"|, is actually a subgroup of SO(T'|,N).
If F=(Y;)",, n=dimN, is an orthonormal frame of N at y we write

HY|p = {Mpp(A) | A€ H|,}.
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This is a subgroup of SO(n), isomorphic (as Lie group) to H vh|y. Lie algebra of the
holonomy group HY"|, (resp. HY"|r) will be denoted by §¥"|, (resp. h¥"|z). The
Lie algebra hv" |, is a Lie subalgebra of the Lie algebra so(7'|,N) of h-antisymmetric
linear maps T|,N — T|,N while h¥" |z is a Lie subalgebra of so(n).

In this setting, we will be using the notations H|, = HY|, and H|; = HV|m
respectively for the holonomy groups of (M, g) and (M g)at z € M and 7 € M.
If F and F are respectively orthonormal frames of M and M we use H | and H |

respectively to denote HY|p and H v| - The corresponding Lie algebras will be

written as b|a:a 6|i7 b|F7 6|F‘
We now describe the structure of the orbit Opy (Ag) of Dys through a point

(x0, To; Ap) € Q as follows.

Theorem 4.1 Let ¢y = (x0,Zo; Ag) € Q. Then the part of the orbit Op,.(qo) of
Dys through ¢ that lies in the mg-fiber over (zy, Z¢) is given by

ODNS<qO) N Q‘(wo,fco) = {}AI' © AO oh ‘ ;Al € ﬁ|ﬁ07 h € H‘;ol} (33)
=: ﬁ\xo oApo H\;Ol,

and is an immersed submanifold of the fiber Q|z.s0) = 7' (20, o).

Moreover, if F, F are orthonormell frames at x(, Zo, as above, then there is a
diffeomorphism (depending on F' and F)

Opys (40) N Qliwosio) = H|pMp (A0 HIF, (34)
where the groups on the right hand side are Lie subgroups of SO(n).

In the previous statement, we have used the following notation. If G is a group
and S is a subset of G, then S™!:= {¢g7! | g € S}. Of course G~! = G but, in Eq.

33), it is somewhat more convenient to leave H| ! and not to replace it by H|,, .
o p y 0

Proof. Notice that g1 = (20, Z0; A1) € Opys(go) N7y, (20, 2o) if and only if there is
a piecewise C' path t — q(t) = (x(t), 2(t); A(t)), t € [0,1], with ¢(0) = qo, ¢(1) = @1
and tangent to Dyg. This is, on the other hand, equivalent, by the definiton of Dys,
to the fact that A(t) = Fj(z,2)Ag. It is also clear that ¢+ (2(t), #(t)) is a piecewise
C" loop of M x M based at (xg,70) i.c., it belongs to Quy a0y (M x M) which can

be identified, in a natural way, with €2, (M ) X Qz,(M). By these remarks, Eq. (15)
and the above definition of the holonomy groups, we get

Oy (@0) N 75" (20, F0) = { Py (T) Ao | T € Qag,a0) (M x M)}
={Py(z,#)Ag | & € Quy(M), & € Qg (M)}
={P)(#) 0 Ago P{(x) | © € Qyy(M), & € Q3 (M)} = Hlz, 0 Ag o H|,.).

We next prove that H|;, 0 Ago H |- is an immersed submanifold of Q) (z,.z.)- Let
fiHl|sy X H|py — Q|(z0,30) be a map given by f(iz h) := ho Agoh™t. The map f is
clearly smooth, when we consider H |, (resp. H|;,) as a Lie subgroup of SO(T|,, M)
(resp. SO(T|3,M)). Moreover, denote G = H|;, x H|,, and consider the smooth
(left) group actions p : G X Q|(zg,20) = Ql(wo,20) a0d M : G X G — G of G on Q|(zg,20)
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and itself given by p((h, h), A) = ho Ao h™', m((h,h), (k,k)) = (hk, hk). Then we
see that

A(E h), (k‘ k:)):izo(l;:vook:_l)oh_l

=(hk)o Ago (hk)™" = f(hk,hk) = f(m((h,h), (k,k))),

which shows that f is G-equivariant map. Since G acts transitively (by the action
m) on itself, it follows that f has constant rank (see [17] Theorem 9.7).
Unfortunately f is not injective but there is an easy solution to this obstacle.
Notice that K := f~!(Ap) is a closed subgroup of G, hence G/K (the right coset
space) is a smooth manifold and f induces a smooth map [ : G/K — Q|(.i0);
which is still G-equivariant, when one uses the (left) G-action m on G/K induced
by m. Now f is injective and constant rank, hence an injective immersion (see [17]
Theorem 7.14) into Q|(zo.4,). But the image of f is exactly H|;, 0 Ag o H| !

Moreover, given orthonormal frames F' and F, we clearly see that
hoAgoh— Mg 1(h)Mp p(Ag) Mpr(h)
gives the desired diffeomorphism
Hlzy0 Ago H|b — H|pMp p(Ao)H| 5"
O

Corollary 4.2 If M and M are simply-connected, then each m-fiber Op(qo) N
Q|(z,2), With (z,2) € M x M, of any orbit Op . (qo), go = (20, 20; Ag), is a compact
connected embedded smooth submanifold (). In particular, if a Dys-orbit is open in )
then it is equal to ().

Proof. Without loss of generality we may assume that (z,2) = (z¢, Zo). By Theorem
3.2.8 in [13] (in this relation, see also Appendix 5 in [15]), the simply connectedness
assumption implies that H|,, and H|;, are respectively (closed and hence) compact
connected Lie-subgroups of SO(T|,, M) and SO(T|;,M).

Now Opys(90) N Q| (z0,30) 1 compact (as a subset of @) and connected since it
is a continuous image (by the map f in the proof of Theorem 4.1) of the compact
connected set H |25 X H|z,, Finally notice that a compact immersed submanifold is
embedded.

The last claim follows from the fact that an open orbit Op (o) has a open fiber
Opys(90) N Ql(wo,20) I Q|(z0,80)- This fiber is also compact by what we just proved
and hence Op 4 (q0) N Q| (z0,20) = @l(z0,20) Py connectedness of Q| (z,3,)- This clearly
implies that Q = Opy.(qo)- O

The next corollary gives the infinitesimal version of Theorem 4.1.
Corollary 4.3 Let gy = (9, Z0; Ag) € Q. Then

T|(IOODNS (qO) N V|Q0(7TQ) = V<{]% © AO - AO ok | ke b|$07i€ € 6|i0})|(I0 (35)
- V(b|500 oAg—Ago h|$0)|¢107

where |, b|s, are the Lie algebras of the holonomy groups H|,,, H|s, of M, M.
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Proof. As in the previous proof, consider the map

[ [:I‘:io X H|$0 - ODNS<qO) N 7161(1’0,%0),
(h,h) — hoAyoh™",

which is known to be a submersion by the previous considerations. We deduce that
f*(6 X b) = T|q0(ODNs (AO) N 7161(1‘07 :%0)) = T|QOODNS (qO) N V|q0(7TQ)'

But it is obvious that f,|; . (k,k) = v(k o Ay — Ag o k)4, which then proves the

claim.

‘ﬁxb

0

Remark 4.4 By the previous corollary and the Ambrose-Singer holonomy theorem
(see [13], [15]), we have for gy = (xo, Zo; Ag) € Q,

T 0Opss(an) N Vlao (7Q) ={ PYOR|:(X,Y) P (8)Ag — Ao P (c)RIo(X,Y) Py (c) |
reM,ieM, X,Y eT|,M, X,Y €T|;M,
cée C’rl)w([(), 1], M), ¢(0) = xq, ¢(1) =z,
¢ € Ch([0,1], M), ¢(0) = &9, &(1) = &},

where CJ ([0,1], M) (resp. C},([0,1], )) is the set of piecewise continuously differ-
entiable maps [0,1] — M (resp [0,1] = M).

Theorem 4.1 shows that, since M ,M are connected, all the mg-fibers of the
reachable set Op.(qo) are diffeomorphic i.e.,

Opys (40) N 75" (w0, 20) = Opyglqo) N7y (21, 21),

for every (x1,#1) € M x M. This follows from the fact that if points x,y € M, then
(since M is connected) H|, and H|, are isomorphic, the same observation holding
in M. We will now prove that the reachable set Op(qo) has actually a bundle
structure over M x M.

Proposition 4.5 For ¢y = (;}:0, Zo; Ag) € Q, denote TOpyg (40) = WQ\ODNS(%). AThen
TOpyg(a0) * Opns(@) = M x M is a smooth subbundle of g with typical fiber H|;, o
Ao H|;! and Op,,(qo) is a smooth immersed submanifold of Q.

Proof. The surjectivity of TOp,q (g0) OO M X M follows immediately from the con-
nectivity of M, M.

Choose local charts (¢, U) an d (¢, U) of M and M around zg, &y centered at o,
o (ie., d(zo) = 0, (i#9) = 0) and so that ¢(U) and ¢(U) are convex. Then, define
T(6.) :W(;;Ns(qo)(U x U) = (UxU) x (ﬁ|m0 o Ago H|,)
(2,2 4) = ((2,8), PP(t = (67 (t9(2)), 67 (16(2)))) A),
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where we notice that, since A = Fy(c,¢)Ag = Fy(¢) o Ag o PP(c) for some piecewise
C*' paths ¢: [0,1] — M and ¢ : [0, 1] — M with ¢(0) = x, ¢(0) = &, one has

Pyt — é(x)), ¢~ (td(2)))) A
Pg(tegb ( (i)))voPO(tl—Mb (to(x))))
Py (t— ¢ (to(2))) o Py () o Ag o PY(c) o PY(t — ¢ (td(x)))).

The concatenation of the path ¢ and t — ¢~ '(td(x)) is a piecewise C' loop of
M based at xo and the concatenation of ¢ and ¢ 1( gb(i)) is a piecewise C*
loop based of M at &y. Thus PY(t — (¢~ (td(x)), ¢ ' (tg())))A is an element of

ﬁ\io oApo H\;Ol.
It is clear that 7, ;) is a smooth bijection onto (U x U) x (lﬁﬂgc0 o Ago H|;1). Its
inverse map is given by 1/1( 6.0)7

Vo) ((@.2), B) = (2,8 By (t = (67 (t9(2)), 6™ (t6(2)))) B),

which is clearly smooth into ¢ with image contained in Opy.(qp) and hence it is
smooth into Op,(qo) by the basic properties of an orbit. This shows that Op(qo)
is a smooth bundle. )

Since the maps 7, ;) defined on 7161([] x U) by the same formula as Tis.6) €

diffeomorphisms (by an identical argument as above) onto (U x U) x ﬂél(l‘o,i‘o),
we see that T, (4) 18 @ smooth (immersed) subbundle of 7g.
0

We may now also prove that 7o : @ — M x M cannot be equipped with a
principal bundle structure leaving the distribution Dyg invariant except in special
cases.

Theorem 4.6 Generically, in dimension n > 3, 7 cannot be equipped with a principal
bundle structure which leaves Dyg invariant.

More precisely, if n > 3 and F, F' are oriented orthonormal frames of M and M at
o and i, respectively, and if H|p C SO(n), H|; C SO(n) are the holonomy groups
with respect to these frames, then H|pNH | # {idg»} implies that there is no principal
bundle structure on 7 which leaves Dyg invariant.

Especially this holds if M (resp. M) has full holonomy SO(n) and M (resp. M) is
not flat.

Proof. Suppose p1 : G x Q — @ is a left principal bundle structure for g leaving
Dys invariant. Notice that G is diffeomorphic to the mg-fibers i.e., to SO(n) (but,
of course, does not need to be isomorphic to it as a Lie group). The fact that for
all g € G we have (uy),Dns C Dys is clearly equivalent to (pg).Zas(X, X)|, =
ZNS(X,X)M(%,]) for all ¢ = (,4;A) € Q and X € T|,M, X € T|;M. But this
means that for all ¢ € G, (z,2;A) € @ and a.c. paths 7, 4 starting at x, &
respectively, we have (1(g, gpys(q)(t)) = qpys(1(g; ¢))(t) where gpys(g) is the unique
solution to ¢(t) = Lns(H(t), (¢ ))|q(t q(0) = gq. Since we know that if ¢ = (z,2; A) €
Q, then gy (9)(2) = (1(£),3(2); FL(3) o Ao P(3)) for all ¢, we get that

(g, Ps(3) 0 Ao PP(7)) = Py(%) o (g, A) o P)(7).
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Let F, F be chosen as in the statement above. Define (zo,%0; 49) € Q by
Ap =, 9(X;,-)X; and choose B € H|p N H|z, B # idgn. Choose loops v, 4 based
at g, 2o such that Mpr(Pj(y)) = B, My :(Pj (7)) = B. Since M, 5(Ag) = idgn
by the definition of Ay, we have

My (Ao) =idsn = Bidzn B~ = My p(PL3) My p(A0) Mir(PL(7) !

—Mp.r(PY())

=My (P (7) 0 Ag 0 (7))
ie.,
Ao = PL(A) 0 Ag o PY(3).
Applying to this what was done above, we get
g, Ao) = (g, Py (9) 0 Ag o PY()) = Py (7) o g, Ao) o P(7), Vg €G

i.e.,

My (19, Ao)) = BMp p(n(g, A))B™!, g €G.

But (G, Ay) = mg' (xo, o) whence Mz (u(G, Ag)) = SO(n) and thus we have
found a B € SO(n) which is not the identity idg» such that C' = BC'B~! for all
C' € SO(n) i.e., B belongs to the center of SO(n). But in dimension n > 3 the
center of SO(n) is {idg~ }, contradicting the fact that B # idg.. This contradiction
shows that the existence of a principal bundle structure p on 7 that preserves Dyg
is impossible in this case. O

4.2 Consequences for Controllability

From the previous characterizations of the reachable set of (X)yg, we now derive
consequences for the controllability of the control system (X)yg.
We start with the following remark.

Remark 4.7 All the results, except Theorem 4.6, of the previous section can obviously
be formulated in verbatim in the space T*M ® T'M instead of Q (i.e., we may replace
Q by T*M @ TM everywhere) and the statements hold true in this setting. However,
Theorem 4.1 (formulated in T*M ® TM) then implies each orbit Op(qo) of Dxg
in T*M @ TM, G = (xo,2;A0) € T"M ® TM, can have dimension of at most
on + dim H|,, 4+ dim H|;, < n? + n. Since the dimension of T*M ® TM is n® + 2n,
the orbit Op,(qo) has a codimension of at least n. This shows that Dygs (or the related
control problem) is never completely controllable in 7*M ® TM.

Theorem 4.1 states that the controllability of Dys is completely determined by
the holonomy groups of M and M. The next theorem highlights that fact at the
Lie algebraic level.

Theorem 4.8 The control system (X)yg is completely controllable if and only if, for
every A € SO(n), the following holds:

h+ A'hA = so(n), (36)
where b and b are respectively the Lie subalgebras of s0(n) isomorphic (as Lie algebras)

to the holonomy Lie algebras of V and V.
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Proof. Clearly, an orbit Opy(q) = @, where (xg,Z0; Ag) = qo € @, is an open
subset of @) if and only if T|,0py(q0) = T'|,Q for some (and hence every) ¢ €
Opys(qo). Thus the decomposition given by Eq. (21) implies that an orbit Op(qo)
is open in @ if and only if V|,(mg) C T'|,0pys(qo) for some g € Op.(qo)-

By connectedness of @), we get that Dys is controllable i.e., Opy(q0) = @ for
some (and hence every) (zo;Zo; Ag) = qo € @ if and only if every orbit Op,(q),
(x,2;A) = q € Q is open in Q.

From now on, fix (z¢,Z9) € M X M. Proposition 4.5 implies that every Dyg
orbit intersects every mg-fiber. Hence Dyg is controllable if and only if V|,(mg) C
T'|4Opys(q) for every q = (x9,20; A) € Ql(z0,20)- By Corollary 4.3, this condition is
equivalent to the condition that, for every ¢ = (29, Zo; A) € Q|(z0,30);

v(Blz, 0 A— Aobls,) = Vly(7q).
Next, by Proposition 3.7, one deduces that, for every ¢ € @,
Vlg(mq) = v(Also(T.M)))l,
and thus we conclude that Dyg is controllable if and only if, for all ¢ = (xg, Zg; A) €
Ql(wo,0)»
A7 o bz, 0 A= bluy = 50(T).M).

Choosing arbitrary orthonormal local frames F' and F of M and M at zo and
T, respectively, we see that the above condition is equivalent to

M p(A) 7] g M 1 (A) — bl = s0(n), VA € Ql(uo.0):
where A -
blr = {Mp(k) | E€b}, blp={Mpk)|kehb},

are the holonomy Lie algebras as subalgebras of so(n) w.r.t. the frames F and F

respectively.
The proof is finished by noticing that { M z(A) | A € Ql(zyz0)} = SO(n) and

that the orthonormal frames F, F' were arbitrary chosen.
O

Theorem 4.9 Suppose M, M are simply connected. Then (X)ys is completely con-
trollable if and only if

b+ b = so(n) (37)
where b, are the Lie subalgebra of so(n) isomorphic (as Lie algebras) to the holonomy
Lie algebras of V and V respectively.

Proof. By Theorem 4.8, necessity of the condition is obvious.
Conversely suppose that the condition in Eq. (37) holds. This condition implies
that for (xo,20) € M x M there is an gy = (0, Zo; Ao) € Q|(20,3,) Such that

Aal o 6|§co oAy — h‘:vo = 50<T|$0M>'

By Proposition 3.7 and Corollary 4.3 this means that 7’|, Opys(q0) N V], (mg) =
V(7o) and hence T'|,,Opys(q0) = T4, @ by Eq. (21) which implies that Op,(qo)
is open in (). Corollary 4.2 then implies that Op (q0) = Q i.e., (X)ng is completely
controllable. O
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There is a complete classification of holonomy groups of Riemannian manifolds
by Cartan (for symmetric spaces, see [10]) and Berger (for non-symmetric spaces,
see [13]). Hence the above theorems reduce the question of complete controllability
of (¥)ns to an essentially linear algebraic problem.

For instance, in the case where both manifolds are non-symmetric, simply con-
nected and irreducible, we get the following proposition.

Theorem 4.10 Assume that the manifolds M and M are complete non-symmetric,
simply connected, irreducible and n # 8. Then, the control system (X)ys is completely
controllable if and only if either H or H is equal to SO(n) (w.r.t some orthonormal
frames).

Proof. Suppose first that H|p = SO(n). Choose any gy = (zo,Z0; Ag) € @ and
define F' = AgF (which is an orthonormal frame of M at Z, since Ay € ) and
compute, noticing that M, z(Ag) = idgn,

g (0, #0) N Opy(q0) = H|pH|r = H|zS0(n) = SO(n),

where the first diffeomorphism comes from Theorem 4.1. But the mg-fibers of @
are diffeomorphic to SO(n) and hence ﬂél(:po,io) N Opys(qo) = ﬂél(:po,io). By
connectedness of M, M it follows that Q = Op, (o).

Assume now that both holonomy groups are different from SO(n). We also
remark that if one holonomy group is included in the other one, then complete
controllability cannot hold according to Eq. (36). Using Berger’s list, see [13], and
taking into account that

Sp(m) € SU(2m) C U(2m) C SO(4m)

where n = 4m, it only remains to study the following case: n = 4m with m > 2,
one group is equal to U(2m) and the other one to Sp(m) - Sp(1). Recall that

dim (U(2m)(Sp(m) - Sp(1)) ) < dim U(2m) + dim Sp(1) = 4m” + 3.

(. >

U(2m)-Sp(1)

On the other hand dim SO(4m) = 8m? — 2m which is always strictly larger than
4m? + 3 for all m > 2.
O

Remark 4.11 If n = 8, one is left with the study of the case where one of the
holonomy groups is equal to Spin(7) and the other one is either equal to U(4) or to

Sp(2) - Sp(1).

As a corollary to Theorem 4.1 and Theorem 4.8, we get the following result of
non controllability in the case where both manifolds are reducible.

Proposition 4.12 Suppose that both (M, g) and (M,g) are reducible Riemannian
manifolds. Then (X)yg is not completely controllable.

Proof. We need to show that, under the assumptions, there exists gy = (zo; Zo; Ao) €
@ so that the orbit Op.(qo) is a proper subset of Q.
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Fix zg € M and &, € M. Since (M,g) and (M, §) are reducible, there exist
subspaces V1,Va C T|;,,M and Vi,Va C T|x0M with n; = dim(V;) > 1, n; =
dim(V;) > 1 and such that H|,,(V;) C V;, Hl|s,(V;) C Vi, for i = 1,2.

Let X1,... ,X}M and X2, ..., Xé be an orthonormal basis of V; and an orthonor-
mal basis of V5 respectively and, similarly, let X1, ... X%l and X2, ... ,X’?LQ be an
orthonormal basis of V; and an orthonormal basis of V respectively . Here, V; and VZ,
1 = 1,2, are equipped with the metrics induced by g|mO and |z, respectively. These
vectors form orthonormal frames F and F of M and M at ¢ and 2 respectively.

It follows from the Ambrose-Singer Holonomy Theorem (cf. [13] Theorem 2.4.3,
[15] Theorem 8.1) that the Lie algebras h|r and b|; of H|p and H|; respectively
split into direct sums of Lie-subalgebras,

hlr = b1 @ ha C s0(n1) ® s0(n2),
6|ﬁ' = 61 D 62 C 50(ﬁ1) @50(ﬁ2).

Without loss of generality, we assume that n; > n;. )
Finally, we define the linear map Ag : T'|,, M — Tz, M by
A()(X]l):)%]l, jzl,...7n17 A(](Xf) X}LIJF], j:17...,ﬁ1—n1,
and
AO(XQ) :Xzf(ﬁlfm)v J=m—m+1... n.

Thus, we have M, »(Ag) = idg» and hence

blr + My p(Ao) 1Bl 5 M 5(Ao) = by @ b2 + b1 @ ba.

The latter linear vector space is necessarily a proper subset of so(n). In fact, if E;
is the n X n-matrix with 1 at the i-th row, j-th column and zero otherwise, then the
above linear space does not contain E,,; — Ey,, € so(n). Therefore, the claim follows
from Theorem 4.8.

O

Corollary 4.13 Suppose that (M, g) and (M, §) are equal to the Riemannian prod-
ucts (M; x My, g1 @ go) and (M1 xMQ,gl@gg) with dim M; > 1, dim M; > 1,i=1,2
respectively. Then, (X)ys is not controllable on Q.

Proof. From the basic result on holonomy groups, we get the following decomposi-
tion H|, = HV" |, x HY"|,,, where z = (x1,25) € M, and H|, = HV"" |3, x HV"|;,,
where & = (i1, 45) € M. This shows that the actions of H and H on T|,M, T|;M,
respectively, are both reducible. Thus, the claim follows from the previous proposi-
tion. U

5 Study of the Rolling problem (R)

In this section, we investigate the rolling problem as a control system (X)) associated
to a subdistribution Dy of Dyg defined as follows.
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5.1 Global properties of a Dgr-orbit

We begin with the following remark.

Remark 5.1 Notice that the map mg s : @ — M is in fact a bundle. Indeed, let
F = (X;), be a local oriented orthonormal frame of M defined on an open set U.
Then the local trivialization of 7¢ 5 induced by F'is

77 o (U) = U x Foon(M);  7r(z, 27 A) = (z, (AXi]2)iy),

is a diffeomorphism.

We also notice that since 7¢,-fibers are diffeomorphic to Foox (M), in order that
there would be a principal G-bundle structure for ¢ 5/, it is necessary (but not sufficient)
that Foon(M) is diffeomorphic to the Lie-group G. In section 6 we consider special
cases where there is indeed a principal bundle structure on 7 3; which moreover leaves

Dr invariant.

From Proposition 3.30, we deduce that each Dg-orbit is a smooth bundle over M.
This is given in the next proposition (the proof being similar to that of Proposition

45).

Proposition 5.2 Let gy = (z0, Zo; Ag) € ) and suppose that M is complete. Then

TOpy (0),M = TQ,M|0p, (40) * Opr(d0) = M,
is a smooth subbundle of 7¢ y;.

Proof. We first show that 7o, (q),ar is surjective. If z € M, there is a piecewise
R b
smooth path v : [a,b] — M from x4 to 2 such that each smooth piece is a g-geodesic.
By Proposition 3.30 and completeness of M it follows that there is a rolling path
aps (7, Q) : [a,b] — @ along v with initial position gy defined on the whole interval
[a,b]. But then TOpy, (q0),M (@pr (7, @0) (b)) = = which proves the claimed surjectivity.
Since Dg|, C T,0p,(Ay) for every ¢ € Op,(qo) and (mg a)« maps Dg|, iso-
morphically onto T, M, one immediately deduces that 7o, () is also a
submersion. This implies that each fiber (TFODR((]OLM)il(:L‘) = Op.(q) N ﬂé}M(l‘),
x € M, is a smooth closed submanifold of Op, (qo).
Choose next, for each x € M, an open convex U, C T|,M such that exp, |y, is
a diffeomorphism onto its image and 0 € U. Define

7ot T (Us) = Uy X mg Yy (),
q = <y7 g? A) = (y7 (SU, &'DR(fYy,mu Q>(1)7 AD}{(Vy,mu Q)(l)))v

where v, . : [0,1] = M; 7,.(t) = exp,((1 —t) exp, ' (y)) is a geodesic from y to z. It
is obvious that 7, is a smooth bijection. Moreover, restricting 7, to Op, (o) clearly
gives a smooth bijection

Opy (0) N 70 (Uz) = Us % (Opy(g0) Mg ().

The inverse of 7, 7,1 : U, x WélM(:L’) — Wé}M(Ux) is constructed with a formula
similar to that of 7, and is seen, in the same way, to be smooth. This inverse
restricted to U, X (Opy(go) N 75l () maps bijectively onto Opy (qo) N o5 (Us)
and thus 7, is a smooth local trivialization of Op,(qp). This completes the proof.

O
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Remark 5.3 In the case where M is not complete, the result of Proposition 5.2
remains valid if we just claim that TOpy (q0),M 1S @ bundle over its image M° :=
o.M (Opg (q0)), which is an open connected subset of M.

~

Write M® := 7, 1;(Opy (). Then using the diffeomorphism ¢ : @ := Q(M, M) —
Q = Q(M,M); (x,2; A) — (&,a; A") (Proposition 3.32) one gets
T Oy (a0). 81 =TQ,1110py @0) = T © ¢ |0 (utan)) © 1oy ()
=741t 05 () © o (a0) = To s wao).ait © ooy (ao):
from which we see that T O, (o)1 1S also a bundle over its image M° since topy (qo) :

Opy(90) = Op-(1(qo)) is a diffeomorphism and since by the previous proposition and
the above remark O (uao)). 7 15 2 bundle over its image, which necessarily is M°.

Notice also that if M is complete, then M° = M.

The next remark illustrates this point.

Remark 5.4 In the previous proposition, the assumption of completeness of M cannot
be removed. In fact, choose M = R?, M = {& € R?| ||z]| < 1} (with ||-|| the Euclidean
norm). Then

Q%MXMXSO@), T(Q) =2 Q x R* x R? x 50(2)
and Dg is given by
DRl (z,2:4) = {(v, Av,0) | v € R?},

as a subspace of T'|(;:.4)Q = R? x R? x s0(2). If 25 =0, 2o = 0 and Ay = idg2 is
the identity map T|oM = R? — T|oM = R2, we have that the orbit is equal to the
2-dimensional submanifold of @ given by {(x, Aoz, Ag) | ||z|| < 1} and its image under
the projection on the first factor, mg s is a proper open subset {z € R? | |jz| < 1} of
M. Thus 7Q, 1|0, (20,20;40) 1S NOt @ bundle over M, since this map is not surjective.

Proposition 5.5 For any Riemannian isometries I € Iso(}M, g) and F € Iso(M, §) of
(M, g), (M, g) respectively, one defines smooth free right and left actions of Iso(}, g),
Iso(M, g) on @ by

qo - F:= (F~'(20), 03 Ag © Edr-1(0)), Fqo= (o, F’(i’o); F*|ﬁ0 o Ay),
where gy = (g, Zo; Ag) € Q. We also set
F.QO.F;: (F'qo)'F:F'(QO'F)-

Then for any qo = (70,205 Ao) € Q, a.c. v : [0,1] = M, v(0) = zo, and F' €
Iso(M,g), F € Iso(M,g), one has

F - qpy (,90)(1) - F = apo (F 07, F - qo - F)(8), (38)
for all t € [0,1]. In particular,

F'ODR(QO)'F:ODR(F‘QO'F)-
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Proof. The fact that the group actions are well defined is clear and the smoothness of
these actions can be proven by writing out the Lie-group structures of the isometry
groups (using e.g. Lemma I11.6.4 in [28]). If go- F' = qo- F’ for some F, F' € Iso(M, g)
and gy € Q, then F~Y(z¢) = F'"'(2¢), F.|sy = F'|s, and hence F = F’ since M is
connected (see [28], p. 43). This proves the freeness of the right Iso(M, g)-action.
The same argument proves the freeness of the left Iso(M, §)-action.

Finally, Eq. (38) follows from a simple application of Eq. (8). In fact, by
Remark 3.29 the rolling curve gp (7, q0) = (7, Y0r (7, @0); Aps (7, @o)) is defined by

P (A (7, 60)) D5 (7, @0) (t) = Ao PP (7)7(2),
Apg (7, 90)(t) = Py (s (7, @0)) © Ag 0 P (7).

First, by using (8), we get

Pto(ﬁO%R(%qo))i(FO’VDR(%qo))( t) = F.PP (g (7, 40)) F (BApg (7, 40) (1))
=E, AgPY(7)4(t) = (FLAGF) (FYPY () Fu) F71A(t)

(B AF)PAF ™ 07) L (F 0 )(8),

dt
and since by definition one has
P)(ipu(F™ oy, B qo - F)) i (F oy, Fqo - F)
(AR P (F 07) S (F 0 7) (1),
the uniqueness of solutions of a system of ODEs gives that
F o 4p, (7, 00) = App(F 7 07, F - qo - F).
Hence

FoApy (7, 00) Fe = (Pt (7, 60)) © Ag 0 PX(7)) F.
=PY(F o 4py (7, q0)) 0 (FLAgF.) o PY(F ' o)
=Pl (App(F oy, F gy F)) o (FLAF,) o PX(F o) = Ap (F ' oy, F g F)

which proves (38).
U

Corollary 5.6 Let ¢y = (o,%0;A0) € Q and v,w : [0,1] — M be absolutely
continuous such that (0) = w(0) = xo, 7(1) = w(1). Then assuming that ¢p (7, o),
40y (W, q0), Gy (W7, qo) exist and if there exists I € Iso(M, §) such that

F o = QDR(W—l-% q0)(1)7

then

~

F- qDR(w7 QO)(I) - qDR,(’Ya QO)(I)
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Proof.

45 (7, 90) (1) = gpp (w.w ™7, 90) (1) = (gpr (W, gpr (W75 90)(1))-apg (W7, 60) ) (1)

A

=(apn (W, I+ 00)-ap (W7, 90)) (1) = g (w, I+ q0) (1) = F - gy (w, qo0) (1)

O

Proposition 5.7 Let m : (M, 1) — (M, g) and 7 : (My, 1) — (M, §) be Rieman-

nian coverings. Write Q1 = Q(M;y, M;) and (Dg); for the rolling distribution in Q.
Then the map

Q1 — Q; (g, @ A1) = (m(21), 7(21); 7l © Ar 0 (Malay) ™)
is a covering map of (), over () and
I1.(Dg); = Dr.

Moreover, for every q; € @ the restriction onto O(pyy,(q1) of Il is a covering map

O, (1) = Op,(Il(q1)). Then, for every ¢ € Q1, H(Opy), (¢1)) = Op, (I1(q1))
and one has Opyy, (¢1) = @1 if and only if Op, (Il(q1)) = Q.

As an immediate corollary of the above proposition, we obtain the following
result regarding the complete controllability of (Dg).

Corollary 5.8 Letm : (My,g1) — (M, g) and 7 : (My, §;) — (M, §) be Riemannian
coverings. Write Q) = Q(M, M) Dr and @ = Q(My, Ml) (DRr); respectively for the
state space and for the rolling distribution in the respective state space. Then the control
system associated to Dy is completely controllable if and only if the control system
associated to (Dg); is completely controllable. As a consequence, when one addresses
the complete controllability issue for the rolling distribution Dy, one can assume with
no loss of generality that both manifolds M and M are simply connected.

We now proceed with the proof of Proposition 5.7.

Proof. 1t is clear that II is a local diffeomorphism onto ). To show that it is a
covering map, let ¢; = (1, Z1; A;) and choose evenly covered w.r.t 7, 7 open sets U
and U of M, M containing m(x1), #(i1), respectively. Thus 7~ '(U) = Uie; Ui and
U = Uici U; where U;, i € I (vesp. U;, i € I) are mutually disjoint connected
open subsets of M; (resp. M) such that 7w (resp. #) maps cach U; (resp. U;)
diffeomorphically onto U (resp. U). Then

I (rg (U x U) =7l (m x #) (U x U) = | ol (Ui x Uy),

iel,jel

where 7TC_211(UZ- xU;) for (i, j) € Ix1I are clearly mutually disjoint and connected. Now
if for a given (i,j) € I x I we have (y1, 91, B1), (21, %1, C1) € 7T511<Ui x U;) such that
(y1,91; B1) = (21, 21, Ch), then y; = 21, §1 = 21 and hence By, = C}, which shows
that II restricted to Wéll(Ui x Uj) is injective. It is also a local diffeomorphism,

as mentioned above, and clearly surjective onto Wél(U x U ), which proves that
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Wél(U x U ) is evenly covered with respect to II. This finishes the proof that I is a
covering map.

Suppose next that ¢;(¢) = (71(t),31(f); A1(t)) is a smooth path on ) tangent to
(Dr); and defined on an interval containing 0 € R. Define ¢(t) = (y(t), 7(t); A(t)) :=
(ITo ¢1)(t). Then

A(t) =mAn(t) = R AL () () = AT () = AL)(t)

A(t) =5, 1) © P(1(1)) 0 A1(0) 0 PP (m1) © (M)~
=P5(3(1)) o Tulsury © A1(0) © (Tulyy1)) ™ 0 BY(7)
=B5(3(t)) 0 A(0) © P(),

which shows that ¢(t) is tangent to Dgr. This shows that II.(Dgr); C Dr and the
equality follows from the fact that II is a local diffeomorphism and the ranks of
(Dr):1 and Dy are the same i.e., = n.

Let ¢ = (x1,21; A1). We proceed to show that the restriction of II gives a
covering O(pyy, (1) = Op,(I1(q1)). First, since I1,(Dgr); = Dr and I1: Q; — Q is
a covering map, it follows that II(O(py), (¢1)) = Op, (I1(¢1)).

Let ¢ := TI(q1) and let U C @ be an evenly covered neighbourhood of ¢
w.r.t. II. By the Orbit Theorem, there exists vector fields Yi,...,Y; € VF(Q)
tangent to Dr and (uy,...,ug) € (L*([0,1]))? and a connected open neighbour-
hood W of (uy,...,uq) in (L*([0,1]))? such that the image of the end point map
_____ v, (g, W) is an open subset of the orbit Op, (q) containing ¢ and included
in the Il-evenly covered set U. Let (Y;)1, ¢ = 1,...,d, be the unique vector fields on
()1 defined by IL,(Y;); = VY;, ¢ = 1,...,d. Since I1,(Dr); = Dk, it follows that (Y;);
are tangent to (Dr); and also, IToendy),,..vy)) = end;,..v,) 0 (ILxid). It follows
that end((v;),,....(vy)1) (¢}, W) is an open subset of O(py), (¢:1) contained in II71(U) for
every ¢; € (o, (@) (a)-

Since end((yy),,...(v,),) is continuous and W is connected, it thus follows that for

.....

in a single component of II7*(U) which, since U was evenly covered, is mapped
diffeomorphically by IT onto U. But then II maps end((vy),,...,(v,),)(q1, W) diffeomor-
phically onto endy,

-----

v,y (g, W). Since it is also obvious that

.....

(H‘O(DR)I((Il))_l (end(Yl ----- Yd)<Q7 W)) = U end((Y1)1 ..... (Yd)l)<q17 W>7

q’le(Hlo(DR)l(ql))’l(Q)

we have proved that endy,, . yd)(q, W) is an evenly covered neighbourhood of ¢ in

Opyg(q) wr.t H|O(DR)1(‘11)'
Finally, let us prove that for every ¢; € )1, the following implication holds true,

Op,(Il(q1)) =Q = O(DR)l(ql) = Q1,

(the converse statement being trivial). Indeed, if Op,(II(q1)) = @, then, for every
q € Q, Op,(q) = @ and, on the other hand, the fact that II restricts to a covering
map Oy, (¢1) = Op,(II(¢))) = Q for any ¢ € @, implies that all the orbits
Oy), (41), q1 € @1, are open on (1. But @ is connected (and orbits are non-empty)
and hence there cannot be but one orbit. In particular, Oy, (q1) = Q1. O
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5.2 Rolling Curvature and Lie Algebraic Structure of Dy
5.2.1 Rolling Curvature

We compute some commutators of the vector fields of the form Zi(X) with X €
VF(M). The formulas obtained hold both in @ and T*M ® TM and thus we do
them in the latter space.

The first commutators of the Dg-lifted fields are given in the following theorem.

Proposition 5.9 If XY € VF(M), ¢ = (xq,%0; A) € T*(M) ® T(M), then the
commutator of the lifts Zx(X) and Zr(Y) at ¢ is given by

(o (X), Z(V)ly = ZR([X, Y])lg + v(AR(X,Y) = R(AX, AY)A)|,. (39)
Proof. Choosing T(B) = (X,BX), S(B) = (Y,BY) for B € T*(M) ® T(M) in

proposition 3.45 we have
LR (X), La(V)]ly = Zas([X + AX,Y + AY])|, + v(AR(X,Y) — R(AX, AY)A)|,,

where
[(X,AX), (Y, AN)]] V i (Vo AY) = Vg 1y (X, AX)
=(VxY = Vy X, Vax(AY) = Vax(AV))] o0 + Vioax)Y = Van X
+ Vx,0) (AY )| o.0) — ﬁ(yo (AX)

in which e.g.

VAX<AY)‘:L“0 = ( (0,AX) )|(Z’307i0)}~/‘i0 + A‘(rovio)<v0y>|mo =0,

Vi,ax)Y =0,

v(Xyo)(‘Zn/)|(9307930) = (v(Xyo)A)‘(roio)Y|ro + AVxY |y, = AVxY |y,
Therefore

LR (X), L), :,%NS((VXY — Yy X,0) +0+4 (0, AVyY — Avyx))

| (z0,&0)

q

+V(AR(X,)Y) — R(AX, AY)A),,

which proves the claim after noticing that, by torsion freeness of V, one has VxY —
VyX =[X,Y]. O

Proposition 5.9 justifies the next definition.

Definition 5.10 Given vector fields X, Y, 71, ..., Z € VF(M), we define the Rolling
Curvature of the rolling of M against M as the smooth mapping

Rol(X,Y) : T prorar = Trmarins
by
Rol(X,Y)(A) := AR(X,Y) — R(AX, AY)A, . (40)

Moreover, we use Rol, to denote the linear map A*T'|, M — T*|IM/\T|QM defined on
pure elements of A2T|,M by

Rol,(X AY) = Rol(X,Y)(A). (41)

95



Similarly, for £ > 0, the smooth mapping

=k
V'Rol(X,Y, Zy, ..., Z4) : Tpepsarat = Tremarils

V'Rl(X,Y, Z1,.... Z1)(A) := AV*R(X,Y, ("), Zy. ..., Zy)
— VFR(AX, AY, A(-),AZy, ... AZ,).  (42)

Restricting to ), we have

Rol(X,Y),V'Rol(X,Y, Z1, ..., Zk)(A) € C™ (70, T pyorar):
such that, for all (z,2; A) € Q,

Rol(X, Y)(A), V'Rol(X,Y, Zy,. ... Z1)(A) € A(so(T|,M)).
Remark 5.11 With this notation, Eq. (39) of Proposition 5.9 can be written as

(X)), Zr(Y)]ly = Za([X, Y])|; + v(Rol(X, Y)(A)),.

Remark 5.12 Recall that both R|,, R|; are (real) symmetric endomorphisms on
N*T|,M and A?T|; M respectively. Since A : T|,M — T|;M is an isometry, it follows
that Rol,, defined in (??), is a (real) symmetric map A?T|,M — A?T|;M. Here of
course, we understand that A2T'|,M and AT'|; M are endowed with the metrics induced
in a natural way from g|, and §|;.

In order to take advantage of the spectral properties of a (real) symmetric endo-
morphism, we introduce the following operator associated to the rolling curvature.

Recall that using the metric g, one may identify 7*|,M A T|,M = so(T|,M)
with A?T|,M as we usually do without mention. Given this, we make the following
definition.

Definition 5.13 If ¢ = (z,#;A) € Q, let Rol, : A2T|,M — A2T|,M be the (real)
symmetric endomorphism defined by

Rol, := A" Rol,. (43)

In particular, eigenvalues of R|,, R|x and Rol, are real and the eigenspaces corresponding
to distinct eigenvalues are orthogonal one to the other.

Recall that, on a Riemannian manifold (V, k), a smooth vector field ¢ — Y (¢)
along a smooth curve t — ~(t) is a Jacobi field if Y satisfies the following second
order ODE:

Vi VioY () = R'(3(0), Y (£)4(2).

The next lemma relates the rolling curvature Rol to the Jacobi fields of M and M.
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Lemma 5.14 Suppose that ¢y = (zo,Z0; Ag) € T"M ® TM, ~ : la,b] — M is
a smooth curve with y(a) = x¢ and that the rolling problem along ~ has a solution

4o (7, 0) = (7, Y0 (7, @0); Apg (7, @o)) on the interval [a,b]. If t — Y (t) is a Jacobi
field of (M, g) along 7, then Y'(t) = Ap, (v, qo)(t)Y (t) is a vector field along 4, (7, qo)
and, for all t € [a, 1],

A A

V'LYDR('Yv‘IO)(t)v’i/DR(%qo)(')Y(.) :R(}VDR (77 QO><t)7 Y@))}YDR (77 QO)(t)
+Rol(5(1), Y (1)) (Apy (7, 90) (1)) (1)
Proof. Since v(»'y(t),%R(»y,qo)(t))A”DR(% ¢)(-) =0 and Y is a Jacobi field, one has

~ ~

Vi 0:00)0) Ving rao) )Y ()
=Ap (7, 40) () Vi) Vi)Y () = Apg (v, q0) () R(Y(2), Y (2))7(t)
=Rol(7(), Y () (Apg (7, 40) (1)) ¥(t)
+ R(Apy (7, 00) ()3 (1), Ay (7, 00) ()Y (1)) Ay (7, 90) (D)(2)
from which the claim follows by using the facts that

Ay (7, @) (1) () = Aoq (v, @0) () and Ay (v, 40) (1)Y (1) = Y (1)

We will use Lemma 5.14 to prove Theorem 5.40.

Remark 5.15 Notice that if, in Lemma 5.14, it held that

Rol(Y (2), ¥(£)) (Aps (7, 0) (1)) (1) = 0,
for all ¢ € [a,b], then Y defined there would be a Jacobi field along 4, (7, qo). Hence,

Rol measures the obstruction for Y = Ap, (7, q0)(t)Y (t) to be a Jacobi field of M, if
Y'(t) is a Jacobi field on M along 7.

Before proceeding with the computations of higher order brackets of the vector
fields ZRr(X), we prove the following lemma.

Lemma 5.16 Let A € D(7pe prgrny) @nd (z, 25 A) € T*M @ TM such that fl|($7i,) =
Aand VA =0 for all X € T)(u2)(M x M). Then, for Xi,..., Xp10,Y € VF(M),

Vv (V' RoI(X1, Xa, Xs, .., Xpya) (A)) (44)
k+2

=V""Rol(X1, ... Xpy2, Y)(A) + > V'Rol(Xy, ..., VyXi..., Xpgo)(4)  (45)
i=1

Proof. If k = 0, we have V' Rol(X1, X,)(A) = Rol(Xy, X3)(A) and since Vy ) A =

0, one gets
Viv.aviRol(X1, Xo)(A) = Viyayy (AR(X1, X5) — R(AX,, AX2)A)
=AVy(R(X1,X2)) — (ViyaryR(AX,, AX,))A
—AVR(X1, Xs,(-),Y) + AR(Vy X1, Xo) + AR(X,, Vy X5)
— VR(AX,, AX,, A(-), AY) — R(AVy X1, AX5)A — R(AX,, AVy Xs),

where on the last line we have computed W(y, Ay)(leZ-) = AVy X,;. The case &k > 0
is proved by induction and similar computations.
U
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5.2.2 Computation of more Lie brackets
Proposition 5.17 Let X,Y,Z € VF(M). Then, for ¢ = (z,i;A) € T*M @ TM,
one has
Za(2), v(RI(X,Y)()]ly = — Lus(ROI(X, V) (A)2)], + v(V'Rol(X, Y, Z)(4))],
+v(Rol(V2X,Y)(4))| +v(Rol(X,VY)(4))] .
Proof. Taking T(B) = (Z,BZ) and U = Rol(X,Y) for B € T*M ® TM in Propo-
sition 3.46, we get
[ (2), v(Rol(X, Y)(:))llg
= = Lxs((Rol(X, Y)(A))[o(Z + (1) 2))|g + v(V z1a2(Rol(X, V) (A)))]4-

From here, one easily computes that

V(Rol(X, Y)(AN],(Z + (1)Z) = dt (Z + (A + tRol(X,Y)(A))Z) = Rol(X,Y)(A)Z,

d
and by Lemma 5.16, one gets

V 22az(Rol(X, Y)(A)) = V'Rol(X, Y, Z)(A) + Rol(V X, Y)(A) + Rol(X, V,Y)(A).
]

By Proposition 5.9, the last two terms (when considered as vector fields on
T*M @ TM) on the right hand side belong to VF%,. .

Since for X,Y € VF(M) and ¢ = (z,2; A) € @ we have v(Rol(X,Y)(A))|, €
Opy (q) by Proposition 5.9, it is reasonable to compute the Lie-bracket of two ele-
ments of this type. This is given in the following proposition.

Proposition 5.18 For any ¢ = (z,2;A) € Q and XY, Z, W € VF(M) we have
[v(Rol(X, Y)(-)), v(Rol(Z, W) (-))]],

=v(Rol(X,Y)(A)R(Z,W) — R(Rol(X,Y)(A)Z, AW)A — R(AZ,Rol(X,Y)(A)W)A
— R(AZ, AW)Rol(X,Y)(A) — Rol(Z, W)(A)R(X,Y) + R(Rol(Z,W)(A) X, AY) A
+ R(AX,Rol(Z,W)(A)Y)A + R(AX, AY)Rol(Z, W)(A))] .

Proof. We use Proposition 3.47 where for U, V' we take U(A) = Rol(X,Y)(A) and

V(A) = Rol(Z,W)(A). First compute for B such that v(B)|, € V|,(Q) that

v(B)|,U =v(B)|,(A+ AR(X,Y) — R(AX, AY)A)
d

Tt
=BR(X,Y) — R(BX,AY)A — R(AX,BY)A — R(AX, AY)B

| (A+B)YR(X,Y) = R((A+tB)X, (A+ (B)Y)(A + tB))

So by taking B = V(A) we get
v(V(A))|,U =Rol(Z, W)(A)R(X,Y) — R(Rol(Z, W)(A)X, AY)A
— R(AX,Rol(Z,W)(A)Y)A — R(AX, AY )Rol(Z,W)(A)
and similarly for v(U(A))|,V. O
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For later use, we find it convenient to provide another expression for Proposition
5.18 and, for that purpose, we recall the following notation. For A, B € so(T|, M),
we define

[A,Blsy:= Ao B —BoAe€so(T|.M).
Then, one has the following corollary.
Corollary 5.19 For any ¢ = (z,2;A) € Q and X, Y, Z, W € VF(M) we have

vl [P(Rol(X,Y) (), v(Rol(Z, W) ()],
=A[R(X,Y),R(Z,W)]_ — [R(AX,AY), R(AZ, AW)]_A

— R(Rol(X,Y)(A)Z, ZW)A — R(AZ,Rol(X, Y)(A)VI;O)A
+ R(AX,Rol(Z, W)(A)Y)A + R(Rol(Z, W)(A)X, AY)A. (46)

Proof. This is immediate by standard computations and the definition of Rol. [

From Proposition 3.46 we get the following proposition.

Proposition 5.20 Let gy = (20, Z0; Ap) € Q. Suppose that, for some X € VF(M)
and a real sequence (t,)%, s.t. ¢, # 0 for all n, lim,, ;o t,, = 0, we have

Vo4 x)tna0) (T@) € T(Opy(a0)), Vn. (47)

Then As(Y, Y)’qo € T4 Opy(qo) for every Y € T|, M that is g-orthogonal to X|,,

and every Y € T3, M that is g-orthogonal to AgX|,,. Hence the orbit Op, (go) has
codimension at most 1 inside Q.

Proof. Letting n tend to infinity, it follows from (47) that V|, (7g) C T'|4Opr (20)-
Recall, from Proposition 3.7, that every element of V|, (7g) is of the form v(B)|,,,
with a unique B € Q|(z,,3,) satisfying ATB € so(T|,,M). Fix such a B and define
a smooth local section S of so(T'M) — M defined on an open set W 3 zy by

Sla = Py (t = expy, (t exp,,) (z))) (A7 B).

Then clearly, S|,, = AYB and VyS = 0 for all Y € T'|,,M and it is easy to verify
that S|, € so(T|,M) for all z € W.

We next define a smooth map U : Wél(W X M) — T*M @ TM by Uz, i; A) =
AS|,. Obviously v(U(z,#; A)) € V|@waa)(mg) for all (z,#; A). Then, choosing in

Proposition 3.46, T'= X + (-)X (and the above U) and noticing that
v(U(Ao))|qT = U(A0)X = BX,
one gets
(L (X), V(U ()]lgy = —Ls(BX) oo + v(Vix,2050) (U(A))) o (48)

where A|, 40 = Ao. By the choice of S and A, we have, for all Y = (Y,Y) €
T|(x0,5m)M X M,
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and hence the last term on the right hand side of (48) actually vanishes.

By definition, the vector field ¢ — ZR(X)|, is tangent to the orbit Op,(qo)
and, by the assumption of Equation (47), the values of the map ¢ = (z,2; A) —
v(U(A))l|, are also tangent to Op,(qo) at the points ® 4, (x)(tn, q0), n € N. Hence

((q)fR(X))*tn)*V<U<'))‘<I’,2R(x)(tn,%) € T‘QOODR<QO> and therefore,

(LR (X), v(U(+))]lgo
. (@) 1) U (D) g (30 (trrio) = V(B g

n—00 tn

i.e., the left hand side of (48) must belong to T'|,,Op, (qo). But this implies that
ZNS(BX)L]O S T|QOODR,(QO)7 VB s.t. V(B) S V|q0(7TQ)

€ T|QOODR,(QO)7

ie.,
ZNS(AOEO(T|GUOM)X) |q0 C T|QOODR,(qO)'

Notice next that so(T'|,,M)X is exactly the set X|7, of vectors of T'|,,M that are
g-perpendicular to X|,,. Since Ay € @, it follows that the set Agso(7|,,M)X is
equal to ApX |j0 which is the set of vectors of T |xOM that are g-perpendicular to
ApX|z,- We conclude that Zs(Y)|go = ZR(Y)|go —Ns(AoY)|go € T Oy (o) for
allY € XL
Finally notice that since the subspaces X+ x {0}, R(X, 49X ) and {0} x (4,X)*+
of T|(zg,30) (M X M) are linearly independent, their Zys-lifts at ¢y are that also
and hence these lifts span a (n — 1) + 1+ (n — 1) = 2n — 1 dimensional subspace
of T4, Opy (qo). This combined with the fact that V|, (mg) C T4 Opy(q0) shows
dim Op,(q0) > 2n — 1 + dim V|, (7o) = dim(Q) — 1 i.e., the orbit Op,(qo) has
codimension at most 1 in (). This finishes the proof.
U

Corollary 5.21 Suppose there is a point gy = (¢, Zo; Ag) € @ and € > 0 such that
for every X € VF(M) with ||X|[, < € on M one has

V|¢1R(X)(t,qo)(7TQ) - T(ODR,(QO))7 |t| < €.

Then the orbit Op, (qo) is open in Q.
As a consequence, we have the following characterization of complete controllability:
the control system (X)) is completely controllable if and only if

VgeQ, Vlymg) CT|Opy(q)- (49)

Proof. For the first part of the corollary, the assumptions and the previous propo-
sition imply that for every X € T|,,M we have Zs(Y,Y )|y € TlgOpy(q0) for
every Y € X1 YV € AgX*. But since X is an arbitrary element of T, M, this
means that Dys|q, C 1Oy (q0) and because T'|,Q = Dxslgy ® Vg (mg), We get
T)40Q = T4 (Opy (q0)). This implies that Op (go) is open in Q. The last part of the
corollary is an immediate consequence of this and the fact that () is connected. O

Remark 5.22 The above corollary is intuitively obvious. Assumption given by Eq.
(49) simply means that there is complete freedom for infinitesimal spinning, i.e., for
reorienting one manifold with respect to the other one without moving in M x M. In
that case, proving complete controllability is easy, by using a crab-like motion.
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5.3 Controllability Properties of Dy
5.3.1 First Results

Proposition 5.9 has the following simple consequence.

Corollary 5.23 The following cases are equivalent:

(i) The rolling distribution Dy on @ is involutive.

~

(ii) Forall X,Y,Z € T|,M and (z,2; A) € T*(M) @ T(M)
Rol(X,Y)(A) = 0.

(iii) (M, g) and (M, §) both have constant and equal curvature.
The same result holds when one replaces Q by T*M @ T'M.

Proof. (i) <= (ii) follows from Proposition 5.9.
For the rest of the proof, we use

oxy) = g(R(X, Y)Y, X), and o5 3, = §(R(X, Y)Y, X),

to denote the sectional curvature of M w.r.t orthonormal vectors X,Y € T'|,M and
the sectional curvature of M w.r.t. orthonormal vectors X,Y € T| M respectively.
We have seen that the involutivity of Dy is equivalent to the condition in (ii) which
is again equivalent (since sectional curvatures completely determine Riemannian
curvatures) to the equation

O(X)Y) :CAT(AXAy), \V/(l‘,i",A) € Q, X,Y€T|$M. (50)

(ii)=-(iii) If we fix z € M and g-orthonormal vectors X,Y € T'|,M, then, for any

~

Z € M and any g-orthonormal vectors X,Y € T|55]\>[, we may choose A € Q@)
such that AX = X, AY =Y (in the case n = 2 we may have to replace, say, X by
—X but this does not change anything in the argument below). Hence the above
equation (50) shows that the sectional curvatures at every point & € M and w.r.t
every orthonormal pair X,V are all the same i.e., o(x,y)- Thus (M, g) has constant
sectional curvatures i.e., it has a constant curvature. Changing the roles of M and
M we see that (M, g) also has constant curvature and the constants of curvatures
are the same.

(iii)=(ii) Suppose that M, M have constant and equal curvatures. By a standard
result (see [28] Lemma I1.3.3), this is equivalent to the fact that there exists k € R
such that

R(X,Y)Z = k(g(Y, 2)X — g(X,2)Y), X,Y,ZET|,.M, z € M,
RX,V)Z =k(§(Y,2)X —4(X,2)Y), X,Y,Z€T|;M, € M.
On the other hand, if A € Q, X,Y,Z € T|,M, we would then have

~

RIAX, AY)(AZ) = k(§(AY, AZ)AX — §(AX, AZ)(AY))
=A(k(g(Y, 2)X — 9(X, 2)Y) = A(R(X,Y)Z).

This implies that Rol(X,Y)(A) = 0 since Z was arbitrary.
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In the situation of the previous corollary, the control system (X)g is as far away
from being controllable as possible: all the orbits Op.(q), ¢ € @, are integral
manifolds of Dg.

The next consequence of Proposition 5.9 can be seen as a (partial) generalization
of the previous corollary and a special case of the Ambrose’s theorem 5.38. The
corollary gives a necessary and sufficient condition describing the case in which at
least one Dg-orbit is an integral manifold of Dg. It will be used in the proof of
Theorem 5.28 below.

Corollary 5.24 Suppose that (M, g) and (M,g) are complete. The following cases
are equivalent:

(i) There exists a qo = (o, To; Ag) € Q such that the orbit Op, (qo) is an integral
manifold of Dy.

(ii) There exists a gy = (o, Zo; Ag) € @ such that

Rol(X,Y)(A) =0, V(z,2 A) € Op,(q0), X,Y € T|,M.

(iii) There is a complete Riemannian manifold (N, 2) and Riemannian covering maps
F:N—M,G:N— M. In particular, (M, g) and (M, g) are locally isometric.

Proof. (i) = (ii): Notice that the restrictions of vector fields Zx(X), X € VF(M),
to the orbit Op, (qo) are smooth vector fields of that orbit. Thus [-Zr(X), Zr(Y)] is
also tangent to this orbit for any X, Y € VF(M) and hence Proposition 5.9 implies
the claim.

(i) = (i): It follows, from Proposition 5.9, that Dr|op, (4): the restriction of Dg
to the manifold Op, (qo), is involutive. Since maximal connected integral manifolds
of an involutive distribution are exactly its orbits, it follows that Op.(q) is an
integral manifold of Dg.

(i) = (iii): Let N := Op,(qo) and h := (mg.m|n)*(g) i-c., for ¢ = (x,2;A) € N
and X,Y € T|,M, define

MZr(X)lg, Zr(Y)]g) = (X, Y).

If FF':=7gum|y and G := 7TQ7M|N, we immediately see that F' is a local isometry
(note that dim(N) = n) and the fact that G is a local isometry follows from the
following computation: for ¢ = (x,2; A) € N, X,Y € T|,M, one has

9(G(Lr(X)]g), Go(Lr(Y)ly) = §(AX, AY) = g(X,Y) = M(Lr(X)g, Zr(Y)]y)-

The completeness of (N, h) can be easily deduced from the completeness of M and
M together with Proposition 3.30. Proposition II.1.1 in [28] proves that the maps
F, G are in fact (surjective and) Riemannian coverings.

(iii) = (ii): Let o € M and choose zp € N such that F(z;) = xy. Define
Zo = G(z) € M and Ay := G,|., o (Fy|,)"" which is an element of Q|(z0,30) since
F, G were local isometries. Write gy = (¢, Zo; Ag) € Q.

Let v:[0,1] — M be an a.c. curve with v(0) = x¢. Since F' is a smooth covering
map, there is a unique a.c. curve I' : [0,1] - N with v = F ol and I'(0) = 2.
Define 4 = G oI and A(t) = G.|rw o (Filr@) ™' € Q, t € [0,1]. Tt follows that, for
a.e. t €[0,1], ‘ .

i) = Gl (1) = A3 (1)
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Since F,G are local isometries, v(&(tm(t»A() = 0 for a.e. t € [0,1]. Thus ¢t —
(v(t),4(t); A(t)) is the unique rolling curve along v starting at gy and defined on [0, 1]
and therefore curves of () formed in this fashion fill up the orbit Op, (q). Moreover,
since F, G are local isometries, it follows that for every z € N and X,Y € T|p,)M,
Rol(X,Y)(G.|. o (F.|.)™!) = 0. These facts prove that the condition in (ii) holds
and the proof is therefore finished. O

Remark 5.25 If one does not assume that (M, ¢) and (M, §) are complete in Corollary
5.24, then (iii) in the above corollary must be replaced by the following:

(iii)" There is a connected Riemannian manifold (V, 1) (not necessarily complete) and
Riemannian covering maps F: N — M°, G: N — M° where M°, M° are
open sets of M and M and there is a zg € N such that if ¢ = (:co,izo;Ao)AE Q

is defined by Ay := G.|. o (Fil,) "', then M° = 75 :(Opy(q0)) and M° =
7.11(Opg ()

In particular, M°, M° are connected and (M°,g), (Mo,ﬁ) are locally isometric.

Indeed, the argument in the implication (i) = (iii) goes through except for the
completeness of (N, h), where N = Op_(qo) (connected). Proposition 5.2 and Remark
5.2 show that ' = mo pm|n : N — M°, G = 7TQ7M|N : N — M?° are bundles with
discrete fibers. Now it is a standard (easy) fact that a bundle 7 : X — Y with
connected total space X and discrete fibers is a covering map (this could have been
used in the above proof instead of referring to [28]).

On the other hand, in the argument of the implication (iii) = (ii) we did not even
use completeness of (N, h) but only the fact that ' : N — M is a covering map to
lift a curve v in M to the curve I' in ). In this non-complete setting, we just have to
consider using curves v in M° and lift them to N by using F' : N — M°. Indeed, if
q= (z,2;A) € Op,(qo), there is a curve v : [0,1] — M such that ¢p,(7,q0)(1) = ¢.
But for all ¢ one has

Y(t) = mq.m(apg (7: 90) (1)) € T (Opy(q0)) = M°,

so 7 is actually a curve in M°. A

Finally, notice that the assumption in (iii)’ that M° = WQ,M_(ODR(‘JO)) follows from
the others. Indeed, making only the other assumptions, it is first of all clear that if ¢
and ~ are as above, then

o1 (9) = 7 i (ape (7, @) (1)) = G(I(1)) € M°,

so g 1 (Opg (q0)) C Me. Then if & € M°, one may take a path 4 : [0, 1] — M® such
that 4(0) = 2o, (1) = & and lift it by the covering map G to a curve I'(t) in NV starting
from z. Then if y(t) := F(L(t)), t € [0, 1], we easily see that 4 = 4p_ (7, go), whence
7 =4(1) € 7 51 (Ops (%))

We conclude this subsection with a necessary condition for complete controlla-
bility, which is an immediate consequence of Theorem 4.10.

Proposition 5.26 Assume that the manifolds A/ and M are complete non-symmetric,
simply connected, irreducible and n # 8. |If the control system (X)g is completely
controllable, then one of the holonomy groups of M or M is equal to SO(n) (w.r.t some
orthonormal frames).
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5.3.2 A "Rolling Along Loops” Characterization of Isometry

In this paragraph, we provide a general non-controllability result that will be used
later on. It will be the converse of the following simple proposition.

Proposition 5.27 Suppose (M, g) and (M,@) have a common Riemannian covering
space (NN, k) with projections (local isometries) F': N — M and G : N — M. Then if
there exist xy € M, &9 € M such that

F~(x0) € G™1(0),

then for gy = (o, Z0; Ag) € Q with Ay = G, o (F.|,)"" one has that for every loop
v € Q. (M) based at z the corresponding curve 4p. (7, qo) on M determined by the
rolling curve starting from ¢, (exists and) is a loop based iy i.e.,

Y € QxO(M) - ’?DR(’Y7 QO) € cho(M)

Proof. If v € Q,,(M), let I' be the unique lift of v to N such that I'(0) = ¢ and
define 4 = F'ol', A(t) = Gy o(Fy|rw) ™" Then q(t) = (y(t),4(t); A(t)) is an element
of Q|(y(t)5(1)), since F, G are local isometries and moreover, gy = ¢(0),

A

3 () ; (GoD)(t) = G.I(t) = (Gu o (Fulrwy) DELD() = A(t)i(2)
Vi (A Py ()X

) =Ve.iw(G (Fulr@) " Py (1) X)
=G, V (Fulre)~ R/(t)((F*|F(t))_1Pg(’7)X)
=(Gx o (Flr) ™) Vi (F(1)X) =0,
for every t € [0,1] and every X € T|,,M. This proves that q(t) = ¢pg (7, q0)(¢)
and since v is a loop based at xg, F(I'(1)) = v(1) = 2o, which means that I'(1) €
F~Y(zg) € G7Y(&g) and thus Yp,(7,90)(1) = 4(1) = G(I'(1)) = Zy. By definition,
Apr (75 90)(0) = Z¢ and hence 4p, (7, q0) € Qs,(M). This completes the proof. O
Conversely, we have the following theorem which is the main result of this sub-

section.

Theorem 5.28 Let (M, g), (M,g) be complete Riemannian manifolds and suppose
that there is a gy = (0, To; Ao) € Q such that for every loop v € (M) based at
the corresponding curve 4p, (7, o) on M determined by the rolling curve starting from
Qo is a loop based 1y i.e.,

v E QJBO(M> = ;Y'DR</77 (10) € Q:io(M) (51)

Then (M, g) and (M, §) have a common Riemannian covering space (IV, ) such that
if F: N — M, G: N — M are the corresponding covering maps, then

F~Y(zo) C G ().

Proof. For u,v € T'|,,M, a Jacobi field along the geodesic ¢ — exp, (tu) =: 7,(t) is
given by

0
Yiu(t) = 5] 2o xPay (H(u + 50)) = t(expy, )« (v),
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together with the initial conditions: Y, ,(0) = 0, V5, () Yuw = v. Define a function
Ouw 2 [0,1] x [=1,1] = M by

Wy w(t,s) =

A0 (7 xb (1= 7)(u+ 50)), api (71 30, (1 + 00), oy (0, 0) (1) (5) ) (1)

It is clear from Proposition 3.30 that for every s € [—1, 1] the map t — @, ,(t, s) is a
geodesic and moreover it is clear that w(,0) = Ypg (Yu, ¢o)(1 —t). This implies that

- 0

Yum (t) = %

Ouo(l—1t,s), te]0,1],
s=0

defines a Jacobi field of (M, §) along the geodesic 4py, (u, ¢o). We now derive some
properties of this Jacobi field.
We first observe that

- 0 R
YU,U<1> :% ‘3:077)11 (0 = eXme (u + O'U), QDR<7ua QO)(l)) (S>

= Ay (e 0) (1) | €D, (4 50)
:ADRC%“ QO)<1>Yu,v<1) (52)

We now claim that @, ,(1, s) = 2, for all s. Indeed, we may write w, ,(1,s) as

Ouw(l,s) = ’A)/DR(\(T = expy, (1 —7)(u + sv))).(a > exp,, (u + asv)).fyg, qo)(l) = Tp

(1) (M)

and since the expression (%) is a loop on M based at zy, it follows from the assump-
tion that the path defined on right of the first equality sign is a loop on M based
at Zp, hence its value at t = 1 is Zp. From this follows the second property of Yu,v,
namely

Yu,v<0> = O, (53)

since Y/u,v<0) = % szodju,v<17 S) = %‘0(8 = 'TO) =0.

This is a key property since it implies that YM has the form

> 8 — ~ — ~
Yau(t) = 5-]o8%Ds, (H(Aow + s0(u, v))) = HEDs, )sleagu(B(u, 0),  (54)
where 0(u,v) = @%&\p (tAou)YAVuW’t—Q' It is clear that (u,v) — 0(u,v) is a smooth
dt ) —

map (T, M)? — Tz, M. We also observed that 4, (t) := 4o (Vu, G0) = exXp, (tAgu).
We next show the following relation.

Lemma 5.29 With the above notations,

A

Vi, Yuwli=1 = Apg (Yu» 60) (1) Vi Yawli=1- (55)
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Proof. Writing 0; := £ expm(t(u—i—sv)), Oy = & exp,, (t(u+sv)) dy == So(1-t,s),
Oy = L&(1 —t,s) and 9, = (9, d;), we have

ds
R v - 0 . e 0.
V,*Yu(t) wolt=1 = V@& ow(l —t,s) — vésa 1W(1 ) 0
.0
= 355’1791%(7 = exp,, (1 —7)(u+ sv)),

oy (0 — exp,, (u+ o5v)) 70, QO)(1)> (1-1) o

@ (ADR((U — expy, (U 4 05v)) Y, qo) (1) exp,, (t(u + SU)))

at‘l

:@35 (ADR(J|—>exp$0(u+av),qDR(%,qO)( ) (s at}lexpm (u+sv))) -
= (V3. Ao (0 exp, (1 + 00), 400 (s 0) (D) ()| 2, exp, (104 50)

=0

T Ay (0 5 exp, <u +00), 404 (e 0) (1)) (0) (Vo o, 0, 1+ 50) )

s=0

:ADR<7u7q0)( )vat a ‘0 eXp:m(t(u—i—S’U ‘t 1

qu,v( )
:A'DR <7m q0)(1)vﬁu(t)Yu,v‘t:17
which gives (55).

The next technical result goes as follows.

Lemma 5.30 Consider 0(u,v) defined by (54). Then,
O(u,v) = Apv, Yu,v e T|, M. (56)
Proof. Notice first that for any 7 € R,

0 10 1
Yru,v(t) = %}0 expmo (t(TU + SU)) = ;8_0'}0 expmo (tT(U + O"U)) = ;YU,U(tT)v

where, in the first equality, we substituted o := 2. Therefore (52) implies that

Yﬂhv(l) = ADR(VTua QO)<1>YTu,v<1) = %ADR<7u7 QO><T)Yu,v<T>7

i.e.,

Ay (T 40) (1) Yo () = 7¥7(1). (57)

On one hand, from (55), (57) and (54) one has (recall that 4, (t) = ypu (Y, ¢0)(t) =
exp;, (tAou))

@iyu(t)yu,v ’t :A'DR (’Yua QO)(]-)V"yu(t)Yu,v|t 1= @ (ADR (’71“ QO)(t)Yu,U(t)) |t:1

—V (tY;fu v(l))}tzl - YU,U( ) + V'y (t) Y;fum(l)’

t=1

~ - 8

:quﬂ)( ) + V’Y (t) ((6{5@0)*&14011(@(75’&,’0)) }t:l'

loe/}.(ﬁfm tAou + s0(tu, v))) }tzl
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On the other hand, using only (54) one has

~ ~ A~

0, )
v%(t)Yuw}tﬂ :V%(t)a—} eXPg, (t(Aou + sv(u, v))) ‘t:l

:@'*yu(t) (t(epro) |tagu(0(u, U>>)} t=1
:(6{59‘:0) | 40w (0(u, v)) +V,;Yu(t)((eXpi«0) |eagu (0(1, U)))‘tzl

&XDs, (Aot + 50(u,0)) + Vs ) (65D, )«leagu(0(u,0)) |,

-2 e
:Yu,v( )—FVA/u(t)((eXme) |tA0u( (u v )»t:l'

Combining these two formulas, whose left hand sides are equal, and canceling the
common terms Y, ,(1) we end up with

@%(t)((@jo)*‘tflou(@(t%v)))}tzl = @%(t)((expm) |tAgu(D(u, v )‘t:y

Here we can simplify the left hand side by the following computation: With the
notation

D, = 82&5560 (tAgu + st(tu,v))), Dy := %e/}'@io (tAgu + st(tu,v))),
s

(notice also that Dy|,—o = 74, (t)) we get

. . ) . o, )
V;/u(t) ((expio)*hAOu(v(tu, v))) }tzl = Vgtg}oexpio (tAou + s0(tu, v))) }tzl

- 0, __ .
=Vp, a}leXpi«o (tAOu + s0(tu, v))) }5:0

:@Ds (&5;&0)*|Aou+sﬁ(u,v) (AOU + 5010 (u, U)(u))) ’5:0
:vDs (&5@0)* |Aou+sﬁ(u,v) (AOU) |S=0 + vDs (&5:20)* |AOU+sﬁ(u,v) (Salﬁ(uv U)(“)) ‘szo

~ 0, )
=Vp, aheprm (tAou + sv(u,v)) ’5:0

N o,
_ Vpsa}lexpjo (Aou + sv(u,v) + (1 — t)sohv(u, v)(u))}

s=0
0, )
=Vp, Os ’oeprm (tAou + st(u,v))) ’t:l
o] g (Ao + s, 0) + (1~ )50 o, 0)(w)],_,

=V, (@Psy)eleanu (0(u,0))|,_,
— V0, (@D, )+ a0u (01, 0) + (1 = )00 (u, v) (w)) | ;.

where 0,0(u,v)(w) for u,v,w € T|,,M denotes the directional derivative of v at
(u,v) in the direction w. The last term on the right of the previous formula simplifies
to

th (epro) ‘AOU ({J(u U) + (1 - t)alv(u U) )) ‘t:l
=V, (P, )L (9(1,0)) + (1= £)(Ez,)+ L agu (16, 0) ()
— — (s, )- o (910w, ) ().

t=1
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Combining the last three formulas, one obtains
(XD, )< 40 (010 (u, ) (u)) = 0.

Thus for all v such that Agu is not in the tangent conjugate locus Qio of exp;, one

has 0,9(u,v)(u) = 0. Moreover, since the complement of Qs, is a dense subset of
Tz, M, the continuity of (u,v) — 010(u,v)(u) implies that

v(u,v)(u) =0, Yu,veT|;M.
But this implies that

1 1
1
O(u,v) —0(0,v) = / if)(tu,v)dt = / — 010 (tu, v)(tu) dt = 0,

and hence we need only to know the values of 9(0,v) to know all values of 0(u,v).
By the definition of w, ,(t) one sees that

Wou(t, ) =Yg (7‘ = eXPy, ((1 — T)SU),(]DR (a = exp,, (o), ¢ (70, 90) (1) )(3)) ()
—_—
=40
=YDr (7‘ — exp,, ((1 —7)sv), gpy, (o — exp,, (0sv), q0) (1)) (1)
=41y, (7’ > exp,, (Tsv),qo)(l —t) = exp;, ((1 — t)sAgv),
which implies that

. o, . 0, —
Yo.(t) = s oWou(l—t,5) = g}oexpi,o (t(0 + sAgv)),
and therefore, comparing to (54), one obtains

@(O, ’U) = Ao’U.

This finally proves (56) since by the above considerations, 0(u,v) = 0(0,v) = Agv.
U

Equations (52), (54) and (56) show that (take t = 1)
(EXDs, )<l 45u(A0v) = Apg (Yu, 0) (1) ((€xPgy)slu(v)),  Vu,v € TlopM. (58)

We now show that (51) holds with ¢y replaced by any element of the fiber
Op, (q0) N 75y (2o) of the orbit above .

Lemma 5.31 Write F,, := Op,(q) N Wé}M(l‘o). Then

~

q € Froyy 7€ QM) = App(7.q) € Qe (M). (59)
Remark: mg(Fy,) = (2o, Zo)-
Proof. Let q € F,,. Then there is a w € Q,,(M) such that ¢ = ¢p, (w, q)(1). Then
if v € Q (M),
V6 (7, ) (1) = Y0 (7: 4s (W, 00) (1)) (1) = Ay (7.0, 90) (1) = Zo,

where the last equality follows from (51) since v.w € Qg (M). Since jpg (7,
To.41(q) = Zo as remarked just before the proof, we have ypg (7, q) € Qs (M

q)(0) =
)

O
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Define U to be the subset of T'|,,M of points before the cut time i.e., if for
X €T|:,M, [|X]], =1 we let 7(X) €]0, 0] denote the time such that the geodesic
vx is optimal on [0, 7(X)] but not after, then

U={sX|X€T,,M |X|l,=1,0<s<7(X)}

Since (M, g) is complete, U := exp, (U) is dense in M and exp,, : U — U is a
diffeomorphism.

We now have the following result.

Lemma 5.32 For each g € F, let
bg: U= M; ¢,= exp,, © Ao (exp,, |v) ™"

where ¢ = (x0,@0; A). Then each mapping ¢, is a local isometry (U, g|5) — (M, §)
and ((bq)*‘ThcoM = A.

Proof. Since q = (wo,%0; A) € Fy,, the previous lemma implies that (58) holds
with g9 = (o, Z0; Ao) replaced by ¢. Therefore, if x € U and X € T|,M write
u = (€xpyy |u)1(2) € Tl M and v = ((€xpy, |1))a(X) € TIu(T]ay M) = Tloy M
and (58) with ¢g replaced by ¢ implies

(@)« (Xl = || (€Bs0)+ © Ao (expy, [0) ™)) (X)),
= || (&ps,) |Au (Av)|, = [|Apg ( %,q><1><expm> o <v>HA
= [[(exD)<lu(V)[], = [[(€xDg )alu (x4, o)) (X)),
=X, .

where the 4. equality follows from the fact that A € T|,, M — T3, M is an isometry.
The claim (¢q)«| 7|, 0 = A is obviously true. O

We will now start proving that Rol(-,-)(Ap, (7, q)(t)) = 0 for every piecewise
Cl-path (not necessarily a loop) v on M such that v(0) = zy and for all ¢. First we
prove a special case of this (but with gy replaced by any g € F,).

Lemma 5.33 Let ¢ € F,,, u € T|,,M be a unit vector and let v, be the geodesic
t +— exp,, (tu), Then

Rol(-, ) (Apy (7w, q)(2)) = 0, ¥t € [0,7(u)].
Proof. Write q¢ = (xq, Zo; A) and notice that by definition of U we have tu € U for

all t € [0, 7(u)].
Since ¢, of the previous lemma is a local isometry, it follows that

Py(dq(m)) 0 A= (¢g)x 0 Fy(7u), YO <t < 7(u).

Also, L0, (74)(t) = (¢g)+7u(t) for all ¢ so we may conclude that

qDR(’Yua Q)(t) = (Vu(t)a (¢q o ’Yu)(t); (¢q)*|’yu(t))> V0 S < T(’LL)
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Again, since ¢, is a local isometry, for all X,Y,Z € T|,M, x € U we have

(0« (R(X,Y)Z) = R((¢)+X. (69):Y)((¢g):Z) L., Rol(-,-)((¢g)slz) = 0 for all
x € U. But then

Rol(:, ) (Apg (u, )(t)) = Rol(+, ) ((8g)s|un) =0, 0 <t <7(u).

Continuity of Rol and ¢py (74, ¢) now allows us to conclude that the above equation
holds for all 0 <t < 7(u). O

Now we may prove the claim that was asserted before the previous lemma.

Lemma 5.34 Let v : [0,1] =+ M a piecewise C''-path on M such that v(0) = =.
Then

R0|<-, ')(ADR<77 QO)@)) =0, Vte [07 1]'

Proof. 1t is clearly enough to prove the claim in the case t = 1. Choose any vector
u € Tz, M such that ~, : [0,1] — M is the minimal geodesic from zg to y(1). Define
q = qpg (77, q0) (1) and notice that since v, 'y € Q,, (M), we have g € F,,. Thus
by the previous lemma,

Rol(+, ) (Apg (74, ¢)(1)) = Rol(-, -)(Apy (7=, @) (l[ull)) = O,

since T(||;‘”g) = [Jul|,- But

4D (Y (1) = 4D (Y 405 (Va7 20) (D)) = gD (a7, 0) (1) = a2 (7, 90) (1)

and hence

0 = Rol(:, -)(Apg (Y, ¢) (1)) = Rol(+, -) (Apy (7, 90) (1))

which concludes the proof. O

Finally we may proceed to the proof of the theorem itself. Indeed, since Op,(qo)
is the set of all gp, (7, qo)(1) with all the possible piecewise C'-curves 7 : [0,1] — M
such that v(0) = xo, the previous lemma implies that the condition (ii) of Corol-
lary 5.24 is satisfied. Thus there is a Riemannian manifold (V, k) and Riemannian
covering maps F : N — M, G : N — M ie., (M,g) and (M, §) have a common
Riemannian covering space.

Actually, by Corollary 5.24, we may take N = Op (q), ' = 7o m|n, G = 7 [N
and hence if ¢ € F'~!(z0), then there exists a v € Q,, (M) such that ¢ = gp, (7, q0)(1)
and hence G(q) = 4, (7, @0)(1) = 2o since Ap, (7, go) € sy (M) by the assumption.
This shows that F~*(z) C G71(Zy) and concludes the proof.

U

Remark 5.35 The difficulty in the proof of the previous theorem is due to the fact
that the contact points x, Zo are fixed i.e., we only assume that loops that are based
at xo generate, by rolling, loops that are based at .

If we were allowed to have an open neighbourhood of points on M with the property
that loops based at these points generate loops on M, one could prove that (M, g) and
(M,g) have the same universal Riemannian covering by an easier argument than above.
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More precisely, suppose there is a ¢y = (¢, Zo; Ag) € @ and a neighbourhood U of
xo which consists of points x such that whenever one rolls along a geodesic from z; to
z followed by any loop at x, then the corresponding curve on M, generated by rolling,
is a geodesic followed by a loop based at the end point of this geodesic.

This means that there is a (possibly smaller) normal neighbourhood U of z such
that defining a local 7 js-section G on U by

A ~

G(x) = (x, f(x); Als) = gy ((t = exp, (Lexp, (%)), q0) (1),
then it holds that
VeeU, veQ (M) = Ap.(7,4(x)) € Q40 (M)

Notice that gy = ¢(xo). (In the case of the previous theorem, we had U = {z(}, which
is not open.)

We will now sketch an easy argument to reach the conclusion of the theorem under
this stronger assumption.

Write To,,  (40) = TQ,M|0p,, (40) @S usual. We show that the vertical bundle V(7o,, (4))
is actually trivial in the sense that all its fibers consist of one point only (the ongm)
From this one concludes that Op,(go) is an integral manifold of Dy an hence mo,, (4
is (complete and) a Riemannian covering map once the manifold Op. (o) is equipped
with the Riemannian metric pulled back from that of A/ (or M).

Take z € U and v € V3u)(Top, (40))- This means that there is a smooth curve
s T'(s), s € [0,1], in Op,(qo) such that 7 (I'(s)) = z for all s and I'(0) = v.

One may then choose for each s a smooth path 7, in M starting at = and defined
on [0, 1] such that ¢p (7s, G(z))(1) = I'(s). We have v, € £, (M) since

Vs(1) = 7.1 (40 (75, 4(2)) (1)) = T (L(s)) = .

Thus by assumption,

Ar (Vs 4(7)) € Qf(m)(M)
from which

(e i)+ = oo (T) = e G@)(1) = <] (5 (@) = 0.

This proves that every element of V{;.) (7o, (40)), @ € U, is of the form v(B)|j)
where B € T*[,M & T, Mandg(BX AlLY)+ §(A|,X,BY) =0, VX,Y € T|.M.

Take a vector field of the form ¢ — v(B|,)|; on Op,(qo) defined along the image
of G. Arguing as in Proposition 5.20 and using Eq. (48), we conclude that for every
X €T|zM we have

—As(Bla X))l + (Vx40 Blie)) € TlgoOpe (0)

and hence, by what we just proved above, the image of this vector under (7, ;). must
be zero i.e., B|,, X = 0. Since this holds for all X € T'|,,M, it means that B|,, = 0
and hence we have that V|, (To,, (4)) = {0}. Thus the vertical bundle V (7o, (4))
has rank = 0 since its fiber is = {0} at one point.
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Remark 5.36 The assumption given by Formula (51) is a special case of a more
general one: There is gy = (79, Zo; Ag) € Q and points z; € M, &7 € M such that

V€ Q$07$1(M) = ’?DR(77 QO) € chmh(M)v (60)

where Q,, ,, (M) is used to denote the set of piecewise C''-curves from xq to z; in M
with Q;,.5, (M) defined similarly for M.

We actually reduce this setting to the one given in Theorem 5.28 as follows. Fix
once and for all a curve w : [0,1] — M s.t. w(0) = z, w(l) = 27 and write ¢; =
qpr (W, q0)(1). Then ¢ = (z1,21; Ay) by assumption given by Eq. (60), with A; :
T)gyM — T3, M. Then if v € Q,, (M) is any loop in M based at z;, one gets that
Y.w € Q. (M) is a path from xy and 1. By assumption in Eq. (60) again, one has

A~

o6 (1, @) (1) = Fpr (Y0, 90) (1) = 1,

and since Jp, (7, ¢1)(0) = 1, we have obtained

~

Y€ Qe (M) = Apg(v,q1) € s, (M).

Therefore any result obtained under Assumption (51) will also hold true under the as-
sumption given by Formula (60).

5.3.3 The Ambrose’s Theorem Revisited

The results developed so far allow us to somewhat simplify the proof of the Ambrose’s
theorem (see [28] Theorem I11.5.1). In fact, the elaborate construction of the covering
space X (of the manifold M) is no longer needed since we build this space by simple
integrating the distribution Dg. Actually, as in [28], we will first prove (a version
of) the Cartan’s theorem ([28] Theorem I1.3.2) by using the rolling framework and
then use that result and some “patching” to obtain the Ambrose’s theorem. The
considerations are in parallel to those found in [5], [26].

Definition 5.37 A continuous curve v : [0, a] — M on a Riemannian manifold (M, g)
is called once broken geodesic, broken at tg, if there is a ¢ty € [0, a] such that |,
Y|ito,a) are geodesics of (M, g).

Notice that if ¢ = (z,%; A) € @ and 7 is a once broken geodesic on M starting
at x broken at ty, then 9p, (7, ¢) is a once broken geodesic on M broken at .
Ambrose’s theorem can now be stated as follows.

Theorem 5.38 (Ambrose) Let (M, g), (M, §) be complete n-dimensional Rieman-
nian manifolds and let gy = (20, Zo; Ag) € Q. Suppose that M is simply connected and
that, for any once broken geodesic ~ : [0, a] — M starting from x, we have

~

Ay (7, 60) (1) (R(X,Y) Z) = R(Apg (7, 90) ()X, Apg (7, 60) ()Y ) (Apg (7, QO)<t)Z)(7 )
61

forall XY, Z € T|,s»M and t € [0,a]. Then, if for any minimal geodesic 7 : [0, a] — M
starting from x, one defines ®((t)) = exp;, (tAs¥(0)), t € [0,a], it follows that the
map ® : M — M is a well-defined Riemannian covering.
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Remark 5.39 The assumption of Ambrose's theorem is equivalent to the following:
For any once broken geodesic 7y : [0, a] — M starting from xy and for all X, Y € VF(M),
t €10,a],

Rol(X, ) (Apy (7, 20)(#)) = 0,

which by Proposition 5.9 is equivalent to

[LR(X), Z&(Y)] |QDR(%QO)(t) = Zr([X, Y])|QDR(’Y,QO)(t)'

i.e., that the distribution Dy is involutive at each point of @ of the form ¢p, (7, qo)(%).
This should suggest that it is worthwhile to study the integrability of Dy near the point
qo € @, although we are not allowed to use Frobenius theorem.

On a Riemannian manifold (N, h), we use d;, to denote the distance function
(metric) on N induced by h and, fory € N, X € T|,N, r > 0, we use By, (y,r) C N
(resp. By(X,r) C T|,N) to denote the open ball of radius » on N (resp. T'|,N)
centered at y (resp. X) w.r.t dj, (resp. h).

The next result provides a local integral manifold of D under milder assumptions
than those given in the statement of Ambrose’s theorem.

Theorem 5.40 (Cartan) Let (M, g) and (M, §) be (not necessarily complete) Rie-
mannian manifolds. Consider ¢ = (z,%; A) € @ and € > 0 such that the exponential
maps exp,, : By(0,,€) C T|;M — By, (x,¢) and exp; : B(0z,€) C T|:M — By, (7€)
are (defined and) diffeomorphisms. Then the following are equivalent:

(i) For every (non-broken) geodesic ~y : [0,1] — Bg,(x,€) starting from x, we have
Ay (7, ¢) ) (R(X,Y) Z)
=R(Ap, (7, ) ()X, Apg (v, 0) ()Y ) (Apy (7, 4) (1) Z) (62)
i.e., Rol(X,Y)(Ap,(7,¢)(t))Z = 0 for every X,Y, Z € T|,yM and ¢ € [0,1].
(ii) For every (non-broken) geodesic v : [0,1] — Bg,(x,€) starting from x, we have
Apy (7, ) (O (R(X, 7 (1)) 7(#))
=R(Apy (7, 0) ()X, A (7, ) (1) o (v, 0) () (63)

i.e., Rol(X,5(t))(Apg (7,q)(t))7(t) = 0 for every X € T|, ;M and t € [0,1]
(except the break point of 7).

(iii) There is a connected integral manifold N of Dy passing through ¢ such that
7TQ,M|N — Bdg(l’,€) (or 7TQ7]\7[‘N — Bdg(i’, 6)) is a bijection.

(iv) The map @ := &xp; o Ao exp,'[p, (s is an isometric diffeomorphism (onto

Bd ({i‘, 6))

g

Moreover, if any of the above cases holds, then, for every X € B,(0,,¢), it holds
that

D, exp, (x) = Py (s exp;(sAX)) o Ao P)(s — exp,(sX))
= B (s > 80, 0 (s(X, 4X)) ). (64)
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Proof. (i) = (iii): By taking Y = Z = 4, one has

ADR(77 Q)<t>Y = ADR<77 q) (t)Z = }YDR(W@ Q)<t)7

for all ¢ € [0, 1].
(i) = (iv): Let u,v € T, M, |lul|, < € and define for ¢ € [0,1]

d
Yio(t) = g}oexpm(t(u + sv)) = t(exp, )« |-

It is the Jacobi field on M along the geodesic 7,(t) := exp,(tu), t € [0, 1], with
Y.,(0)=0,V,Y,, =v.
Proposition 3.30 implies that the rolling curve gpy (74, q) along 7, is given as

Yor (Y (1) = XD (tAU),  Apg (W, 0)(8) = Py (o (Yur @) © A © PP ().

On the other hand, the assumption implies that
Rol(Yeo (1), 4u () (Apg (Vs @) (1)) 4u(t) = 0, T € [0, 1]

and Proposition 5.14 imply that Yu,y = Apy, (Yu, ¢)Yu,» 1s a Jacobi field on M along
the geodesic Jpy, (Yus q)-

Clearly, YM(O) =0and V AUYM = AV,Y,, = Av, from which it follows (by the
uniqueness of solutions of second order ODEs) that Yu,v must be the Jacobi field
given by

~

d — —
Yau(t) = =[P (FA(u + 5v)) = 1(EXD; ). |eau(Av).
Setting ¢t = 1, we see that

Apy (Yus ) (1) (€xPy )+ v = (XD )] au(Av),

for all u,v € T|,M with [lul[, < e. In other words, this means that

(I)*|y = (ﬁi‘)*‘AU © A © (engl)*|y = ADR<fyexp;1(y)’ Q)(l),

for every y € Bg, (z,€), where By, (, €) is also equal to {exp,(u) € T, M | ||lul, < €}.
Since Apy, (Yexps1(y): ¢)(1) € @, this means that ., is an isometry T'|, M — T|q>(y)M
i.e., ¢ is an isometry.

(iv) = (iii): This follows from Lemma 5.41 below.

(iii) = (i): Proposition 5.9 implies that Rol(X,Y)(A") = 0 for all (2/,2"; A") € N
and X,Y € T, M.

On the other hand, the assumption implies that f := (wg.s)|y' is a smooth local
section of 7 as defined on By, (z, €) whose image is the integral manifold N of Dg.

Let v(t) = exp,(tu), t € [0,1], be a geodesic of M with ||ul|, < e. Then, since
f o~ is an integral curve of Dy and f(7(0)) = ¢, the rolling curve gp,(7,q) is
defined on [0, 1] and is given by gp,(v,q)(t) = f(y(¢)) for all ¢ € [0,1]. Hence
qps (7, q)(t) € N for all ¢ € [0,1], which implies that Rol(X,Y)(Ap(7,9)(t))Z =0
for all X,Y, Z € T| M. This completes the proof. O
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Lemma 5.41 Let xp € M and &y € M with corresponding open neighborhoods U
and U. Then there is a isometry onto ® : U — U if and only if there is a smooth
local 7 a-section f: U — @), whose image is an integral manifold of Dy and projects
bijectively by 7, y; onto U.

Moreover, the correspondence ® <+ f is given by

fo(z) = (z, (2); Duls),
Q(x) = To.r © f

Proof. Let ® be an isometry onto U — U and define fo as above. For every x € U
and u € T|,M, let v,(t) := exp,(tX). Since ® is an isometry, ® o+, is a g-geodesic
starting at ®(x). Moreover, defining A(t) = ®,|,, ) € Q and taking any X, € T'|,M,
X(t) = Pi(vu)Xo, we have A(t) X (t) = P{(P o v,)(P.(Xo)) and hence

(v('i/u(t),%(@ow/u)(t))A<t))X<t) = ﬁq)*%t(t)(A(t)X(t)> - A(t)V%(t)X(t) =0,

which proves that ¢ — (7,(t), (P o v,)(t); A(t)) =: ¢(t) is an integral curve of Dg
through ¢(0) = (2, ®(x); ®.|,). On the other hand, ¢(t) = fo(7.(t)) and thus it
follows that

(f2)+(u) = 4(0) € Drlqg()-

Hence the image of fg is an integral manifold of Dr and it clearly projects bijectively
onto U by g -

Conversely, suppose that f : U — @ is a local mg-section whose image is an
integral manifold of Dr and which projects onto U. Define & s as above. Then
®;: U — U and, for every z € U and X € T|,M, we have f.(X) = LR(X)|f(z) and
thus

1(@7): X1, = || (i) (£2(X))

= |mei- (X)) = @)Xy = 11,

where the final equality follows from the fact that f(z) € @. The fact that ® is a
bijection U — U is clear. Hence the conclusion. O

We can now provide an argument for Theorem 5.38. According to the assump-
tions done in the statement, Theorem 5.40 implies that there is an integral manifold
of Dr passing through gy = (2o, Z9; Ag). Hence, we may choose the maximal con-
nected integral manifold N of Dg passing throught gy (where N is the union of all
connected integral manifold of Dr passing through ¢q, see e.g. Lemma 3.19 in [16]).

Endow N with a Riemannian metric h given by: h(Zr(X)|,, Z&(Y)|,) = 9(X,Y)
for ¢ = (z,2; A) € N and X,Y € T|,M. It is then clear that

F:=pryomg|y: N = M, andG::przoﬂQ|N:N—>M,

are local isometries onto open subsets of M and M (see also the proof of Corollary
5.24).

We next intend to prove that (IV,h) is a complete Riemannian manifold. Here,
we have to be more careful than in the proof of "(i) = (iii)" in Corollary 5.24 since
we cannot assume that N is the whole orbit Op, (qo).

1)



First of all, the facts that N is an integral manifold of Dg and F'is a local isometry
imply that, for any ¢ = (z,2; A) € N and any g-geodesic t — ~v(t) = exp,(tX) on
M starting at x, the rolling curve t — gp, (7, q)(t) stays in N is a h-geodesic on N
for ¢ in a small interval containing 0.

Let us assume that NV is not complete. Then there exists a h-geodesic I' : [0, T'[—
N starting from ¢o where [0, 7] is the maximal non-negative interval of definition
and T < co. Since F' is a local isometry, F'o I is a g-geodesic on M and since I is
an integral curve of Dg, it follows that there is a unique X € T'|,, M such that, for
t € [0, T, one has

(1) = gog ((s = expyy (X)), q0) (¢)
= ((expy, (LX), XD, (tA0X); Py(s = XDy, (sA40X)) 0 Ag 0 P (s +> exp,, (sX))).

We write (v(t),%(t); A(t)) := T'(t). Since M and M are complete, the right hand
side of the above equation makes sense for all ¢ > 0 and we define I on [T, 0o by
this formula. We emphasize that we assume I' to be a geodesic on N only for [0, T'[.

Write gr = (27, @1; Ap) == I'(T'). Choose € > 0 such that exp, and exp, . are
diffeomorphisms B(0, €) — Bq, (77, ¢€), B(0,€) — By, (I, €) respectively.

If w is any geodesic [0, 1] — By, (z7, €) starting from 27, then the concatenation
w Uy of w and 7 is a once broken geodesic starting from xy and therefore, Eq. (61)
implies that the assumptions of Theorem 5.40, Case (i), are satisfied (with (w, ¢r)
in place of (7,¢)). Indeed, for every X,Y € T'| M and t,

Rol(X, Y)(Apy (w, gr) (1)) = Rol(X, Y)(Apy (w, 4oy (7, 90) (1)) (#))
=Rol(X,Y)(Apg (w U v,q0)(t+T)) = 0.

Therefore, Case (iii) there implies the existence of a connected integral manifold N
of Dr passing through gr = ['(T)).

Since N is an integral manifold of Dy and T' is an integral curve of Dy and since
I'(T) € N, it follows that T'(t) € N for all ¢ in an open interval |T — 5, T + 5]
containing T'. Since I'(t) € N for t € [0, T, it follows that, for some ¢y €]T —n,T7,
we have I'(tg) € NN N.

Thus N NN # § and hence N U N is a connected integral manifold of Dy
passing through ¢y which, because of the maximality of N, implies that N C N.
This implies that I" is a geodesic of N (since F' o' = 7 is a geodesic of M and F
is a local isometry) on the interval [0,7" + 5[, contradicting the choice of the finite
time 7. Thus (N, h) is complete.

Since F' = pr; omg|n and G = pry o mg|n are local Riemannian isometries, it fol-
lows from Proposition I1.1.1 in [28] that they are covering maps. Taking finally into
account that M is simply connected, one gets that F' is an isometric diffeomorphism
N — M and hence G o F~': M — M is a Riemannian covering map.

Finally notice that if v : [0,a] — M is a minimal geodesic starting from xq, then

(G o F71)(y(t)) = exp;, (tAo¥(0)) and hence & = G o [

6 Rolling Against a Space Form

This section is devoted to the special case of the rolling problem (R) with one of
the Riemannian manifolds, usually (M, §), being equal to a space form i.e., a simply
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connected complete Riemannian manifold of constant curvature. The possible cases
are: (i) Euclidean space with Euclidean metric (zero curvature), (ii) Sphere (positive
curvature) and (iii) Hyperbolic space (negative curvature), cf. e.g. [28].

As mentioned in the introduction, the rolling problem against a space form ac-
tually presents a fundamental feature: on the bundle 7 s : @ — M one can define
a principal bundle structure that preserves the rolling distribution Dg, and this
renders the study of controllability of (X)g easier to handle.

We will first provide a detailed study for the rolling against an Euclidean space
and then proceed to the case of space forms with non-zero curvature.

6.1 Rolling Against an Euclidean Space

In this section, we give a necessary and sufficient condition for the controllability of
(X)g in the case that M = R" equipped with the Euclidean metric § = s,,.

Recall that if V is a finite dimensional inner product space with A the inner
product, the special Euclidean group of (V,h) also denoted SE(V) is equal to V' x
SO(V), and is equipped with the group operation x given by

(v, L)% (u, K) := (Lu+ v, Lo K).

Here SO(V') is defined with respect to the inner product h of V. In particular, we
write SE(n) for SE(R™) with R” equipped with the standard inner product.

Now fix a point gy of @ = Q(M,R™) of the form gy = (¢, 0; Ap) i.e., the initial
contact point on M is equal to xy and, on R™, it is the origin. Since (R",s,,) is flat,
for any a.c. curve t — &(¢) in R” and X € R™ we have P!(2(t))X = X, where we
understand the canonical isomorphisms 7T'[;)R" = R" = T|;»yR"™. It follows that
we parameterize the rolling curves explicitly in the form:

a0 (1 0 DO = (10,3 + 4 [ POV APY). (69

where v € Q,,(M).
From this it follows that for any (xg, 0; Ag), (0, 2; A) € @ and v € Q, (M), the
point gpg, (7, (zo, T; A))(1) is equal to

(w0, & + AAGT Ay (7, (w0, 0; Ag)) (1); AAG Ay (7, (0, 0; Ag)) (1))
Let v € Q,,(M) be a piecewise C'-loop of M based at xy. We define a map

P = Pgo : Quy (M) — SE(n);
p(’Y) = (/S/DR (77 qO)(l)a ADR(V) QO)(l)Aal),

where ¢y = (x0,0; Ag) € Q. Hence by Remark 3.28 and the above formulas we have

p(w7) =(Fpr (@, 0r (7, 90) (1)) (1), Apyg (W, gDy (7, 20) (1)) (1) Ag)
= (3px (7, 20) (1) + Apg (7, g0) (1) Ag Apg (w, 90) (1),
Apy (7, 90) (1) Ag ' Apy (w, q0) (1) Ag )
=(Ypr (7 90) (1), Apg (7, 60) () A ) * (g (w, 90) (1), Apy (@, 60) (1) Ay ™)
=p(7) * p(w).
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Thus p is a group anti-homomorphism (£2,,(M),.) — (SE(n),x). This proves that
the elements of the form p(w), w € 2, (M), form a subgroup of SE(n). We also see
that

(fAYDRQVv Q)(l)v ADR<77 Q)<1>> = (fv A) * <07 A0>71 * Pyo (7) * <07 AO)v

where ¢ = (29, 2; A), qo = (20,0; Ap) € Q and v € Q,,(M).

We also make the simple observation from Eq. (65) that the image of pr, o
p: Qu(M) — SO(n) is exactly AgH|,,Ay*, where H|,, is the holonomy group
of (M,g) at xo. Here AgH|,,A;" = H|p with respect to the orthonormal frame
F=(Ag'er,...,Ay'e,) where ey, ..., e, is the standard basis of R™.

From these remarks the next proposition follows easily.

Proposition 6.1 Let Q@ = Q(M,R") and gy = (z¢, To; Ag) € Q. Then the map
K, : Wé}M(LUO) — SE(n);
(.T(), 3?7 A) = (i‘ - '%07 AAal)

is a diffeomorphism which carries the fiber 7' g0y, (Z0) of the orbit Op (qo) to a
Dr (90),

submanifold of SE(n). In particular, if £ = 0 we have that
Ky, (W(;;R(qo),M<x0)) = Pago (Q:Bo(M))

which is a Lie subgroup of SE(n).

We will make some standard observations of subgroups G of an Euclidean group
SE(V), where (V,h) is a finite dimensional inner product space. Call an element of
G of the form (v,idy ) a pure translation of G and write T' = T(G) for the set that
they form. Clearly T is a subgroup of GG. As before, pry, pr, denote the projections
SE(V) — V and SE(V) — SO(V). The natural action, also written by %, of SO(V)
on V is defined as

(u, K)xv:=Kv+u, (uK)eSOWV), veV.

Proposition 6.2 Let G be a Lie subgroup of SE(V) with pry(G) = SO(V'). Then
either of the following cases hold:

(i) G=SE(V) or
(i) there exists v* € V' which is a fixed point of G.

Proof. Suppose first that T = T'(G) is non-trivial i.e., there exists a pure translation
(v,idy) € T, v # 0. Then for any (w, A) € G it holds that

G 3w, A) ' x (v,idy) * (w, A) = (A 'w, A7) % (v +w, A)
= (A v+ w) — A w,idy) = (A v, idy)

which implies that

T 5 {(A'v,idy) | (w, A) € G} ={(A " v,idy) | A € pry(G) = SO(V)}
=S8"7H0, [[oll) x {idy}
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where S""!(w,r), w € R",r > 0 is the sphere of radius r centered at w € V and
|-l = h(-,)¥2. If w € V such that ||w| < |lv|| then it is clear that there are
u, v/ € S0, ||v]]) such that u + v = w (choose u € S*1(0, [|v]|) N S" (w, |[v])
and ' = w — u). Therefore

(w,idy) = (u,idy) * (v, idy) € T

i.e., B(0, ||v]|) € T where B(w,r) is the closed ball of radius r centered at w. Thus
for all k € N,

{BO[lvll) + -+ B0, [[vl)} > {idy}

~
k times

= (B0, [[v]l) x {idy}) o (B0, [J]]) x {idv}) C T.

k times

From this we conclude that V' x {idy} =1T.
Therefore we get the case (i) since

G=TxG={(u,idy) * (w,A) |ueV, (w,A) € G}
={(u+w,A) |ueV, (w,A) € G}
={(u,A) [u €V, A€pr,(G)=S0(V)}
—V % SO(V) = SE(V).

The case that is left to investigate is the one where T"is trivial i.e., T = {(0,idy) }.
In this case the smooth surjective Lie group homomorphism pr,|g : G — SO(V) is
also injective. In fact, if A = pry(v, A) = pry(w, A) for (v, A), (w, A) € G and v # w,
then

G (w A)xw, A= (w,A)x(—A v, A = (w—v,idy) €T

and since (w — v,idy) # (0,idy ), this contradicts the triviality of 7. It follows
that pry|g is a Lie group isomorphism onto SO(V') and hence a diffeomorphism. In
particular, G is compact since SO(V') is compact.

We next show that there exists v* € V which is a fixed point of G. Indeed,
taking arbitrary v € V' and writing puy for the (right- and) left-invariant normalized
(to 1) Haar measure of the compact group G, then we may define

vt = /(B*v)d,uH(B).
a
Thus for (w, A) € G,
(w, A) % v* =w + Av* :/

G

:/(B*v)duH(B) =",
e

(w+A(B*v))duH(B):/G(((w,A)*B)*v)duH(B)

where, in the second equality, we have used the linearity of the integral and normality
of the Haar measure and in the last phase the left invariance of the Haar measure.
This proves that v* is a fixed point of G and completes the proof.

O
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Remark 6.3 With a slight modification, the previous proof actually gives the following
generalisation of the last proposition: If GG is a connected subgroup of SE(V') such that
the subgroup pr,(G) of SO(V) acts transitively on the unit sphere of V' then either (i)
G =V X pry(G) or (ii) there is a fixed point v* of G.

The previous proposition allows us prove the main theorem of this section.

Theorem 6.4 Suppose (M, g) is a complete Riemannian n-manifold and (M,g) =
(R™, s,,) is the Euclidean n-space. Then the rolling problem (X)g is completely con-
trollable if and only if the holonomy group of (M, g) is SO(n) (w.r.t. an orthonormal
frame).

Proof. Suppose first that (X)g is completely controllable. Then for any given gy =
(o, 0; Ap) € Q we have that 75" (z0) = Wé; (qo).01(@0)- In particular, taking any
b R b

Qo € Q of the form gg = (x0,0; Ag) (i-e., o = 0), we have by Proposition 6.1 that
SE(n) = Ky (mg0(70)) = Koo (Mo, (401,00 (0)) = pao (Qag (M)).

Hence the image of pr, o py, is SO(n) and, on the other hand, this image is also
AoH |, Ag" as noted previously. This proves the necessity of the condition.
Assume now that the holonomy group of M is SO(n) or, more precisely, that
for any x € M we have H|, = SO(T|,M). Let ¢ = (2,0;A) € Q and let G, :=
Kq(w(;})R(q)’M(x)) (see Proposition 6.1) which is a subgroup of SE(n). Since

SO(n) = AH|,A™" = (pry 0 p)(Q(M)) = pry(Ky(moy, (o 4(%))) = Pra(Gy).

by Proposition 6.2, either (i) G; = SE(n) or (ii) there exists a fixed point w} € R"
of Gy.

If (i) is the case for some gy = (0, 0; Ag) € Q, then, since K, maps Wé}M(qO) N
Opy (qo) diffeomorphically onto G, = SE(n), it follows that ﬂé}M(qO) N Op, (qo) =
Wé}M(qO) and hence Op, (qo) = @ (since oy, (go),ar 18 a subbundle of 7g ar) Le., (X)r
is completely controllable.

Therefore suppose that (ii) holds i.e., for every ¢ € @ of the form ¢ = (z,0; A)
there is a fixed point w; € R" of G,. We will prove that this implies that (M, g) is
flat which is a contradiction since (M, g) does not have a trivial holonomy group.

Thus for any point of @) of the form ¢ = (z,0; A) we have for all loops v € (M)
that

1
APYO)A ™ wy + 4 [ P (eds = i,
since p, is a bijection onto Gy and w; is a fixed point of GG;. In other words we have
1
(P) =) A w4 [ PYYi(s)ds o
0
Thus if ¢ = (x,0; A) and ¢’ = (2,0; A’) are on the same 7¢ fiber over (z,0), then

(PY(v) — id)(A*lw;; — A”lw;) =0
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for every v € Q,(M). On the other hand, since M has full holonomy i.e., H|, =
SO(T|. M), and H|, = {P(v) | v € Q.(M)}, it follows from the above equation
that

-1 % /—1 %
A7 wy, = A wy.
This means that for every x € M there is a unique vector V|, € T'|,M such that
Vle=A"w), Vqe Wél(l‘,()).

Moreover, the map V' : M — TM; x — V|, is a vector field on M satisfying

PYOIVL = VI == [ PXa)sds, va € 0.0, (66)

It follows from this that, for any piecewise C! path v € C;W([O, 1], M), we have

1
Vi = B0 (Vho = | POYi(s)ds). (67)
Indeed, if w € Q1) (M), then v .w.y € Q) (M) and therefore
Plo(V)Plo(W)Pol(V)VH(O) — Vo = P10(7_1~W-7)V|7(0) —Vho

:—/0 Pf(yl.w.fy)%(fyl.wry)(s)ds

d

== [ POyi(eas = P [ PRelateds = PO [ PG (0

S

= [ POy s)as £ PPV = Vi)

PV PYw)PL() / PO (y)i(s)ds,

that is
1
(P) = )R O) (Vi = | PE)3(6)ds) = (PRw) i) Vo
Equation (67) then follows from this since {P(w) | w € Q,q)(M)} = H|,q) =
SO(T], 1) M)
Since (M, g) is complete, the geodesic vx(t) = exp,(tX) is defined for all ¢ €

[0,1]. Inserting this to Eq. (67) and noticing that P2(vx)¥x(s) = X in this case for
all s € [0, 1], we get

Vi = B () (Ve — X),
Therefore, if X = V|, and z := vx(1) = exp,(V|],), we get
V], =0. (68)

Inserting this fact into Eq. (66), one gets

| Proiteas =0, v ea.on,
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Fix ¢* = (2,0; Ap) € Q (for any isometry Ay : T|.M — T|(R™). Eq. (65) implies
that

Y (7, (20, 0; Ag))(1) = 0, Vv € Q.(M).

We now apply Theorem 5.28 to conclude that (M, g) has (R",s,) as a Rie-
mannian covering (i.e., (M, g) is flat) and hence reach the desired contradiction
mentioned above. Even though this allows to conclude the proof, we will also give
below a direct argument showing this.

Equation (67) is trivially equivalent to

t
POV = Vo) — / PO(7)3(s)ds

where v € C} ([a,0], M), a < b, is arbitrary. Taking v to be smooth and differen-
tiating the above equation w.r.t to ¢ (notice that both sides of the equation are in
Ty )M for all t), we get

PY(VswV e = —=P2()A(1),
that is
ViVl = =73(t).

Since v was an arbitrary smooth curve, this implies that V' is a smooth vector field
on M and

ViV =—X, VX eVF(M). (69)

For any X € VF(M), the special curvature R(X,V)V can be seen to vanish
everywhere since

RX, V)V =VxVyV = VyVxV = Vix )V = =VxV + VyX + [X, V]
=V, X]+ [X,V] =0,
where, in the second equality, we used (69).

For any X € T|,M, we write yx(t) = exp,(tX) for the geodesic through z in the
direction of X. It follows that

Vit =Ph(r) (V] — / POy Vix (s)ds)
~Fil)(= | Xds) = Filx) (=) = ~tix 0. (70)

Now for given X,v € T|,M let Y (t) = %‘0 exp, (t(X +sv)) be the Jacobi field along

vx such that Y(0) =0, Vi, Y |1=0 = v. Then one has

. ) 1
v*{X(t)v“'/xyv = R('YX(t)a Y(t))’)/x(t) = t_QR(V|"/X(t)7 Y(t))v|“/x(t) =0,
for t # 0 which means that ¢ +— V5, ()Y is parallel along vx i.e.,

Vi)Y = Pi(7x)Vix©0Y = Py(vx)v.
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This allows us to compute

d2

d
7 2 =2—g(Viy Y, Y (1))

g dt
ZQQ(V‘?X@)V%(Y? Y(t)) + QQ(V“'/X(t)Y’ V"Yx(t)Y)
=0
=2g9(P}(vx)v, By (vx)v) = 2 ||v][2

Y@l

and hence for any ¢

d d
T 1Y (@)l = 2loll; ¢ + o 1Y @)l = 2lll; ¢,
because %‘0 HY(t)H; =29(Vix0Y,Y(0)) = 0 since Y (0) = 0. Again, since Y'(0) =

0,
1Y @)1l = llolly £+ 1Y ()5 = llvll; ¢

which, when spelled out, means that |[t(exp,).[ix(v)|, = [[tv]|, and hence, when
t=1,

[(exp. )« x ()l = llvll,, VX, veT|.M (71)

This proves that exp, is a local isometry (T'|.M,g|.) — (M,g) and hence a
Riemannian covering. Thus (M, g) is flat and the proof if finished.
U

Remark 6.5 For results and proofs in similar lines to those of the above Proposition
and Theorem, see Theorem IV.7.1, p. 193 and Theorem IV.7.2, p. 194 in [15].

6.2 Rolling Against a Non-Flat Space Form

In this subsection, we study the controllability problem of (X)g in the case where
M is a simply connected n-dimensional manifold with non zero constant curvature
equal to %, with &k # 0.

6.2.1 Standard Results on Space Forms

1

L asa subset

Following section V.3 of [15], we define the space form M;, of curvature
of R"* n € N, given by

. k

My o= {(21,.. ., &p1) €R"™ |2+ a2l 4 kaly =k, 2o + ] > 0}.
Equip M, with a Riemannian metric gx defined as the restriction to My of the
non-degenerate symmetric (0, 2)-tensor

Sng = (dz1)* + -+ (da,)® + k(dz, )2
k
|K| .

also when £ < 0. If the dimension n is not clear from context, we write (M, x, Gn.k)
for the above Riemannian manifolds.

The condition x,.1 + 7% > 0 in the definition Mk guarantees that Mk is connected
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Remark 6.6 (i) If k =1 then M, = S (the usual Euclidean unit sphere in R™*1)
and s, is the usual Euclidean metric s,,; on R"™'. For a fixed n € N, the

spaces M for k > 0 are all diffeomorphic: the map @x 1 (L1, .., Tn, Tny1)
(%, o ”C—’L,xnﬂ) gives a diffeomorphism from M, onto M. Moreover, ¢ is a

~

homothety since ¢jg1 = 0.

(i) If k = —1 then s, _ is the usual Minkowski "metric" on R™*!. For a fixed n € N,
the spaces M;, for k < 0 are all diffeomorphic: the map ¢y, : (1, ..., 20, ¥pi1)
(\/x_l_k, e f—j_k,xn+1) gives a diffeomorphism from M, onto M_;. Moreover, ¢

is a homothety since ¢;g; = —%gk.

Let G(n, k) be the Lie group of linear maps R"™ — R™*! that leave invariant
the bilinear form

(T, Y = Z Y + KTpi1Yns1s
i=1

for x = (z1,...,2p41), ¥y = (Y1,--.,Yns+1) and having determinant +1. In other
words, a linear map B : R"™ — R™*! belongs to G(n, k) if and only if det(B) = +1
and

(B, By>n7k = (:p,y>n7k, Va,y € R"+1,
or, equivalently,
B'I,.B=1,;, det(B)=+1,

where I, , = diag(1,1,...,1, k). In particular, G(n,1) = SO(n+1) and G(n,—1) =
SO(n, 1).

The Lie algebra of the Lie group G(n, k) will be denoted by g(n, k). Notice that
an (n+ 1) x (n + 1) real matrix B belongs to g(n, k) if and only if

BT+ I,.B =0,

where [, , was introduced above.
Sometimes we identify the form s, on R™™ with (-,-) , using the canonical

identification of the tangent spaces T'|,R™™ with R™™. Notice that if # € M, and
Ve T|i~Rn+17 then

VeT|:M, <<= s.(V,2)=0.

In fact, if we identify V as a vector (Vi,...,V,11) in R*"! then the condition for V'

A

to be tangent to the hypersurface My is

0=(V, grad (a7 + -+ z) + kzp41))

n+1

= Z Vi + kxp 1 Vi
i=1

:Sn,k:(‘/u i)7

with (-,-),,; the standard Euclidean inner product of R™*!.

84



Remark 6.7 By using the bilinear form (,-), , one may restate the definition of My
by

. k
M, = {JA? € R ‘ <'%7'%>n,k; = /{Z, Tpt1 + m > O}

Remark 6.8 For convenience we recall a standard result ([15], Theorem V.3.1): The
Riemannian manifold (M}, §) has constant sectional curvature + and the isometry group

k
Iso(Mg, gx) is equal to G(n, k).

We understand without mention that when considering the action of G(n, k) on
M, we consider the restriction of the maps of G(n, k) onto the set Mj.

6.2.2 Orbit Structure

Proposition 6.9 The bundle mg 5 : Q — M is a principal G(n, k)-bundle with a left
action i : G(n, k) x Q@ — @ defined by

u(B,q) = (v, Bi; Bo A),

where ¢ = (,#; A) and in B o A we understand the range T'|; M}, of A to be identified
with a linear subspace of R™*! in the canonical way.

Moreover, the action p preserves the distribution Dy i.e., for any ¢ € Q and B €
G(n, k),

(NB)*DR|q = ,DR‘M(B#I)

where pp : Q — Q; ¢ — p(B,q).

Proof. Let us first check that for (x,2; A) € Q, BoA: T|,M — R™"! can be viewed
as an orientation preserving map T'|,M — T'| s M, and that really (z, Bi; Bo A) is
an element of Q. First of all, B# € M, when # € M, as remarked above. Moreover,
for X € T, M,

Snk((Bo A)(X),B) = s, (AX,2) =0,
since AX € T|ka Hence Bo A: T|,M — T\BiM. Similarly, for X,Y € T|, M,

gk((B o A)(X), (B o A)(Y)) = sus((B o A)(X), (B o A)(Y))
=sp1(AX, AY) = g(AX, AY) = g(X,Y),

and clearly Bo A preserves orientation (since G(n, k) is connected). Thus (z, Bi; Bo
A) € Q.

It is clear that p is a well defined left G(n, k)-action on @, that it is free, maps
each ¢ p-fiber to itself (mg arop(B, q) = moam(q)) and that it is transitive fiberwise
(for each q,¢" € ﬂé}M(l‘), w(B,q) = ¢ for some B € G(n,k)). It remains to check
the claim that this action preserves Dy in the sense stated above.

Let B € G(n, k) and qo = (20, Z0; Ag). The fact that Iso(M;, §) = G(n, k) means
that defining F : My — M,; F = Bly;, then F' € Iso(My, §). Clearly F(iy) = Biyg
and F,|;, = B|T|£0Mk and hence by Proposition 5.5

A ~

(B, qpg (7, 00) (1)) = F - qpg (7, 90)(t) = qpp (7, F - q0)(t) = qpp (7, (B, o)) (1),
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for any smooth curve v : [0,1] — M, v(0) = 2 and ¢t € [0, 1]. Taking derivative
with respect to t at ¢ = 0 and using the fact that, by definition, ¢p, (7, qo) is tangent
to D, we find that

(118)«ZR(7(0))]4 :(MB)*%IOCJDR(%%)@) = %}OM(B,(JDR(%%)@))
= o0 (1. 1B 40)) (1) = Za(3(0))

This allows us to conclude. O

We will denote the left action of B € G(n, k) on g € Q) usually by B-q = u(B, q).

Proposition 6.10 For any given ¢ = (z,2; A) € () there is a unique subgroup G, of
G(n, k), called the holonomy group of Dg, such that

Gy q = Opy(q) Ny (2).

Also, if ¢ = (z,2/;A") € @ is in the same mg p-fiber as ¢, then G, and G, are
conjugate in G(n, k) and all conjugacy classes of G, in G(n,k) are of the form G .
This conjugacy class will be denoted by G.

Moreover, mo,, (g1 : Opy(¢) — M is a principal G-bundle over M.

Proof. These results follow from the general theory of principal bundle connections
(cf. [13], [15]) but the argument is reproduced here for convenience.

Let ¢ € Op,(g) N WélM(:p) and choose a v € Q. (M) such that ¢’ = gp, (7, 9)(1).
Since the G(n, k) action is free and transitive on Wé}M(ZL‘), it follows that there is
a unique B,(y) € G(n, k) such that B,(y) - ¢ = ¢. We define G, = {B,(7) | 7 €
Q. (M)} and note that for v,w € €,(M) one has

(By(7)By(w)) - g = By(7) - (By(w) - ¢) = By(7) - qpr (w, ¢)(1) = gy (w, By(7) - 9)(1)
=qps (@, 4px (7, 0)(1)) (1) = gy (w7, ¢) (1) € Opy(q) N 7ok (1),

which proves that B,(v)B,(w) = By(w.y) € G,. Next if v~ : [0,1] — M denotes
the inverse path of v i.e., y71(t) = (1 —t) for t € [0, 1], it follow that

(By()By(v™) - a = app (v, 0)(1) = g,
i.e., By(y)"' = B,(y') € G,. This shows that G, is indeed a subgroup of G(n, k).
Moreover, it is clear that
Gy q = Opy(q) N gy (),

where the left hand side is {B-¢q | B € G,}.

Let us prove the statement about the conjugacy class of G;. Take ¢’ = (z,2; A) €
(). Because G(n, k) acts transitively on the fibers, there exists a B € G(n, k) such
that ¢' = B - q. Therefore for any v € Q,(M),

(B™'By(7)B) - q=(B"'By(7))-¢ = B~ - apu(7.¢)
=gp. (7. B ¢') = gp (7, 9) = By(7) - q,
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i.e., B7'B,(v)B = B,(7) since the G(n, k) action is free. This proves that B~'G B =
(4. Moreover, if there is a B € G(n, k) and a subgroup G’ of G(n, k) such that
B~'G'B = G,, then defining ¢’ := B - q one gets that G’ = G.

By Proposition 5.2, o, (g),m 1S @ smooth bundle and, by what has been said
already, it is clear that G, preserves the fibers W(;JDR(Q)v () = ﬂélM(:p) N Op,(q)
and the action is free. Recall that, if a map from some manifold to the ambient
manifold is smooth and its image is contained in the orbit (as a set), then this map
is also smooth as a map into the orbit (as a manifold) (cf. [16], Theorem 3.22 and
Lemma 2.17). As a consequence, the action of G, is also smooth. From this, one
concludes that TOp,, (q),M 1S & G,-bundle and hence a G-bundle since the Lie groups
in the conjugacy class are all isomorphic. O

6.2.3 The Rolling Connection

Let mryer : TM @ R — M be the vector bundle over M where mryqr(X,7) =
7w (X). In this section we will prove the following result.

Theorem 6.11 There exists a vector bundle connection VR of the vector bundle
Trumer that we call the rolling connection, and which we define as follows: for every
reM,YeTl|,M, X e VFEM), reC®M),

VRI(X,r) = (VYX +r(2)Y,Y(r) — %g()ﬂx, Y)), (72)

such that in the case of M rolling against the space form M;, k # 0, the holonomy
group G of Dy is isomorphic to the holonomy group HV™ of VR,
Moreover, if one defines a fiber inner product h, on TM & R by

hi((X,7), (Y, 8)) = g(X,Y) + krs,

where X|Y € T|,M, r,s € R, then VR is a metric connection in the sense that for
every X,Y,Z € VE(M), r,s € C°(M),

Z(hk((X7T)7 (K 3))) - hk(VEOI(Xv r)? (Y7 5)) + hk((Xv r)? VEOI(Ya 5))

Before providing the proof of the theorem, we present the equations of parallel
transport w.r.t VR along a general curve and along a geodesic of M and also the
curvature of VR Let v : [0,1] — M be an a.c. curve on M, 7(0) = x and let
(Xo,70) € T|sM @ R. Then the parallel transport (X (¢),r(t)) = (PY")4(7)(Xo, 0)
of (Xo,70) is determined from the equations

Vi X +r(t)y(t) =0,

1) - ~a(3(8). X(1) = 0. i

for a.e. ¢t € [0,1]. In particular, if v is a geodesic on (M, g), one may derive the
following uncoupled second order differential equations for X and r,

1 s
Vi Vi X + 29X (1), 7(2))3(t) = 0,

. 2 (74)
ST
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for all t.
One easily checks by direct computation that the connection VR on 77er has
the curvature,

R™(XV)(Zr) = (R, Y)Z — (oY, )X —g(X, 2)Y),0),  (75)

where XY, Z € VF(M), r € C*(M).
We will devote the rest of the subsection to prove Theorem 6.11.

Proof. The rolling distribution Dg is a principal bundle connection for the principal
G(n, k)-bundle 7g ps : Q — M and hence there is a vector bundle £ : £ — M with
fibers isomorphic to R"*! and a unique linear vector bundle connection VR : T'(£) x
VEF(M) — I'(¢) which induces the distribution Dg on ). This clearly implies that
the holonomy group G of Dg and H VU of VR are isomorphic. We will eventually
show that ¢ is further isomorphic to mryer and give the explicit expression (72) for
the connection of m7yer induced by this isomorphims from VR on ¢.

There is a canonical non-degenerate metric hy : E®F — M on the vector bundle
¢ (positive definite when & > 0 and indefinite of Minkowskian type if & < 0) and
the connection VR is a metric connection w.r.t. to hy i.e., for any Y € VF(M) and
s,0 € I'(v),

Y (hi(s,0)) = (Vs 0) + hi(s, Vo). (76)

The construction of £ goes as follows (see [13|, section 2.1.3). Define a left
G(n, k)-group action 8 on Q x R™! by

B(Bv (Q7v)) = (B q, B’U),

where ¢ € Q,v € R"™ B € G(n, k). The action f3 is clearly smooth, free and proper.
Hence E := (Q xR™™) /A3 is a smooth manifold of dimension n+(n+1) = 2n+1. The
[-equivalence classe (i.e., 3-orbit) of (¢,v) € Q x R"*! is denoted by [(¢q,v)]. Then
one defines £([(g,v)]) = mo,m(g) which is well defined since the S-action preserves
the fibers of @ x R"™ — M; (q,v) — 7 am(q). We prove now that £ is isomorphic,
as a vector bundle over M, to

TTM®R - TM &R — M,
(X, t) — WTM(X).

Indeed, let f € T'(€) and notice that for any ¢ € Q there exists a unique f(g) € R™*!
such that [(¢, f(q))] = f(7o.m(q))) by the definition of the action 8. Then f: Q —
R™ is well defined and, for each ¢ = (z,#;A), there are unique X|, € T|, M,
r(q) € R such that

flq) = AX|, +r(q)2.

The maps ¢ — X|, and ¢ — 7r(g) are smooth. We show that the vector X,
and the real number r(gq) depend only on z and hence define a vector field and
a function on M. One has [((z,%;A),v)] = [((z,y; B),w)] if and only if there
is C € G(n,k) such that Cz = gy, CA = B and Cv = w. This means that
Clima = BA Yima : T|sMy, — T|3M;, (with imA denoting the image of A) and
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this defines C' uniquely as an element of G/(n, k) and also, by the definition of 1,
Cf(x,z,A) = f(z,y, B). Therefore,

BX|(J:,3};B) + 7"($’, Qa B)g - C(AX|(GC,56,A) + T(ZL‘, jv A)i) = BX|($,£;A) + 7"($’, :i‘a A)ga

which shows that X| 4.5) = X|(@s:4), 7(2,9; B) = (2, 2; A) and proves the claim.
Hence for each f € I'(§) there are unique X; € VF(M) and r; € C*°(M) such
that

f@) = [((z,3; 4), AX;lo + 7 (2)2) ],

(here the right hand side does not depend on the choice of (z,z; A) € ﬂélM(l‘))
Conversely, given X € VF(M), r € C*(M) we may define fix,) € I'(§) by

foxn (@) = [((z, 35 A), AX]; +r(2)7)],

where the right hand side does not depend on the choice of (z,&; A) € m, ' (x).
Clearly, for f € T'(§), one has f(x,,,) = f and, for (X,r) € VF(M) x C*(M),
one has (X ,7fy, ) = (X,r). This proves that the map defined by

T(€) = VF(M) x C*(M)
f= (X, 7y5)

is a bijection. It is easy to see that it is actually a C°°(M)-module homomor-
phism. Since C*°(M)-modules I'(¢) and VF (M) x C*°(M) are isomorphic and since
VE(M) x C*(M) is obviously isomorphic, as a C*°(M)-module, to I'(mryar), it
follows that & and 7ryqr are isomorphic vector bundles over M.

We now describe the connection VR and the inner product structure h; on &
and we determine to which objects they correspond to in the isomorphic bundle
TTMER-

By Section 2.1.3 in [13] and the above notation, one defines for f € T'(§), Y €
T|,M, e M

VIl o= [((2, 23 A)s Lo (V)| @500 f) ]

where f: @ — R"*! is defined above and .Zx(Y)|(z.2.4)f is defined componentwise
(ie., we let ZR(Y)|(,2:.4) to operate separately to each of the n 4+ 1 component
functions of f). The definition does not depend on (z, #; A) € 7,y (x) as should be

evident from the above discussions. The inner product on &, on the other hand, is
defined by

hie([((z, 2; A),v)], [((z, 95 B), w)]) = g(X,Y) + krt,

where v = AX +rz, w = BY + ty. It is clear that hy is well defined.
We slightly work out the expression for VRl Let feT(€),Y €eT|,M, z € M.
Then f(y,y, B) = BX¢|, + rf(y)y where X; € VF(M), ry € C*(M),

LW @aarf = L) @ (v, 9; B) = BXgl,) + Y(ry)i +rp(z)AY
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and choosing some path v on M such that 4(0) =Y, then ¢p, (7, ¢)(0) = Z&(Y)|,,
where ¢ = (z,2; A) and therefore

. . d .
Sni(Lo(Y)|@waa) ((, 95 B) = BXyl,), &) = Sn,k(&\o(ADR(% Q) () Xs|y0), )

d .
:a ’()Sn,k‘ (ADR(77 Q)<t>Xf|“/(t)7/7DR(77 q)@)) — Sn,k (AXf‘llﬁ AY)
= - gk<AXf|$7 AY) = _g(Xf|$7 Y) = SnJC(_%g(Xﬂmv Y)jv j)

Therefore,
) 1 A .
Lo(Y)@wa5)((y,9; B) — BXy|,) + Eg(thw Y)i € T3 My,
and we write

— R 1 R
LoV wsn T =(LalV)wan) (0,5 B) = BXL,) + 29(Xs 1o Y+ 7(2)AY )

(Y (rg) = 20Xl V)i

Correspondingly, using the isomorphism of ¢ and 7ryer, to the connection VR
and the non-degenerate metric h; on &, there is a connection VR and an indefinite
metric hy (with the same names as the ones on £) on mryqr such that for X €

VE(M), r € C®°(M) and Y € T|, M,
_ . 1 .
V)R}ol(X,T) =<A 1($R(Y)|(x,i;A)((y,y; B) — BX|y) + Eg(Xh,Y)x) +7r(x)Y,
1
Y(r) - Eg(Xu,Y)), (77)
where (x,2; A) € @ is arbitrary point of @) over x and

he((X, 1), (Y,s)) = g(X,Y) + krs,

for XY € T|,M, r, s € R.
We will now prove the metric property (76) of the connection V. This will be

done in the case of the bundle 7m7y;or but it gives the equivalent result on &.
If (X,r),(Y,s) € I'(nmryer) and Z € T|, M then

Z(hk((X’ ’I“), (Y7 5))) :Z(g(X7 Y) + k‘rs)
=g(VzX,Y|.)+ 9(X|o, V2Y) + kZ(r)s(x) + kr(z)Z(s).

On the other hand,
P(VE (X, 1), (V:9)) =50 (L0(2) |z (9,5 B) > BX],)
1 1
29X o, 2)i +7(2)AZ,AY ) + k(Z(r) = 29(Xs. 2)) s(x),

for any ¢ = (z,2; A) € WélM(.T) and choosing a path v s.t. (0) = Z we get

WVZE(X,r), (Y, 5)) =8n,k(% o (Ape (7, 0) (1) X |y ) , AY)

+ T(x)g(Z>Y|x) + (kZ(T) - g(X|$, Z))S(l‘),
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from which we finally get
hk(VEOI (Xv 7"), (Y7 5)) + hk((Xv 7"), VEOI(Ya 5))

s (52l (4D (1, DO X]y0). AY) + 52 (AX, L, (Ap (1:0) ()Y o)

+1(@)9(Z.Y]e) + (kZ(r) — 9(X12, Z)) s(z) + s(2)9(Z, X |.)
+ (kZ(s) = 9(Ylz, Z))r(2)

Z%}OS"“(ADR(% 0O X |y, Ape (v, O |yw)) + kZ(r)s(x) + kr () Z(s)
:%‘OQ(XL,@), Y|yw) +kZ(r)s(x) + kr(x)Z(s)
=g(V2X,Y].) + 9(X|o, V2Y) + kZ(r)s(z) + kr(z) Z(s),

which is exactly Z (he((X,r), (Y, 5))).
Motivated by Eq. (77), we make the following definition. If Y € T'|,M and
X € VF(M) then define

. 1
VX = AN (R (Y)|@waa) (v, 93 B) = BX|,) + Eg(X|$, Y)#),

where (z,2; A) is an arbitrary point on the fiber WélM(ZL‘) over z. It is easily seen
that it is R-linear in X and Y and, for f € C*°(M),
V(X)) = Y ()X + f(2) VX,

80 VR is a connection on M. Moreover, from the above computations, we see that
VRelis a metric connection with respect to g i.e., for X, Y € VF(M) and Z € T|, M,

Z(9(X,Y)) = g(VE'X,Y) + g(X, VEY).

We will prove that VR = V i.e., that VR is the Levi-Civita connection of ¢.
To do this, we show that the connection VR is torsion-free.
Let X,Y € VF(M), x € M. Then taking any q = (z,2; A) € 7T651M(£L’) and any
local smooth 7g-section A such that A|, = A and VA|, = 0, we compute
(VY = VX)) |, =A™ (LR(X) w230 (4. 9 B) = BY|,) + (X[, Y.)2)
— AT G5 ((y. 43 B) = BX|y) + 9(X [, Y.)2)
=A"1 (V(X,AX) (AY) — ﬁ(y,Ay) (AX))
=(VxY = VyX)|. = [X,Y]]..

Since VR is a torsion-free metric connection w.r.t. g on M, it follows by unique-
ness of Levi-Civita connection that

VRl = V.
Thus if X € VE(M), re C*(M) and Y € T|, M,
1
VI, 7) = (Ve X + (@)Y, Y (1) = 29(X]..Y)).

This concludes the proof of Theorem 6.11.
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Remark 6.12 Define a number d7; for i,j = 1,...,n+4 1 as follows,
=01, i=j=1,....n,

We say that a frame (X, ¢;)""! ofT| M &R is hy-orthonormal if hy (X, t,), (X;,t5)) =
52’3. We may build the manifold FOON(TI'TM@R) of hi-orthonormal frames in the standard
way.

yNow we will prove that the bundle FggN(ﬂTM@R) of hj-orthonormal frames of
Trymer 1S isomorphic to mg p as a bundle over M. The isomorphism @ : 7oy —
Fl o (mrarer) can be described as follows. Let (z,4; A) € Q. Then there are unique
(X, t;,) € T, M®R,i=1,...,n+1suchthate; = AX;+¢;2 wheree;, 1 = 1,...,n+1,
is the standard basis of R"*!. One easily computes that

—Snk( ) _55]7

since s, x(AX;, t;2) = 0, s,1(t;&, AX;) = 0. Thus define ®(z,2; A) := (Xz,t rand

We will give a description the inverse map ®~1. Let (X, 1; )”Jrl € Feen(Traer).
Then there are unique a; € R such that Z?jll a;(X;,t;) = (0,1). We notice that
a; =kt; foralli=1,... ,n and a,,1 = t,,1, since

n+1 n+1

Z CLZXZ, X Z az(éf] — ktltj),

i=1

and because 37" a;t; = 1. Hence k3.1, Z 2+12., = 1. Define & := >0 (kt;)e; +
tniieni1 for which s, (2,2) = k(kS0 12 +12,,) = k ie, & € M. Moreover,
it is easy to see that each e; — t;% is s, x-orthogonal to & and hence we may define
A:T|.M — T|ka by requiring that AX; = ¢, — t;2, i = 1,...,n+ 1. It can
be shown that A is well defined by this formula and an orthogonal linear map i.e.,
(z,%; A) € Q. Also, evidently ®(z,#; A) = (X;, ;).

6.3 Controllability Results for Rolling Against a Non-Flat
Space Form

It is now clear, thanks to Theorem 6.11, that the controllability of the rolling prob-
lem of a manifold M against a space form M,, amounts to checking whether the
connection VR of mpyer has full holonomy or not i.e., whether H v G(n, k) or
not.

For the rest of the section, we assume that k£ only takes the values 1 and —1, and
for notational purposes, we use the letter ”¢” instead of "£” and thus ¢ € {+1, —1}.

In Riemannian geometry, the reducibility of the Riemannian holonomy group is
characterized (in the complete simply connected case) by the de Rham Theorem
(see [28]). We aim at giving an analog of this result w.r.t. VR in Theorem 6.14
below. Before doing so, we first prove a simpler result showing that the conclusion
of Theorem 6.14 below is not trivial.
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Proposition 6.13 Suppose that (M, g) is a space form of constant curvature equal
to ¢ € {+1,—1}. Then the rolling connection VR defined by the rolling problem(R)
of (M,g) against (M., s,.) (i.e., we roll (M,g) against itself) is reducible and, for
each x € M, the irreducible subspaces of the action of the holonomy group HVR°||x on
T|.M @ R are all 1-dimensional.

Proof. Let (p',...,p"™") be the canonical chart of R"™! where p’ is the projection
onto the j-th factor and write h = h, for the inner product in TM & R. We will
assume that the space form M is the subset M, of R as defined previously. Define
a vector field Z := Z;:Lll p’b%i i.e., Z is equal to the half of the gradient in (R"*!,s,, )
of the function (p')*+---+ (p")? + ¢(p"™')?. Notice that Z is s, .~orthogonal to the
submanifold M = MC of R™"! and hence T|,M is the snc-orthogonal complement
of Z|, for x € M. Moreover, s, .(Z,Z) = c.
Next we define, for j = 1,...,n + 1, the vector fields

0 0
Y= —espo(—,2)2

and functions

9
op

ri(z) = CSne(

Zly).

The restrictions of Z, Y}, 7 onto M will be denoted by the same letters. Notice that
(Y;,r7), 7 =1,...,n+ 1 are h-orthogonal at each point of M and hence they form
a global orthogonal frame of m7y/or.

Denote, as usual, by V the Levi-Civita connection of (M, g). Take any vector
fields X = S04 X7 a?ﬂ’ € VF(M) and U = Y1 U a?ﬂ’ € VF(M) and let U be some
extension of U onto a neighbourhood of M in R"*! with corresponding components
Ut. Then we have for z € M,

VxUle = Ud(X|2) = Sne(Ua(X]2), Z]2) 2|0

where we understand U* as a map TR — TR"*! using the obvious isomorphisms
T|x(TR™1) — T|,R"™ for each X € T|,R".
Then we compute for any z € M and X = Z?jll Xia%i eT|.M

n+1 n+1
0 0

Z.(X) = ZXiZ*(api) = ina—pi = X,
i=1

i=1

and (notice that (%)* =0)

(5)200) = 3 X0 (57) = el 2OV — esnely 5 21 Z.(X)

= — csn,c(i X)Z|p — cSnel 0

— ZI)X,
ap]7 8p]7 |)
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from which we get
VxY; = (YJ)*(X|96) - CSn,C((Y})*(X|J:)v Ze)Z s

0 0 0
=— csmc(@,X)Zu — CSpe(5=,Z]) X + C‘Snvc(a—pyX)Zh

Op?’

el Z1) sue(X Z10) 2], = —csnel-2-, 210X

n,c ap]7 x) on,c ) T r — n,c apj, T .

=0
Moreover,
) 0 o

X(r7) = — Z.(X)) = sy o(—,

(r’) CS"’C<8pJ’ (X)) =cs <8pﬂ )

0 0 B
Sn’C(X’}/j) :S"vC(X’ @) - CS"C(Xa Z|a:) Sn C(Z> a—p]) n,c(X7 @)7

and thus

, A ‘ 1
V)R(OI(Yjvrj) (VXYj + T](l‘)X,X(TJ) - zsn,C(X7Yj|x))

( B CSn’c<—" Z|$)X + 08"7‘3(—'7 Z‘£B>X7 Csn,c<8—pj’ X) - Csn,c(X’ @))

op’ op’
=(0,0).
This means that all the mrper-sections (Y}, 77), j = 1,...,n+1 are VR°-parallel
globally. In particular, for any x € M and loop v € (M),
d

TN (V5P ha) = (P70 Ta0) (V) = 0,

which means that (z = ~(0))

(Y5, )y = (PY )50 (Y5, )], VL,

and hence

(PN ) = (Vi )by = (Vo 2

i.e., that the 1-dimensional subbundles spanned by each (Y}, ) are invariant under
the holonomy group of VR, Thus we have proved what we claimed.
O

Below we will only consider the case of positive curvature ¢ = +1 i.e., rolling
against the unit sphere.

Theorem 6.14 Let (M, g) be a complete Riemannian manifold and (M, s,.1) be
the unit sphere with the metric induced from the Euclidean metric of R"*!. If the
rolling connection VR (see (72)) corresponding to rolling of (M, g) against (M, s,41)
is reducible, then (M, s,,.1) is a Riemannian covering of (M, g) .

Recall that the reducibility of the connection VR means that its holonomy
group, which is a subgroup of G(n,c), is reducible i.e., there exists two nontrivial
invariant subspaces Vi,V ¢ {{0},R""!} of R""! which are invariant by the action
of this group.
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Proof. In this case we have ¢ = 41 (corresponding to the sphere space form) and
we will write h = hy for the inner product on TM & R.

Fix once and for all a point yp € M. The assumption that VR is reducible
means that there are two subspaces Vi, V, C T'|,,M & R which are nontrivial (i.e.,
Vi, Vo ¢ {{0},T|,,M @ R}) and invariant by the action of the holonomy group of
VRl at zp. Since the holonomy group of VR acts h-orthogonally on T|,,M, it
follows that V; L V5.

Define subbundles mp, : D = M, j=1,2 of mrarer such that for any x € M
one chooses a piecewise C'! curve ~ : [0,1] — M from zy to x and defines

Djl. = (PY)(MV;, j=1.2.

These definitions are independent of the chosen path v since if w is another such
curve, then w=ty € Q,,(M) is a loop based at 2y and hence by the invariance of
Vi, 7= 1,2 under the holonomy of VR

(PY)5(0)V; = (PT)(w) (PT*)h(w™ )V, = (PT)(@)V;.

=Vj

Moreover, since parallel transport (PVROI)%](W) is an h-orthogonal map, it follows that

D, L D, w.r.t the vector bundle metric h.

It is a standard fact that D;, 7 = 1,2, are smooth embedded submanifolds of
TM @R and that the restriction of mrygr to D; defines a smooth subbundle Tp;
as claimed. Moreover, it is clear that

mp, © Tp, = TrMeR,

and this sum is h-orthogonal.

We will now assume that both D;, j = 1,2, have dimension at least 2. The case
where one of them has dimension = 1 can be treated in a similar fashion and will be
omitted. So we let m+1 = dim Dy where m > 1 and then n—m = (n+1)—(m+1) =
dimD, > 21ie., 1 <m <n—2. Define for j = 1,2

D;" =pry(D;) = {X | (X,r) € D;} C TM,
and
N;={xe M| (0,1) € D;|,} C M.

Trivially, Ny N Ny = (). Also, N;, j = 1,2, are closed subsets of M since they can
be written as N; = {z € M | p;(T|,) = T|,} where pj : TM & R — D; is the
h-orthogonal projection onto D; and T is the (smooth) constant section x — (0, 1)
of TTMOR-

We next briefly sketch the rest of proof. We will show that NN; are nonempty
totally geodesic submanifolds of M and, for any given x; € N;, j = 1,2, that (M, g)
is locally isometric to the sphere

S={(X1,X2) ETZ N1 ®T|5,Ns | | X1 + || = 1},

with the metric G := (g|T|ml1]\,1 @ g|T‘%2N2)|S. Here L denotes the orthogonal com-

plement inside T'|,M w.r.t. g. Since (S,G) is isometric to the Euclidean sphere
(M, sp,1) this would finish the argument. The latter is rather long and we decom-
pose it in a sequence of ten lemmas and we start with the first one.
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Lemma 6.15 The sets N;, j = 1,2, are non-empty.

Proof. Note first that Ny U Ny # M since otherwise Ny = M\ N, would be open
and closed and similarly for N,. But then if, say, N; # 0 we have N; = M by
connectedness of M i.e., the point (0,1) € Dy|, for all x € M. Then for all z € M,
X € VF(M) one has, by the invariance of D; by the holonomy of V' and by (72),

Dils 3 VX[L(0,1) = (X, 0),

which implies that D; = T'M @ R, a contradiction.

Let ' € M\(N; U Ny) be arbitrary. Choose a basis (Xo,70), ... (X, m) of
D1l Then at least one of the numbers ro,...,r, is non-zero, since otherwise
one would have (X;, ;) = (X;,0) L (0,1) for all i and thus Dy|,» L (0,1) i.e
(0,1) € Dyl i.e., 2’ € Ny which is absurd. We assume that it is 7y which is non-
zero. By taking appropriate linear combinations of (X, 7;), ¢ = 0,...,m (and by
Gram-Schmidt’s process), one may change the basis (X;,7;), i =0, ..., m, of Dy|, so
that ry,...,7, =0, ro # 0 and that (Xo,79), (X1,0) ..., (X, 0) are h-orthonormal.
Also, Xy, ..., X, are non-zero: for Xy,..., X,, this is evident, and for X it follows
from the fact that if Xy = 0, then ro = 1 and hence 2’ € Ny, which contradicts our
choice of z’.

Now let 7 : R — M be the unit speed geodesic with v(0) = 2/, 4(0) = =2

[ Xoll, "
Parallel translate (X;,r;) along v by VR to get mp,-sections (X;(t),r;(t)) along 7.
In particular, from (74) one gets

7i(t) +ri(t) =0,

with 79(0) # 0, (0) = --- = r,(0) = 0. From the second equation in (73)
one obtains 7;(0) = ¢(¥(0), X;(0)) = ||X0||;1 9(Xo, X;) and thus 7;(0) = 0 for i =
1,...,m since (X;,0) is h-orthogonal to (Xg,rg). Moreover, 7o(0) = || Xol|,. Hence
ri(t) =0foralltand i =1,...,mand ro(t) = || Xo||, sin(t) + 7 cos(t). In particular,
at t =ty == arctan(—”;—g”g) one has r;(ty) = 0 for all i« = 0,...,m which implies
that D1l L (0,1) i.e., y(to) € No. This proves that N, is non-empty. The same
argument with D; and D, interchanged shows that N; is non-empty.

0

Lemma 6.16 For any z € M and any unit vector u € T'|, M,
(PY™)5(3)(0, 1) = (= sin()3u(t), cos(1)). (78)
Proof. Here and in what follows, v, (t) := exp,(tu). Write
(Xo(t). 70(1)) = (PY)5(7)(0, 1).

The second equation in (73) implies that 74(0) = g(%.(0), X¢(0)) = g(u,0) = 0 and,
since 79(0) = 1, the second equation in (74) gives

ro(t) = cos(t).
Notice that, for all £ € R,
Vi (= m(t) u(t)) + ro(t)Fu(t)

V(o) (= sin()) 3 (t) — sin(t) Vi, )y (t) + cos(t)hu(t)
=- COS(t)’yu( ) — 0+ cos(t)7u(t) = 0,
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i.e., —sin(t)y,(t) solves the same first order ODE as X(t), namely V., Xo +
ro(t)3(t) = 0 for all ¢ by the first equation in (73). Moreover, since

(= sin(t)3u(t))]emo = 0 = Xo(0),

it follows that X(t) = —sin(t)4,(t), which, combined with the fact that ry(t) =
cos(t) proven above, gives (78).
U

Lemma 6.17 The sets N;, j = 1,2, are complete, totally geodesic submanifolds of

Proof. We show this for NV;. The same argument then proves the claim for N,. Let
r € Ny and u € DM|, a unit vector. Since (0,1) € Dy|,, Eq. (78) implies that

Dilruty 2 (P4 (7)(0,1) = (—sin(t)4,,(t), cos(t))
Next notice that

Vet (cos(t)yu(t),sin(t)) =( = sin(t)3u(t) + sin(t)4u(t), cos(t) — g(Fu(t), cos(t) (1))
:(0’ 0)7

and hence, since (cos(t)%,(t),sin(t))|i—o = (u,0) € D|, (this is so because u €
DM|,, hence there is some r € R such that (u,r) € D;|, and since (0,1) € Dy,
because x € Ny, then Dy|, > (u,r) —r(0,1) = (u,0)), we have, for all t € R,

(cos(t)Fu(t),sin(t)) = (PY")b(u,0) € Dyl
Hence for all t € R,

Dilsu(ey 2 sin(t) (cos(t)u(t),sin(t)) + cos(t) ( — sin(t)3u(t), cos(t)) = (0,1).

This proves that any geodesic starting from a point of Ny with the initial direction
from D{” stays in V; forever. Hence, once it has been shown that /V; is a submanifold
of M with tangent space T|,N; = DM|, for all z € Ny, then automatically N; is
totally geodesic and complete.

Let z € N;y. If one takes an open neighbourhood U of z and local 7p,-sections
(Xmi1,"ms1), -« (X, ) which form a basis of Dy over U, then it is clear that
NNU={z €U ]|rpu(r)=---=ry(z) =0}

Thus let (Xyi1, T"mt1)s - -+ (Xn, 7o) € Do, be a basis of Dy|,. Choose € > 0 such
that exp, is a diffeomorphism from B, (0, €) onto its image U, and define for y € U,
j=m+1,...,n,

Rol —
(X5 i)y = (PY 7)o (7 = exp, (T exp, () (X, 7))
Then (Xj,r;) are local mp,-sections and it is clear that

Nl N UE - {y € UE | Tm—l—l(y) == Tn(y) = 0}
Moreover, from (73),

Vrile =Xjlee j=m+1,....n,
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which are linearly independent. Hence, by taking ¢ > 0 possibly smaller, we may
assume that the local vector fields Vr;, j = m +1,...,n, are linearly independent
on U.. But this means that Ny NU, ={y € U, | rpy1(y) = --- =rp(y) =0} is a
smooth embedded submanifold of U, with tangent space

TNy ={X eT|,M | g(Vr;,X)=0, j=m+1,...,n}
={XeT|,M|g(X;,X)=0, j=m+1,....,n}
=D}|,.
Since x € N; was arbitrary, this proves that N; is indeed an embedded subman-

ifold of M and T|,N, = D], for all x € N.
]

Lemma 6.18 Let d;(x) := d,(N;,x), v € M. Then in the set where d; is smooth,
(V cos(di()), cos(di(-))) € D, (79)
where V is the gradient w.r.t g.

Proof. Let x € M\N;. Choose y € Ny, u € (T|,Ny)* such that ~, : [0,d;(z)] = M
is the minimal normal unit speed geodesic from N; to z. Since (0, 1) € Dy|, (because
y € Ny), it follows that the parallel translate of (0, 1) along -, stays in D; which, in
view of (78), gives

Do 2 (PY7)5 (7)(0, 1) =( = sin(d (2))Fu(da (2)), cos(d ()
—( = sin(dy () V(ds ()] cos(d (x)))
:(V cos(d1(+))|es COS(dl(ZL‘))),
where the last two equalities hold true if z is not in the cut nor the conjugate locus
of N7 (nor is x in Ny, by assumption). Working in the complement of these points,
which is a dense subset of M and using a continuity argument, we may assure that

the result holds true everywhere where d; is smooth. The same argument proves the
formula (79) for dy as well.

Lemma 6.19 For every Y € VF(M), one has

9(R(Y, VA ()Vd(),Y) = g(Y.Y) = (Tr(@i())” (80)
wherever d; (-) is smooth.
Proof. 1t is known (see [27]) that for any Y, Z € VF(M), dy(-) satisfies a PDE
—g(R(Y]y, Vdi(y))Vdi(y), Z|,) =Hess*(d1(-)) (Y], Z1,)
+(Vva ) Hess(d () (Vy, Z1,),

for every y € M such that d; is smooth at y (and this is true in a dense subset of M).
In particular, y ¢ Nj. Also, since the set of points y € M where cos(d;(y)) = 0 or
sin(dy(y)) = 0 is clearly Lebesgue zero-measurable, we may assume that cos(d; (y)) #

0 and sin(d;(y)) # 0.
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Notice that (Xo,7) := (V cos(dy(-)), cos(dy(-))) belongs to Dy and has h-norm
equal to 1. We may choose in a neighbourhood U of y vector fields X;,...,X,, €
VF(U) such that (X, 7o), (X1,0),..., (X, 0) is an h-orthonormal basis of D; over
U. Assume also that (Xo,7g) is smooth on U. This implies that there are smooth

one-forms w}, i,7 =0,...,m defined by (set here r; =--- =r,, =0)
vlF;OI(XlWTi) = szj<y)<Xj7Tj>7 Y e VF<M>7
i=0

or, more explicitly,
i=0
Y(r;) = g(Y, X)) = Y wi(Y)r,
i=0
Since (Xo,70),-- -, (X, m) are h-orthonormal, it follows that w§ = —wg. The fact
that r, = --- =r,, = 0 implies that
—g(Y, X;) = ij(Y)ro, j=1,....m

ie.,

g(Y, Xj)
cos(di(+))’

But then one has that (notice that w) = 0)

w(Y) =

VyXo + 1Y = Zwé(Y)Xj,

j=1
which simplifies to

—sin(di (1)) Vy'Vdi(-) — cos(di(-)) Vy (di(-)) V(")

1 m
= —cos(di(")Y + m ;Q<Xj7 Y)Xj,

or

VyVdi () = = cot(di(-)) Vy (di(-)) Vi () + cot(di ()Y

1 m
_ (s () cos(d () ;Q<Xj7Y)Xj.
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Writing S(Y') := VyVd,(-) = Hess(d(+))(Y, ), one obtains

(Vea,()S)(Y) = Vya, ) (S(Y)) = S(Vea,()Y)

1
:Sin2(d1(-))VY(dl('))le(') — cot(dy () g(Vya Y, Vdi () Vi ()

a sinZ(ill(-))Y (cosQ( di(-))  sin? d1 )Zg (¥, X5)

o (Y, X Y, X;
Sin(dl( COS dl Z del =+ g( )Vvdl )

+ cot(di(+)) Ydel(.)Y( 1(1)) Vi (),

=9(Vd1(')7VVd1(»)Y)

where we used that Vyg,(y(di(+)) = g(Vdi(-), Vdi(-)) = 1. On the other hand,

Hess?(dy (-)(Y; -) = S2(Y) = S(S(Y))
=5 (= cot(dy(-) (s () Ve () + cotlda ()Y

1 m
- A a0 ;gm»,}f)xj)

= — C0t2<d1<))Vy<d1<))Vd1() + cot <d1< )) Sln Zg
1 m
G @) 2

where we used that Vd,(+), Xq,..., X, are g-orthonormal (recall that
Xo = —sin(dy(+))Vdi(+).)
Thus, for any Y, Z € VF(M), one has on U that
—9(R(Y, Vdi(-))Vdi(-), Z)
= —g(Y,2) + (sm )~ ) Tl () V()

m

— (Y, X, Z Y, X, VX, Z)).
sin(d, (-)) cos(d: () Z Vva(1X3)9(X5, Z) + 9(Y, X;)9(Vva ) X, Z))

]:1
We also set Z =Y and hence get

—g(R(Y,Vdi(-))Vdi(-),Y) = = g(Y,Y) + Vy (di(-)) Vy (da(-))

N Siﬂ(d1(-))2cos(d1(-)) Z g(Y, Vvdl(.)Xj)g<Xj, Y)_
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Here

ZQYVXO ( )

j:1 sin( d1
- d1 Z YZW Xo) X;9(X;,Y)
~ d1 Z Xi)g(X;,Y) =0,

)1 (%)2

where expression (%); is skew-symmetric in (4, 7) while (x)y is symmetric on (i, j).
Hence the sum is zero. We finally obtain

g(R(Y,Vdi(-))Vdi(-),Y) = g(Y,Y) — (Vy(di(-)))’,

as claimed. It is clear that this formula now holds at every point of M where d;(-) is
smooth and for any Y € VF(M). In particular, if Y is a unit vector g-perpendicular
to Vd;(-) at a point y of M, then Vyd;(-)|, = g(Vdi(-)|y,Y|,) = 0 and hence

sec(Y, di(-))], = +1.

O

Lemma 6.20 For every z € Ny, a unit vector u € (T|,N1)* and v € T|,M with
v L,

’ SlIl

[(expy )l ()l !H vlly, teR. (81)

In particular, for all unit vectors uy, us € (T|,N1)* one has
exp, (muy) = exp,(mus).

Proof. Let Y, ,(t) = £oexp,(t(u+ sv)) be the Jacobi field along 7,(t) = exp,(tu)
such that Y, ,(0) = 0, V5, (0)Yuw = v. Since v L u, it follows from the Gauss lemma,
(see [28]) that Y, ,(t) L 4.(t) for all ¢. Moreover, the assumption u € (T'|,N;y)*
implies that Vd;(-)|,,) = Ju(t) and thus Vy, ) (di(-)) = 9(Fu(t), Yu.(t)) = 0.

By polarization, one may write (80) into the form
R(Z(t)a Vu(t))’Yu(t) = Z(t) - g(Z(t)a Vu(t))/YU(t)a
for any vector field Z along ,. In particular,
V"yuv"yuyu,v - _R(Yu,va Vu)/yu = _Yu,va

since g(Yyo(t), Y (t)) = 0 for all £. On the other hand, the vector field Z(t) =
sin(t) Pt (., )v satisfies along 7,

VoV Z = —2), ¥
Z(0)=0, Vs, Z|4= = v,
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i.e., the same initial value problem as Y, ,. This implies that
Y,o(t) = sin(t) Pt (va)v, (82)

from which we obtain (81) because Y, ,(t) = t(exp, )«|w(v).

The last claim follows from the fact that the map exp,|s : S — M where
S ={ue€ (T|,N1)* | ||lu|| = 7} is a constant map. Indeed, if u € S, v € T,S and
we identify v as an element of T'|,M as usual, then by what we have just proved
(note that u = ng),

sin(7)

”(eXpw)*‘u(U)Hg - T Hv”g = 0

Hence exp, |s has zero differential on all over S which is connected, since its dimen-

sion is n —m — 1 > 1 by assumption. Hence exp, |5 is a constant map.
O

Lemma 6.21 For every x € N; and unit normal vector u € (T'|,N;)*, the geodesic
t > 7,(t) meets N exactly at ¢ € (Z + 3)m. The same holds with the roles of N; and
N, interchanged.

Proof. Let x € Ny and u € (T|,N1)* be a unit vector normal vector to N;. For
(X,7) € Dy, define (X(t),7(t)) = (PV")i(7,)(X,r). Then by (73), (74) we have
(notice that g(u, X) = 0 since u € (T|,N,)* = (DM|,)* and X € DM|,)

r(t) = r(0) cos(t).

Hence, (X (t),7(t)) is h-orthogonal to (0, 1) if and only of r(¢) = O i.e., r(0) cos(t) = 0.
This proves that (0,1) L Dy|,,«) i.e., (0,1) € Daly, ) i.e., vu(t) € Ny if and only if
t € (3 + Z)m (obviously, there is a vector (X, r) € Dy, with r # 0).

O

Lemma 6.22 The submanifolds Ny, N, are isometrically covered by Euclidean spheres
of dimensions m and n —m, respectively, and the fundamental groups of N; and N, are
finite and have the same number of elements. More precisely, for any x € N; define

S ={u € (TLN)* | Jlull, = 1},

equipped with the restriction of the metric g|, of T|,M. Then

Sy — No;  u— expgg(gu),

is a Riemannian covering. The same claim holds with N; and N, interchanged.

Proof. Denote by C; the component of N; containing x. We will show first that
C7 = Nj i.e., Ny is connected.

Let y; € N;. Since C is a closed subset of M, there is a minimal geodesic 7,
in M from C; to y; with 4,(0) = v a unit vector, z; := 7,(0) € C; and 7,(d) = y1,
with d := dy(y;, C1). By minimality, v € (T|,,C1)* = (T]s, N1)*. Hence by Lemma
6.21 the point x5 := exp,, (5v) = 7,(%) belongs to N,. Since the set

Say = {u € (T]ayN2)* | JJull, = 1}.
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is connected (its dimension is m > 1, by assumption that we made before), Lemma
6.21 implies that exp,, ( ng) is Contalned in a single component C] of N;. Writing
u = Y,(5), we have +u € S,, so

T d

Szl expy, (1) = exp,, (5 = )]s = o,

C1 3 exp,, (—Zu) = exp,, (

and since also z; € (1, it follow that C] = C;. But this implies that

Yo(T) = exp,, (Tv) = exp,, ( exp,, (tv)) = exp,, (3u) € Ci.

<l

2dt'z

It also follows from u € (T'|,,Nz)* that 4, (7) = |, exp,, (tu) € (T|,,(xN1)*. Since
2

exp,,((d — %)u) = y1 € Ny, Lemma 6.21 implies that d — Z € (3 + Z), from which,
since d > 0, we get d € Ny, where Ny = {0,1,2,...}.

By taking z5, = v,(37) € N, we may show similarly that v,(27) € C; and by
induction we get 7, (km) € C for every k € Ny. In particular, since d € Nym, we get
y1 = Y(d) € Cy. Since y; € N; was arbitrary, we get N3 C C; which proves the
claim.

By repeating the argument with N; and N, interchanged, we see that N, is
connected.

Eq. (81) shows that, taking u € S, and v € T|,S,, i.e., v L u, v L T|, Ny,

s

Jyex, (2<u+m>)Hg | .

(exp,): 550)]| = Il

This shows that u +— exp,(5u) is a local isometry S, — N,. In particular, the
image is open and closed in Ny, which is connected, hence u + exp,(Fu) is onto
Ny. According to Proposition I1.1.1 in 28], u — exp,(5u) is a covering S, — Ns.

Similarly, for any y € Ny the map S, — Ni; u + exp,(Fu) is a Riemannian
covering.

Finally, let us prove the statement about fundamental groups. Fix a point z; €
Nj and write ¢;(u) = exp, (Fu), i = 1,2, for maps ¢ : Sy, — Ny, ¢2 : Sz, — Ny
The fundamental groups m1(Ny), m(N2) of Ni, Ny are finite since their universal
coverings are the (normal) spheres S,,, S,, which are compact. Also, ¢;*(z5) and
¢y (1) are in one-to-one correspondence with m1(N2) and 7 (V7) respectively.

Define ®; : ¢7'(z2) = Spp; P1(u) = =5 expml(tu) € S,, and similarly &, :

¢y (21) = Say; Polu) = _%’3 exp,, (tu) € le. Clearly, for u € ¢;*(z2),

7 d

Go(P1(u)) = exp,, (— Sql

|, exp,, (1)) = exp,, (5 — Hullies = o1,
i.e., ®; maps ¢ (r2) — ¢ (z1). Similarly @y maps ¢; ' (21) — ¢ (z2). Finally,
®, and ®, are inverse maps to each other since for u € ¢ (z3),

d d

gl - XD, ( — t&’g expxl(su)) =

d

Dy (P (u)) = 1z

= expy, ((5 =) = u,

and similarly ®,(®5(u)) = u for u € ¢, *(z,).
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For the sake of simplicity, we will finish the proof of Theorem 6.14 under the
assumption that N, is simply connected and indicate in Remark 6.25 following the
proof how to handle the general case.

The fact that N, is simply connected is clearly equivalent to saying that

Sy = Noy ur— expm(gu),

defined in Lemma 6.22 is an isometry for some (and hence every) = € N;y. It then
follows from Lemma 6.22 that N; is (simply connected and) isometric to a sphere
as well.

We next get the following.

Lemma 6.23 Fix z; € N;, j =1,2 and let
Sy = {u € (T, N | ull, =13, Spy = {u € (T]aNo)* | lull, =1},
the unit normal spheres to Ny, Ny at xy, xo respectively. Consider first the maps
J1: 8z — No J2 i Sy, = N1 (83)
fiu) = exp,, (Fu) f2(v) = exp,, (5v),

and the map w which associates to (u,v) € S;, X S;, the unique element of Sy, such
that expy, ) (Fw(u,v)) = fi(u). Finally let
v 0, g[ X Sy, X Spy — M (84)
W(t, u,v) = expy, ) (tw(u,v)).
Suppose that S :=]0, Z[x Sz, x Sy, is endowed with the metric § such that
Ity = A +sin® () g|7),s,, + cos®(t)glry,s., -
Then W is a local isometry.

Proof. We use GG to denote the geodesic vector field on TM i.e., for u € TM we
have

3} d?
Glu = ,(0) = @‘Oexpwmu)(tu).

Then the projections on M by 7ry, of its integral curves are geodesics. Indeed, first
we notice that

d? . d? .
Glaur) = @‘0 exp., o (8Yu(t)) = @‘0%(’5 +8) = Tu(t),

and hence, if I" be a curve on T'M defined by I'(t) = 5,(t), then
L(t) = 4u(t) = Glsw) = Glro,

and I'(0) = u. Hence T satisfies the same initial value problem as t — ®g(t, u),
which implies that

O (t,u) =4,(t), VteR, ueTM,
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and in particular,
(a0 D) (t,u) = Y (t), VteR, ueTM.

For every w € T'M there is a direct sum decomposition H, ®V,, of T|,TM where
Vi = V]u(mrar) is the mppy-vertical fiber over v and H, is defined as

Hu 7X u ‘ X GT‘WTIVI M}

dt‘O

We write the elements of 7|, 7M w.r.t. this direct sum decomposition as (A, B)
where A € H,, B € V,,. It can now be shown that (see [28] Lemma 4.3, Chapter II)

(Pe)e)«|u(A, B) = (Zap) (1), Vi Zanp), (AB)eT|,TM, weTM,

where Z4 py is the unique Jacobi field along geodesic 7, such that Z 4 5 (0) = A,
Viu0Zap) = B.
We are now ready to prove the claim. First observe that

U(t,u,v) = (mrm o Pg)(t, w(u,v))

and hence, for (2, X, X,) € TS,

ot?

0

UG

X1, Xa) =) (ot w(u,0)) + (6)0):huguoyw (X1, Xz)

:(WTM)* (G‘Cbc(t,w(um)) + (Zw*(X17X2)<t)7 V%(T(T]V[O@G)(t,w(uﬂ}))Zw*(X17X2)))
:’.Yw(u,v) (t) + Zw*(Xth)(t)-

On the other hand,
(vra 0 @) (5, w(w,v)) = filw)
from where
(2)ehulX0) = Zu 30 (5)-
Similarly, since
(mrm © (I)G)(O, w(u,v)) = mram(w(u,v)) = fa(v),

we get

(f2)*‘v(X2> = Zw*(X17X2)<O>'

As in the proof of Lemma 6.20, we see that the Jacobi equation that Z,, x, x»)
satisfies is Vi ) Vi Zun(x1,X5) = —Zw.(X1,x0) (1) It is clear that this implies
that Zy, (x,,x.) has the form

Zw*(X17X2)(t) = Sin(t)Pot(/Yw(u,v))‘/l + Cos(t)POt('Yw(u,v))VvZa

105



for some Vi,V € T|pwM. Now, taking into account the boundary values of

Zuw,(x1,x2)(t) at t = 0 and ¢t = 7§ as derived above, we get

Vi =P2 () (F1)«|u(X1)),
Vo =(f2)«[o(X2).

Define

Y1(t) = sin(t) By (Vu(uw) Vi = sin(t) Pr (Yuo(uw)) ((f1)elu(X1)),

2

Y5(t) = cos(t) Py (Vaw(uw)) Va = c08(t) Py (Vao(uw) ) ((f2)[0(X2)),
which means that
Z =Y+ Y.

Notice that Y} and Y5 are Jacobi fields along vy (u,u)-
Since w(u,v) € (T, N)" and Fuwe) (5) € (T]fw)N2)* and

Yi(3) = (f)slu(X1) € Tl Nay - Ya(0) = (f2)uo(X2) € Tl ) N1,
it follows that
Y1,Ys L Yu(u)-
We claim that moreover
Y1 LY.

Indeed, since (f2)«]o(X2) € T'| sy N1 and (0,1) € Dy|s, ) (by definition of N;), we
have ((f2)+]+(X2),0) € D1, and hence, for all ¢,

(Zi (1), 71(1) == (PY" )5 (Yot (f2) | o(X2), 0) € Dy

On the other hand, 7 satisfies #; + r; = 0 with initial conditions r1(0) = 0 and

71(0) = 9(FYuw(u) (0), Z1(0)) = g(w(u,v), (f2)«]s(X2)) = 0 so ri(t) = 0 for all £. Thus
Z\(t) satisfies Vs 21 = 0 ie, Z1(t) = Fj(Vw(w)((f2)]o(X2)). Similarly, if

w (uvv) = _%‘% eprg(v) (tw(uvv)) = —"Vw(u,v)@)a
(Za(5 = 1),r2(5 = 1) = PV )b () (J1)elu(X1), 0) € D,

and we have 75(5 —t) = 0 and Z5(5 — t) = Pj(Yuwr(uw)) ((f1):]o(X1)) ie., Z(t) =
P (’Yw(uv Y((f1)«]o(X1)). But since Dy L Dy w.r.t. h, we have that (Z1,r1) L (Za,19)

wrt. hie. , g(Z1(t), Zo(t)) = 0 for all ¢t (since r1(t) = r2(t) = 0). Thus,

g(K@)v Yr?@)) :Sin<t> <t>g(P" (710 (u,v) )((fl) ‘ ( ))7 Pg(fyw(u,v))«]%)*‘U(X1>))
=sin(t) cos(t)g(Za(t), Z1(t)) = 0

This proves the claim, i.e., Y L Y5.
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Since [|w(u,v)||, = 1, one has

2

0 ) 2
' \II*<E7X17X2) = nyw(u,v)<t> + 1/'l(t) + Y2<t>Hg
g
. 2 2 2
= [Fu@a @l + V@5 + 1201
=1+ sin(£)” | (f1)«[u(XD) I + cos® () |(f2)o(X2)]l, -
Finally, since
0 T
(f1)lu(X1) = (expy, )l 5u(5X1) and (f2)fu(Xz2) = (expg, )il 30(5 X2),
Eq. (81) implies that
LT
(D)Xl = Tsin(HIX, = (Xl
LT
1(f2)slo(Xa)llg = [sin(H) [ Xell, = [[ Xl
and therefore
w20, %) =1 s 11 + co0) 1
g A A = 2lly 1l
g
. 0
:g|(t,u,v)(§7X17X2)u
i.e., Uis a local isometry S — M. O

We next need one extra lemma.

Lemma 6.24 The manifold M has constant constant curvature equal to 1.

Proof. By Lemma 6.23, we know that ¥ : S — M is a local isometry. Now (S, §)
has constant curvature = 1 since it is isometric to an open subset of the unit sphere

(cf. [27] Chapter 1, Section 4.2). The image W(S) of W is clearly a dense subset of
M (indeed, ¥(S) = M\(N; U Ny)), which implies that M has constant curvature
=1

O

This completes the proof the theorem in the case 1 < m < n — 2, since a
complete Riemannian manifold (M, g) with constant curvature = 1 is covered, in a
Riemannian sense, by the unit sphere i.e., M;. The cases m = 0 and m = n — 1
i.e., dimD; = 1 and dim Dy = 1, respectively, are treated exactly in the same way
as above, but in this case N is a discrete set which might not be connected.

O

Remark 6.25 The argument can easily be modified to deal with the case where N,
(nor N7) is not simply-connected. The simplifying assumption of simply connectedness
of N7 and N, made previously just serves to render the map w(+,-) globally defined on
Sy, X Sz,. Otherwise we must define w only locally and, in its definition, make a choice
corresponding to different sheets (of which there is a finite number).
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Remark 6.26 As mentioned in the introduction, the following issue to address is that
of an irreducible holonomy group of the rolling connection VR i.e., for a given 2 € M,
the only non-trivial subspace of T'|,M @ R left invariant by parallel transport w.r.t VFe!
along loops based at x € M is T'|,M @ R.

7 Rolling Problem (R) in 3D

As mentioned in introduction, the goal of this chapter is to provide a local structure
theorem of the orbits Op, (qp) when M and M are 3-dimensional Riemannian man-
ifolds. Recall that complete controllability of (X)g is equivalent to openess of all
the orbits of (X)g, thanks to the fact that @ is connected and (X)g is driftless. In
case there is no complete controllability, then there exists a non open orbit which is
an immersed manifold in ) of dimension at most eigth. Moreover, as a fiber bundle
over M, the fiber has dimension at most five.

7.1 Statement of the Results and Proof Strategy

Our first theorem provides all the possibilities for the local structure of a non open
orbit for the rolling (R) of two 3D Riemannian manifolds.

Theorem 7.1 Let (M, g), (M,§) be 3-dimensional Riemannian manifolds. Assume
that (X)g is not completely controllable and let Op, (qo), for some ¢y € @, be a non
open orbit. Then, there exists an open and dense subset O of Op, (qo) so that, for every
¢1 = (z1,%1; Ay) € O, there are neighbourhoods U of x; and U of 2, such that one of
the following holds:

(a) (U, g|v) and (U,Q|U) are (locally) isometric;
(b) (U, g|y) and (U,Q|U) are both of class Mg for some 3 > 0;

(c) (U, glv) and (U, §|;) are both isometric to warped products (I x N, hy), (I x
N, hf) for some open interval I C R and warping functions f, f which moreover
satisfy either

f/(t) = Al(t) or a or
(A Fi = 0 forallt eI

ORI ()

f(t) F(t)

For the definition and results on warped products and class Mg, we refer to
Appendix D.2.

Note that we do not address here to the issue of the global structure of a non
open orbit for the rolling (R) of two 3D Riemmanian manifolds. For that, one would
have to "glue” together the local information provided by Theorem 7.1. Instead, our
second theorem below shows, in some sense, that the list of possibilities established
in Theorem 7.1 is complete. We will exclude the case where Op, (qo) is an integral
manifold since in this case this orbit has dimension 3 and (M, g), (M, §) are locally
isometric, see Corollary 5.24 and Remark 5.25.

forall t € I.

(B) there is a constant K € R such that
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Theorem 7.2 Let (M, g), (M,§) be 3D Riemannian manifolds, ¢y = (x¢, 0; Ag) €
@) and suppose Op,(qo) is not an integral manifold of Dg. If one writes M° :=
To.m(Opy (90)), M := 74 5 (Opy (o)), then the following holds true.

(a) If (M,g), (M,§j) are both of class My and if Ey, By, F3 and Ey, E,, Es are
adapted frames of (M, g) and (M, g), respectively, then one has:

(A) If AgEsls, = £Es]s,, then dim Op, (qo) = 7;

(B) If AgEsls, # £Fs|z, and if (only) one of (M°,g) or (M°,§) has constant
curvature, then dim Op,, (qp) = T7;

(C) Otherwise, dim Op, (q0) = 8.

(b) If (M, g) = (IxXN, hy), (M,§) = (IxN, izf) are warped products, where I, 1 ¢ R
are open intervals, and if o = (r0,%0), Zo = (70, Jo), then one has

0 0 .
(A) If AOE\(TO,%) = 5\(%,%) and if for every ¢ s.t. (t +ro,t+7) € [ x [ it
holds

then dim Op, (q0) = 6;

(B) Suppose there is a constant K € R such that ) =—-K = fA (:r’) for all
A J(r) 1)
(ri)eIxI.
0 0 f'(ro) f(fo)
B1) If Ao—|trowo) = £=l(70.50) @and = +———=, with *-cases cor-
(BL) 1 Aoz loown = 5 le0a0 2nd o5 i)

respondingly on both cases, then dim Op, (qy) = 6;

(B2) If (only) one of (M°,g), (M°,§) has constant curvature, then one has
dim ODR(QO) - 6;
(B3) Otherwise dim Op,(qp) = 8.

Here (r,y) = 2|4y, (7,9) — £|(.g), are the vector fields in I x N and IxN
induced by the canonical, positively oriented vector field r — %’r onI,I CR.

From now on(M, g), (M, §) will be connected, oriented 3-dimensional Rieman-
nian manifolds. The Hodge-duals of (M, g), (M, g) are denoted by x := %), and
* = LIVE

As a reminder, for gy = (g, To; Ag) € @, we will write

WODR(QO) ::ﬂ-Q|ODR(q0) : O’DR((]O) — M x M
TOpg (0),M ~=PT1 O TOp (q0) Opg(90) > M

TOpy (q0),M ~—PL2 © TOpp (q0) * Opy (q0) — M

where pry : M X M — M, pry : M x M — M are projections onto the first and
second factor, respectively.
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Before we start the arguments for Theorems 7.1 and 7.2, we give next two propo-
sitions which are both instrumental in these arguments and also of independant
interest.

Proposition 7.3 Let (M, g), (M,§) be two Riemannian manifolds of dimension 3,
qo = (2o, To; Ao) € @ and suppose there is an open subset O of Op, (¢y) and a smooth
unit vector field Ey € VF(mg a/(0)) such that v(A* Es)|, is tangent to Op, (qo) for all
q € O. If the orbit Op,(qo) is not open in (), then for any x € mg (O) and any unit
vector fields E1, E5 such that £y, Ey, E5 is an orthonormal frame in some neighbourhood
U of x in M, then the connection table associated to F1, Es, F5 is given by

1?2,3) 20 _1;%1,2)
I'= ng,l) F(3,1) Pg:s,l) )
Fhgy 0 Ty

and

V(Diog) =0, V([{1y) =0, VVe€E, .. yevuU,

where I' = [(T],)i],  TY,,) = 9(Vi, Ei, E) and x1 = (2,3), %2 = (3,1) and 3 = (1,2)

Remark 7.4 In particular, this means that the assumptions of the previous proposi-
tions imply that the assumptions of Proposition D.19 are fulfilled.

Proof. Notice that mg, 1/(O) is open in M since To,,_ (g0),M = TQ,M|0p, (0) 1S @ Sub-
mersion. Without loss of generality, we may assume that there exist Ei, E3 €
VF (7 .(0)) such that Ey, Ey, E5 form an orthonormal basis.

We begin by computing in O,

[LR(Ey), v((-) *x E2)llg = — Lus(A(xEa) Ea)lg + v(Ax Vi, B,
=v(Ax <_F%1,2)E1 + F%2,3)E3)‘q =: Val,

whence V; is a vector field in O and furthermore

[Va, () % Ba)llq =v(Ax(~T{ 2 E1 + Ty 3)F3), xEalso) g
=v(A* (_F%1,2)E3 - F?2,3)El))|q =: Ms|,

where Ms is a vector field in O as well. Now if there were an open subset O’ of O the
TOp, (q0)-Vertical vector fields where v(Ax Es)|q, Valq, Ma|, were linearly independent
for all ¢ € O’, it would follow that they form a basis of V| ,(7g) for ¢ € O" and hence
V04 (mg) C T|,(Opy(q0)) for g € O'. Then Corollary 5.21 would imply that Op, (o)
is open, which is a contradiction. Hence in a dense subset O; of O one has that
V(A * E)|y, Valg, Mal, are linearly dependent which implies

0 1 0
0 = det _Fzm) 0 F%22,3) = _<<F%1,2))2 + (F%Q,S))2>
—Thos 0 Ty
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1.e.
F%1,2) =0, I1(2 3) — =0

on Top (g0),M(Oa). 1t is clear that o, (40),1(Oa) is dense in To, (g),m(O) so the
above relation holds on the open subset TOp, (40),m (O) of M.
Next compute

[Lr(Er), v(() % E)llg =Zs(AEs)|g + v(Ax (=T{ 0 Er + D3 E3))|g = Zr(Es)|y — Lsly,
[Lr(Es), v((-) * Ea)llg = — Zxs(AE)|g — v(Ax (=T o) Er + 50 F3))lg
=— ZR(E1)|q + Lalg,

where Ly, Ly € VF(O’) such that

Ly :=Zs(By)|g + v(Ax (=T 0 Er + T3 Es))lg,
L3y :==Zxs(EBs)|q — v(Ax (- F(1 2 Er + F(2 3) E3))lg-

Continuing by taking brackets of these against v(A x Ey)|, gives

(L1, v((-) % Ex)lg =v(Ax (=T 9 Er + Lo Es))|q + v(Ax(=T7) 9y By + Ty 5 Fs3), xEaso)|q
=v(Ax(— (F 12) T F( ))El + (F%Q 3) F?l,Q))E3)|q = Ms

(L3, v(() x E2)]|q =v(A*(— F?l o B+ F(23 E3))lq — v(Al* (_F%l,z)El + F%2,3)E3)7*E2]50)‘q

=v(A* ((_F?1,2) + F(2,3))E1 + (F?2,3) + F%l,2))E3)|q =M

Since v(Ax Ey)|q, Milg, M|, are smooth mo,, (4)-vertical vector fields defined on O,
we may again resort to Corollary 5.21 to deduce that

0 1 0

0 = det (P%l 2) + F?Q,g)) 0 P%Q,B) - F?m) = —((F%m) + F?Q,S))Q + (F%2,3) B F?lﬂ))z)

Tl + T 0 T + Ty

1.e.
1
Ths = ~Tha T =Thg

01 TOp (40),0 (O):
We will now prove that derivatives of F%z 5) and I‘%l 5 in the Ey-directions vanish
on Top (0),m(O). To reach this we first notice that

Lilg = s (Bn)]g — v(A* (T 2.3 E1 + F(1 2)E3))|
and then compute
(L (Ex), Lally =Zas(Th oy Bs — Ty Bo)ly — Za(Vis, Eu),
+ v(AR(Ey, A Ey) — R(AE, A0)A)),
+ 1—%1 Q)ZNS(AE2)|q - V(A * (El(F%Q 3))E1 + EI(F%LQ))EIS)) lq
- ’/(A * (F(2 3) (F(l 2y Eo — F(3. 1)E3) + F(1 2) (F(:s nEr — F%2,3)E2))) lq
=Tl ) Lo (B2)lg — Tig1y Lalg — Zr(Vie, Er)lg
- ’/(A * (Er (F(2 3))E1 + EI(F%1,2))E3)) lg-
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So if one define Jy|, := v (A% (E\(Tfy4) Er + E1(T(y 5)) E3))|g, then Ji is a smooth
)

vector field in O (tangent to Op, (qo)) and
[T, v(() % Eallg = v(A* (E1(Fiy ) Es — Ey(T5)) E1)) g

Since V(A * E1)lg, Jilg and [Ji, v((-) x Esl|y are moy, (4 vertical vector fields in O
and Op, (o) is not open, we again deduce that '

El(F%Q,B)) =0, El(r(l 2)) 0.
In a similar way,
[Lr(Es), Ls)lg =Zxs (Dl 1) By + Ty 9 B2)lg — Zr(Vi, Bs)g
+ v(AR(Es A\ Es) — R(AE5 A 0)A)],
+ Fh,z)fNS(AEzﬂq — V(A x (—E3(T {1 9) 1 + Es(T(y3)Es))l,
- V(A * (=T (1, 2)(F%2 g F — F(3 1)E3) + P(Q 3)(F(3 nEr+ F(1 2)E2)) lq
:F?s,l)L1|q + Fll 2) $R<E2)‘q - $R<VE3E3>|q
- V(A * (— E3(F(1 2))E1 + E3(F(2 3) )E3)) lq

50 Jalg = v(Ax (=E3(T(y 5) B + E3(Dly) Es)) |y defines a smooth vector field on
O and

[J3, v((-) * E)llg = v(A* (—Es(T( ) Es — Es(T(a.3)) E1)) lg-
The same argument as before implies that
E3(F%1,2)) =0, E3(F(2 3)) 0.
Since F; is spanned by Ey, Es, the claim follows. This completes the proof. O
We next provide a completary result to Proposition 7.3 which will be fundamental

for the proof of Theorem 7.2.

Proposition 7.5 Let (M, g), (M,§) be two Riemannian manifolds of dimension 3,
qo = (g, To; Ag) € Q. Assume that there is an open subset O of Op, (¢o) and a smooth
orthonormal local frame E, E», E5 € VE(U) defined on the open subset U := 7 5,(O)

of M with respect to which the connection table has the form
F§2,3) 20 ]‘;%l 2)

I'= ng,l) F(3 1) Pg:m) )
Fhgy 0 Ty

and that moreover
V(Dog) =0, V(Dy) =0, VVeB|,, yel.
Define smooth vector fields Ly, Lo, L3 on the open subset O := WélM(U) of Q by

L] =Zns(Er)|q —v(Ax (T 23)E1 + F(1 2E3))lg
Lolg =Ty (1) Zus (Bl
Lslg =Zns(EB3)|q — v(Ax (_F%1,2)E1 + F%2,3)E3))‘q-

Then we have the following:
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(i) If v(Ax Ey)|, is tangent to the orbit Op,(qo) at every point ¢ € O, then the
vectors

Lr(E)lgs Zr(En)lq, Zr(E3)lg, V(A% Ed)lg, Lilg, Lalg, Lslg
are all tangent to Op, (qo) for every ¢ € O.

(i) On O we have the following Lie-bracket formulas

[ZLr(E1), v((1) * E2)llq = Zr(E3)|q — Lslqg
[Lr(Es), v((-) % E2)llg =0
[Zr(E3), v((+) * E2)l|g = —Zr(Er)|q + Lilq
(L1, v((-) % E2)]|g =
(L3, v((-) % E2)llg =0
[$R<E1) ”q Fls 1) L3|q + Fls 1) $R<E3)‘q
(Lo (Es), Lsllg = Ty 1y Lalg — T 1) LR (B
[ZRr(E2), Li]l, —Flm Ly, — (T (2,3) T F(3 ) Lslg

)

[Lr(Ey), Ls)lg =(Tiaz) + Tsay) Lilg + Doy Lalg

[LR(E3), L]]g =2La|, — F33 yLslg = Lo(Vie Es)lg — D5 ZLr(Ea)l,
— (K + (F%2,3)) (F%1,2))2)’/<A*E2)‘q

[Lr(Er), Lsllg = = 2Lalg + Ui 1y Lalg — LoV Br)lg + Tz 1y -Zr(E2)lg
+ (K2 + (F%LQ))Q + (F%2,3))2)V(A*E2)|q

[Ls, L]lg =2Lalg — Tiz.1yLalg — Tis1y Lalg
— (K + (F%2,3))2 + (F%1,2))2)V(A*E2)|q-

Proof. It has been already shown in the course of the proof of Proposition 7.3
that the vectors ZR(Eh)|q, LR(E2)|q, Lr(Es)|q V(A * Es)lg, L]y, L3|, are tangent
to Opy (qo) for ¢ € O. Moreover, the first 7 brackets appearing in the statement of
this corollary are immediately established from the computations done explicitly in
the proof of Proposition 7.3.

We compute,

[Lr(E2), L]lq
= — L(Vi Bl + Ls(—T1)Es)|g + v(AR(Ey A Ey) — R(AE, N 0)A)
+ ZNS(A( (F%2,3)E1 + 1ﬂ%1,2)E3))E2)|q
—v(Ax (F(Z 3 (= F%S,l)E?o) + F%l,Q)(F%s,l)El))) ‘q
— v(Ax (Ey(Dly3)) Er + Ea(T{, ) E3))
=— (VB — F?3,1)L3|q + Kv(Ax E3)|, + gNS<A<F%2,3)E3 - F%1,2)E1))|q
- V(A * (EQ(F%Q 3))E1 + E2(F%1 2) )E3))lq
== "%R(VEIEQ)‘Q F23 1) L3|q + $R<F(2 3) Es — F%1,2)El)|q - F%2,3)L3 + F%1,2)L1
+ (QF%2,3)F%1,2) E2(P(2 3) ))v(Ax Er)lg
+ <_E2(F%1,2)) + K — (F%Q,B))Q + (F%LQ))Q)V(A * E3)l,
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But one knows from Eq. (116) that —K = —EQ(F%LQ)) (F% ))2 — (F%273))2 and

—EQ(F%M)) + 21“%172)1“%2,3) = 0 and since also Vg, Ey = F%l 0B+ F%273)E3, this
simplifies to
[gR(E2)7L1] (31 LB‘q 23)L3+F(1 2)L

Bracket [ZRr(Es), Ls], can be found by similar computations.
We compute [.Zx (Ej3), L1, We have, recalling that E;(T'(, ) = 0, Ei(T'(,5) =0
forv=1, 3,

[Lr(E3), La]l,
= — (Vi Bs)lg + Las(Tigg B2 — Ty 1y Fs)lg

+ v(AR(E35 A Ey)|, — R(AE3 A 0)]
+ gNS<A( (F(2 3)El + F(l 2)E3))E3)|q
—v(Ax (F(2,3)(F%2,3)E2 - F(3,1)E3) + F%m)(r( nEr+ F%l 2)E2)) ‘
=— fR(VElESNq (—Ka2 — (Pla)® — (Tla) (A x Ey)lq
- F?S,l)L3|q (2 3)ZR(E2)|q + 2LQ|q
The computation of [Zr(E1), Ls)|, is similar.
We compute [Ls, L;] with the following 4 steps:
[ s (EB3), Zas(E1)]lg =Zs(—T 3 e+ 2Ty 5 E2 — F?S,l)E3)|q
+ v(AR(Fs A Ey) — R(0 A0)A)),

[XNS(EZ%)a V(( ) (P(2 3)E1 + F(11,2)E3))} |q
:V(A * (F%2,3)(F(2,3)E2 - F?s,l)E?») + F%1,2)(F?3,1)E1 + F%1,2)E2))) ’q

[V« ) * (— F(l 2)E1 + F(23 3))73NS(E1)] lq
(A * (_P(1,2)(F(1,2)E2 - F(13,1)E3) + F(12,3)(11(13,1)E1 - F%2,3)E2))) ‘q

() * (= F(l b+ F(Q 3)E3))7 v((-)* (F(12,3)E1 + F(11,2)E3))} g
=V (A (=Tfi0)B1 + Tlo ) Bs), x(Tio Br + Tu gy Bs)],, ),

((F(l 2)) (F(23 )? Jv(Ax E)lg-

Collecting these gives,

[LBaLl” Fl31L1|q 31L3|q+2F(23$NS( )‘
— (K2 + (F(2 3)) + (F%m)) JV(Ax Es)ly.
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7.2 Proof of Theorem 7.1

In this subsection we will prove Theorem 7.1. We therefore fix for the rest of the
paragraph a non open orbit Op, (qo), for some ¢y € Q). By Proposition 5.2, one has
that dim Op, (¢) < 9 = dim @ and, by Corollary 5.19, one knows that the rank of
Rol, is less than or equal to two, for every ¢ € Op, (qo)-

For j = 0,1,2, we define O; as the set of points of Op,(qy) where rank Rol, is
locally equal to 7, i.e.,

O; ={q=(z,2; A) € Op,(qo) | there exists an open neighbourhood O

of ¢ in Op, (qo) such that rank Rol, = j, V¢’ € O}.

Notice that the union of the O,’s, when j =0, 1,2, is an open and dense in Op, (qo)
since each O; is open in Op,(qo) (but might be empty).

Clearly, Item (a) in Theorem 7.1 describes the local structures of (M,g) and
(M ,g) at a point ¢ € Op. The rest of the argument consists in addressing the same
issue, first for ¢ € Oy and then g € O;.

7.2.1 Local Structures for the Manifolds Around ¢ € O,

Throughout the subsection, we assume, if not otherwise stated, that the orbit
Opy(qo) is not open in @ (i.e., dim Op,(q0) < 9 = dim @) and, in the statements
involving O,, the latter is non empty. Note that O; could have been defined simply
as the set of points of Op, (¢o) where rank Rol, is equal to 2.

Proposition 7.6 Let gy = (x¢,Z0; Ag) € @ and assume that the orbit Op,(qo) is
not open in (. Then for every ¢ = (x,2; A) € O, there exist an orthonormal pair
Xa,Ya € T| .M such that if Z4 := x(XaAYa) then X4, Y4, Z4 is a positively oriented
orthonormal pair with respect to which R and Rol may be written as

0 K(z) 0 0
R(XA A YA) = —K(ZE) 0 0], *R(XA VAN YA) = 0
0 0 0 —K(l‘)
0 0 0 —K; (ZE)
R(YA A ZA) =10 0 Kl(l‘) , *R(YA N ZA) = 0
0 —K; (ZL‘) 0 0
0 0 —Kg(l‘) 0
R(ZA/\XA) = 0 0 0 , *R(ZA/\XA) = —KQ(ZE)
KQ(x) 0 0 0

Rol, (X4 A Y4) =0,

_ 0 0 —a(q) _ — K7 (q))

Rol,(YaAZa)=| 0 0 K7'q) |, *Roly(YanZa)=| —ale) |,
alg) —Kf(q) 0 0

. 0 0 —K(q) _ —a(q)

Rol,(ZanXa)=| 0 0 alg) |, *Roly(ZsAXa) = | —E5(q)
K3(q) —alq) 0 0

where K, K1, Ky : M — R.
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Consequently, we see that with respect to the orthonormal oriented basis X 4, Y4, Z 4
of T'|;M given by the proposition, we have

0
*ATR(AX 4 N AY,)A = 0
—K(z)
. —Ky(z) + KT(q)
* ATR(AYy N AZY)A = a(q)
0
- a(q)
*sATR(AZy NAX A = | —Ky(x) + KR'(q) | . (85)
0

Before pursuing to the proof, we want to fix some additional notations and so
we make the following remark.

Remark 7.7 By the last proposition —K;(z), —Ky(z), —K(x) are the eigenvalues
of R|, corresponding to eigenvectors xX 4, *xY 4, xZ 4 given by Proposition 7.6, for ¢ =
(x,2;A) € O,.

Recall that Q(M, M) — Q(M, M) such that ¢ = (x,4; A) — G = (&, 2; AT) is an
diffeomorphism which maps Dy to Z/);, where the latter is the rolling distribution on
Q(M, M). Hence this map maps Dg-orbits Op,, (q) to Z/);—orbits Ol/);(cj), forall ¢ € Q.
So the rolling problem (R) is completely symmetric w.r.t. the changing of the roles of
(M, g) and (N1, g). A

Hence Proposition 7.6 gives, when the roles of (M,g), (M, g) are changed, for
every ¢ = (x,&;A) € O, vectors X4,Yy, Zs € T|;M such that Ii;lq((ATXA) A
(ATY,)) = 0 and that #X 4, %24, *Z 4 are eigenbasis of R|; with eigenvalues which we
call =K, (&), —K»(2), —K (&), respectively.

The condition Iiglq(XA AYy) = 0 implies that K(z) = K (&) for every ¢ =
(SL’,.TA};A) € 02 and also that AZA = ZA, since *(XA A YA) = ZA, ;(XA A YA) = ZA.

We divide the proof of Proposition 7.6 into several lemmas.

Lemma 7.8 For every ¢ = (z,2; A) € Oy and any orthonormal pair (which exists)
XA,YA € T|mM such that ROl(XA N YA) = 0 and XA,YA,ZA = *(XA A YA) is an
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oriented orthonormal basis of 7|, M, one has with respect to the basis X4, Y4, Z4,

0 Ka na Ba
R(XA/\YA) =-Ks 0 =04, *R(XA/\YA) = na
—na Ba 0 K4
0 —Ba &a —K}
R(YA/\ZA) = ﬁA 0 K}x , *R(YA/\ZA) = gA
—a =K} 0 Ba
0 —na —K3 €a
R(ZA/\XA): 1A 0 €4 ], *R(ZA/\XA): —Ki
K3 &a 0 nA
Rol, (X4 AY4) =0,
. 0 0 —« - —KlROI
ROlq(YA VAN ZA) = 0 0 K{?ol , *ROlq(YA N ZA) = —Q s
o —K{?d 0 0
_ 0 0 —K§°| . —a
ROlq(ZA/\XA) = 0 0 Q , *Rolq(ZA/\XA) = —K;d
K§°| — 0 0

Here 14, Ba, 4, a, KR KR! depend a priori on the basis X 4, Y4, Z4 and on the point

q.
Moreover, the choice of the above quantities can be made locally smoothly on O,
i.e. every ¢ € Oy admits an open neighbourhood O} in O, such that the selection of

these quantities can be performed smoothly on O),.

Proof. Since rank Rol, = 2 < 3 for ¢ € Oy, it follows that there is a unit vector wy €
AN*T| M such that Rol,(w4) = 0. But in dimension 3, as mentioned in Appendix, one
then has an orthonormal pair X4, Y4 € T'|,M such that wa = X4 A Y4. Moreover,
the assignments ¢ — wy, X4,Y4 can be made locally smoothly. Then defining
Za = *(Xa NYy), the fact that Rol, is a symmetric map implies that

g(Rol,(Ya A Z4), X4 AYa) =g(Roly (XA AY4), YA A Z4) =0
g(Roly(Za A Xa), X4 AYa) =g(Roly(Xa AY4), Zs A X4) = 0.
This finishes the proof. O
As a consequence of the previous result and because, for X,Y € T'|, M, one gets
ATR(AX NAY)A=R(X AY) —Rol, (X AY)
then we have that, w.r.t. the oriented orthonormal basis AX 4, AY;, AZ of T| xM ,

. Ba
*)A(ATR(AXA N AYA)A = 1A
_KA
. — K + KT
*ATR(AYA N AZ4)A = o+
Ba
. §a+
YATR(AZyNAX A = | —K3 + K& | . (86)
na
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Notice that the assumption that rank Rol, = 2 on O, is equivalent to the fact

that for any choice of X 4, Yy, Z4 as above, Iiglq(YA A Z4) and Iiglq(ZA A X4) are
linearly independent for every ¢ = (z,#; A) € Oy i.e.

Ky (q) K3 (q) — alq)* # 0. (87)

We will now show that, with any (non-unique) choice of X,4,Y, as in Lemma
7.8, one has that ng = 64 = 0.

Lemma 7.9 Choose any X4, Y4, Z4 = *(X4AY4) asin Lemma 7.8. Then for every
q= (x,2; A) € Oy and any vector fields X, Y, Z, W € VF(M) one has

[v(Rol(X AY)(+)), ¥(Rol(Z AW)(-))] ’q € v(span{*Xa,*xYa})|, C T'|,O0p(q0)-
(88)

Moreover, 7|0, is an submersion (onto an open subset of M x M), dim V|,(Op, (o)) =
2 for all ¢ € O and dim Op,, (qo) = 8.

Proof. First notice that by Lemma 7.8

ROlq(*XA) . —KFOI —Q *XA
Rol,(xYa) ) — \ —a —KF&') \xY,
for ¢ = (x,2; A) € O5 and since the determinant of the matrix on the right hand

side is, at ¢ € Oy, K¥'(q)KE(q) — a(q)? # 0, as noticed in (87) above, it follows
that

*X 4, *Y4 € span{Rol,(xX 4), Rol,(*Y4)}.

Next, from Proposition 5.9 we know that, for every ¢ = (z,2; A) € Op,(qo) and
every Z,W € T|,M

v(Roly(Z AW))lq € Vlg(mop, (a0))  T'l4Opr(a0)-

Hence, v(Roly(xX4)), v(Roly(xYa)) € V]y(Top, (40)) for every ¢ € Os and it follows
from the above that

V(Ax Xa),v(AxYa) € V|q<7TODR((IO)>7 (89)

for all ¢ = (z,2; A) € Os.

We claim that o, (4|0, is a submersion (onto an open subset of M x M).
Indeed, for any vector field W € VF(M) one has Zx(W)|, € T],0p,(qo) for ¢ =
(z,2; A) € Oy and since the assignments ¢ — X4, Y4 can be made locally smoothly,
then also [(ZR(W),v(A * X4)l|, € T|,O0p,(qo). But then Proposition 3.46 implies
that

(T0py (40))« (LR (W), (A Xa)][g)
=70y () ( = Lus(AFX )W), + v(Ax L(W)[X())l,)
=(0, —AxX,)W)
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where we wrote X,y as for the map ¢ — X 4. Similarly,
(Mo (40))+ ([ZLRW), V(A x Ya)][g) = (0, =AY )W)
This shows that for all ¢ = (z,2; A) € Oy and Z, W € T|,M, we have
(0, —AX4)W), (0, —AGYA)W) € (7op, (40)T1¢Ops (a0) C T|:M x T|:M.
Because x X 4, %Y 4 are linearly independent, this implies that
{0} X T|eM C (100, (40))+T 14O (0).

Finally, because Zx(W)l|, € T|,0p,(qo) for any ¢ = (z,2;A) € Op,(qo) and any
W e T|,M, and (7o, (40))«Lr(W)|q = (W, AW), one also has

(VV> 0) = (VV, AW) - (07 AW) € (FODR(QO))*T|QODR(qO)7
which implies
T|$M X {0} C (WODR(QO))*TLIODR(C]O)’

This proves that mo,_ (4|0, = T@lo, is indeed a submersion.

Because O, is not open in @) (otherwise Op, (¢o) would be an open subset of @),
it follows that dim Oy < 8 and since T, (a0)|0» has rank 6, being a submersion, we
deduce that for all ¢ € O,

dim V|4(mop, (40)) = dim Op — 6 < 2.
But because of (89) we see that dim V|y(7op, (4)) = 2 i.e.
dim V‘Q<7TODR(QO)) =2,
which shows that dim Oy = 8, hence dim Op, (¢y) = 8 and
span{v(A x Xa)|g, V(A * Y|} = V](Opr(q0)), V= (x,&;A) € Os.

To conclude the proof, it is enough to notice that since for any X,Y, Z, W €
VE(M), v(Rol(X A Y)(A))[q, v(Rol(Z AW)(A))lg € V]g(Opy(a0)), then

[(Rol(X AY)(-), w(Rol(Z AW)(-))]lg € V]a(Opg (90))-
O

Lemma 7.10 If one chooses any X4, Y4, Z4 = x(X4 AYy4) as in Lemma 7.8, then
na=PBa=0, Vq=(r,7;A) € O,.

Proof. Fix g = (x,%; A) € Oy. Choosing in Corollary 5.19 X, Y € VF(M) such that
Xl = X4, Y], = Ya, we get, since Rol, (X4 AY4) =0,
vl [P(Rol(X AY)(-), v(Rol(Z A W) ()],
=A[R(X4AYa),R(Z|, AW 1)), — [RIAXA N AY4), R(AZ|, N AW,)], A

+ R(AX 4, ARoly(Z]s AW |.)Ya)A + R(ARol,(Z], AW |,) X4, AY,)A.

We compute the right hand side of this formula in in two special cases (a)-(b)
below.
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(a) Take Z,W € VF(M) such that Z|, = Y, W|, = Z4.
In this case, computing the matrices in the basis *X 4, xY 4, xZ 4,

ATV (ROI(X AY)(-)), v(Rol(Z AW)())]],
=[R(XAAY4), R(YANZ4)],, — AT[R(AX4 A AY4), R(AYA N AZy)] A

+ ATR(AX 4, ARol, (Y4 A Z4)Ya)A+ ATR(ARol (Y4 A Z4)X 4, AY4) A

Ba K} Ba K + K7
= na |A| &a |—| na | A §a+a
—K4 Ba —Kx Ba
+ ATR(AX 4, — KR AZ) A+ ATR(0AZ 4, AY) A
Ba K7 fata —K} + K}
=— | na | Al a | +EKF|[ K3+ K] —a €4+
—Ky 0 nA Ba
—aky + KRy + ) — a(—K} + KR x
= [ KakE® + KEPC RS + K59) — a(64+a) | = -
—046,4+K1RO|04A+K1RO|(IA—CY6A Q(KFOI’I]A—QBA)

By Lemma 7.9 the right hand side should belong to the span of xX 4, %Y, which
implies

KRy, —aps=0. (90)
(b) Take Z, W € VF(M) such that Z|, = Za, W|, = X4.
Again, computing w.r.t. the basis xX 4, %Y, %74, yields

ATY| 7 [p(Rol(X, Y) (), v(Rol(Z. W) ()],
=[R(X4,Ya), R(Z4,X4)]. — AT[R(AX 4, AYy), R(AZ4, AX4)] A

50 50

+ ATR(AX 4, ARol(Z4, X 4)YA)A + ATR(ARol,(Z4, X 1) X 4, AY4) A

Ba €a Ba s+ a

:< g A —fo — na A —Ki—l—K;d
—Kx A —Kx nA
+ ATR(AX 4, —AZ4)A+ ATR(KRVAZ,, AY ) A
Ba o Ea+a —K4 + K}

=— | na | A[EP | +a| -Ki+ K| —KX| &ata

—K4 0 nA Ba

~KAKE + a(6y +a) = KI(— K} + K1) .
=| aFata(-Ki+KF) - EK(Ea+a) | = *
—BaKE + ana + ana — K584 2(ans — BaK5)

Since the right hand side belongs to the span of xX 4, xY4, by Lemma 7.9, we obtain

ana — KX'B, = 0. (91)
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Combining Equations (90) and (91) we get

(5 ) () = (5):

But by Eq. (87) the determinant of the 2 x 2-matrix on the left hand side does not
vanish, which implies that n4 = 54 = 0. The proof is finished. U

Lemma 7.11 For every ¢ = (x,2; A) € O, there are orthonormal X4,Yy € T|,M
such that X4, Y4, Z4 = (X4 A Yy) is an oriented orthonormal basis of 7|, M with
respect to which in Lemma 7.8 one has

Na=PBa=8a1=0
i.e. *X 4, %Yy, *Z 4 are eigenvectors of R|,.

Proof. Fix ¢ = (z,%; A) € O, choose any X4,Ya, Za = (X4 AYy) as in Lemma
7.8 and suppose £4 # 0 (otherwise we are done). Notice that by Lemma 7.10, we
have n4 = 4 = 0 which means that xZ, is an eigenvector of R|,.

We let t € R,
Xa(t)\  ( cos(t) sin(t)\ (Xa
Ya(t) ) \—sin(t) cos(t)) \Ya )"~
Then clearly Za(t) := *x(Xa(t) AYa(t)) = *(XaAYs) = Z4, and X (1), Ya(t), Za(t)
is an orthonormal positively oriented basis of T'|,M. Since

Rol,(xZ(t)) = Rol,(xZ4) = 0,

Lemma 7.10 implies that n4(t), 54(t) = 0 if one writes n4(t), Ba(t),£a(t) for the
coefficients of matrices in Lemma 7.8 w.r.t Xa(t),Ya(t), Za(t). Our goal is to show
that £4(t) = 0 for some t € R.

First of all xZ4(t) = xZ4 is a unit eigenvector of R|, which does not depend on
t. On the other hand, R|, is a symmetric map A*T|,M — A?*T|,M, so it has two
orthogonal unit eigenvectors, say, uy, us in (¥Z4)*t = x(Z%). Thus uy, us, 24 forms
an orthonormal basis of A?T|,M, which we may assume to be oriented (otherwise
swap u, u). But then span{u;,us} = xZ4 = span{xX 4, Y4} so there is definitely
to € R such that xX4(tg) = uy, *Ya(ty) = uy (in this order, by the assumption
on orientation of uy, ug, *Z4 and X a,Ya, Z4). Since R|.(*X4(t9)) = — K1 * Xa(tp),
R|:(xYa(to)) = —Ka * Yal(ty), we have £a(ty) = 0 as well as na(to) = Ba(to) = 0
This allows us to conclude. O

Remark 7.12 Notice that the choice of Z4 can be made locally smoothly on O, but,
at this stage of the argument, it is not clear that one can choose X 4, Y}y, with £4 =0,
locally smoothly on O,. However, it will be the case cf. Corollary 7.16.

We now aim to prove, roughly speaking, that the eigenvalue —K has to be double
for both spaces (M, g), (M, g) if neither one of them has constant curvature.

Lemma 7.13 If the eigenspace at z1 € moy,_(4),1(02) corresponding to the eigen-

value — K (z;) of the curvature operator I has multiplicity 1, then (M, §) has constant

curvature K'(z1) on the open set 7y (. M(W(T); (qoy.ar (1)) of M.
R \40)s r\90)

The claim also holds with the roles of (M, g) and (M, §) interchanged.
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Proof. So suppose that at x1 € Top, (4),1(O2) the eigenspace of R|;, correspond-
ing to the eigenvalue —K (x;) has multiplicity 1. By continuity then, the —K(-)-
eigenspace of R is of multiplicity 1 on an open neighbourhood U of x;. Since this
eigenspace depends smoothly on a point of M, we may choose, taking U smaller
around x if needed, positively oriented orthonormal smooth vector fields X, Y. Z
on U such that xZ = X A'Y spans the — K (+)-eigenspace of R at each point of U.

Taking arbitrary ¢’ = (2',2'; A') € (Top, (q0),m) " (U)NO2 and letting Xar, Yar, Zar
be the vectors provided by Theorem 7.8 at ¢, we have that the — K (z’)-eigenspace
of R|, is also spanned by Xa A Ys. By the orthonormality and orientability,
XaAYy = X|p AY |y from which Z| = Za and Rol(X | AY [)(A) = Rol(X 4 A
Ya)(A") = 0.

Now fix, for a moment, ¢ = (z,2; A) € (7o, (g0).m) " (U) N O2. By replacing
X by cos(t)X 4 sin(t)Y and Y by —sin(t)X + cos(t)Y on U for a certain constant
t =1, € R, we may assume that )~(|m = X4, 1~/|m =Y},

Since, as we just proved, for all (2/,2/; A’) € (WODR(qo),M)_l(U) N O, one has

Rol(X |, A Y| w)(A") = 0,

then the vector field v(Rol(X A Y)(-)) € VE(7op,, (40),m) vanishes identically i.e.
V(Rol(X AY)(:)) =0 on (W@DR(qO) ) HU) N O,.

Therefore, the computation in part (a) of the proof of Lemma 7.10 (replace
X5 X, Y >Y,Z—Y, W — Z there; recall also that 4 = 0 by the choice
of XA,YA,ZA) gives, by noticing also that here Ky = K(z), K} = K;(z) and
Ki = KQ(x)v

0 =AT|;! [1(Rol(X, V)(-)), v(Rol(Y, Z)())]],

—aK +aKR — o(-KL + KR a(—K + Ky)
— KAKFOI + [({?ol(_](?4 + K2Ro|) _ a2 — KFOI(K _ K2 + Kgol) _ a2
0 0

Similarly, the computation in part (b) of the proof of Lemma 7.10 (now replace
X=X, Y=Y, Z—Z W — X there) gives,

0 =ATw|; [v(Rol(X, V)(), v(Rol(Z, X) ()],

—KAK§°| + &2 _ K§OI<_K}‘ + KFO') K§O|(_K + Kl _ K{?ol) + Oé2
= aKy+ a(—K?% + K& — KRl = a(K — K»)
0 0

By assumption, —K(-) is an eigenvalue of R distinct from the other eigen-
values —K(-), —Ks(-) on U, and hence we must have a(q) = 0. Since 0 #
KT (q) K5 (q) — alq ) = K°(q)K3°(q), we have K{(q) # 0 and K3°(q) # 0
and hence K(z) — K (z) + KF(q) = 0 and K(z) — Ky(z) + K§'(q) = 0 for
q= (l’,x,A) € (WOD (q0), M) (U) N Os.

Since ¢ = (z,2; A) € (WODR(QO),M)il(U) N Oy was arbitrary, we have proven that

alq) =0,
— K (2) + K7%(q) = —K(2),
— Ko () + K5 (q) = —K(2),
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for all ¢ = (z,%; A) € (Top, (g0).1) " (U) N Os.

Looking at (85) now reveals that for every ¢ = (z,#; A) € (Top,_ (g0),m) ' (U)NO,
the three 2-vectors AX ANAY s, AYANAZ 4 and AZANAX 4 are mutually orthonormal
eigenvectors of R\x corresponding all to the eigenvalue —K (z) which means that
(M, §) has constant curvature —K (z) at .

In particular, since x; € U, the Riemannian space (M , §) has constant curvature
—K(x1) at all points & € MO, (4 )M((WODR(QOLM)il('Il) NOs).

Finally, we argue that S := T Oy, (40) AT ((ﬂ'ODR(qO) m)”H(z1)NO3) is an open subset

of M. Tt is enough to show that Tl Ou, Om1 — M is a submersion where

Ouy = (TOp,, (q0).m) " (21) N Oy is a submanifold of Os.

To begln with, recall that WQ\OQ is an submersion from onto an open subset of
M x M by Lemma 7.9. Let ¢ € an and write ¢ = (xq, Z; A) Choose any frame
X1, Xy, X3 of T|;M. Then there are W; € T, (ODR(qO)) = 1,2,3, such that
(70) (W) (0, X;). In particular, (7g.).(W;) = 0, so W; € V|, (WODR(qO) ). But

since T[40z, = V]¢(Top, (o)1), We have W; € T),0,, and thus X; = (WQM)*Wi €
im(m, M|Ozl)*7 which proves the claim and finishes the proof. O

Remark 7.14 It is actually obvious that the eigenvalue —K(-) of R of (M,g) is
constant, equal to K (x1) say, in a some neighbourhood of x; in M, if —K(x;) were a
single eigenvalue of R|,,.

Even more is true: One could show, even without questioning whether —K(+) is a
single eigenvalue for R and/or R or not, that on 7, 1, (O5) and To.x1(O2) this eigenvalue
is actually locally constant (i.e. the function K (-) is locally constant). This is fact will
be observed e.g. in Lemma 7.17 below.

Lemma 7.15 The following hold:

(1) For any q; = (21,41; A1) € Os, the space (M, §) cannot have constant curvature
at i‘l-

(2) There does not exist a ¢1 = (z1,%1; A1) € Oy such that —K(z1) is a single
eigenvalue of R|,,.

This also holds with the roles of (M, g) and (M, §) interchanged.

Proof. (1) Suppose (M, §) has a constant curvature K at &,. Let Ey, B, F3 be an
oriented orthonormal frame on a neighbourhood U of x; such that xF |,,, *Fs|.,, *E3| .,
are eigenvectors of R at z; with eigenvalues —K(x;), —Ky(z1), —K (1), respec-
tively, where these eigenvalues are as in Proposition 7.6. As we have noticed,
K = K(z).

Because R|;, = —[A(idAgTh2 17> one has
Roly, (xE1) =(—Ki(x1) + K) » B,
Roly, (xE2) =(—Ka(x1) + K) * Fals,
Rol, (xEs) =(—K (1) + K) % Fs|y, = 0

Since rank Ii\cglq1 =2, we have — K (1) + K # 0, —Ky(x1) + K # 0.
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Because the vector fields v(Rol(xE7)(+)), ¥(Rol(xE5)(+)) are tangent to the orbit
Opy(q0) on O := 02N ﬂé}M(U ), so is their Lie bracket. According to Proposition
3.47, the value of this bracket at ¢, is equal to

[V(Rol(xE1)(-)), v(Rol(xE2) (- )]lyy = (=K (1) + K) (=Ko (1) + K)v(Ax Ey)ly,-

Hence v(Rol(xE4)(+), v(Rol(xE)(+), [¥(Rol(xE1)(-)), ¥(Rol(xE2)(-))] are tangent to
Opy (qo) and since they are linearly independent at ¢;, hence they are linearly in-
dependent on an open neighbourhood of ¢; in Op,(qp). Therefore, from Corollary
5.21 it follows that the orbit Op,(qo) is open in @), which is a contradiction.

(2) Suppose —K (x7) is a single eigenvector of R|,,, where ¢; = (x1,21; A1) € Os.
Then by Lemma 7.13, the space (M , g) would have a constant curvature in an open
set which is a neighbourhood of 1. By the case (1), this leads to a contradiction. [

By the last two lemmas, we may thus assume that for every ¢ = (x,2;A) € Oy
the common eigenvalue —K(x) = —K(z) of R|,, R|; has multiplicity two. It has
the following consequence.

Corollary 7.16 The assignments ¢ — X4, Y4, Z4 and ¢ — K®(q), K& (q), a(q)
as in Proposition 7.6 can be made locally smoothly on Os.

Proof. Let ¢ = (x1,21; A1) € Oy. By Lemma ?? there are open neighbourhoods
U 5 x; and U 3 4 such that the eigenvalue — K, () of R|, and —K,(&) of R|; are
both simple. Therefore the assignment ¢ — Y4 can be made locally smoothly on
O,. Moreover, recall that the assignment ¢ — Z4 can be made locally smoothly
since it corresponds to the 1-dimensional kernel of Rol, and X4 = (Y4 A Z4). O

Lemma 7.17 For every q; = (x1,21; A1) € Os, there is are open nelghbourhoods
U, U of 21,1 and oriented orthonormal frames E, Fy, F5 on M, El, EQ, E5 on M with
respect to which the connections tables are of the form

Fiz,:s) 0 E% 2) [Ty 0 Ty
_ 1 2 3
I'= ng,l) F(3,1) Fg:m) , I'= 1?&3,1) F(3,1) 1;53,1) ;
F(1,2) 0 1—‘(273) F(1,2) 0 F(2,3)
and
V(Piog) =0, V(I{y) =0, VW e}, zel,
V() =0, V() =0 VYWeLi ieU

Moreover, xE,xEy, xE3 are eigenvectors of R with eigenvalues — K, — Ky (- ) —K on
U and similarly *Ey, *E,, %5 are eigenvectors of R with eigenvalues —K, —K5(-), — K
on U, where K € R is constant.

Proof. As we just noticed, for every ¢ = (x,2;A) € Oy, the common eigenvalue
—K(z) = —K(#) of R|, and R|; has multiplicity equal to two.

Fix g1 = (x1,21; A1) € Oq and let By, By, E3 (resp. FEy, B, E3) be an orthonormal
oriented frame of (MM, g) defined on an open set U > z; (resp. U > #) such that
UxU C 7o(O2) and that £y, xEy, xE3 (resp *El,*EQ,*Eg) are eigenvectors with
eigenvalues — K (-), =Ko (-), —K(-) (resp. —Ki(-), —Ks(-), —K5(-)) on U (resp. U)
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as given by Proposition 7.6. Since — K is double on U (resp. — K is double on U ), we
assume that K,(-) = K(-) # Ky(-) everywhere on U, (resp. Ki(-) = K () # Ky(-)
everywhere on U) without loss of generality. Recall that K(z) = K(#) for all
q = (v,2;A) € Oz by Proposition 7.6 (and the remark that follows it) and hence
forall z € U, @ € U, K(x) = K(&). Taking U, U to be connected, this immediately
imples that both K and K are constant functions on U and U. We denote the
common constant value simply by K.

Let X4,Y4,Z4 be chosen as in Proposition 7.6 for every ¢ = (z,2;A) € O,.
Then as xY4 is a unit eigenvector of R|, corresponding to the single eigenvalue
—Ks(z), we must have Ey|, = £Y4 and since v(A * Yy4)|, is tangent to the orbit
Opy(qo), by Lemma 7.9, it follows that for every ¢ = (x,2; A) € O,, the vector
V(A x Es|,)l, is tangent to Opy (qo). This with Proposition 7.3 proves the claim for
(M, g). Symmetrically (working in Q(M, M)) the claim also holds for (M, §). The
proof is complete. O

We will now aim at proving that, using the notations of the previous lemma,
1"%2 5 () = f‘%273)(‘%) for all (z,2) € mg(0}), where O = Wél(U x U)N Oy and U, U
are the domains of definition of orthonormal frames F4, Es, F5 and El, EQ,Eg as
given by Lemma 7.17 above. That will then allow us, as will be seen, to conclude
the study of the case where orbit is not open and rank of Rol is equal to 2.

To this end, we define 6 : O} — R (restricting to smaller sets U, U if necessary)
to be a smooth function such that for all ¢ = (z,2; A) € O},

X4 =cos(0(q))Ey + sin(0(q)) Es

Za =—sin(0(q))E1 + cos(0(q))Es
where X4, Z4 (and also Y,) are chosen using Proposition 7.6. Indeed, this is well
defined since X4, Z4 lie in the plane Y = Ey|t as do also E|,, F3|,, for all ¢ =
(x,2;A) € 0.

To simplify the notation, we write ¢y := cos(6(q)) and sq := sin(0(q)) as well as
Fz ik = F% ik (%), when there is no room for confusion. We will be always working
on O) if not mentioned otherwise. Moreover, it is convenient to denote the vector
field 5 of M by Y in the computations that follow (since FEs|, is parallel to Y4 for
all ¢ € O), this notation is justified). We will do computations on the "side of M"
but the results are, by symmetry, always valid for M as well.

We will make use of the following formulas which are easily verified (see Lemma
3.43),

Lr(Xa)lgX() = (La(Xa)lgf — col 51y — 50T (3.1)) Za + T(10)Y
(V)| X) = (Gr(Y)]g0 —Th1))Za
D?R(ZA” X(-) = (D?R(ZA)MQ + 59P%3,1) - Cﬁr?s,l))ZA + F%Q,B)Y
gR<XA)|qY - F(l 2)XA + F%Q,B)ZA
ZR(Y)MY =0
$R<ZA)|qY = _F%2,3)XA - F%LQ)ZA
Zr(Xa)lq Z0) = (—Zr(Xa)lg0 + 091—‘%3,1) + Sﬁr?s,l))XA - F%z,:s)y
L(Y)|Z) = (—Lr(Y)]40 + Tl 1)) Xa
Lr(Za)lgZ0) = (= LR(Za)40 — 59F%3,1) + Cer?s,l))XA + F%1,2)Y- (92)
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Remark 7.18 Notice that v(A x Z4)|, is not tangent to the orbit Op,(qo) for any
q = (x,2; A) € O). Indeed, otherwise there would be an open neighbourhood O C O}, of
q such that for all ¢ = (2/,2"; A’) the vectors v(A"x X /)|y, V(A" %Y )|y, V(A % Z /)|y
would span V|, (mg) while being tangent to T'|,;Op,(qo), which implies V|, (7mg) C
T|yOpy(q0). Then Corollary 5.21 would imply that Op,, (qo) is open, which is not the
case. We will use this fact frequently in what follows.

Taking U, U smaller if necessary, we may also assume that ¢ is actually defined
on only on O} but on an open neighbourhood O} of O, in Q). We will make this
technical assumption to be able to write e.g. V(A % Z4)|,0 whenever needed.

Lemma 7.19 For every ¢ = (z,2; A) € O) we have

V(A*Y)|0 =1,
$R<XA)|q9 = C@F%&l) + SQF?&I)’
LRV =Tl — Tlog)-

Moreover, if one defines for ¢ = (x,2; A) € O),

Fxlg :=Zs(Xa)lg — Tl (Ax Za)l,
Fylg =%s(Za)lg — Doz (Ax Za)lg,

then Fx, F; are smooth vector fields on O tangent to the orbit Op, (o).

Proof. We begin by showing that v(A «Y)[,# = 1. Indeed, we have for every
q=(z,2;A) € O) that §(AZ,, E5) = 0. Differentiating this w.r.t. v(AxY)|, yields

0= G(AKY)Za, By) — v(A*Y)|,0§(AX 4, By) = §(AX 4, E)(1 — v(AxY)|,0).

We show that §(AX 4, Fy) # 0, whence v(A +Y)|,0 = 1. Indeed, if it were that
G(AX 4, Ep) = 0, then AX, € E5 and hence #(AX,) would be an eigenvector of
R|; with eigenvalue — K. But this would then imply that

Rol,(xX4) = R(xX4) — ATR(:(AX,)A = —K « X4 + KAT(5(AX4)A = 0.

Because, Iiglq(XA ANY) = 0 as well, we see that Iiglq has rank < 1 as a map
N*T|,M — A?T|,M, which is a contradiction since ¢ € Of C O, and O, is, by
definition, the set of points of the orbit where Iiglq has rank 2. This contradiction
establishes the above claim.

Next we may compute the Lie brackets

[LR(Y), v(() * X0l = = Lxs(AGXA)Y)|g + v(Ax Zr(Y)]oX())lg
= — Ls(AZa)|g + (GR(Y)]g0 — T 1) v(Ax Za)l,
[Lr(X()), v(() xY)llg = = Lr(V(AxY) [ X()lg = v(Ax )]0 Lus (AFY ) Xa)lg
+v(Ax (69(_F%1,2)E1 + 1—‘%2,3)E3) + 36(_P%273)E1 - P%l,Q)E3)))|q
= — LRW(AxY)[X())lg + Ls(AZ4)lq
- 1—‘%172)’/(14 * Xa)lg + F%Q,?,)V(A * Za)lgs
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from where by adding we get
[Lr(Y), v(() x X(llg + [Zr(X()), v(() x Y)]lg
(ZLr(Y)lqt — F%s 1) T F%z,:s))’/(A* Za)lg = Lrw(AxY)[.X0))lg

— Tl (Ax Xa)lg
Since this has to be tangent to Op,(qo), we get that the v(A x Z,)|,-component

vanished i.e.,
ZR(Y)M@ = F?3,1) - F%2,3)-

Next compute
[LR(X (), v((1) * X()]lg = — V(A * Xa)|0LR(Za)]q — Lns(A (xXa) Xa)lg
——

=0

+ v (A* ((Lr(Xa)ld — cer}&l) — seri)&l))ZA) + rh’z)y) }

and so we must have again that the v(A x Z4)|,~component is zero i.e.,
ZR(XA”QQ = CQF%&U + 891—‘?371).
Notice that [.Zr (X)), v((-)xY)]|q can be written, since Zxs(AZa)|g = Lr(Z4)|q—

gNS(ZA”q; as
(LX) () % Y)]lg = = Faly + La(Za)ly — Zo(r(Ax V)|, X))l — Thiayr(Ax Xa)l,

1
=— Iy, — 1—‘(172)’/(14*XA)|¢17
which proves that F, as defined in the statement, is indeed tangent to the orbit on
O}. To show that Fx is also tangent to the orbit we compute

[Lr(Z0), v(() * Y)]lg = = Lr(W(A*Y) [ Z))|g — v(A*Y)|0Lxs(AXY ) Za)l
+ V(A x (—sp( F%1,2)El + F%2,3)E3) + C0(_1?2,3)El - F%1,2)E3)))|q
— R(W(AXY)|Z))lq — Lus(AXA)lq

— Tl (A% Za)lg = Tl (A Xa)l,
=Fxlg = Ze(Xa)lg = Lr(v(AxY)|oZ0))lg = Tiggp(Ax Xa)lg

=Fx|, — F%2,3)”(‘4 * Xa)lgs
O

which finishes the proof.
Lemma 7.20 For all (z,2) € mg(O5) one has
F%z,:s) (z) = IAﬁ%z,:s) (2).
Proof. We begin by observing that for all ¢ = (z,#; A) € O} one has
§(AZ4, Ey) = 0.
Indeed, AZ4 and E, |z are eigenvectors of R|$ corresponding to non-equal eigenvalues
—K and —K5(Z), hence they must be orthogonal.
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Since AZ, € Fs|t, there is a § = 6(q), for all ¢ = (x,4; A) € O, such that
AZy = —SéEl + CéE3.
Because AX 4, AY € (AZ4)"L, there exits also a ¢ = ¢(q) such that

AX 4 :ng(CéEl + SéEg) + SéEAQ
AY = — Sé(CéEl —+ SéEg) + CéEAQ.

Moreover, Lemma 7.19 along with Eq. (92) implies that Z(Y")|,Z(.) simplifies to
gR<Y)‘qZ( F(2 3)( z)Xa.
Therefore, differentiating §(AZ4, Ey) = 0 with respect to Zx(X4)l,, one obtains

0—%( Nad(() 20, E2) = §ALR(Y) o 20, o) + §(AZa, V ay En)
Fee 3)g(AXA’E2) T9(AZa,—s 9( F(1 2)E1 T F(2 3)E3) — 5459~ f% 3)E1 - f%l,z)Es))
=53 (o3 — 50 (AZa, Do) AZa = Ty 5y (G EL + 54E3))
=55(Lla)(®) = Do) ().

~

We claim that sin(¢(q)) # 0 for ¢ = (z,2; A) € O, which would then imply that
1"%2 5 () — T(2 3)( Z) = 0 and finish the proof.

Indeed, sin(¢(q)) = 0 would mean that AX 4 = i(céEl +59E3), thus AX, € E5-.
By the argument at the beginning of the proof of Lemma 7.19, this would be a
contradiction. O

Corollary 7.21 (i) If for some (z1,%1) € mo(O0}), one has T’ (2.3 (x1) # 0 (or
f‘%z,g)(xl) #£ 0), there are open neighbourhoods U’ 3 zy, U’ E 21 such that
(U, g), (U, ) are both of class M for § = [lyg (1) (or =Ty 4 (21)).

(ii) If for some (z1,%;) € mo(O5), one has F(2 5 (z1) =0 (or f%m)(il) = 0), there
are open neighbourhoods U’ 5 x, U S 4y such that U’ x U’ C mp(O}) and
isometries F: (I x N,hy) — (U,g), F: (I x N,h; D — (U, ), where I C R is
an open interval, such that

S0 K = /) vVt e I.

O T

Proof. Let U’, U’ be connected neighbourhoods of zy, & such that U’ x U" C 7¢(O4)
(recall that by Lemma 7.9, mo(0}) is open in M x M).
(i) Set g = F(2 3)(71) # 0. By Lemma 7.20, one has for every z € U’, & € U’ that

~

F%z,:s) (2) = F%2,3)(951) =B,
1ﬂ%2,3) (z) = F%Q,s) (21) = 8.

By Proposition D.19 case (ii), it follows that (after shrinking U’, U") (U, g) and (U, §)
are both of class Mg This gives (i).
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(ii) By Lemma 7.20, one has for every = € U’, & € U’ that

F%z,:s) (%) = F%2,3) (z1) =0
F%Q,?,) (z) = 1—‘%2,3)(‘%1) =0,
ie. 1"%273) and f‘%273) vanish on U’, U’, respectively.

Then Proposition D.19 case (iii) gives (after shrinking U’, U") the desired isome-
tries F), F'. Moreover, Eq. (116) in that proposition gives, since Fy = %, E, = %,

T I G B (O NPT S ()
=am U)o
4FE P, . )
k==L (L e L
T m ) 7r)
where 7 € I. This proves (ii). O

7.2.2 Local Structures for the Manifolds Around ¢ € O,

In analogy to Proposition (7.6) we will first prove the following result. In the results
below that concern Oy, we always assume that Oy # ().

For the next proposition, contrary to an analogous Proposition 7.6 of Subsub-
section 7.2.1, we do not need to assume that Op,(qo) is not open. The subsequent
result only relies on the fact that O; is not empty.

Proposition 7.22 Let gy = (x,Z0; Ag) € Q. Then for every ¢ = (z,3;A) € Oy
there exist an orthonormal pair X4, Y4 € T|,M such that if Z4 := *(X4 A Yy) then
Xa,Ya, Z4 is a positively oriented orthonormal pair with respect to which R and Rol
may be written as

0 K(x) 0 0
R(XA N YA) = —K(l‘) 0 0], *R(XA VAN YA) = 0
0 0 0 —K(x)
0 0 0 —K(x)
R(YA N ZA) =10 0 K(ZL‘) , *R(YA AN ZA) = 0
0 —K(z) 0 0
0 0 —Ksy(x) 0
R(ZA/\XA) = 0 0 0 , *R(ZA/\XA) = —K2<I)
Ky(z) 0 0 0
Rol, (X4 A Yy) =0,
Rol, (YA A Z4) =0,
. 0 0 —Kf(q) . 0
R0|q(ZA/\XA) = 0 0 0 , *R0|q<ZA/\XA) = —K2R°|(q) ,
KQROI(Q) 0 0 0

(93)

where K, Ky : M — R.
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With respect to X 4, Ya, Z4 given by the theorem, we also have

*ATR(AX 4 A AY4)A = 0
—K(x
. —K(z)
* ATR(AYy N AZY)A = 0
- 0
*sATR(AZy NAX A = | =Ky (x) + KR'(q) | . (94)
0

We collect some important observations concerning the previous proposition into
the following remark.

Remark 7.23  (a) The last proposition says that xX 4, *Y4, xZ4 are eigenvectors

of R|,, for every ¢ = (x,2; A) € Oy, with the corresponding eigenvalues —K (z),
—Ks(z) and —K (z).

Changing the roles of (M, g) and (M g), the proposition gives, for every q =
(x,2;A) € Oy, eigenvectors *XA,*YA,*ZA are eigenvectors of R\x, with the
corresponding eigenvalues — K (i), — K, (&), — K ().

Moreover, the eigenvalues K and K coincide on the set of points that can be
reached, locally, by the rolling. More precisely, Proposition 7.22 tells us that

~

—K(z) = —-K(z), V(z,z)€ ng(O1)
and that this eigenvalue is at least a double eigenvalue for both R|, and R|;.

It is also seen that the above at-least-double eigenvalue cannot be a triple eigen-
value for both R|, and R|; at the same time, for (z,4) € mo(O;). Indeed, if
Ky(z) = K(z) and Ky() = K(&), then clearly this would imply that Rol, = 0,
which contradicts the fact that ¢ € O; implies rank Rol, = 1.

Finally, notice that it is not clear that the assignments ¢ — X4, Z4 can be
made locally smoothly on O;. However, it is the case for the assignment ¢ —
Y4. In addition, for every ¢ = (z,%; A) € O4, the choice of Y, and Y, are
uniquely determined up to multiplication by —1. Indeed, Y4 = Z4 A X4 is a unit
eigenvector of Rol, corresponding to the simple non-zero eigenvalue —K¥°'(q) (it
is non-zero since rank Rol, = 1, ¢ € O;). By symmetry, the same claim holds of
YA as well. Moreover, this implies that

AY, = +Yy, Vq= (z,&;A) € Oy.

We begin by the following simple lemma.

Lemma 7.24 For every ¢ = (x,%; A) € O, and any orthonormal pair (which exists)
Xa,Yq € T| .M such that X4,Ya, Z4 := x(Xa A Yy) is an oriented orthonormal basis
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of T'|,M and Rol, (X4 AY4) =0, Rol,(YaAZa) =0, one has with respect to the basis
XAa YA7 ZA:

0 Kiq agu Ba
R(XA/\YA) =-Ks 0 =04, *R(XA/\YA) = o
—ay Ba 0 —Ky
0 —Ba &a —-K)
R(YA/\ZA) = BA 0 K}x , *R(YA/\ZA) = SA
—&4 K, 0 Ba
0 —an —K3 §a
R(ZA/\XA): ) 0 =4 |, *R(ZA/\XA): —Ki
fo fA 0 QA
Rol, (X4 A Yy) =0,
Rol, (Y4 A Z4) =0,
B 0 0 —Kkl N 0
ROlq(ZA/\XA) = 0 0 0 , *Rolq(ZA/\XA) = —K;d
KR 00 0

Moreover, the choice of the above quantities can be made locally smoothly on O;.

Proof. We only need to prove the existence of an oriented orthonormal basis X4,
Y4 and Z4 such that Rol, (X4 AYy) = 0, Rol,(Ya A Z4) = 0. Indeed, when this
has been established, one may use Lemma 7.8, where we now have KT°(q) = 0,
a(q) = 0 because Rol, (Y4 A Z4) = 0, to conclude.

Since for a given ¢ = (z,z; A) € Oy, Iiglq : N*T|,M — A?T|,M is symmetric
linear map that has rank 1, it follows that its eigenspaces are orthogonal and its
kernel has dimension exactly 2. Thus there is an orthonormal basis wy,ws, A of
N*T| .M such that Rol,(w;) =0, i = 1,2. Taking X4 = #w;, Z4 = *wq and Y = %\
we get, up to replacing X 4 with —X 4 if necessary, an oriented orthonormal basis of
T|$M such that ROl(XA N YA) = O, ROl(YA N ZA) = 0. ]

As a consequence of the lemma and because AT R(AX,AY)A = R(X,Y) —

Iialq(X, Y) for X, Y € T|,M, we have that w.r.t. the oriented orthonormal basis
Xa,Ya, Za,

. Ba
*ATR(AX A, AY))A = | au
—K4
. ~ I
*ATR(AYA, AZA)A = gA
Ba
. €a
*ATR(AZy, AX))A = | =K% + KB | . (95)

Qg

Notice that the assumption that rank Rol, = 1 is equivalent to the fact that for
every ¢ = (x,2; A) € Oy,

K5°(q) # 0. (96)
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This implies that Y, is uniquely determined up to multiplication by —1 (see also
Remark 7.23 above). Hence, in particular, for every ¢ = (z,#; A) € Oy,

Rol, (A*’TM)(A) = span{v(A(Za A Xa))|,} = span{v(A *Y4)|,}.

We will now show that, with any (non-unique) choice of a pair X4, Y4 as in Lemma
7.24, one has that ay = 0 and K, = K.

Lemma 7.25 If one chooses any X 4, Y4, Z4 = x(Xa A Yy) as in Lemma 7.24, then
ﬁAZO, KA:K}4, ‘v’q: ({L‘,IA‘,A) c ODR((]Q).

Proof. Fix ¢ = (x,2; A) € O,. Choosing in Corollary 5.19 X,Y € VF(M) such that
Xz = Xa, Y|, = Ya, we get, since Rol, (X4 AYy) =0,
vl [V(RoI(X, Y) (1)), v(Rol(Z, W)(-))]],
=A[R(XANYA),R(Z|; A\W|,)],, — [RIAXA A AY4), R(AZ|, N AW ,)] A

50

+ R(AX 4 A AROly(Z]y AW |o)YA)A + R(AR0l,(Z|, AW |.) X4, AY4)A.

Since ¢’ = (2/,3'; A’) — v(Rol(A*T| . M)(A))|, = span{v(A’xYa)} is a smooth
rank 1 distribution on Oy, it follows that it is involutive and hence for all X, Y, Z, W €
VE(M),

[V(RoI(X AY)(), v(Rol(Z A W)(-))]|, € span{v(A*Ya)l,}.

where we used that Rol(A*T'M)(A) = span{A x Y4} as observed above.

We compute the right hand side of this formula in different cases. We begin by
taking any smooth vector fields X, Y, Z, W with X|, = X4, Y|, = Ya, Z|, = Za,
W|, = X4. One gets

ATY| 7 [(RoI(X, Y) (), v(Rol(Z, W) ()],
=[R(XaAYa), R(Zs A Xa)]_ — [ATR(AX 4 A AY)A, ATR(AZ4 N AX 4)A]

50 50
+ ATR(AX 4 ARol(Za A X ) (A)YA)A+ ATR(RoI(Z4 A X4)(A)X 4 A AY4)A
fa 0 . .
=| asa | A| KR 4+ ATR(AX4 ANO)A+ ATR(KRVAZ, N AY ) A
— K4 0
— KK —K} K3(—Ka + K})
= 0 — KX ey | = KRelg, € span{v(AxYa)|,}.
—BaKEe Ba —264 K5

Because K£°(q) # 0, this immediately implies that
~K,+KLY=0, Ba=0.
This completes the proof. O

We will now rotate X4, Y4, Z4 in such a way that we may also set a4 equal to
Z€ro.
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Lemma 7.26 For every ¢ = (x,2; A) € Oy there are orthonormal X4,Yy € T|,.M
such that X4, Y4, Z4 = (X4 A Yy) is an oriented orthonormal basis of 7', M with
respect to which in Lemma 7.24 one has ay = 0.

Proof. Fix q = (z,%; A) € Oy, choose any X4,Ya, Za = (X4 AYy) as in Lemma
7.24 and suppose ay # 0 (otherwise we are done). We let t € R,

Xat)\ ([ cos(t) sin(t)\ (Xa
(ZA(t)) N <— sin(¢) cos(t)) (ZA) '
Then clearly Y(t) := *(Xa(t) AN Za(t)) = *(XaAZa) =Y and X4(t), Ya(t), Za(t)
is an orthonormal positively oriented basis of T'|,M. Since Ffiglq is a symmetric
map A?T|,M — A*T|,M and since xX 4, xZ 4 are its eigenvectors corresponding to
the eigenvalue 0, it follows that *X 4(¢), *Z(t), which are just rotated X 4,*xZ4 in
the plane that the form, are eigenvectors of Rol, corresponding to eigenvalue 0, i.e.
ROlq(XA(t) N YA) =0, ROlq(YA N ZA(t)) =0 for all t € R.

Hence the conclusion of Lemma 7.24 holds for basis X(t),Ya, Za(t) and we
write €a(t), aa(t), Ba(t), Ka(t), K}(t), K4(t) for the coefficients of the matrices of
R given there w.r.t. X4(t),Ya, Za(t). Then Lemma 7.25 implies that S4(t) = 0,
Ka(t) = K}(t) for all t € R. Computing now

aa(t) =g(R(Xa(t) ANYa)Za(t), Xa(t) = g(R(Za(t) A Xa(t))Xa(t), Ya(?))
= — g(R(ZA A XA)YA, XA<t))
= — g(—aAXA + gAZA, COS(t)XA + Sin(t)ZA)
= — g cos(t) + 4 sin(t).

Thus choosing ¢, € R such that

§a
t(tg) = 22
cot(to) -t
we get that aa(ty) = 0. As already observed, we also have B4(t)) = 0, K4(ty) =
KA(tO) and ROlq(XA(to) N YA) = 0, ROlq(YA N ZA(tO)) = 0. ]

Since a4 and (4 vanish w.r.t X4, Ya, Z4, as chosen by the previous lemma,
we have that —K4 is an eigenvalue of R|, with eigenvector X4 A Y4, where ¢ =
(z,2; A) € Oy. Knowing this, we may prove that even £4 is zero as well and that
(automatically) —K 4 is a at least a double eigenvalue of R|,. This is given in the
lemma that follows.

Lemma 7.27 If g = (z,2;A) € Oy and X4, Y4, Z4 as in Lemma 7.26, then {4 = 0.

Proof. Since for any ¢ = (z,2; A) € Oy, —K 4 is an eigenvalue of R|,, we know that
its value only depends on the point x of M and hence we consider it as a smooth
function —K (z) on M.

We claim that that —K(x) is at least a double eigenvalue of R|,. Suppose it is
not. Then in a neighbourhood U of = we have that —K (y) is a simple eigenvalue
of R|, for all y € U. In that case, we may choose smooth vector fields X,Y on U,
taking U smaller if necessary, such that X|, AY], is a (non-zero) eigenvector of R|,
corresponding to —K(y) and X|, = Xa, V|, = Ya. Write O := 7}, (U) N Ox.
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But for any (y,y; B) € O, we know that Xp A Yp is a unit eigenvector of R|,
corresponding to — K (y) and hence, modulo replacing X by —X, we have XpAYp =
Xy AYl,.

Then for all (y,y; B) € O with y € U, one has

v(Rol(X |y ANY[,)(B))| 5.8 = V(Rol(Xp AYR)(B))|y,5:8) = 0

i.e. v(Rol(X AY)(-)) is a zero vector field on the open subset O of the orbit.

If we also take some smooth vector fields Z, W such that Z|, = Za, W/|, = X4,
we get by the fact that v(Rol(X AY)(+)) = 0 and from the computations in the proof
of Lemma 7.25 that

KRN—K, 4+ KY) 0
0= [ [¥(Rol(X, Y)(-)), ¥(Rol(Z, W) (-))]|, = K5E = | K3¢a
—2B4 KR 0

Since KX'(q) # 0 we get £4 = 0. But this implies, along with the results obtained
in the previous lemma (i.e. K = K, fa4 = a4 = 0) that w.r.t. the basis X4, Y4, Z4,

0 —K 4
*R(XA VAN YA) = 0 , *R(YA N ZA) = 0 ,
—Ky 0

which means that X4 AY4 and Y4 A Z4 are linearly independent eigenvectors of R,
corresponding to the eigenvalue —K 4 = —K(z). This in contradiction to what we
assumed in the beginning of the proof.

Hence we have that —K 4 is, for every ¢ = (z,%; A) € Oy, and eigenvalue of R|,
of multiplicity at least 2.

Finally, since we know that w.r.t. X4, Yy, Z4,

0 —Ka §a
*R(XA A YA) = 0 s *R(YA A ZA) = gA , *R(ZA A\ XA) = —Ki s
—K4 0 0

and since R|, is a symmetric linear map having double eigenvalue —K 4, we know
that there is a unit eigenvector w of R|, corresponding to —K 4 which lies in the
plane orthogonal to X 4AYy (in A*T|,M). Hence, w = cos(t)YaAZa+sin(t) ZaNX 4
for some t € R and

cos(t)
—Ka | sin(t) | =— Karw=+R(w) =cos(t) x R(Ya A Za) +sin(t) x R(Za N Xa)
0
—Ky4 €A —K 4 cos(t) + £ sin(t)
=cos(t) [ &€ | +sin(t) | =K% | = [ €acos(t) — K3sin(t) |,
0 0 0

where the matrices are again formed w.r.t. Xy, Y4, Z4. From the first row we get
Easin(t) = 0. So either {4 = 0 and we are done or sin(t) = 0 which implies that
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w=1.Ys N Z4 with 1. € {—1,41} and hence

— K,
fA :*R(YA/\ZA)zli*R(w):—KA(li*w)
— K,
:—KA*(YA/\ZA): 0 s
0
which gives £4 = 0 anyway.
O
The previous lemma implies Proposition 7.22, since now —K, = —K}, —K?%

are eigenvalues of R|, for every (x,2;A) € O; and hence, defining K(x) := Ka,
Ky(x) := K3, we obtain well defined functions K, Ky : M — R.

The following Proposition is the last result of this subsection. Notice that it
does need the assumption that Op,(qo) is not open while the previous results do
not need this assumption.

Proposition 7.28 Suppose Op, (qo) is not open in (). Then there is an open dense
subse:c O3 of Oy such that for every ¢; = (x1,21; Ay) € Of there are neighbourhoods U
and U of z and I, respectively, such that either

(i) both (U gIU) (

f (r
and f(r) =y

(i) both (U, g|v), (U, §lp) are of class Mg or
U, glpy) are isometric to warped products (I x N, hy), (I x N, izf)
')

forall r e I.

Moreover, there is an oriented orthonormal frame Ey, Ey, E3 (resp. El,EQ,E3)
defined on U (resp. on U) respectively, such that x[;, xF3 (resp. *El,*Eg) are eigen-
vectors of R with common eigenvalue —K(-) (resp. —K(-)) and one has

A By, = E2|5c1-

Proof. Let q; = (x1,21; A1) € O;. Notice that, as observed in Remark 7.23, either
R|,, or R|s, has —Ky(z1) or —Ks(i#), respectively, as a single eigenvalue. By
symmetry of the problem in (M, g), (M, g), we may assume that this is the case for
R|.,. Hence there is a neighbourhood U of x; such that Ky(z) # K(z) for all x € U.

It is easy to see that there is an open dense subset O] of O; N Wé1M<U ) such

that, for every ¢ = (x Z; A) € O, there exists an open neighbourhood V of # where
either Ko = K on V or Ky(7)) 7& K( ) for §j € V. For the rest of the argument, we
assume that ¢; belongs to O].

By shrinking U around z; and taking a small enough neighbourhood U of 2 Ty, we
may assume there are oriented orthonormal frames £y, E5, B3 on U (resp. Ey, B, E3
on U) such that «Ey, *Ey, xEs (resp. Ey, B, Eg) are eigenvectors of R (resp. R)
with eigenvalues —K(-), =K (-), =K (-) (resp. —K(-), —Ks(-), —K(-)), where these
eigenvalues correspond to those in Proposition 7.22.

Taking U, U smaller if necessary, we may take X 4, Y4, Z4 as given by Proposition
7.22 for M and X 4, Y, Z4 for M on 7o (U x )N O}, which we still denote by O
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Since *Y4 and xFEs|, are both eigenvalues of R|,, for ¢ = (z,%; A) € O}, corre-
sponding to single eigenvalue —Ks(x), we may moreover assume that Y4 = Fs|,,
Vg = (x,2;A) € OF.

Then because v(Rol,(Za A Xa))|, = —K5'(q)v(A * Ey)|, is tangent to the orbit
Opy (qo) at the points ¢ = (z,2; A) € O}, we may conclude from Proposition 7.3
that

Py 0 —Thy
=T} I? I3

53,1) (3,1) 53 ,1) )
Thgy 0 Ty

where I'" and F%j7k) are as defined there.

We will now divide the proof in two parts (cases I and II below), depending
whether (M, §) has, in certain areas, constant curvature or not.

Case I: Suppose, after shrinking U/ around x;, that Ky(#) = K (z) for all & €
U. We also assume that U is connected. This implies by Schur Lemma (see [28],
Proposition 11.3.6) that K, = K is constant on U and we write simply K for this
constant. Again shrinking U we may assuine that (U g| ) is isometric to an open
subset of a 3-sphere of curvature K.

Assume first that F%2,3) # 0 on U. Then Proposition D.19, case (ii), implies that
['l5 =0on U and (T'l,,)* = K(x) is constant on U, which must be K. Hence if
g = F%2,3)’ which is constant on U, then (U, g|) is of class My as is (U, ;) and
we are done (recall that M_z = Mg) i.e. this is case (i).

On the other hand, if F%273) =0 on U, then we have that (U, g|y), after possibly
shrinking U, is isometric, by some F', to a warped product (I x N, hy) by Proposition
D.19 case (iii). At the same time, the space of constant curvature (U, gl ), again
after shrinking U it necessary, can be presented, isometrically by certain F, as a
warped product (I x N, h; ) as shown in Example D.15, where N is a 2-dimensional
space of constant curvature

Because for all z € U we have K(z) = K, we get that for all (r,y) € I x N,
Fel,

" //
_f <T> _ K(F(T,y)) f( f (A)
f(r) F@)
Example D.15 shows that we may choose f such that f(0) = f£(0) and f'(0) = f/(0),
which then implies that f(r) = f(r), for all » € I. This leads us to case (ii)

Case II: We assume here that KQ( ) # K (&) for all & € U. The same way as
for (M, g) above, this implies that Y, = E2|$ and that w.r.t. the frame El, EQ, Eg,
Proposition 7.3 yields

Ty 0 Ty
I'= 1?%3,1) F%:m) ??3,1) )
Phay 0 Thy

where féj,k) = Q(@EZEA]», E}) etc.
We will now claim that for all (x,2) € mo(O}), we have



By Remark 7.23, we have AY, = +£Y, for ¢ = (x,2;A) € Oy, and so we get
AFEs|, = iEA2|,3. Without loss of generality, we assume that the '+’ -case holds here.
In particular, if X € VF(M), one may differentiate the identity AE, = Ey w.rt.
Zr(X)], to obtain

AVXEQ == @AXEQ, \V/q - ({L‘,i‘; A) € Oll

Since AEy, AE,, Ey, Ey € (AE,)* = Ej-, there is for every ¢ € O}, a ¢ = ¢(q) €
R such that

~

AE|, = cos(p(q)) En|; + sin(p(q)) Esls
AEs|, = —sin(p(q)) E1|s + cos(p(q)) B3z

As usual, we write below cos(p(q)) = ¢y, sin(¢(q)) = s, Having these, we compute
:(_Csorém) - SwF%2,3))E1 + (_%F%m) + CwF%2,3))E3
and, on the other hand,
Vg, Bs :C¢<_f%1,2)£’71 + IA‘%2,3)EB) + Sw(_f%z,s)EAl - f%m)EA?))
:<_%F%1,2) - Seor%zs))El + (Ceorzz,:s) - SWF%1,2))E3-
Taking X = FE; above and using the last two formulas, we get
(—coT 12y — 5ol (a3 Er + (=80T ) + €l Bs = AV g, By
=Vag, E2 = (_%F%m) - SWF%2,3)>E1 + (Ceorzz,:s) - SWF%1,2)>E3
from which
C@(—F%m) + F%Lz)) + 5«:@%273) - F%z,s)) =0.

Next we notice that differentiating the identity AE; = CSDEAl + SSDEA;», with respect
to v(A % Ey)|, gives

A(*E»)Ey = (V(A* E)|,0)(—s,B1 + ¢, B3)
which simplifies to
—AE;3 = (v(A* Ey)|qp)AE;s
and hence yields
V(Ax Ey)|,p =—1, Vq=(z,%;A) € O).

Thus, if (t,q) — ®(t,q) is the flow of v((-) x Ey) in O} with initial position at t =0
at ¢ € O}, the above implies that o(®(t,q)) = ¢(q) +1t for all ¢ such that |¢| is small
enough. Since sin and cos are linearly independent functions on any non-empty open
real interval, the above relation implies that

_P%LQ) () + IA1%1,2)(51A3) =0
F%2,3) (z) — F%2,3) (Z) =0,
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which establishes the claim.

We may now finish the proof of the proposition. Indeed, if F%2,3) # 0 on U,
Proposition D.19 implies that F%Q?, —=: [ is constant and F112 =0onU. If 2
belongs to the set 7, y,(O1), which is open in M, there is a g = (x,4; A) € O} where
(x,2) € U x U, by the definition of O}. Then what was shown above implies

~

F%1,2) (2) = 1—‘%12)(1‘) =0, 1:‘%2,3) (2) = F%z,:s) (z) = 8.

Thus shrinking U if necessary, this shows that f%m) vanishes on U and f%2,3) is
constant = 3 on U. We conclude that (U, g|y) and (U,Q|U) both belong to class
M and we are in case (i).

Similarly, if F%2,3) = 0 on U, the above argument implies that, after taking smaller
U, f%l?)) = 0 on U. Proposition D.19 implies that there is, taking smaller U, U if
needed, open interval I = Ic R, smooth functions f, f =1 R, 2-dimensional
Riemannian manifolds (N, h), (N,h) and isometries F' : (I x N,hy) — (U, g|v),
F(Ix N,h};) — U such that

J}(()) =Tl (F(ry), ¥(ry) € 1x N
";g))zlez)@@,yf)), V(r.g) € I x N

Clearly we may assume that 0 € I = I and F(0,1;) = x1, F(0,7;,) = @ for some
y €N, j1€N.

Since t — (t,y1) and t — (¢,
respectively, v(t) := F(t,y;) and
addition,

1) are geodesms in (I x N,hy), (I x N,izf),
(1) = F(t, i) are geodesics on M and M. In

4(0) = Bsls, = AiBsls, = A7 (0),

~

s0 §(t) = Apg (7, q1)(t) for all ¢. This means that

(F(t.yr), F(t.1)) = (1(8),4(1)) € mo(O5)

and therefore

/') S . J'(t)
=T, o (F(t, =T F(t, ==,
f(t) (1, 2)( ( yl)) (1,2)( ( ?/1)) f(t)
for all t € I = I. This shows that we belong to case (ii) and allows us to conclude
the proof of the proposition. O

We have studied the case where ¢ belongs to O;UQO,. As for the points of Oy, one
uses Corollary 5.24 and Remark 5.25 to conclude that for every gy = (xq, Zo; Ag) €
Oy, there are open neighbourhoods U > xy and U > & such that (U, g|v) and
(U, §lp) are locally isometric. With the choice of the set O as the union of Oy U
OF U Oy, (where Of was introduced in Proposition 7.28), one concludes the proof of
Theorem 7.1.
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7.3 Proof of Theorem 7.2

The proof of the theorem only concerns Items (b) and (c¢), which are treated sepa-
rately in two subsubsections.

7.3.1 Case where both Manifolds are of Class Mj

Consider two manifolds (M, g) and (M g) of class Mg, f > 0 and oriented or-
thonormal frames FEi, Ey, E5 and Ey, Ey, E5 which are adapted frames for of (M, g)
and (M , §) respectively. We will prove that in this situation, the rolling problem is
not completely controllable.

We define on () two subsets

Qo :={q=(v,2;A) € Q | AE, # iE2}
Q1 ={q=(z,2;A) € Q | AE, = iEg}.

Proposition 7.29 Let (M,g), (M,§) be of class Mg for § € R. Then for any
qo = (g, To; Ag) € Q1 one has Op, (q0) C Q1. Moreover, ), is a closed 7-dimensional
submanifold of ) and hence in particular dim Op, (qy) < 7.

Proof. Define hy, hs : Q — R by
hi(q) = g(AEL, E2)7 ha(q) = Q(AE37E2)7

when ¢ = (z,%; A) € Q. Tt is clear that if h = (hy, hy) : Q — R? then Q; = h=1(0).
We will first show that h is regular at the points of )1, which then implies that ),
is a closed submanifold of @) of codimension 2 i.e. dim (); = 7 as claimed.

Before proceeding, we divide () into two disjoint subsets

={g=(2.8:4) € Q | A, = +E}
Qr ={g=(v,8;4) € Q | AB, = —Eb},
whence Q = Q7 UQ; . These are the components of ) and we prove the claims only
for Q7 , the considerations for Q] being completely similar. )
First, since for every ¢ = (z,2;A4) € QF one has AE, = F,, it follows that
AE), AE3 € E3- and hence there is a smooth ¢ : Q — R such that
AF) = cos(¢)Fy 4 sin(¢)Es = X4
AF3 = —sin(¢)Ey + cos(¢)Fs =: Z

In the subsequent computations we shorten the notation as ¢, = cos(¢(q)), sy =

sin(¢(q))-

We have for ¢ = (z,2; A) € QF,
v(Ax Es)lght = g(A(xEs) By, Es)
v(Ax Ey)lght = g(A(xEn) )
V(A% E3)|,he = g(A(%E3) Es, 2) =
V(A x Ey)|ghe = §(A(XEy) Es, E,)

ZQA*Eg
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which shows that indeed h is regular on Q7.
Next we show that the vectors Zx(E1)|q, Zr(E2)|q, Zr(E5)], are all tangent to
Q7 and hence to ;. This is equivalent to the fact that Zx(E;)|,h = 0 fori = 1,2, 3.
We compute for ¢ = (z,2;A4) € Qf, recalling that AE, = X4, AF, = +E,
AE3 ZA7
Lr(Ey)|ghy =9(AV 5, Ex, o) + §(AE, Vg, Bs)
= —T(3.1)9(AEs, Es) + §(Xa, BepBs — BsyEry)
= —Tly1)i(Za, E2) + §(Xa, 8Z4) =0
Lr(E)|ghe =§(AV 5, B3, Ey) + §(AE5, Vg, E»)
(A(F(3 WE1 = BEs), Ea) + §(Z4, BZ4)
—§(Dls1yXa — BE2, ) + =0
9

Lr(Ey)|hy = AVEQEl,Eg) + §(AE, Vg, Ey) = —T%109(Z4, F2) +0=0
Lr(Bs)|gha =3(AV 5, B3, Bs) + §(AE3, V5, E) = Ty 1)§(Xa, E2) +0 =0
L (Es)|ghy = (AVEgEl,EQ) G(AE,,V ; Es)

=G(A(BE2 — T3y ) Ey) + §(Xa, —BssFs — By )
= (5E2 3 1)ZA) 2) — A(XmXA) =p-p=0

,%R(Egg)‘qhg (AVE3E37E2) +g< 37 ZAEQ)

T 0 G(AEy o) + §(Za, —BXa) = T1,9(Xa, E2) + 0 = 0.

Thus L&(E1)|g, LRr(E2)|y, ZLr(F3)|, and hence Dy is tangent to @, which im-
plies that any orbit Op, (q) through a point ¢ € Qf is also a subset of Q]. The
same observation obviously holds for ()7 and therefore the proof is complete. O

Next we will show that if (M, g) and (M, §) are of class Mg with the same 3 € R,
then the rolling problem of M against M is not controllable.

We begin by completing the proposition in the sense that we show that the orbit
can be of dimension exactly 7, if (M, g), (M, §) are not locally isometric.

Proposition 7.30 Let (M, g), (M, §) be Riemannian manifolds of class Mg, 3 # 0,
and let gy = (o, To; Ao) € Q1. Then if Op,(qo) is not an integral manifold of Dy, one
has dim ODR (QQ) =17.

Proof. Without loss of generality, we may assume that AgFEs|,, = Ez\xo Then
Proposition 7.29 and continuity imply that AF,|, = E2|gC for all ¢ = (z,2;A) €
Op,(qo) and hence that AE|,, AEs|, € span{F;|;, Es|z}. This combined with
Lemma D.8 implies

Rol,(xE1) =0, Rol,(xEy) = (—Ka(x) + Ka(#))(xE2), Roly(xF3) =0,

for ¢ = (z,4;A) € Op,(q), where —K5(z), —K5(Z) are eigenvalues of R|,, R|s
corresponding to eigenvectors xFs|,, %EA2|@, respectively.

Since Op, (qo) is not an integral manifold of Dy there is a point ¢, = (21,215 A1) €
Opy(q0) such that —Ky(xy) + Ko(21) # 0 (see Corollary 5.24 and Remark 5.25).
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Then there are open neighbourhoods U and U of z1 and 2y in M and M, respectively,
such that —Ky(z) + Ky(#) £ 0 for all z € U, & € U.

Define O := 7T_1(U xU)NOp, (qo), which is an open subset of Op_ (gy) containing
¢o- Because for all q = (x,2;A) € O one has v(Rol,(xE»))|, € T|,0p,(q) and

—Ky(z) + Ko(#) # 0, it follows that
V(A*E2)|q c T|qODR(qO), Vg = ({L‘,i‘; A) € 0.

Moreover, F%l 9 = 0 and F%Q 3 = [ is constant and hence one may use Proposition
7.5, case (i), to conclude that the vector fields defined by

Lyl =xs(Er)|g — Bv(Ax E1)l,
L2|q :ﬁgNS<E2)‘q
Lslqy =Zns(E3)|g — Br(Ax Ey)l,

are tangent to the orbit Op, (¢o). Therefore the linearly independent vectors
gR(El)‘qa gR(E2)‘qa gR(E?))‘qa V<A * E2)‘qv L1|qv L2‘qa L3|q

are tangent to Opg(qo) for all ¢ € O, which implies that dim Op,(¢) > 7. By
Proposition 7.29 we conclude that dim Op,(qy) =7 O

By the previous proposition, we are left to study the case of an Dg-orbit which
passes through a point ¢y € Q).

Proposition 7.31 Let (M, g) and (M,§) be two Riemannian manifolds of class
Mﬁ, 6 7& 0, and let go = (ZL‘Q,i‘O;Ao) c Qo. Write M° A: WQ,M(ODR(QO)): M° =
To.x1(Opy (q0)), which are open connected subsets of M, M. Then we have:

(i) If only one of (M?®, g) or (M°, §) has constant curvature, then dim Op, (¢o) = 7.
(ii) Otherwise dim Op,(qy) = 8.

Proof. As before, we let E;, Ey, F3 and E\y, By, F5 to be some adapted frames of
(M, g) and (M , §) respectively. We will not fix the choice of ¢y in )y (and hence
do not define M°, M °) until the last half of the proof (where we introduce the sets
Moy, My, MO, M, below). Notice that Proposition 7.29 implies that Op,(qo) C Qo,
for every qg € Qo.

The fact that AFEs|, # iEQ\i for g = (x,2; A) € Q) is equivalent to the fact that
the intersection (AE|,) N Ey|; is non-trivial for all ¢ = (x, &; A) € Qy. Therefore,
for a small enough open neighbourhood O of ¢ inside Qy, we may find a smooth
functions 6,6 : O — R such that this intersection is spanned by AZ,4 = = 74, where

Za = = sin(0(q)) v, + cos(6(q)) Bl

Zy = —sin(0(q)) By + cos(0(q)) Bz
We also define
X4 :=cos(0(q))En|, +sin(0(q)) Es|,
Xy :=cos(0(q)) Er|; + sin(0(q)) Es| -
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To unburden the formulas, we write from now on usually s, := sin(7(q)), ¢, :=
cos(7(q)) if 7 : O — R is some function and the point ¢ € O is clear from the
context.
Since Xy, E2|$, Z 4 (resp. XA,E2|x, ZA) form an orthonormal frame for every
q = (x,2;A) € O and because A(Z%) = Z%, it follows that there is a smooth
¢ : O — R such that
AX 4 :C(ZBXA + SQBEQ = Cé(CéEAH + SéEg) + SQBEQ
AEy = — SqBXA —+ CQBEQ = —SqAb(CéEAl -+ SéEg) —+ CQBEQ
AZy =Z .

In particular,

G(AZ 4, Ey) =0,

for all ¢ = (x,@; A) € O. ) A
Notice that for all ¢ = (x,2; A) € O, since Ax Z4 = *Z4A,

Rol,(xZ4) = R(xZ4) — ATRGZA)A = —K « Zs + KAT3Z,4A = 0
and hence, since Iiglq : N2T|,M — N*T|,M is a symmetric map,

Rol, (X 4) = — KF(q) x X4 — o B,
Rol,(xE») = — % X4 — KX(q) * By,
for some smooth functions KR K8 o : O — R.

We begin by considering the smooth 5-dimensional distribution A on the open
subset O of @)y spanned by

Zr(En)lg; Zr(E2)lg; Lr(Es)lg, v(A % Ea)lg, V(A% Xa)lg

What will be shown is that Lie(A) spans at every point ¢ € O a smooth distribution
Lie(A)|, of dimension 8 which, by construction, is then involutive. We consider
VF%R, VFK  Lie(A) as C°°(O)-modules.

Since X4 = coFh + sgFs, in order to compute brackets of the first 4 vector fields
above against v(Ax X 4)l|,, we need to know some derivatives of #. This will be done
next. We begin by computing

LR(Xa)lgZ) =(=Lr(Xa)g + col 51y + 56 (5,1)) Xa — BE:
Lr(B2)|o 20y =(=Lr(E2)|¢0 + Tf51))Xa
gR(ZA)|qZ(~) :(—,Z”R(ZA)\qG — S@F(&l) + C@F?&l))XA.

Differentiating §(AZ4, Ey) = 0 with respect to Zx(X4)l, gives,

0 =§(AL(Xa)|oZ0), V) + §(AZ 4,V ax, E2)
ZQ(A(_«ZR(XA)M@ + CGF(3,1) + 36F(3,1))XA — BEy), E2)
+ §(AZ4, cj0;8E5 — c3syBE)
( Zr(Xa)lq0 + COP(?, nt sl (3,1) ) — Bey + C¢395 + C¢>Cg
= ¢(—«$R(XA)|q9 + CGF(3,1) + 30F(3,1))-
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Since s; # 0 (because otherwise AE, = +E,), we get
.ZR(XA)\qG = C@F%&l) + S@F?&l).

In a similar way, differentiating §(AZ,, Ey) = 0 with respect to % (Z4) lgs LR (E2)lq,
one finds

gR(ZA)‘qe - _SQF%371) _'_ C@F?g’l)
Lr(E)f = =B + Ty ).

Finally, applying v(A x Ey)|, on the equation G(AZy, Eg) = 0 gives,
(A x En)l(() 20y, Bo) = G(AGREs)Za — (v(Ax Ep)| 0)AX s, )
=(1 — v(Ax E)|,0)§(AX 4, E»)
and since §(AX 4, Ey) = s3 7 0,
v(Ax Ey)|,0 =1
Using the definition of X4 and Z4, we may now summarize
Lr(E)|0 =Ty, Lr(E)lf = -6+ T,
r(E )|q9_r(31)v V(Ax Ep)|0 = 1.

By Proposition 7.5 and the fact that 3 # 0, we see that VFX contains the vector
fields given by

Lilg =xs(Er)|g — Br(Ax Ey)lg
Ly, =s(Es)lq
L3|q :gNS(E?’”q — Br(Ax E3)|q

e Ly= %Lg. Computing

[Za(E), v((1) % X())llg = — s0-LR(Ea)lq + soLalg — soBr(Ax B)|,

[Zr(E2), v(() * X()llg = — Zr(Za)lg — soLnlq + coLslq

(Lo (Es), v((-) % X())llg =co-Lr(Ea)lq — coLalg — coPv(Ax E)l,
W(() * E2), v((+) x X(y)]lg =0

and since one also has

[Lr(Er), Lr(B2)]lg =Lr([Er, Ba])lg — 56 KTPv(A* Xa)lg — seow(A* By,
[Lr(E), Lr(EBs)]lg =Lr([Ea, Es])lg — co KT (A x Xa)lg — coav(Ax )l
[Lr(Es), L(En)|lg =Lr([Bs, Eal)lg — av(Ax X0)|g — KSv(Ax By)lg,

we see using in addition Proposition 7.5, case (ii) (the first three Lie brackets there),
that~VF2A is generated by the following 8 linearly independent vector fields defined
on O by

R(E1) gy LR(E2) g LR(E3) | V(A % Ea)|g, v(Ax Xa)lg, Ly, E2|qv Ll
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We now proceed to show that Lie(A) = VF%. According to Proposition 7.5 case
(ii) and previous computations, we know that all the brackets between ZR(FE),
Lr(Ey), Lr(E3), v((-) x By) and Ly, Ly and also [Ly, Ls] belong to VF%, so we are
left to compute the bracket of v((-) » X(,), L, against Ly, Ly and also L, against
Lr(E) g, Lr(E2)|g, Zr(E3) g, V(A E2)lg, v((+) * X())lg-

To do that, we need to know more derivatives of 6. Since [Zr(E1), v((+)* Es)] =
Lr(E3)|q — Lslg, we get

Ly =Zr(E3)]40 — Lr(E1)|g(v((-) x E2)8)) + v(Ax Es)|y(Lr(E1)6) =Ty

= 1
! _F(S 1)

and similarly, by using [Zr(Es), v((:) * E2)] = —ZR(E1)|q + Lilg,
L1|q9 - F(3. 1)*
On the other hand
s (Bl 20y =(—Lns(B)|g0 + T 1) X a,

and to compute Ly|,0 = Lus(F»)|,0, operate by Lus(E,)|, onto equation §(AZy, Ey) =
0 to get

[~/2|q9 - F?&l)'
With these derivatives of 6 being available, we easily see that

(L1, v((-) * X))l =0
Ly, L]l ( 1)+ B)Lalg
[Ls, v((-) x X()llq =
(L3, 2]|q — (T + B) L,
(ZR(EL), Lollg =BLslg — Za(VE, BY)lq
(LR (E2), La]|y =0
(L (E3), Lo]lg = — BLly — LV, Bs)lg

1

w((+) x Ez), La]|, =0
((-) * X(y), La]lq =0.

Hence we have proved that VFZ is involutive and hence
Lie(A) = VFX.

There being 8 linearly independent generators for Lie(A) = VF%, we conclude that
the distribution D spanned pointwise on O by Lie(A) is integrable by the theorem
of Frobenius.

The choice of gy € Qg was arbitrary and we see that we may build an 8-
dimensional smooth involutive distribution D by the above construction on the
whole Q. Since Dg C A C D, we have Op,(q) C Op(qo) for all ¢y € Qp and
thus dim Op, (qy) < 8. We will show when the equality holds here and show when
actually dim Op, (qo) = 7.
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Define

My ={z € M | B* # K>(x)}

M, ={z € M |3open V> zst. Vo' €V, > = Ky(2')}
Mo ={& € M | 5* # Ks(#)}

M, ={#eM|Jopen V3ist Vi'eV, g2= Ky},

and notice that MyUM; (resp. MyUM; ) is an open dense subset of M (resp. M). At
this point we also fix ¢y € Qo and write M° = 7o 4(Opy (q0)), M° = To.x1(Opg (90))
as in the statement of this proposition.

Let q1 = (z1,21; A1) € Wél(MO X MO) NQo. Take an open neighbourhood O of ¢
in )y as above (now for ¢; instead of gy which we fixed) such that FQ(O) C My x M,

and introduce on O the vectors X 4, Za, XA, Za along with the angles 6,6, ¢, again
as above. Then one computes for g € O,

@q(*XA) _ 53;(—52 A+ K>) %5(;5(—52 + KQ)A (*XA)
Rol, (xF) (=B + Ka)sycy —Ky+ 5262 + CEKQ * [,
Rol, (xZ.4) =0.
The determinant d(q) of the above matrix equals

d(q) = —533(—[(2 + 52)(—R2 + 6%),

so d(q) # 0 since ¢ € O C Wél(MO X M) N Qo. Since v(Rol(xE,)(A))], €
Ty, Opy (q1), we obtain that v(A; x Es)|y, € Ty Opg (q1)-

1.

If 4 = (21,21;4) € Wél(MO x My) N Qo, then one can take a sequence ¢, =
(«l,2l; Al) € Opg(qq) such that ¢, — ¢; while 2], € M. Since M, and () are open,
we have for large enough n that ¢}, € m,'(My x My) N Qo, hence v(A! x Ey)|, €
T'|y Opr (1) and by taking the limit as n — oo, we have v(A1xE3)|q, € T4, Op(q1)-

Next suppose ¢ = (x1,31; A1) € ﬂél(MO X M;) N Q. Then Iiglql(*El) =

Rol,, (xE3) = 0, Roly, (xEs) = (—Ka(x1) + B82) * By with Ky(z,) # (2 and hence
V(A* Ey)|g € T)q,Opg(q1). Thus we have proven that

V(A By)|, € T|¢Opy (@), Vg€ QoNmg (M x M).
Changing the roles of M and M we also have
v((*E2)A)|g € T],0p,(q), Va € QoNmg' (M x My).

We define on @) two 3-dimensional distributions D, D: for q € @ one defines lA)| q
to be the span of

[A(l‘q = gNS<AE1>|q + Br(A % E1)|q
K|, = Ss(AR,)|,
K3|q = Ins(AE3)|q + Br(Ax Es)l,
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and DJ, to be the span of

Kilg = Zs(ATEY)|, — Bu((xEy)A),
K2|q = gNS(ATEAZHq
K3y = Ss(A"Es)|, — Br((+E3)A)l,

We claim that for any ¢; = (z1,21; A1) € @ and any smooth paths v : [0,1] — M,

4 :[0,1] = M with v(0) = 21, 4(0) = 21 there are unique curves I, T : [0, 1] — Q of
the same regularlty as 7,y such that I" is tangent to D, T(O) = ¢y and o\ (I'(2)) =7
and similarly T is tangent to D, (0) = ¢ and 7TQ7M(1—‘( )) = 4. The key point here
is that I, T" are defined on [0, 1] and not only on a smaller interval [0, 7] with T < 1.
We write these curves as I' = I'(v, ¢;) and [ = f(’y, ¢1), respectively. Notice that
since (7 y;)«D = 0 and (7.0 )«D = 0, one has

WQ,M(P(Vaql)( )) =11, 7TQ7M(f‘(§/aql)(t)) =x1, Vi€ [07 1]'

We prove the above claim for D only since the proof for D is similar. Uniqueness
and local existence are clear. Take some extension of v to an interval | —e, 1 +¢[=: |
and write I'y := I'(v, ¢1). Consider a trivialization (which is global since we assumed
the frames F;, E;, i = 1,2,3 to be global) of m¢ given by

©:Q— MxMxSO(n); (2,8 A)— (2,8, Mpa(A)),

~

where F' = (El, EQ, Eg) F= (El, EQ, Eg)
Clearly for every (s,C) € I x SO(n) one has

(T (v(s+), 2 (y(s), 21: C) (1) = (4(s +1), &1, Bis.oy (1)),

where B, ¢y(t) € SO(n) and ¢ in some small open interval containing 0. On I xSO(n)
we define a vector field

9 .
X|sc) = (%B(sc)(()))-

IO (v, q1)(t)) = (7(t), 21; (1)), then since

STy () =] B @)t +5) = S B0G(s + ), Dl m)(5)(0)

d . .
| (Yt +5), 21, Bscons) (1) = (3(5), 0, (pro)uX | s.cu(s))

~dtlo

we see that s — (s, (prso ®oI'1)(s)) = (s, Ci(s)) is the integral curve of X" starting
t) = (t C(t)) is the integral curve of X’ starting

C(t)

t)) gives an integral curve of D starting

s
from (0,C1(0)). Conversely, if A;(
from (0, C1(0)), then [y (t) = &1 ((t), 21,
from ¢, and mg A (I'1(2)) = (2).

Hence the maximal positive interval of definition of I'; is the same as that of
the integral curve A; of X starting from (0,C). If it is of the form [0, ¢] for some
to < 1+ €, then, because [0, 1] x SO(n) is a compact subset of I x SO(n), there is
aty € [0,to] with Ay(t1) ¢ [0,1] x SO(n) i.e. t; ¢ [0,1] which is only possible if
t; > 1, and thus ¢, > 1. We have shown that the existence of I';(t) = I'(y, q1)(t) is
guaranteed on the whole interval [0, 1].
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Since for all ¢ € Qy N 7@1(]\/[0 X M), which is an open subset of (), one has
v(A* Ey)|, € T|,0p,(q), it follows from Proposition 7.5 that

Lulg = Zxs(Er)lg — Br(Ax En)lg
Lolg = s (E2)lq
Lslg = Zns(Es)lq — Bv(A* Es)lg
are tangent to the orbit Op, () and hence so are Zx(E1)|q—Lilq = Kilqg, Lr(Es)|q—
L2 = K2|q and D?R(Egﬂq - L3|q = K3|q i.e.
D|, € T|,0p,(q), YgeQun Wél(Mo x M).
Similar argument shows that

D|, C T|,0p,(q), Vg€ QN Wél(M X MO).

Assume now that (M; x My) N 7o(Opy (o)) # O and that My # . Choose
any ¢ = (21,215 41) € Opy(qo) with (z1,21) € M; % M, and take any curve
v :[0,1] = M with (0) = xy, 7(1) € My. Then since 7,y (I'(7, ¢1)(t)) = 21, we
have 7o (T'(7v, ¢1)(t)) € M x M, for all t € [0,1] and since also D|, C T|,0p, (qo) for
all ¢ € Op,, (qo) ﬂwél(M x M), we have that T'(7y, q1)(t) € Op, (o) for all t € [0, 1].

Indeed, suppose there is a 0 < t < 1 with I'(y, ¢1)(¢) ¢ Op,(qo) and define ¢, =
inf{t € [0,1] | I'(v,@1)(¢) ¢ Opg(qo)}. Clearly t; > 0. Because g2 :=I'(7,¢1)(t1) €
Wél(M x My), it follows that for |t| small one has I'(y, q1)(t1 +t) € Opg(ga2), whence
if t <0 small, T'(7,q1)(t1 +t) € Op,(q2) N Opy (o), which means that ¢o € Opy (o)
and thus for ¢ > 0 small I'(, ¢1)(t1 +t) € Op,(qo), a contradiction.

Hence one has 7o (T'(7y, q1)(1)) € (Mo x My) N7o(Opy (o). In other words we
have the implication:

(M, x Mo) N7o(Opg(q0)) 0, My #0 = (M x My) N7o(Opg(q0)) # 0.
By a similar argument, using D instead of D, one has that
(Mo x My) N7g(Opg (@) # 0, My #0 = (M x My) Nrg(Opy(q0)) # 0.

Suppose now that there exists ¢ = (x1,21; A1) € mg,' (M X Mo) N Op, (q0). We
already know that 7|, Op, (qo) contains vectors

LR(E) g1y LR(E2) g1 LR (E3) g5
V(Ax Ey)lg,, ((xE2)A)l,,
L1|Q17 L2|Q17 L3|¢11

which are linearly independent since q; € (Mg x My) N 7o(Opy (o). Indeed, if one
introduces X4, Z4 and an angle ¢ as before, we have sin(¢(q1)) # 0 as ¢; € Qp and

V((%E2) A1)y = v( A x (AT Ey))|g = sin(@(q1)) (A x Xa,)|gy + cos(d(q))v(Ar % Ba)lg,-

Therefore dim Op,, (¢o) > 8 and since we have also shown that dim Op, (gy) < 8, we
have that

(MO X MO) N WQ(ODR(Q())) # ) = dim (’)DR(qO) =38

Write QQ° := 7TC_21(MO X M"), which is an open subset of @) and clearly Op, (qy) C
Q°. To finish the proof, we proceed case by case.
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a) Suppose (M°, §) has constant curvature i.e. MoNM® = . By assumption then,
(M?,g) does not have constant curvature, which means that My N M° # ().

At every ¢ = (z,2;A) € @Q°, one has Ii;lq(*El) = Iiglq(*Eg) = 0 and
Rol,(xEy) = (—Ks(x) + %) x E5 and therefore

[LR(Ey), Lr(E2)llg = ZR([Er, Ba))lg,  [r(E2), Zr(E3)]lg = Zr([E2, B3],
[Lr(Es), Zr(E)]lg = Zr([Es, Br])lg + (—Ka(x) + 52)v(A * By)|q.

From these, Proposition 7.5 case (ii) and from the brackets (as above)

Lr(EL), Ly, =BLs|, — ZLr(Ve,F),

[ZR(Er), Lo]
[Za(Es), Lo]lg = — BL1ly — (Ve Es)lq
[“ZR(E2), Lo]|g =0
W((-) % By), Loy =0
(L1, Lo)lg =T 1) + 8)Lslq
[L?n ollq = ((31)+B)L1|q,

we see that the distribution Don Q° spanned by the 7 linearly independent
vector fields

LBy, Lo(By), Lo(Es),v((-) % Ey), Ly, Ly, Ls

with Ly, Lo, L3 as above, is involutive. Moreover D contains Dr|ge, which
implies Opy, (q0) = Opyee (90) € Op(q) and hence dim Op, (o) < 7.

To show the equality here, notice that since My N M° # (), one has that
O := 75 (Mo) N Op, (qo) is an open non-empty subset of Op, (qo). Moreover,
because Ky(z) # 3% on My N M°, we get that v(Ax Ey)|, € T|,0p,(qo) for
all ¢ € O, from which one deduces by Proposition 7.5, case (i) that 1~7|q C
T|,Opy (qo), which then implies dim Op, (go) > 7. This proves one half of case
(i) in the statement of this proposition.

b) If (M°, g) has constant curvature, one proves as in case a), by simply changing
the roles of M and M, that dim Op, (qo) = 7. This finishes the proof of case
(1) of this proposition.

For the last case, we assume that neither (M°, g) nor (M°,§) have constant
curvature i.e. we have M° N My # 0 and M° N My # (.

¢) Since M° N My # (), there is a ¢; = (x1,21; A1) € Opg(qo) such that x; € M.
If 21 € My, we have (Mo x My) N 7mo(Opg(qo)) # 0 and which implies, as we
have shown, that dim Op,(qo) = 8.

Suppose then that £, € E Then one may choose a sequence q, = (a2 ;A) €
Opy (qo) such that ¢, — ¢ and 2, € M;. Because M, is open, for n large
enough one has (2/,2]) € (MO X Ml) N WQ(ODR(C]O)). Hence (Mg x M;) N

70(Opy () # 0 and O # M° N My C My, which has been shown to imply
that (Mo x My) N 7o(Opy () # 0 and again dim Op, (¢o) = 8.
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The proof is complete. O

Remark 7.32 One could adapt the proofs of Propositions 7.29, 7.30 and 7.31 to deal
also with the case § = 0. For example, Proposition 7.29 as formulated already is valid
in this case, but the conclusion when 5 = 0 could be strengthened to dim Op, (¢y) < 6.
However, since a Riemannian manifold of class M is also locally a Riemannian product,
and hence locally a warped product, we prefer to view this special case 8 = 0 as part of
the subject of subsection 7.3.2.

7.3.2 Case where both manifolds are Warped Products

Suppose (M, g) = (I x N, hy) and (M, §) = (I x N, izf), where 1,1 C R are open
intervals, (N, h) and (N, ) are connected, oriented 2-dimensional Riemannian man-
ifolds and the warping functions f, f are smooth and positive everywhere. We write
% for the canonical, positively directed unit vector field on (R, s;) and consider it
as a vector field on (M, g) and (M, §) as is usual in direct products. Notice that

then % is a g-unit (resp. g-unit) vector field on M (resp. M ) which is orthogonal

to T|,N (resp. T|;N) for every (r,y) € M (vesp. (7,7) € N).

We will prove that starting from any point point ¢y € Q = Q(M, M) and if the
warping functions f, f satisfy extra conditions relative to each other, then the orbit
Opy (qo) is either 6- or 8-dimensional. The first case is formulated in the following
proposition.

Proposition 7.33 Let (M,g) = (I x N,hy), (M,3) = (I x N, izf) be warped
products of dimension 3, with 1,1 C IR open intervals. Also, let ¢y = (zo, To; Ag) € Q
be such that if one writes xo = (70, %0), Zo = (70, Jo), then

0 0

OE}(TO,ZJO) - 5}(7:0,110)' (97)

holds and

fE+r0)  flt+70)

Then if Op,(qo) is not an integral manifold of Dg, one has dim Op, (¢o) = 6.

Proof. For convenience we write k(r) := ’;/((:::;’)) = ];((:::S))’ re (I—ro)N(I—#) =: J.
Let v be a smooth curve in M defined on some interval containing 0 and such that
7v(0) =z and let (y(t),Y(t); A(t)) = qpn (7, qo)(t) be the rolling curve generated by
~ starting at ¢o and defined on some (possible smaller) maximal interval containing
0. Write y(t) = (r(t),7(t)) and 4(t) = (7(t),%(t)) corresponding to the direct
products M = I x N and M =1 x N. Define also,

C@t) :=r(t) —ro, S(t) ::%’v(t)

~

C(t) == 7(t) — 7, S(t) :A(t)_la%}@(t)

which are vector fields on M along ~.
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Notice that

() = #0) =030, 57| ) = 9(3(0), (1)
1) = #0) =30, o) = SAWAW, 5] ) = 930, 5(0)
By Proposition 35, Chapter 7, p. 206 in [24], we have
05 = G0~ 0 57)
(OGO — D] )
Vi = G0 = 0 )

—k(C() (1) = C(t) &m ).

Vi S() =r(C(1))(3(E) — {B)S(2)

Vi S(0) =AW Vi o = kCO)AD D) ~ EO AW )
—k(CB) () — CBS(®)

Let p € C*(R) and t — X () be a vector field along v and consider a first order
ODE

{p(t) = g(3(t), X (1))
Vi X = w(p(t) (3 (t) — pt) X (1)).

By the above we see that the pairs (p, X) = (¢, S) and (p, X ) (f S) oth solve this
ODE. Moreover, by assumption ((0) =0 = C( ) and S( A(0)~ aﬁ‘ o1 =

(s S) on the

S(0) so these pairs have the same initial conditions and hence (¢, .S)
interval where they are both defined. In other words,

’I"(t) — T :’f'(t) — ’f’o

0 0
Al g7l =77 ho
for all ¢ in the interval where the rolling curve gp, (7, qo) is defined.
Define
— (4= (i) = (n9). (0 A) € Q| r—ro = — i, AL ] = D]y
) ) ) ) ) 7 ) ar x ar T

By the above considerations,

apr (7, q0)(t) € QF, Vi

which implies that Op,(q) C Q7.
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We show that Q% is a 6-dimensional submanifold of Q. Let ¢ = (z,2;A) =
((r,y), (7,9); A) € @ such that A%’x = % ;- Then for all @ € R, X" € T[,N one
has

IX))2 + o® = HX'JFO%} 2 H X’+a—} = | AX||? + 2 (AX’ a—y
This implies that

1X71l; = Il AXII3

Q(AX,’ %‘x) -

for all X" € T|,N. Thus AT|,N L %’i and also A%}x L T|;N by assumption.
Define

={q¢=(2,7;A) = € —1.

(0= (8 A) = ((ny). (i) A) e Q| AT = T )
and let ¢ = (21,21; A1) = ((r1,11), (71,91); A1) € Q7. Choose a local oriented h-
and h-orthonormal frames X!, X} in N around y; and Xl, X} in N around 7. Let
the correspondlng domains be U’ and U”. Writing E; = 5 Bo = 1X{, E3 = 1X’ on
M and E; = 8r’ Ey = 1X{, Es = %Xé on M, we see that Fy, Ey, F3 and El,EQ,Eg
are g- and g¢- orthonormal oriented frames and we define

UV i=an (Rx U') x (Rx U')) = SO(3);
U(z,2; A) = [(9(AE;, E;));].
This is a chart of @) and clearly

\II(VQQ{F):(]RXU’)X(RXU/)X{((1) A’) | A" € SO(2 )}

This shows that Q] NV is a 7-dimensional submanifold of @) and hence Qf is a
closed 7-dimensional submanifold of Q).

Defining F : Qf — R by F((r,y),(#,9); A) = (r —ro) — (# — 7), we see that
Q% = F~*(0). Once we show that F' is a submersion, it follows that Q7 is a closed
codimension 1 submanifold of Qf (ie. dim@* = 7—1 = 6) and thus it is a
6-dimensional submanifold of Q).

Indeed, let ¢ = (z,%; A) € Qf and let ¥(¢) be an integral curve of £ starting
from x and §(t) = % a constant path. Let q(t) = ((t),7(t); A(t)) be the Dyg-lift of
v

(v,4) starting from g. Then +(t) = 2 ) (t) = 0 and since £ is a unit geodesic
field on M, one has
d 0 0 0 0 J -~ 0

EQ(A(t)EIW)’ Elw)) - Q(A(t)vﬁ(t)gv ﬁ}ﬁ(t)) + g(A(t)§> VOE’@@)) =0.

This shows that ¢(t) € QF for all ¢ and in particular, Zys(Z g =4(0) € T, Q7.
Then if one writes v(t) = (r(t),71(t)), ¥(t) = & = (7, y)=constant, one has 7(t) = 1
and therefore



ie. F.. (& ‘x)\q = 1, which shows that ' is submersive. (Alternatively, one could
have uses the charts U as above to prove this fact.)

Since we have shown that dim@* = 6 and Op () C @7, it follows that
Opy(q0) < 6. To prove the equality here, we will use the assumption that Op, (qo)
is not an integral manifold of Dg.

Take local frames EZ-,Ei as above near x; and z;, where q1 = (z1,21; A1) =

((r1,y1), (71, 91); A1) € Opg(qo). The assumption that fttro) Hm forallt € J

f(t+ro) f(t+ 70)
e i ['trre) o f(tre)
easily imply that Foro) — Ferre) ro(t) for all t € J as well. Respect to the
frames xFq, xFy, xF3 and *El,*EQ,*Eg one has (see Proposition 42, Chapter 7, p.

210 of [24])

_;((ry))g + K(r — o) 0 0
Rl = 0 Ko(T — 190) 0 ,
0 0 Ka(r — 1)
) S+ R (7 — 7o) 0 0
Rlrg) = 0 Ko (P — 7o) 0 :
0 0 Ko (7 — 7o)

where o(y) and G(3) are the unique sectional (or Gaussian) curvatures of (N, k) and
(N, h) at points y,y. Write

o(y) NP (9) .
Since Alar‘ = 5 5 We already know that AjFEs|,, and A;Fj3|,, are in the

plane span{E2|$1, Esls,}. This and the fact that r; — ro = 7, — 7 imply
—Ks(w1) + Ka(d1)

- 0
Rol,, = 0 0
0 0

o O O

w.rt. xEy g, %Eo ey, x B3, -

Since Opy(qo) is not an integral manifold of Dy, it follows from Corollary 5.24
and Remark 5.25 that there is a ¢; € Op,(qo), where Ii\cjlq1 # 0. Hence there is a
neighbourhood O of ¢; in Op, (qo) such that Ii\alq # 0. With respect to local frames
E;, E; as above (taking O smaller if necessary), this means that Ky(z) # Ky (&) for
all ¢ = (z,%; A) € O and since v(Rol,(xE1))|, = (—Ks(z) + Ko(2))v(A * Ey)|q W
have

v(Ax Ey)|, € T,0p,(q0), Vg€ O.

Hence applying Proposition 7.5 case (i) to the frame Fy := Ey, Iy := Ey, F3 := E3
implies that the 6 linearly independent vectors (notice that we have F%Q 3 = 0 in
that proposition)

Lr(F1)|g, Lr(F2) g, Lr(EF3)|g, V(A * Fy)|g, Lilg, Lalg
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are tangent to Op, (qo) at ¢ € O, where

Ly = Zas(F1)|g — D1y (2)v(A x F3)l,
Ly = is(F3)|q + Ty o) (2)v(A % Fy)lg,

where P(1 0 (@) = 9(ViF1F) = g(Vg,Ea, Ey) = ’;:((:)) if © = (r,y). This proves
that dim Opy (qo) > 6. End of the proof. O

Remark 7.34 The condition Rol,, # 0 in the proof of the previous proposition was
equivalent to the condition K5(z1) # Ky(Z1) which again means that if x; = (r1,11),

:i‘l - (:i‘lagl)'

where o(y) (resp. (7)) is the sectional curvature of (N, h) at y € N (resp. of (N, h)
at gy € N).

Remark 7.35 To show that dim Op,(go) < 6 under the assumptions of the propo-
sition, we showed that if ¢ = (x,2; A) € Q7 then ¢p,(v,q)(t) € Q7 for any path v
starting from x. For this we basically used the uniqueness of the solutions of an ODE.

Alternatively, one could have proceeded exactly in the same way as in the proof of
Proposition 7.29. To this end, one defines as there hi,h; : Q — R and also F': Q — R
as above as

hi(q) = G(AE1, Es),  ha(q) = §(AEs, Bb), F(q) = (r —ro) — (7 — 7o)

Now write H = (hy,he, F) : Q — R3, Q* :== H1(0) a dQ Q% U Q* where Q7
(resp. Q*) consists of all ¢ = (z,#; A) € Q* where Aa2 = —r (resp. Aar = 8‘1)
Now for all ¢ € Q%

0
H.v(A* Ey)|, =(0,-1,0), H.w(AxEj3)|,=(1,0,0), H*$N3(8—,0)|q =(0,0,1),
r
which shows (again) that Q) is a 6-dimensional closed submanifold of Q (and S0 |s Q")
while w.r.t. orthonormal bases F;, Es, F3, El,Ez,Eg, where £y = E2 = 5 one

has for ¢ = (z,2; A) € Q7 since x = (r,y), T = (7,9) with r — g —7’ — g =:t
LR(E)lghy = (A9 B> — Tis 1) Es), E2) + §(AE;, —T'{, 5 AEy)

1) fF)  filttre) | f(E+ o) _
~f(r) + f7)  flt+mr) * Flt+ 7o)

Lr(Er)|gha = Tls.1) (A, o) + G(AE;, —T{, 5 AE) = 0
Lr(B2)|ght = —T(31)§(AEs, y) = 0

L(B)|gha = T §(AEL, Ey) = 0

Zr(E3)|gh = Zr(E3)|ghs =0

Lr(En)|oF = Zr(E) | F = Zr(Es)| F =

hence Dg|, C T'|,Q% for all ¢ € Q.. This obviously implies that Op, (¢) C Q% for all
q € Q% and thus dim Op (¢) < dim Q% = 6.

153



For the following proposition we introduce some notation,

Qo ={a = ((r,1), (7 >>e@|Aauy¢i§m@}
QF =Q\Qo = (4= w4 € Q| AT | =4 |
QO =0\ = o= (A Q| AT| =T
1 ZIQIF U Qf
o P )

Sl '_{q - (( 7y>7( 7y>7A) € Ql f(?“) + f('f‘) }

N | (O B L)

Sl -—{q - (( 7y>7( 7y>7A) € Ql ‘ f(,,,) f(f) }

Sy =S usy.
We have that () decomposes into a disjoint unions

Q =S U (Q\S1) = S1U(Q1\51) U Qo.

Proposition 7.36 Let (M,g) = (I x N, hy) and (M, §) = (I x N, izf) be warped
products with I,/ C R open intervals and suppose that there is a constant K € R such
that

o) 1)
f(r) £(7)
Let g = (l’o,i’o;Ao) € @ and write M° := 7TQ,M<ODR<QO))1 Me = WQ,M<ODR<QO))'
Assuming that Op.(qp) is not an integral manifold of Dy, we have the following cases:

(I) If Qo € Sl, then dim O'DR(QO) = 6;

. Y(r,A)elxI.

(i) If go € Q\S; and if only one of (M®, g) or (M°,§j) has constant curvature, then
dim ODR (qo) = 6

(iii) Otherwise dim Op, (qo) = 8.

Proof. As in the proof of Proposition 7.33 (see also Remark 7.35) it is clear that
@, is a closed 7-dimensional closed submanifolds of Q and Q7 , Q7 are disjoint open
and closed submanifolds of Q. Also, S, S}, S| are closed subsets of Q.

Let us begin with the case where ¢y € S;". Writing zo = (v, %), 2o = (0, %o)

and defining w(t) := J}((tt::s)) — J;((;:;(?)), we see that for all t € (I —ro) N (I — #y),

wﬁ%_ﬂ@+mﬁ(f@+m»2_ﬂ@+%)%?@+%»2

oSt +K7“0) f(t+ro) Flt+ 7o) (t + 7o)
=— =K

1.e.




This shows that w(t) = 0 for all t € (I —rq) N (I — ) and hence the assumptions
of Proposition 7.33 have been met. Thus dim Op, (qy) = 6.

On the other hand, 1f qo = (70, %0; Ag) € S7 and zg = (ro, %), To = (T, %),
define fY(t) := f(—t), IV := —I and notice that ¢ : (I x N, fo) — (IY x N, ﬁfv) =:
(MY, §Y) given by (§,7) — (i, —#) is an isometry, which induces a diffeomorphism
d:Q— Q(M, M) by (x,&; A) — (x, p(2); ¢.|s 0 A) which preserves the respective
rolling distributions and orbits: ®.(Drl,) = Dgla), P(Opy(q)) = Opy(P(q)), the
notation being clear here. But now ®(Ag) = p.(Agd) = —¢.2 = 2 and since

a5 = ®(q0) = ((r0,%0), (=70, J0); ¥ © Ag),
(f)(=r0) Gl E—=70)  Glofo—=1)  f(7o) _ f'(ro)

fY(=To) (o) £ (7o) fo)  flro)

Thus ®(go) belongs to the set Sf of Q(M, M) (which corresponds by ® to Sy of
@) and thus the above argument implies that dim Opy(®(go)) = 6 and therefore
Opy (q0) = 6. Hence we have proven (i).

Now we deal with the case where gy € Q\S;. Up until the second half of the
proof, where we introduce the sets My, M, MO, Ml, we assume that the choice of
go € Q\S; is not fixed (and hence M°, M° are not defined yet).

So let g0 = (o, %0; Ao) = ((r0,y0), (Fo,%0); Ao) € Q\S1 and choose some or-
thonormal frame X, X3 (resp. X1, X3) on N (resp. N) defined on an open neigh-
bourhood U’ of yq (resp. U’ of §y) and consider them in the natural Way, as vector
fields on M (resp. M ) Moreover assume that X, 2 o , X3 (resp X, 2 a ,X3) is ori-

ented. WI'ltlIlg E1 Xl, E2 E3 Xg, and E1 —Xl, E2 E = —Xg,

we get positively orlented orthonormal frames of M and M , defined on U =1IxU,
U:=1xU, respectively.

Then we have, by [24], Chapter 7, Proposition 42 (one should pay attention that
there the definition of the curvature tensor differs by sign to the definition used here)
that with respect to the frames xF;, xFs, xE3 and *El, *Eg, *FEs,

-K 0 0 -K 0 0
R=|[ 0o =L o R=|[ o0 =2
2 ) f )
0 0 —K 0 0 -K

where o(y) and &(¢) are the unique sectional (or Gaussian) curvatures of (N, h) and
(N, iz) at points y, 7. Write — K, := %W and — Ky := %W

We now take an open neighbourhood O of ¢y in @ according to the following
cases:

(a) If gy € Qo, we assume that O C Qy N Fél(U x U).
(b) If o € Qf\sl (resp. Go € Q7 \S1) we assume that O C 7161((] x U\ (S1UQ7)
(resp. O C Wél(U x U)\(S1UQ7)).

Write OO — ONQq. Thus in case (a) one has O = Oy 3 ¢ while in case (b) one has
O = OuU(0ON(QE\S,)), as a disjoint union, and ¢y & Oy, the "+" depending on the
respective situation. Moreover, if the case (b) occurs, we assume that g € Q7 \S,
since the case where gy € )7\ is handled in a similar way.
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We will still shrink O around g, whenever convenient and always keep in mind
that Oy = O N Qy even after the shrinking. Notice that this shrinking does not
change the properties in (a) and (b) above.

Moreover, [24], Chapter 7, Proposition 35 implies that if T [ are connection
tables w.r.t. Fy, Fy, E5 and El, Eg, Eg, respectively,

0 0 Fl1 2) R 0 . 0 _Arh 2)
2
I'= Fgg 1) F(3,1) P(g 1) , I'= F%3,1) 1ﬂ%:m) FZ()’3,1)
1ﬂ(1 2) 0 0 P%Lz) 0 0

and

since T'f; o) (r,y) = —J;((:)) and f%m) (F,9) = J;( Actually one even has I'}; ) = 0
and F%?, )= = 0, but we don’t use this fact; one could for example rotate E;, E5 (resp.

Ey, Eg) between them, in a non-constant way, to destroy this property.

The fact that AFs|, # iEQ\i for g = (x,2; A) € Q) is equivalent to the fact that
the intersection (AE5|,) N Ey|; is non-trivial for all ¢ = (x,2; A) € Qq. Therefore,
by shrinking O around ¢ if necessary, we may find a smooth functions 6, 6:00—R
such that this intersection is spanned by AZ, = Z 4, where

Za = = sin(0(q)) v, + cos(6(q)) Bl

ZA = — Sll’l(é(g))ElLr + COS( (q))E3‘5’3
We also define

X4 :=cos(0(q))En|, +sin(0(q)) Es|,
X4 :=cos(0(q)) Er|s + sin(8(q)) Fsls.

To unburden the formulas, we write from now on usually s, := sin(7(q)), ¢, =
cos((q)) if 7: V — R is some function, V C @, and the point ¢ € V is clear from
the context.

Since X4, E2|m, Z (resp. X A7E2‘x7 7 4) form an orthonormal frame for every
q = (x,2;A) € Oy and because A(Zy) = Z%. it follows that there is a smooth
¢ : Op — R such that

AX 4 ch)XA —+ 8¢E2 = C¢(CéE1 —+ SéEg) —+ 8¢E2
AEy = — 55X 4 + cyBy = —s4(cy B + 55F3) + ¢y F
AZy =Z .

In particular,
G(AZ4, Ey) = 0,

for all ¢ = (x, @; A) € O,.
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It is clear that formulas in Eq. (92) on page 125 hold with F%z 5 =0andY = E.
Since they are very useful in computations, we will now derive three relations, two
of which simplify Eq. (92), and all of which play an important role later on in the
proof.

Differentiating the identity g(AZ4, E%) = 0 with respect to Zr(Xa)|y, LR(E)],
and Zr(Z4)l,, one at a time, yields on Oy,
0 =G(ALR(Xa) 20y, o) + §(AZ4, V ax, Bn)
=(—Lr(Xa)|g0 + col(5.1) + 501510 (AXa, En) + §(Za, —col'(y X a)
=54(—Lr(Xa)[,0 + CGF(3,1) + 50F(3,1))
0 =0(ALR(E2)Z(y, Es) + G(AZA,V ap, E»)
=(=Za (V)| + T31))(AX 0, Bs) + §(Za, 561 5 Xa)
=so(—Zr(Y)], 9+F(31))
0 =§(AL(Za) 2y, E2) + §(AZa, N 4z, )
=(—LR(Za)|s0 — sl 3.1 T COF(3 1) )9(AX A, E2)
+ 1—‘(1 2)9(AE2> E2) + Q(ZA> _P(l Q)ZA)
=54(—Lr(Za)]40 — 50F13 3,1 T COF(3 1)) + %Fh 2) — F(l 2)-

Define
Ag) = Lr(Za)lf + sl {s.0) — cal' 51y 4 € Oy,

which is a smooth function on Oy. Since sin(é(q)) = 0 would imply that AE, = +F»,
we have sin(¢(q)) # 0 on Oy C Qo and hence we get
Lr(Xa)l0 = C@F%&l) + 391“?3,1)
$R<E2)‘q9 = F%?;,l)
Sy = C¢F%1’2) — f%m).
These formulas, along with P%2,3) = 0, simplify Eq. (92) to

Lr(Xa)|oX() =ThopyEa, (B X() =0, Lr(Za)|X() =24
gR(XA)|qE2 = _F%1,2)XA7 $R<E2)|qE2 =0, gR(ZA)‘qE2 F(l 2)Z
ZR(XA)LJZ(.) = O, ZR(EQ)L]Z(.) = 0, D?R(ZA)LJZ(.) = —)\XA + P(172)E2, (99)
at ¢ € Oy. We use these in the rest of the proof without further mention.
We make an interesting remark on the behaviour of A in the case where ¢y €
Q7 \S1. For any ¢ = (x,2;A) € (Q7\S1) N O, and any sequence (which exist as

()1 N O is a nowhere dense subset of O) ¢, € Oy, ¢, — ¢, we have cos(¢(q,)) —
cos(¢p(q)) = 1, hence 0 # sin(¢(g,)) — 0. Because

lim (C¢F(1 2) f%m))(‘!n) = (%F%m) - f%m))(é’) = F%m) (z) — IAj%l,z)(fi?) # 0

n—oo

as ¢ € Q7 \S1, we get
lim (sin(¢(gn))A(gn)) #0,  lim sin(¢(g,)) = 0,

n— o0 n— o0
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which implies that the sequence \(g,) is unbounded,

lim A(g,) = £o0.

n—oo

In particular, we see that, even after shrinking O, one cannot extend the definition
of 6 in a smooth, or even C', way onto O, since if this were possible, the definition
of A above would imply that A is continuous on O and hence the above sequences
A(¢,) would be bounded. This fact about the unboudedness of \(¢) as g approaches
(Q\S1) NO will be used later. To get around this problem, we will be working for
a while uniquely on O.

Define on Oy a 5-dimensional smooth distribution A spanned by

LB gy L (Ba)gs L (Es) g V(A % Bo)|g, v(Ax Xa)|g, g € O

We will proceed to show that the Lie algebra Lie(A) spans at every point of ¢ € Oo
a 8-dimensional distribution Lie(A)|, which is then necessarily involutive. Notice
that we consider VF&, k= 1,2,... and Lie(A) as C*°(Op)-modules.

Since Zr(X(y), Lr(Ea), Zr(Z(y) span Dg on Oy, they generate the module
VFpy,, and hence Lie(Dr|g,). Moreover, the brackets

LX) LBl = — Thy LX)l
L B), Ll Z0)lg =Th oy Zr(Z) |y — KF(Ax Xa)l, — av(A % )],
L2y, LX)y =AL(Za)ly — av(Ax Xa)|, — KE0 (A E),,

along with the definition of X 4, Z 4, show that VF%R‘O C VFa.
0

The first three Lie brackets in Proposition 7.5 case (ii) show that VF% contains
vector fields Ly, Lg given by L4 |, = ZNS(E1)|Q—I‘%LQ)I/(A*E;»,)M, Ls|, = “as(Es)|,+
F%LQ)I/(A * )4, and also Ls|,, which in this setting is just the zero-vector field on

Oy.
We define Fx|, := cpL1|,+59L3|, and Fy|, := —59L1|q+09L3\q—F%LQ)V(A*XA)\q,
hence Fy, Fx € VFA and one easily sees that they simplify to

Fx|, =ns(Xa)lq — T%LQ)I/(A* Za)q
Fzlg =ns(Z4)lg

It is clear that the vector fields
Ll X)), Ll ), L Z0), () Ea) () % X0o). P P
span the same C'°(Oy)-submodule of VFZ as do
Lr(EL), Zr(Er), Zr(Es), v((+) * E2), v((-) x X)), L1, Ls.

We now want to find generators of VF4. By what we have already done and
said, it remains us to compute need to prove that the Lie-brackets between the 4
vector fields

Ir(Xa)lg Lr(E2)lq, Lr(Za) g, v(Ax Ea)l,
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and v((-) x» Xy)/q-

Since we will have to derivate X4, it follows that the derivatives of 6 will also
appear. That is why we first compute with respect to all the (pointwise linearly
independent) vectors that appear above. As a first step, compute

FxlgZy =(=Fx|0 + coT{31) + 50T (3.1)) Xa
FyleZy =%xs(Za)lgZey = (—Fzlef) — soT 5.1y + ol 1) Xa + Ty 5 Bo.
Knowing already -Zx(Xa)|s0, Lr(Y) |0, Lr(Z4)|,0, we derivate the identity
§(AZ4, E5) =0
with respect to V(A * Ey)|qg, V(A * Xa)lg, Fx|q Fz|, which gives (notice that the
derivative of Fy with respect to these vanishes)
0 =G(A(xE) Zs — V(A x Ey)|#AX 4, E)
—(1 — (A% Ey))§(AX 4, Ey) = s4(1 — v(A % E,))
0 =G(A(xX 1) Zs — V(A% X 4)|,#AX 4, E5)
= — G(AEy, Ey) — v(A % X4)|05(AX 4, E»)
= —cy — SeV(A* Xy)|,0
0 =§(—T{,.0)A(xZa) Za, Eo) + (—Fx|g0 + coT(s1) + soT(31))9(AX 4, Eb)
=$o(—Fx|,0 + ceflg 1) T+ SQF(g 1)
0 =(—F%|,0 59P(3 i ol (3.1))9(AX 4, E2) + P(l 2)J(AEs, 12)
=s4(—Fz|,0 — 50P(371) + CHF(3,1)) + %F(Lz)
and since sy # 0 on O,
V(A * Ey)|,0 =1
V(A% X4)|0 = — cot(o)
Fx|,0 :CQF%&D + 391“?3,1)
Fz|,0 =— 391“%3,1) + C@F?&l) + cot(qﬁ)F%m).
These simplify the above formulas to
Fxl|qZy =0
FyleZiy =%ns(Za)lgZy = — cot(¢) Xa + T (1) Es
and moreover it is now easy to see that for ¢ € O,
Fxl|gX() :P%LQ)E% Fxlols = _F%LZ)XA
FzlX() :cot(¢)F(1 0 Za, FzlgEa = —F%LQ)ZA.
The brackets
[ L(X0)s () % X))y = c0t(6)-Lh(Za)ly — Lhs(A x (xXa)Xa)ly + Thyayv(Ax ),
— co8(6) L Za)ly + Ty (A B),
(LR(E) v() % X))l = = Lus(AGX ) Byl + v(AxO)|, = Faly — Zal(Za),
[Lr(Z()), v (1) % X))llg = = cot(d) Lr(Xa)lg — Lns(A* (xXa) Za)lg + V(A K (AZ4))
= — cot(@)Lr(Xa)ly + Lh(E)ly — (s (En)ly — M(Ax Za)l,)
(A x Ey), v((-) x X())llqg =v(ADEa, xXalso)lg + V(A x Za)lg = 0
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show that if on defines
Fylg = as(Ea)lg — Av(Ax Z4)lq,
then one may write
[Lr(Z), v(() % X())]lg = — cot(@) Lr(Xa)lg + Lr(Ea)lg — Frlg
and hence we have shown that VFZ is generated by vector fields
Lr(X()), Lr(E2), Zr(Z()),v((1) * B2), v((1) x X)), Fx, Fy, Fz

which are all pointwise linearly independent on O.

Next we will proceed to show that the VF% generated by the above 8 vector
fields is in fact involutive, which then establishes that Lie(A) = VFA.

At first, the last 9 brackets in Proposition 7.5 (recall that we have F%273) = 0)
show that [F, Fx] and the brackets of Zx (X)), Zr(£2), ZLr(Z()), v((-)* E>), with
Fx and F all belong to VFZA as well as do

[Fx, v(() x X))l = = Lxs (= cot(@) Za)lg + v(Ax (Lus(Xa)le X))l
— Ty V(A Za, %X also + V(A K Za)|oX () — cot(¢)Ax Xa)lq
= cot(¢)Lxs(Za)lq + V(A x Fx[¢X())lq
- F%l,Z)V(A * Es)|q + P%m) cot(@)v(Ax Xa)lg
= cot(¢) Fzq + Ty 5 cot(@)v (A Xa)l,
[Fr, () 5 X)) lg = — s (00t(6) Xy + cot(@)Th oy (A% Za),
= — cot(¢) Fx|,-
Therefore, it remains to us to prove that the brackets of Fy with all the other 7
generators of VFA, as listed above, also belong to VF3.

Now it is clear that since the expression of Fy involves A, which was defined
earlier, we need to know its derivatives in all the possible directions (except in Fy-
direction) as well as the expression for Fy|,#. We begin by computing this latter
derivative.

As usual, the way to proceed is to derivate 0 = Q(AZA,EQ) w.r.t. Fyl,, for
which, we first compute

FY‘qZ(-) = (_FY‘q‘g + F?3,1))XA
and hence (notice that Fy|,E = 0)
0= §<_)\A<*ZA)ZA7 E2) + (_FY‘q‘g + F?3,1))§<AXA7 E2) = 5¢><_FY‘q9 + F%&l))v
from where
Fy|,0 = F%3,1)-
One then easily computes that on O,

Fyl, Xy =0, Fy|,Bs=0, Fy|,Z=0.
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To compute the derivatives of A\, we differentiate the identity s,\ = %Fh 2) _fh 2)
proved above. Obviously, this will require the knowledge of derivatives of ¢, so we
begin there.

To do that, one will differentiate the identity ¢, = g(AE>, Eg) in different direc-
tions. First it is clear that
@AXAEAQ —C¢F(1 2)XA
VAE2E2 == S¢P(1 2)X
VAZAE2 = _F%LQ)ZA7

and hence

_S¢$R(XA)|q¢ :§<_F%1,2)AXA, Ez) + @(AE% @AXAEA2)

= — S¢I’%172) + g(AEs, —c¢f’%172)XA)

= 3¢>F%1,2) + 5¢>C¢>f%1,2)
—56Lr(E2) ¢ =§(AL(B) |y B2, E2) + §(AE2, V ap, )
=0+ g(AE,, 5¢f%1,2)XA) 3¢>F(1 2)

Tho)AZa, Bs) + §(AEy, —T, ) Z4) =0

—s40(A* Fy)|g¢ =G(A(xEs)Ey, ) = 0
—5o(Ax X2)|gb =§(A(xX4) B, Ey) = §(AZ4, Ey) = 0

—8-LR(Z4)|q® =9(—
=4(
g(
—56Fx|gd =§(~T{1.9)A(xZa)Es — Ty ) AX 4, Er) =0
=g(—
9(—

—8¢Fz|q(]5 F%l 2) AZA, Eg) =0
—S¢FY|q¢ )\A(*ZA)EQ -+ O, EQ) = )\Q(AXA, EQ) = S¢)\.

Because s, # 0 on Oy, these yield

Lr(Xa)lg9 :Fll 2) %f%m)
(B b =511 2)
FY‘q¢ =—A
Lr(Za)lgd =v(Ax Eb)|gp = v(Ax Xa)le¢ = Fxlo¢ = Fzlq¢ = 0.

Next notice that

$R<XA)|qF%1,2) = FX|qF%1,2 XA<F(1 2)) 0
gR(E2)|qF%1,2) = FY|qF%1,2) = E2(F(1,2))
$R<ZA)|qF%1,2) = FZ‘QF%LQ) = ZA(F%LQ)) =0,

because X4, Z4 € B3 and similarly, since X As Za € Ej,

gR(XA”qfll 2) = ( 1,2) ) = 5¢E2<f%1,2))
gR(E2)|qF%1 2) AE2(F ) = C¢>E2<F%1,2))
ZR(ZA)MF%LQ) = AZA( )) =0

FX|qF%1,2) = FY‘QF%IQ FZ|qF(1 2) = 0.
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Finally, derivating the identity sy\ = csI'(; 5 — f%l 5 and using the previously
derived rules,

C¢(P%l,2) - Cqbf‘%l,z)))‘ + $p-ZR(Xa)|gA = _5¢F%1,2)(F%1,2) - %f%m)) - 5¢E2(f%1,2))
3¢C¢f‘%1,2))‘ + S LR (E2)|gA = _Sifél,z)rél,z) + C¢E2(F%1,2)) - C¢EA2(1;%1,2))
S6-LR(Z4)|A =0

SeV(Ax Ey)[ A =0

SeV(Ax Xa)|;A =0

5¢>FX‘q)\ = O
_ C¢)\2 —+ S¢Fy|q)\ = Sqﬁr%lg))\ + C¢E2(F%1,2))
SoFz|gA =0

from which the last 6 simplify immediately to

$R<ZA>|q)\ :V(A* E2)|q)\ = V(A*XA)‘q)\ = Fx‘q)\ = Fz‘q)\ =0
Fylgh = COt(ﬁb)(EZ(F%Lz)) + A% + P%m))‘-

Next simplify Zx(Es)|,A by using first syA\ = C¢F%172) — IA‘%LQ),

$6-LR(En)|gA = — 3¢C¢P%172))‘ - SiF%1,2)F%1,2) + C¢E2(F%1,2)) - C¢E2(F%1,2))
=- C¢>F%l,2) <C¢>F%l,2) - F%1,2)> - Sir%l,z)r%l,z) + C¢E2<F%1,2)) —cpls (F%l,z))
== F%m)r%m) + C¢E2(P%1,2)) + C¢(_E2(P%1,2)) + (P%LQ))Q)

and then using —K = —EQ(IA“%LQ)) - (f’%m))Q, to obtain

$6-LR(E2)|gA = — F%I,Z)F%I,Q) + C¢E2(F%1,2)) — K,

once more IA“%LQ) = C¢F%1,2) — Sy,

8¢ LR (E)|[ A = — F%l,z)(%r%l,z) — SpA) + C¢E2(F%1,2)) — KK
=cy(—K — (F%m))g + E2(F%1,2))) + 5¢F%1,2)>\7
which finally simplifies, thanks to —K = —Ey(T'(, 5)) + ([ 5))? and s4 # 0,
Lr(Es)|g = )‘F%m)-

Next we simplify Zx(X4)|,A by using the same identities as above when simpli-
fying LR (Es)| A\
$p-LR(Xa)|gA = — C¢(P%l,2) - %f%m)))‘ - S¢F%l,2)(r%l,2) - C¢f%1,2)) - S¢E2(f%l,2))
=— AlsgA + f%m)) + Cif(l1,2))‘
- S¢<F%1,2))2 + S¢f%1,2)<S¢A + Iq%l,z)) — So(K + (f%1,2))2)
= — 55N + (11(11,2))2 + K) — Af(lm) + C?Q‘f(lm) + Sif(l1,2))‘
= —ss(N* + (F(11,2))2 + K),

162



which implies, at last,
Lr(Xa)lA = —(N* + (T p)* + K).
Finally, on Oy, we compute the brackets

[Lr(Xa), Fyllq fNS( Tl Xa)le = Lr(Las(B2)]oX()lg
FU(AR(XA A Es) — RAXA A 0)A)|, — Zr(Xa) M Ax Za),
=AM = As(AxZa)Xa) — Lo((A* Z4)| X)) + v(A%0)],)
= — Tl Fxly = LR(Fy[,X)ly + ALr(ER)l, — Ay,
+ (=(C(9)* = K — Zo(Xa)lA — /\Q)JV(A* Za)lq
=0
[“ZLr(E2), Fyllq = — Zr(E2) | AV(A* Za)|g — M(—=Zxs(A(xZa) E2)|q + V(A x 0)[y)
== )‘ZR(XA)M + AFX|q +S)‘F%m) - gR(E2)|q)‘ZV(A x ZA)|q
=0
[Lr(Z4), Fylq fNS( L9y Za)lg + Lr(Las(B)loZ))
+ U AR(Za A Es) — RAZA A0)A)|, — Zo(Za) M Ax Za)l,
— M = Ls(AxZa) Za) g + Lr(W(Ax Za)|Z0))],)
— MW(A* (=AX4 + T 5 E)lg
== F%1,2)FZ|q + Lr(Fy|gZ0))]q + Kv(Ax Xa)l,
= LR(Za)|Av(Ax Za)lg — W (Ax (=AX4 + 1—‘%1,2)E2)|q
ZR\CAl]

=0

W ((-) * Ea), Fyllg = — v(Ax Ea) [ Av(A % Z4)l,
— MN(A[*Ey, *xZ also — V(A % Es)|,0A % X 4)|,
= — V(A*E2)|q)\1/(A*ZA)‘q =0
() * Xy, Fyllg = — v(Ax Lis(B2) ¢ X ()l — v(Ax Xa)[Av(A* Za)l,
— )\I/(A[*XA,*ZA]sa — V(A*XA)|q0A*XA)|q
— )\I/(-A*I/(A*ZA)‘ X()))‘q
:—V(A*Fy‘ X )|q (A*XA)|q)\1/(A*ZA)‘q
W—/ T
—0 —
— AAx (=B + cot($) X)),
[Fa Fylly =s(—Th oy Za — Lrs(Eo)lyZ0))la + (AR(Z4 A ),
— A Za)ly — M= Ax Z)luZ00) + (A % FoloZi)l)
= F%1,2)FZ|q — Is(FyloZ)lg + KV<A*XA>|q
=0
— FU V(A Za)lg — WA x (= cot(9)Xa + T Ey),
——

=0
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and finally, noticing that —AFx |, + T, o) Fylg = —AZus(Xa)lg + T o) Ls(E2)lo;

(12
[Fx, Fy]lg =Zs(Ls(Xa)lo B2 — Lrs(E2) | X ()l + V(AR(XA A En)),
— Lr(Xa)|gAv(Ax Za)lg + Ez(F11 V(A *Z4)lq
AM=Lrs((Ax Za)| X)) + v(Ax Las(Xa)leZ())lq)
+ Dl gy V(A x As(B2)|o Z0)) g + Tinay V(A x Za)lAv(Ax Za)],
= — T{oZas(Xa)lg — Las(Fy o X)) lg
Ry

=0
V<A*<_)‘FX|q+F%1,2)FY|q)Z(-))‘q
N ~- 5
+ (=K = Fx|A + E5(T(1) V(A % Z4)l,
:_F(1,2)FX|q (—K — FX|)‘+E2(P(12))_(P%l,z))Q)V(A*ZA”qa

which, after using F'x|,A = 0 and Eq. (116), simplifies to [Fx, Fy]|, = (1 oy Fx|g-

Since all these Lie brackets also belong to VF%, we may finally conclude that
VF? is involutive and therefore

Lie(A) = VFA.

Therefore the span of Lie(A) at each point Oy is 8-dimensional subspace of T|,Q,
since VF4 is generated by 8 pointwise linearly independent vector fields.

Since gy € Q\S; was arbitrary and since the choice of Xy, Fy, Z4 in O, are
unique up to multiplication by —1, we have shown that on )y there is a smooth
5-dimensional distribution A containing Dg|q, such that Lie(A) = VF% spans an
8-dimensional distribution D and which is then, by construction, involutive.

We already know from the beginning of the proof that ¢ € S; implies that
Opy(q) C S1 so, equivalently, ¢ € Q\S; implies that Op, (¢) C Q\S;. Hence we are
interested to see how D can be extended on all over Q\S; i.e. we have to see how
to define it on Q1\S].

For this purpose, we define the Sasaki metric G on @) by

XZXNS(XaX)|q+V(A*Z)|qa yngS(Yay)|q+V(A*W)|q
G(X,Y) = g(X,Y) +§(X,Y) + (2, W),

for g = (z,2;A) € Q, X, Y, Z, W € T|. M, X,V € T|x]\2f Notice that any vector
X € T|,Q can be written in the form .Zg(X, X)|, + (A Z)|, for some X, X, Z as
above.

Since D is a smooth codimension 1 distribution on @)y, it has a smooth normal
line bundle D+ w.r.t. G defined on @y which uniquely determines D. We will use
the Sasaki metric G to determine a smooth vector field A/ near a point ¢y € Q1\S1
spanning D+.

So let o € Q1\S; and assume, as before, that ¢y € Q7 \S; the case of Q7 \S;
being handled similarly. Take the frames Ei, Fs, Fs, By, Ey, Es5 and O, Oy, X4, Z4
as done above (the case (b)). Because cos(gzﬁ(qo))T%L (o) — f%l 5)(Zo) # 0, one may

assume after shrinking O around ¢y that we have cos(¢(g ))F%1 o) () — F%l 2)(2) # 0 for
all ¢ = (z,4; A) € O, which then implies that A(q) # 0 on Oy. Here to say what is
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the value of cos(¢(q)) even at ¢ € @1\ S1, we use the fact that cos(¢(q)) = g(AE,, E,)
for all ¢ € O (though ¢(g) is not a priori defined).
To determine a smooth vector field A' € D+ on Oy, we write

Ny =a1Lus(Xa)lg + az + Lis(Ea)lg + a3 s (Z4)l,
+ blgNs(AXA)‘q + by + gNs<AE2)|q + b3gNs(AZA)‘q
+ V(A% Xa)|g + vav(A* Es)|g + vsv(A* Z4)],

and since this must be G-orthogonal to D, we get

0 :G(N, $R<XA)) =a; + bl, 0= G(N, $R<E2)) = ag + bQ, 0= G(N, $R<ZA>> = as + b3
0=GN,v(AxX4))=v;, 0=GWN,v(AxE,)) =1,
O:G(N, Fx) = a —F%LQ)’U?,, OZG(N,Fy) = a2 —)\Ug, O:G(N, Fz) = as.

So if we set v3 = % and introduce the notation

Lo(X)|g = Zs(X, —AX) € Dxsly, q= (v,8;4) €Q, X € T|,M

we get a smooth vector field A on Oy which is G-perpendicular to D and is given
by
1 1 .
Nlq meh,m (2)L5(Xa)lg + -Lr(Bs) + WV(A* Za)le, a€ O
¢
ZTZ)(T%LQ)%(E)M +u(Ax By)ly) + Lr(Bs)ly
So
+ m(rb,z)wgﬁ(@ﬂq —v(Ax E1)ly).

1.e.
Ny = Hi(9)X]g + Xolq + Hs(q) X,

where &7, Xy, X3 are pointwise linearly independent smooth vector fields on O (and
not only Oy)

X, :F%LQ)gPL{(El)M + v(Ax E3)|q,

ol =L (Bs)lg,

A, :F%1,2)$PL{(E3)|q —v(Ax Ey)lg,

while H;, H3 are smooth functions on OO defined by

cos(f
le )\()7 H3:

sin(6)
o

Notice that 6 and A cannot be extended in a smooth or even C'-way from Oy to O,
but as we will show, one can extend H;, Hs in at least C'-way onto 0.

First, since A\(¢) — £oo while cos(6(q)), sin(f(q)) stay bounded, it follows that
Hy, Hy extend uniquely to ONQ; by declaring H(q) = Hs(q) = 0 for all g € ONQ;.
Of course, these extensions, which we still denote by Hi, H3, are continuous functions

on O.
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Next objective is to show that Hy, H3 are at least C' on O. For this, let X €
VF(O) and decompose it uniquely as

X = Z a; LR(E;) + Z biZns(E;) + Z viv((+) x Ey),

with a;, by, v; € C=(0).

We will need to know the derivatives of # and X in all the directions on Op.
These have been computed above by using the frame X 4, Fs, Z 4 instead of E, Es, F3
except in the direction of v(A x Z4)|,. As before, one computes (using that s # 0
on Oy as usual),

V(AxZ1)0 =0, v(AxZ4)|0=1
v(Ax Za)lA = —T(19)(x) — Aq) cot(¢(q))-

One now easily computes that on Oo,

X (0) =(—ay189 + azco) N + (—blng%m) + b3C9F%L2) — v1cy — V3Sg) cot(P) + B1(q)
X(N) =(—a1cy — azsg)\> + (—blcgfll (12) — nggF%LQ) + v189 — v3¢p) A cot (o)
+ a2F%1,2))‘ + by C0t<¢)E2<F(1 2)) + Ba(q),

where

Bl(q) (a1 —+ bl)F + (CLQ —+ bg)r23 1) (a3 —+ bg)r 3,1) -+ Vo
Bsy(q) = (—aicy — a359)((r(1,2)) + K) + (=bicg — bysg) (T ) + (0185 — v3co)T(; 2.

Then
X (0 X(\
X(Hl)——se g\ )—Cg )52)
cot(¢) aQCGPlM baco o (T'(, )cot(¢) spB1 coBs
_a1—|—<b1F12 +U3) 5 _ )\( ) 5 (1,2) ) B : B .~
X (6 X(\
a5} bssg B (T} B B
—as + (bsrb,z) _vl)cot(¢) @28l D389 >(I'(1.9)) cot(¢) @B 5B

A A A A A A2

Since sp\ = C@F%LQ) — IA“%LQ), one has

cot(¢) Co

A Tk , — Tt

(12) 1 (12)

and therefore as ¢ tends to a point ¢, of Qf N O, we have

lim cot(¢) 1

qa—q1 A 1—‘%1 2)

~ Tl
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Since By, By stay bounded as ¢ approaches a point of QN O, we get for every
q1 = (21,215 A1) € QF N O that

bi(q ) o(@1) +vs(qr)
lim X(Hy) = ai1(q1) + ————— = DxHi(q1),
—a F( 2)( ) F( )( 1)

b3(q1)T(1 ) (1) — vila1)
lim X(Hg) = ag(ql) -+ < = DggHg(ql).
q—q1 F F(l 2) (xl)

(12>( )

From these, it is now readily seen that H;, Hs are differentiable on O N Qf with
Xy (Hy) = DxHi(q1), X|q,(Hs) = DxHs(q1) and that Hy, Hs are C'-functions on
0.

Now that we have extended H,, Hs, we have that N is a well defined C*-vector
field on O and since D = N+ wrt. G on Oy, it follows that D extends in C-
sense on O. Since qq € Q7 \S; was arbitrary and because the case ¢y € Q7 \S] is
handled similarly, we see that D can be extended onto the open subset Q\S; of @
as a (at least) C'-distribution, which is C* on Qy. Since Dgr|g\s, C D and because
g € Q\5; implies that Op,(q) C Q\S; as we have seen, it follows that for every
g0 € Q\S1 we have Op,(q0) C Op(qy) where the orbit on the right is a priori an
immersed C'-submanifold of Q\S;. However, since D is involutive and dimD = 8
on Q\Si, we get by the C'-version of the Frobenius theorem that dim Op(gy) = 8
and hence

dim Op, (qo) < dim Op(qo) = 8,

for every qo € Q\ 5.
We will now investigate when the equality holds here. Define

MOZ{$’€M|KQ(ZL‘)7AK}
Mlz{x€M|E|openV9xs.t.Kz(x'):KV:c'EV}
MI:{xEM|E|openV9xs.t.Kg(fc’):KVfc’EV}

and notice that My U M, (resp. My U M) is a dense subset of M (resp. M). Here
we also fix the choice of go = (20, Zo; Ag) € Q\S1 and define M* = mq 1 (Opy (o)),
M° = To.xr(Opg (o)) as in the statement. Write also Q)° := mg Y(M° x M°) and
notice that Op, (qy) C Q°.

We define on @) two 2-dimensional distributions D and D. For every qp =
(r1,71; A1) € Q, take orthonormal frames El,EQ,Eg, El,EQ,Eg of M, M defined
on open neighbourhoods U, U of r1,T7 with Fy = E2 = %. Then for g €

o LU x U ) N @, the 2-dimensional plane D], is spanned by

Ky = -i”Ns(A 01)]g — Tl (@) ((REs) A)l
K3l = Las(AT EBs)lg + Ty oy (@) (K1) A)l,

S

and D, is spanned by

Kily = Zs(AE)|g + T{y o (@)v(A % Es)l,
Kslg = as(ABs)|g — Ty o) (@)V(A x Byl
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Obviously different choices of frames E;, E;, i =123, give KI,K3,{A(1,[A(3 that
span the same planes D, D, since we have fixed the choice of Fy = 3, Ey = %.
Exactly as in proof of Proposition 7.31, one can show that for every ¢ =

((r1,91), (F1,91); A1) € @ and smooth paths v : [0,1] — N, 4 : [0,1] — N with
~v(0) = 41, ¥(0) = 7 there are unique smooth paths I',T : [0, 1] — @ such that for
all ¢ € [0, 1],

f(t)€D|r<t)> P0)=q, (mguaol)(t) = (r1,7(1))
L(t) € Dlpgy, TO)=q, (w0 D)) = (71, 3(2).

A

Notice that since (my, y;).D = 0 (vesp. (mgar)«D = 0), one has 7, ;(I'(t)) = &

(resp. mou(D(t)) = 1) for all ¢ € [0,1]. We write these as T = T'(y,q), I' =

A

1—‘(’?7 Ch)
If £, = %, Ey = %, then by exactly the same arguments as in the proof of
Proposition 7.31 we have

V(A x Ey)|q € T)yOpy(q), Vg € Qonmy'(Myx M)
v((3E)A)|, € T],0p.(q), Vg€ QuN mo (M X My).

We will see that here one may replace Qg by Q\S;.

Take frames Fj, Ei, 1 =1,2,3, as above when defining D, D for some ¢ € Q1\5.
We may assume here without loss of generality that ¢, € Q\S; since the case
¢ € Q7 \51 can be dealt with in a similar way.

If hy, hy : Wél(UX U) — R are defined as hy(q) = G(AEy, Ey), hy(q) = §(AEs, E»),
we have )y ﬁﬂ'él(U xU) = (hy, hy)~*(0) and (hy, hy) : Wél(U x U) — R? is a regular
map at the points of @ (see e.g. Remark 7.35 or the proof of Proposition 7.29).

Since ¢1 € Q7 \S1, then Zr(E1)|g,hn = Ty 5 (21) =T 5)(21) # 0 and Zr(E3)|g, he =
1—‘%172)(1‘1) — f‘%m)(fcl) # 0, which shows that Op, (q;) intersects Qf transversally at
¢ (hence at every point ¢ € Op,(q1)), by dimensional reasons (because dim @Q; = 7,
dim @ = 9). From this we may conclude that Op,(¢1) N Q; is a smooth closed sub-
manifold of Op,(¢1) and that there is a sequence ¢, = (z},,2,; A)) € Opg(q1) N Qo
such that ¢/, — ¢.

Now if ¢; € Wél(MO X M) N Q1\S51, then we know that for n large enough, ¢/, €
o (Mo % M)NQo and hence v(Ax Es)|y € Ty Opy () = Ty Opy (q1). Taking the
limit implies that v(AxEs)|,, € T4, Oy (¢1). Similarly, if ¢, € ﬂél(Mx My)NQ1\ Sy,
one has v((xEx)A)|y € Ty Opy (q1)-

Hence we have that if Fy = %, Ey = %, then

v(Ax Ey)|, € T,0p,(q), Vqe (Q\S1)N Wél(Mo x M)
v((*E2)A)y € T|4Ony(g), Vg € (Q\S1) Ny (M x My).

For every ¢ € (Q\S1) N Wél(MO X M), which is an open subset of (), one has
V(A By)|, € T]4Op,(q) with Ey = 2 and hence by Proposition 7.5, case (i), it
follows that

Lyl = Ls(En)ly — T o) (@)v(A x B)l,
Lslg = Ls(Es)lg + T2y (@)V(A x B1)lg,
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are tangent to Op, (q), where Ey, By = %, Es5 is an orthonormal frame in an open
neighbourhood of z;. But because K1|, = Zr(E1)|y — Lilg, Kslq = La(Es)ly — Lal,,
we get that

D‘q C T|qODR(Q)7 vq € (Q\Sl) N ﬂ-él(MO X M)

Moreover, if ¢ = (x, (7,7); A) € (Q\S1) Nmy' (Mo ¥ M) and if 4 : [0,1] — N is any
curve with 4(0) = g, then one shows with exactly the same argument as in the proof
of Proposition 7.31 that

L'(%,q)(t) € Opy(g) Ny (Mo x M), Vt € [0,1].
In particular,
3¢ = (2, (7,9); A) € (Q\S) Ny (Mo x M) = {z} x ({f} x N) C mo(Opy (a)).
A similar argument shows that
Dly C T|,0py(9):  Va € (Q\S)) Nmg' (M x M)

and that for all ¢ = ((r,y),2; A) € (Q\S1) N ﬂél(M x My) and 7 : [0,1] — N with
7(0) =,

I'(7,9)(t) € Op,(q) Nmg" (M x M), Vte[0,1].
In particular,
3q=((ry). & 4) € (Q\S) Nag (M x My) = ({r} x N) x {2} C 7q(Opy(q))-

Everything so far has been very much the same as in the proof of Proposition 7.31
and continues to be so, with few minor changes (notably, here dim D = dim D = 2
instead of 3).

Suppose that (M; x My) N7o(Op, (q0)) # 0. Take g = (21,413 A1) € mo (M X
Mo) N Op, (o), with 21 = (r1,71). If o(y) is the unique sectional curvature of N at
y, we have

Ks(ri,y1) =

We go from here case by case.

(I) Suppose N does not have a constant curvature. Then there is a yo € N with
o(y2) # o(y;) and hence

o(y2) = (f'(r1))*
f(r1)?

Ks(r1,y2) = # K,

1.e. (Tl,yg) e M,.
Since ¢; € Op,(qo) C Q\S1, we have by the above that

((r1,92), 1) € ({ra} x N) x {21} € mo(Opy (1)) = 7 (Opy (90))

and since ((r1, y2), 1) € My x My, we get that which implies that (Mg x M) N
7Q(Opg (q0)) 7# 0
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(IT) Suppose that (N, h) has constant curvature C'i.e. o(y) = C for ally € N. We
write Ky(r,y) = Ks(r) on M since its value only depends on r € I and notice
that for all r € I,

diKy 2f’(7”)

dr T f(n)

But K5(r1) = K, so by the uniqueness of solutions of ODEs, we get Ky(r) = K
for all r € I and hence (M, g) has constant curvature K.

(Ks(r) = K).

Of course, regarding case (II), it is clear that if (M, g) has constant curvature
K, then (N, h) has a constant curvature.

Hence we have proved that if (M, g) does not have a constant curvature and if
(Ml X MO) N 7TQ<ODR<QO>> 7é (Z), then also (MO X MO) N WQ(ODR(Q())) 75 (Z)

The argument being symmetric in (M, g), (M, §), we also have that if (M, §)
does not have a constant curvature and if (My x M;) N 7o(Opy (o)) # 0, then also
(Mo x Mo) N mo(Opg (q0)) 7 0-

Notice that (M°, g) and (M°, §) cannot both have constant curvature, since this
violates the assumption that Op, (o) is not an integral manifold of Dy (see Corollary
5.24 and Remark 5.25). We can now finish the proof by considering, again, different
cases.

a) Assume that (M°,§) has a constant curvature, which must then be K. We
have My N M° = (. If By = %, then Hence, Rol,(xX) = 0 for all ¢ € Q° =
mo' (M° x M°), X € E5 while Roly(xEy) = (—K»(x) + K) x Es.

At ¢ = (1,715 A1) € @Q°, take an open neighbourhood U of z; and an ortonor-
mal basis Ey, By, B3 with Fy = % and let D; be a distribution on Wé}M(U)
spanned by

$R<E1), $R<E2), gR(Eg), I/(() * Eg), Ll, L3

where Ly, L3 are as in Proposition 7.5. Obviously, one defines in this way a
6-dimensional smooth distribution D; on the whole @° and the above from of
Rol,, ¢ € Q°, along with Proposition 7.5, case (ii), reveal that it is involutive
(recall that 1"%273) = 0 there). Clearly, Dr C D; on Q° and since Op, (qy) C Q°,
we have Op, (o) C Op, (qo) and hence dim Op, (g) < 6.

Because (M°,g) does not have constant curvature (as noticed previously),

we have My N M° # () and thus O := Op,(q) N Wé}M(MO) is a non-empty

open subset of Op,,(qo). For every ¢ = (z,2; A) € O, one has Ii;lq(*Ez) =
(—Ky(x) + K) % E5 # 0 and hence that v(A * Ey)|, € T|,0p,(q0). Therefore,
Proposition 7.5, case (i), implies that D;|p is tangent to Op, (o). This gives
dim Op, (q0) > 6 and hence dim Op, (go) = 6.

b) If (M°, g) has constant curvature, then the argument of case a) with the roles
of (M,g), (M, g) interchanged, shows that dim Op, (¢y) = 6.

Hence we have proven (ii). For the rest of the cases, we may assume that neither
(M°, g) nor (M°, g) has constant curvature i.e. M° N My # 0, M° N My # 0.
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¢) Suppose (My x My) N 7o(Opy(qo)) # 0 and let ¢ = (1, 315 Ay) € mo (Mo %
My) N Op,(q0). We already know that T'|,, Op,,(go) contains vectors

LR(E)| g1, LR(E2)| g1 LR(E3)| g1
V(Ax Ep)lg, v((xE2)A)|g
L1|(I17 L3|(I17 il‘q17 £3|Q17

where

Lilg = Gs(E)lg + Dy (E0)v((KE3) Ar) g,
Lslgy = is(Es)g, — L0y (@) V(KB Av) g,

Moreover, these span an 8-dimensional subspace of T'|,,Op,(qo), at least if
¢ € Qo.

Indeed, if ¢; € Qp, one introduces X4, Z4,, XAI, ZAI and an angles ¢, 9,5’ as
before, we have sin(¢(q;)) # 0 and

V((kE2) A1)l =v(Ar (AT )y
=sin(¢(q1))v (A1 * Xay)|q + cos(d(q1))v(Ar * Er)lg,,
coLn gy + soLslg, =Zhs(Xa,)lgy — Doy (@1)v (AL * Zay)lg,
—s9Lnlg, + coLsly, =Zhs(Za)lg + D1y (21)v (A Xa,)lg,
cilnlg + s5Lsle =Las(Xa)lg + Thyoy(@0)V(AL % Za,)lg,
=Co s (A1 X a,) gy — 56-Lrs(A1Ea) g, + Ty oy (w1) V(A1 * Za,) g,
—spLilgy + c5Lalgy =Zas(A1Za)g — Doy (@)v(Ar x (ATX4,)lg,
=Ls(ArZa) gy — Tl (1) (cov (AL x Xa,)|gy — sov(A1* Ea)ly,).

On the other hand, if ¢, € @)1, then since @) is transversal to Op,(qo) at ¢i,
we can replace ¢ by a nearby ¢} € m,' (Mo x My) N Opy(qo) N Qo and the
above holds at ¢.

Therefore dim Op,(qp) > 8 and since we have also shown that dim Op, (¢) <
8, we have the equality.

d) Since M° N My # 0, there is a ¢ = (x1,@1; A1) € Opy(qo) such that z; € M.
If #; € My, one has that (My x My) N 7g(Opy(qo)) # 0 and hence case c)
implies that dim Op, (g) < 8.

But if z; ¢ My, then 3, € M—1 Therefore, we may find a sequence q, =
(al,2l; Al) € Opg(qo) such that ¢, — ¢ and &/, € M;. So for n large enough,

we have (2, ) € (My x M) N 7o(Opy (q0))-
Thus (M, §) does not have constant curvature and (Mg x M) N7o(Opyg (q0)) #
() which we have shown to imply that (Mg x My)N7o(Opy (q0))

the above case ¢) implies that dim Op, (¢0) < 8.

# () from which

The cases ¢) and d) above give (iii) and therefore the proof is complete. O
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Remark 7.37 It is not difficult to see that Proposition 7.33 generalizes to higher
dimension as follows. Keeping the same notations as before, let (M, g) = (I,s1) Xy
(N,h) and (M, §) = (I,s1) X f (N,h), I,I C R, be warped products where (N, h)
and (N, ) are now connected, oriented (n — 1)-dimensional Riemannian manifolds. As
before, let gy = (o, To; Ag) € @ be such that if we write o = (70, %0), ZTo = (70, %),
then (97) and (98) hold true. Then, the exact argument of Proposition 7.33 yields that
the orbit Op, (¢0) has dimension at most equal to n(n + 1)/2.

Note that one can have equality, if the (n — 1)-dimensional manifolds (V, ) and
(N, h) are such that that the corresponding Rol , operator (in (n — 1)-dimensional
L 0

setting) is invertible at ¢\ = (yo, Jo; Aj) € Q(N, N) where Aj 51| = 41 io is the

restriction of A, and if we also assume that f(ry) = 1, f(ry) = 1, ap assumption that
can always be satisfied after rescaling the metrics of (N, h) and (N, h).

Remark 7.38 Notice that in the particular situation where the warped products are
in fact Riemannian products (M, g) = (I x N,s; @ h), (M,§) = (I x N,s; ® h), i.e
where f = f =1, then the fact that for every gy = (o, #0; Ao) € Q the orbit Opy (qo)
is at most of dimension 8, can be deduced more easily by using Theorem 4.1.

Indeed, Theorem 4.1 tells us that W(B;Ns(qo)(xo,:i"o) = H|;,AoH|,, Since M and M

are Riemannian products and because the holonomy group of (IR, s1) is trivial, one has
H|,, = H"|,, and H|;, = H"|;,, isomorphically, where 20 = (ro,%0), Z0 = (70, %0)-
But dim H"|,, < dimSO(2) = 1 and dim H"|, <1, so

|y0 |y0

) =
dimmy,] () (@0, ) = dim(H |3, AgH |4,) < dim H|z, 4 dim H|,, < 2

which implies that dim Op,(q0) < 3+3+2 = 8. Because dim Op, (¢y) C dim Op.(qo),
we also have dim Op, (¢y) < 8.

8 Rolling of Spaces of Different Dimensions

8.1 Definitions of the State Space and the Rolling Distribu-
tions

Definition 8.1 Let (M,g), (M, §j) be Riemannian manifolds of dimensions n =
dim(M) > 2 and n = dim(M) > 2, not necessarily equal. Then one defines:

(i) if n <n,
QIM,M):={AeT*M®TM | §(AX,AY) = ¢(X.Y), X,Y € T|,M, = € M},

the set of isometric infinitesimal immersions. This defines a smooth manifold of
T*M @ TM of dimension

-1 1
dim(Q) ::n+ﬁ+n(ﬁ—n)+%:n+ﬁ+nﬁ—%.

(ii) If n>n,
QIM,M)={AecT*MeTM | §(AX,AY) = ¢(X,Y), X,Y € (ker A)*,
x € M, Ais onto a tangent space of M},
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where L' is the orthogonal subspace of L C T[,M w.rt. g. This defines a
smooth submanifold of T*M @ T'M of dimension

A(h — 1 A(h + 1

dim(Q) =n+n+nn—n)+ 5 5

If n =7 and M, M are oriented we also demand in (i) and (ii) that the elements of
() to preserve the orientations. Hence we recover the definition used before.

One defines distributions Dysg, Dr on () and the lifts Zys, £k as before. In
both cases the dimension of Dyg is n + n and that of Dy is n. Notice that by the
above definition the dimension of Q(M, M) is the same as that of Q(M, M). These
manifolds are actually diffeomorphic as the next proposition shows.

Before proceeding, we introduce some notations. Given (M, g) and (M, §) as
before, we write Q = Q(M, M) and Q = Q(M, M). We write Dys, Dr, Zxs and
LR on @ as before but on Q we write the corresponding objects as 51\1\5, 1/);, (,?ES
and Zg. Thus dimDr = n but diml/?; = n. As before, for ¢ = (z,%; A) € Q we
write AT : T|;M — T|,M the (g, §)-transpose of A i.e., g(X, ATY) = §(AX,Y) for
all X € T|,M,Y € T|;M.

Proposition 8.2 For every (z,4; A) € Q, one has (i, 2; AT) € Q and the application
T:Q—Q T(xiiA)=(i,2;A"),

is a diffeomorphism. Moreover, this diffeomorphism T is an isometry of fiber bundles
TQ = T that preserves the no-spinning distributions on these manifolds i.e.,

T*DNS - 151\1\8

Proof. Suppose w.l.o.g. that n < n. It is clear that ATA = id), v for every
(z,7; A) € Q and ker(AT) = im(A)* and thus if X, Y € ker(AT) = im(A), one
gets

g(ATX, ATY) = g(ATAX, ATAY) = g(X,Y) = §(AX, AY) = §(X,Y),

where X, Y € T|,M were such that AX = X, AY =Y. This proves that T(z,7; A)
is actually an element of ().
Let then § = (Z,2; B) € () and define

S(q) = (z,&; BT) € T*M @ TM.

Since im(BT) = ker(B)*, we have for X,Y € T|, M,
9(B"X,B"Y) = §(BB"X,BBTY) = §(X,Y),

directly from the definition of Q and since BBT = idp|,a (since n < n). This shows
that S: Q — Q.

Moreover, one clearly has that 7 and S are maps inverse to each other. They are
obviously smooth, hence () and Q are diffeomorphic. Also, T is actually a bundle
isomorphism 7y — 75 whose inverse as a bundle isomorphism is S.
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Finally, observe that if v, 4 are smooth paths in M, M starting at xg, Z¢, respec-
tively, at t = 0, and if gy = (o, To; Ao) € Q(M, M) then

(PH(7) 0 Ag o PX(7))" = Pi(7) 0 AT o P2(%),
T(y(t),4(t); P(5) 0 Ag o Pi(7)) = (3(t), 7(t); Pe(7) o T(zo, Z0; Ao) © P(7)),

and using the definition of Zyg,

which immediately shows, by differentiating %} 0

that

T*‘QOXNS(Xv X)

IEN\S(X,X)‘

q0 T(qo0)

where X = #(0), X = 4(0). This proves in particular that T, maps Dyg isomorphi-

—

cally onto Dyg. This completes the proof.
O

Corollary 8.3 In the case n < 7, one has for gy = (g, #0: Ag) € Q(M, M) and
X eT|.M,

T*|(IO$R<X>|(]O = gR(AOX”‘I’(QO)'

In particular, T, D C Dg.

Proof. Indeed, for X € T|,,M and gy = (xo, Zo; Ag) one has

Tl Z0(X) oo = Tl s (X, A0X)| = ZAus(AoX, X)L = ZnlA0X) iy
0 0
since X = (AT)(A4oX) = T(qo)(AoX). Hence T maps Dg of Q(M, M) into Dy of
Q(M, M).
0

Remark 8.4 Recall that the distribution Dy on Q(M, M) has dimension n and Dr
on Q(M, M) has dimension 7. Hence the inclusion T,Dr C Z/)\R is strict whenever
n < 7. This shows that the model of rolling of manifolds of different dimensions against
each other is not symmetric with respect to the order of the manifolds M and M.

We can now provide a description of the vertical fiber V|,(mg) for a point ¢ =

(x,2;A) € Q.
Proposition 8.5 If ¢ = (z,2; A) € @, then the vertical fiber V|,(7g) is given by

v({BeT*|,M®T|;:M | ATB € so(T|,M)})]

Vly(mq) = {V({B € T*[,M @ T|;M | BAT € so(T|;M)})

q7

Proof. Let ¢ = (z,2;A) € Q and B € T*|,M ® T|QM. Proving the proposition
amounts to show that v(B)|, (which is a priori only an element of V| (7. prorxr))
belongs to V|,(mg) if and only if
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(i) ATB € so(n), if n < n,
(i) BAT € so(), if n > .

Choose first a m-vertical curve ¢(t) = (z, 2; A(t)) inside @ such that A(0) = A
ie., q(t) € Wél(l‘,:f?) C T*|.M ®T|: M.

In the case (i), we have g(A(t) X, A(t)Y) = g(X,Y) for all X,Y € T|,M so by
differentiating, at t = 0, g(AX, BY) + g(BX, AY) = 0 for all X,V € T'[,M, where
B e T*|,M ® T|;M is such that A'(0) = v(B)|,. This condition can be written
as g(BTAX,Y) + g(ATBX,Y) = 0 for all X,Y and hence BTA+ ATB = 0. The
result follows, since for a given (z,2;A) € @, the set of B € T*|,M ® T|; M s.t.
ATB € s0(T|,M) has dimension equal to dim Wél(l‘, ).

In the case (ii), we have g(A(t) X, A(#)Y) = g(X,Y) for all X,Y € (ker A(t))* =
im(A(t)T). Choose X,Y € T|;M. Then g(A#)TX, AH)TY) = §(X,Y), since
ABAD)T = idy, yy, and so by differentiating at ¢t = 0, we get g(ATX BTY) +
g(BTX,ATY) = 0, where B € T*|,M ® T|;M is such that A’'(0) = v(B)|,. This
clearly means that BAT + ABT = idT|i 57 and the result follows.

U

Remark 8.6 The case (ii) considered above could be handled by using the diffeo-
morphism 7' : @@ — () introduced in Proposition 8.2. Indeed, if n > 7, we may
apply (i) on @ to obtain that for ¢’ = (2, 2; A") € Q, we have that V|, (7s) consists
of B' € T*|;M & T|,M such that A" B € so(T|;M). But taking ¢ = (z,4; A),
¢ =T(q), B e T |,M®T|;:M and B' = B”, this means AB" € so(T|;M) ie.,
BAT € s0(T|:M).

As an interesting special cases of rolling with different dimension, we next con-
sider the cases where n =n+1orn=n+ 1.

Proposition 8.7 Let (M, g), (M, §) be oriented Riemannian manifolds of dimensions
nand i = n — 1, with n > 2. Define (MM gM) to be the Riemannian product
(R x M, s, @ g), with the obvious orientation, and write Q) = Q(M, M) and let
.Z(Pi), Dg) to be the rolling lift and the rolling distribution on Q). We define for every
a € R,
ta: Q= QW (e, d:.4) = (2, (a,2); AV),
where AD : T|,M — T|(2) (R x M) is defined as follows: A € Q) and
A(l)‘(kerA)l :<07 A|(kerA)l)

0
) —R—
A% (ker A) =R 'r‘(“vf) x {0},

where % is the canonical vector field on R in the positive direction, which we consider

to be a vector field on M® in the usual way.
Then for every a € R the map ¢, is an embedding and for every gy = (o, Zo; Ag) €
Q, ap € Rand X € T|,M one has

LX) g =TLZ (X) g a0
Oy (60) =IH(O5) (14 (0)))-
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where

I: QYW = @ (x, (a,2), AV) = (2,2 (pry). 0 AY),

is a surjective submersion and pr, : R x M — M is the projection onto the second
factor.

Proof. Let v be a path in M starting at zo and ¢(t) = (v(t),4(t); A(t)) == gpg (7, 90)(t)-
We define a path on ¢V (t) = (y(t), 57 (t); AV (t)) on QY as follows:

50 = a0+ [ 10, (A0 (A0 P23 (515 (0)
AW(1) :=P5(31) © tay(Ao) © PL(7),
where for every ¢ = (z,2; A) € () one defines
pH(A) T .M — (ker A)*
pT(A) : T|.M — ker A,

as the g-orthogonal projections.
We will show that ¢(!) is the rolling curve on QW) starting from u,,(go). Indeed,
clearly ¢ (0) = (v(0), (ag, 7(0)); tay (Ag)) = tag(qo) and AD () € QW for all . Also,

on one hand

,3/(1) (t) = (b(t)% ’fy(l)(t)’ /?(t))’

where b(t) is defined by ta,(Ao)p” (Ag) P (7)3(t) = (b(t)£|(30.a0): 0), While on the
other hand

AW E)(8) =P5(7™) tay (A0) P (7)(2)
=Py(7")tag (A0) (9" (Ao) + 7 (A0)) PP (7)(2).
Now since AgX = Agpt(Ag)X for every X € T|,,M, we have
A3 () =F5 () AP ()7 (1)
=F5 (%) Aop™ (Ao) P (7)7()

and also
tag (A0)p" (A0) X = (tag (Ao)p" (40) X, 0).
SAince M® is a Riemannian product, we have for every X € Tz, M C T'| (ag,30) (R X
M)
Fi()X =(0, Fj(9)X)

(1) 9 0
Pg(7(1)>§|bao (q0) :g ’wm(t)
where the latter implies that since ¢4, (Ag)p” (Ao) P (7)(t) = (b(t)Z }(500 w0)? 0), then

Pg(’?(l))bao (AO)pT(AO)PtO(/Y);Y(t) (b( )Pg( 87“ }(xo ap)’ ) = (b(t)% },y(l)(t)v O)
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Therefore,

AV =(6(0) o]y P A (Ao (A) PO(2)3(1)
= (002 A AP AM) = (1) |y ADAD)

(B0~ oy H(0) = 3000).

This and the definition of AW () show that ¢V (t) = g (7, tay (90)) () for all ¢.
R

Finally, since AN (t) = P{AM )ig, (Ao) (T (Ao) + p(Ao))PP(7) and by what was
said above about parallel transport in Riemannian product, it follows that

(pr)) AV (t) = Po(3D)tan (A0)p™ (A0) PP (7) = Py (7)tay (A0) PY (7),

which proves that

T (gpm (7 tas (90)) () = 4D4 (7, 90) (1)

and hence Op, (qo) C (O 1) (tay(90))) as well as
R

LAY GOy a0) = Mg (- 200 (0))(0) = iy (700 (0) = L (3(0))] .

Finally, if ¢V = (z,(a,2); AW) € O, (tag(q0)), take a path v in M start-
R
ing from z, such that ¢V = qpm (7, q)(1). By what was done above, it follows
R
that H(qu)(% Lao (90))(t)) = apg (7, 90)(t) and thus, evaluating this at ¢ = 1 gives

(") € Op,(go), whence H(@Dg)(bao(%))) C Opy(q)-

The claim that ¢, is an embedding for every a € R is obvious. We still want to
prove that II is a surjective submersion. This follows trivially from II o ¢, = idg.
End of the proof. O

Corollary 8.8 With the assumptions and notations of Proposition 8.7, if the orbit
Opy, (qo) is not open in @ for some ¢y € @, then O 1) (L4,(go)) is not open in QW.
R

Proof. Suppose O (ta,(qo)) Were open in QW then since IT : QM — @ is a smooth
R
submersion, it is an open map and hence its image TI{(O ) (¢, (90))) = Opy(qo) is
R

open. End of the proof.
O

As a consequence of this corollary and Theorem 7.1 we get the following theorem
concerning non-controllability in the case n = 3, n = 2, whence dim ) = 8. Recall
that Q = Q(M, M ) is connected and thus the rolling problem (R) is non-controllable
if and only if there exists a ¢y € @ such that Op, (qo) is not open in Q.

Theorem 8.9 Letn=dimM =3, A =dimM =2 and ¢, = (x0, Zo; Ap) € Q.

If the orbit Op, (qo) is not open in @, then there exists an open dense subset O of
Opy (qo) such that for every ¢; = (z1,21; A1) € O there is an open neighbourhood U
of x; for which it holds that (U, g|¢) is isometric to some warped product (I x N, hy),
where I C R is an open interval and the warping function f satisfying f” = 0.
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Proof. Let (MM, §M) be the Riemannian product (R x M, s, @ §) and let ag € R.

Since the orbit Op, (qo) is not open in @, it follows from Corollary 8.8 that the

orbit O 1) (e, (go)) is not open in QW. But then Theorem 7.1 provides an open dense
R

subset O of O, (tag (o)) such that one of (a)-(c) there holds. Then O :=TI1(0W)
R

is open an dense in Op, (qy). Let ¢1 = (x1,21; A1) € O, choose q ) € O™ such that
I(¢M) = g1, whence ¢V = 1,,(q1) for some a; € R.

Let U, UW be the neighbourhoods of z1, (a1, 1) as in Theorem 7.1 corresponding
to qil). We choose UM to be of the form U x I for I C R an open interval and

~

UcM open.

If (a) there holds, it means that (U, g|¢) is (locally) isometric to the Riemannian
product I x U (hence we have f = 1).

The case (b) cannot occur, since (UM, g1 |y, as a Riemannian product, cannot
be of class Mg for 3 > 0.

Suppose therefore that (c) holds. Let F: (I x N, hy) — U and F': (I x N, fo) —

U be the isomorphisms. The eigenvalues of the curvature tensor R(l)|(a1,@) being

0, —6(#),0, with (&) the sectional curvature of (M, §) at &, we see that the warping
function f must satisfy f” = 0. O

Proposition 8.10 Let (M, g), (M,§) be oriented Riemannian manifolds of dimen-
sions n = 7 — 1 and 7, with 7 > 2. Define (M®, ¢gV)) to be the Riemannian product
(R x M, s; @ g), with the obvious orientation, and write Q) = Q(M™ M) and let

(Z(l 1) to be the rolling lift and the rolling distribution on Q™). We define for every
a € R,

ta: Q= QYs w(w,d54) = ((a,2), 3 AV),
where AM : T, (M x R) — T|; M is defined as follows: A® € Q) and

(1)|T‘ oy =A

8r } (a.) c(imA)*,

where % is the canonical vector field on R in the positive direction, which we consider
to be a vector field on M™) in the usual way.

Then for every a € R the map ¢, is an embedding and for every gy = (o, Zo; Ag) €
Q, a0 € Rand X € T|,M C T2 (R x M) one has

(ta0)+Zr(X) g0 =L (X)uay (00)-

Moreover, if one defines
H:Q(l) _>Q7 H((.T,a),f,A(l)) = (I,i’;AO(iQ)*),
where i, : M — R x M; x — (a,z) and if Ay is the subdistribution of Dg) defined by

AR|q(1) - (La)*DR|H(q(1))7 vq(l) - ((a'a $)7:i.a A(l)) € Q(l)a

then

LOLo(ODR(QO)) :OAR([’U«O (QO)) C O”pg)(bao (QO))-
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Proof. The claim that ¢, is an embedding is obvious and since ITo¢, = idg, it follows
that II is a submersion.

Let v be a path in M starting from x¢ and q(t) = (v(t ) ( ); A(t)) = qpp (7, q0) (1).
We define a path ¢ (t) = (v (t), 4(t); AV(t)) on QW

YV (t) =(ap,¥(t))
AV (#) =PL(A) 0 tay(Ap) 0 Pi(v1).

Since M is a Riemannian product,
Py(y")A () = Py(vV)(0,4(1)) = (0, F(7)(t))
and so
AW @FV(E) = By(3)tao (A0) (P (7)3(2), 0) = F§(3) Ao Py (1)4(1) = A(£)¥(t) = 4(2).

Since also ¢V(0) = 14, (qo), this proves that ¢V (t) = QDS)W(I)’ Lay(q0))(t) for all .
Next notice that |

o (tas (a(1))) = (a0, 7 (1)), (1)) = ('Y (2), 4(1)) = mqm (¢ (1))
and if X € T‘xM C T‘(a07$)<R X M),
A<1><t><o, X) = A(H)X = 10 (A1) X

and since AW ()T |,yM L AW (¢
we must have, by orientation,

and (g, 0A(t)) T M L (ta,0A(t)) 2

}( M (t)? }(,\{(1)()7

0 0

A (1) — el | = (tan © A(t))a}(w)(t).

This proves that tq,(q(t)) = ¢/ (t) and therefore

L(G0),0)) s ) = L (0 ag o) = 4(0) = (tag) () = (tag)«-Lr(3(0))] o
which shows that for every X € T'|;0M C T|(49,20)(R x M) one has

LX) oy a0) = (tag) LR (X)) g

Notice also that since we proved that i, (¢p, (7, 90)(t)) = ¢pm (7; Q) (t), we have
R
shown that

Lay(Opr (00)) C O 1)(%(‘]0))

Also, for every ¢ € Op,(qo) we have (recall that Il o ¢,, =1idg)

AR|La0(q) = (ay)+Drlq C T|La0(q0)(LGO(ODR(qO)))'

Finally, because Lao\op (qo) 18 an immersion into QW and

AR 1 (0py (a0)) = (tag)+DR|0p, (40):

we have

OAR(LGO <q0)) = lag (ODR <q0>>'
The proof is finished. O
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Corollary 8.11 With the assumptions and notations of Proposition 8.10, if the orbit
Opy, (qo) is open in () for some qo € @, then O (t40(q0)) has codimension at most 1
R

in QW.
Proof. The dimensions of Q and Q" are dimQ = 27 — 1 + "(” D — qim QW —
so if Op,(qo) is open in @, one has dim Op, (¢p) = dim @) and thus

dim ODIQ)(LGO (q0)) > dim Oap (tay(q0)) = dim 14, (Opy (go)) = dim @Q = dim QW —1

8.2 Controllability Results
8.2.1 Rolling Problem (NYS5)

Since Theorem 4.1 and Corollary 4.3 evidently hold as such in the case of non-equal
dimensions (i.e., n # n), we will be more interested to see how Theorem 4.8 could
be formulated. We first need a definition.

Definition 8.12 For n,n > 2, we define

{Ae R)*@R" | ATA =idgn}, if n<n,
SO(n;n) = ¢ {A € (R")* @R | AAT =idga}, if n>n,
SO(n), if n=n,

where (R™)* @ R™ is the set of n x 7 real matrices and A7 denotes the usual transpose
of matrices.

Theorem 8.13 Fix some orthonormal frames F, ' of M, M at z € M, # € M and
let h = b|p C s0(n), h = h|; C s0(n) be the holonomy Lie-algebras of M, M w.r.t to
these frames. Then the control system (3)yg is completely controllable if and only if
for every A € SO(n;n),

{Be (R")*@R" | ATB €so(n)}, ifn

Ab—bA = {{B € (R")*®R" | BAT € s0(n)}, ifn

8.2.2 Rolling Problem (R)

Notice that Proposition 5.9 still holds when n = dim M is not equal to 7 = dim M.
The rolling curvature of Dy on () is denoted as before but that of DR on Q is written
as Rol i. e.,

Rol(X,Y)(B) = BR(X,Y) — R(BX, BY)B,

for (#,2;B) € Q and X,Y € T|; M.
As a consequence, we have a generalization of Corollary 5.23.

Corollary 8.14 Use the notations introduced previously and assume that n < n.
Then the following two cases are equivalent:
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(i) Dg is involutive,
(ii) (M, g) and (M, §) have constant and equal curvature.
Also, if n < n, then there is an equivalence between the two cases below:
(1) 2/);{ is involutive,
(2) (M, g) and (M, §) are both flat.

Proof. For some of the notations, see the proof of Corollary 5.23.
(i) = (ii): Assume that Dy is involutive. This is equivalent to the vanishing of
Rol i.e.,

AR(X,Y)Z) = R(AX,AY)(AZ), Y(z,i;A)€Q, X,Y,Z € T|,M,
which implies

=§(R(AX, AY)(AY), AX) = 6(ax.av),

for every X,Y orthonormal in T[,M and (z,%; A) € Q.
Let € M, @ € M be arbitrary points and X, X € T|,M and X,Y € T|; M be

arbitrary pairs of orthonormal vectors.
Choose any vectors Xs,..., X, € T|,M and Xj,...,X; € T|;M such that

A~

XY, X3,..., X, and XY, X3,..., X; are positively oriented orthonormal frames.
Since n < n, we may define ¢ = (z,2; A) € Q by

AX =X, AY =Y, AX,=X: i=3,...,n,

to obtain that o(xy) = 6%y Thus (M,g) and (M, §) have equal and constant

curvature, since the orthonormal pairs X,Y and X , Y were arbitrary and chosen
independently from one another.
(ii) == (i): Since (M, g), (M, g) both have equal constant curvature, say k € R,
we have
R(X,Y)Z = k(g(Y, 2)X — g(X, 2)Y), X,Y,Z €T M, x€ M,
RX,YV)Z =k(§(Y,2)X —4(X,2)Y), X,Y,Z€ET|;M, € M.
On the other hand, if (z,2;A) € Q, X,Y,Z € T|,M we get

R(AX,AY)(AZ) = k(§(AY, AZ)(AX) — §(AX, AZ)(AY))
=Ak(g(Y,2)X —g(X,2)Y) = A(R(X,Y)Z).
This implies that Rol(X,Y)(A) = 0 since Z was arbitrary. Hence Dy is involutive.
(2) = (1): In this case R = 0 and R = 0 so that clearly Iigl(f( Y)(B)Z =
B(R(X,Y)Z) — R(BX, BY)(BZ) = 0 for all X,¥,Z € T|;M and (,2;B) € Q.
This proves that DR is involutive.
(1) = (2): Assume that Dr is involutive i.e.,

B(R(X,Y)Z) = R(BX,BY)(BZ), V(& x;B)eQ, X,Y,ZeT|:;M.
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Then

or
oxy)= g(B(R(BTX, BTY)(BTY)a X) = &(BTX,BTY)'

Given any » € M, xGM XY€T|MandXY€T|M choose some
Xy, ..., X €T|oM, Xs,..., X5 € T|;M such that

XY, X5,..., X, and X, Y, X;,..., X5,
are positively oriented orthonormal frames. We define

BX =X, BY=Y, BX,=X, i=3,...,n,
BX; =0, i=n+1,....n

so that ¢ = (2, z; B) € Q, BTX = X, BTY =Y and hence O(x)y) = 0%y Thus

(M, g), (M, §) have constant and equal curvature.

Suppose that the common constant curvature of (M, g), (M, ) is k € R. We
need to show that £ = 0. Choose any (Z,z; B) € Q Since n < n, we may choose
non-zero vectors X € ker B and Y € (ker B)*. Then

0 =Rol(X,Y)(B)X = k(3(V, X)BX — §(X, X)BY) — R(BX, BY')(BX)

2 .
BY)-0=
g

2 .

BY

g

and since HXH #0and BY # 0 (since 0 # Y € (ker B)Y), it follows that k = 0.

g
This completes the proof. O

We may also easily generalize Corollary 5.24. The use will be made of Gauss-
formula, which relates the curvature of a submanifold to that of the ambient Rie-
mannian manifold and O’Neill-formulas, which relate the various curvatures related
to Riemannian submersions (see [28], Propositions 3.8, 6.1, 6.2 and Corollary 6.3,
Chapter II). Since the proof is slightly less trivial, we state this as a proposition.

Proposition 8.15 Suppose that (M, g) and (M,g) are complete with dim M = n,
dim M = n. The following cases are equivalent:

(i) There exists a gy = (20, Zo; Ag) € @ such that Op,(qo) is an integral manifold of
Dr.

(ii) There exists a gy = (g, Zo; Ag) € @ such that

Rol(X,Y)(A) =0, V(z,2 A) € Op,(q0), X,Y € T|,M.

(iii) There is a complete Riemannian manifold (N, %), a Riemannian covering map
F: N — M and a smooth map G : N — M such that:

(1) Ifn < n, Gis a Riemannian immersion that maps h-geodesics to §-geodesics.
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(2) If n > 7, G is a Riemannian submersion such that the co-kernel distribution
(ker G,)* C TN is involutive and the fibers G~1(%), & € M, are totally
geodesic submanifolds of (IV, h).

Moreover, in the case (iii)-(2), we may choose N to be simply connected and then
(N, h) is a Riemannian product of (Ni,hy), (No, ha), where dim Ny = 7, dim Ny =
n —n, the space (N, hy) is the universal Riemannian covering of (M, g) and G is given
by

G:N =N, x Ny, = M; Gy,ys) = #(t1)

where 7 : Ny — M is a Riemannian covering map.

Proof. (i) <= (ii): This is proved with exactly the same argument that was used
in the proof of Corollary 5.24.

(i) = (iii): Let N := Op,(qo) and h := (mg m|n)*(g) ie., for ¢ = (x,2;A) € N
and X,Y € T|,M, define

MZr(X)g, Zr(Y)lg) = 9(X,Y).

If = mqu|y and G := 7, y|n, we immediately see that F' is a local isometry
(note that dim(N) = n). The completeness of (N, h) follows from the completeness
of M and M using Proposition 3.30 which holds in verbatim also in the case where
n # n. Hence by Proposition II.1.1 in [28], F'is a (surjective) Riemannian covering.
Suppose then that n < n. Then for ¢ = (z,2;A) € N, X, Y € T|,M, one has

I(GA(Lr(X)]g), Gu(Lr(Y)]g)) = 9(AX, AY) = g(X,Y) = W(Lr(X)]y, Zr(Y)]y),

i.e., G is a Riemannian immersion. Moreover, if T : [0,1] — N is an h-geodesic,
it is tangent to Dr and since it projects by F' to a g-geodesic v, it follows that
T = gp,(7,T(0)) and Proposition 3.30 shows that G o T = Ap,(7,T(0)) is a g-
geodesic. This proves (iii)-(1).

On the other hand, if n > n, then for ¢ = (z,2;A) € N, any X € T|.M
st. ZR(X)|, € (kerGi,)* and Z € ker A, we have G.(%(Z)|,) = AZ =0 ie,
r(2)|, € ker(G.|,) from which ¢(X, Z) = h(Zr(X)|4, ZR(Z)],) = 0. This shows
that X € (ker A)* and therefore, for all X, Y € T'|,M such that Z&(X)|,, & (Y)|, €
(Ker Gly), we get (G Zh (X)), Gl Za(Y)]g)) = A(La(X) gy Za(Y)],) as above.
This proves that G : N — M is a Riemannian submersion.

For any X,Y € VF(N) orthonormal and tangent to (ker G,)* around a point
g € N, we have O?X 7 = 0(G.X,G.7) (0" is the sectional curvature on N) in that
neighbourhood because F'is a Riemannian covering map and because

Gaxoy = I(RGX,GY)GY), G, )) J(R(AF, X AF,Y)(AF,Y), AF,X))
—§(AR(F.X,FEY)FY ,AF,X)) = g(R(F.X, F,Y)F.Y , ATAF,X))
—g(R(FX, FY)EY, F.X) = 0n 5 1.7):
since Rol = 0, F.X € (ker A)* on N and where we wrote A = G, o (F,|,)~! for
q = (x,2; A) in the chosen neighbourhood. By Corollary 6.3, Chapter II in [28], it

follows that for any X,Y € VF(N) tangent to (ker G,)* in an open set, [X,Y] is
tangent to (ker G,)* in that open set. Thus (ker G,)* is involutive.
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We still need to prove that the G-fibers are totally geodesic. Let ¢ = (z,%; A) €
Q,V € kerG.|, = T|,(G*(z)). Then V = Z(u)|, for some u € T|,M and if
7 is the g-geodesic starting from x with the initial velocity u, then I' := ¢p, (7, q)
is the h-geodesic with initial velocity V' (since F is a Riemannian covering) and
also 4 == 4p, (7, q) is a g-geodesic by Proposition 3.30 with initial velocity 4(0) =
A¥(0) = Au = G,V = 0, by the choice of V. But this means that 4 is a constant
curve, 4(-) = & for all ¢, which implies that G(I'(t)) = 4(¢) = & for all ¢ i.e.,
T'(t) € G~1(i). This proves that every fiber G-(&), & € M, is a totally geodesic
submanifold of (IV, h) and so we have finally proved (iii)-(2).

(i) = (ii): Let zp € M and choose zy € N such that F'(z) = xo. Define
Zo = G(z) € M and Ay := G|,y 0 (Fils) ™t T)ogM — T3, M.

The fact that ¢y = (x0, Zo; Ag) belongs to @ can be seen as follows: if (iii)-(1)
holds, we have

g(AOXa AOY) - g(G*|Zo((F*|ZO)_1X)7 G*|Zo((F*|Zo)_1Y))
:h«F*‘Zo)ilX)v (F*|zo)71Y) = g<X7 Y),

where we used that G is a Riemannian immersion and that F' is a Riemannian
covering map. On the other hand, if (iii)-(2) holds and if X, Y € (ker Ag)*, clearly
(Ful.) 71X, (Ful.) 'Y € (ker G, )t and hence also §(AgX, AgY) = g(X,Y) since
(G is a Riemannian submersion.

Let v : [0,1] — M be a smooth curve with y(0) = xy. Since F' is a smooth
covering map, there is a unique smooth curve I' : [0, 1] — N with v = F oI". Define
¥ = GoTl and A(t) = Gilre o (Filrw) ™", t € [0,1]. As before, it follows that
A(t) € Q for all ¢t € [0,1] and

A(t) = GulrI(t) = A®)3(2). (100)
We claim that, for all ¢ € [0, 1],
ViswamAL) =0, (101)
and
Rol(-, -)(A(t)) = 0. (102)

Indeed, suppose now that (iii)-(1) holds. This means that, for every z € N, there
is a neighbourhood U of z in N such that G(U) is a totally geodesic submanifold
of (M,3) and G : U — M is an isometric embedding. Now if X is a vector field
parallel along v in M, then since F' is a Riemannian covering, there is a unique
vector field X parallel along ' in (N, h) such that F,X = X. For any t, € [0,1],
choose U as above around I'(tg). Then near t, we have that G, X is parallel to 4 in
(M, §). This proves that

0= Vi (GX (1) = Vi (AO)X () = (Vi35 AC)) X (1),
and since X (¢) was an arbitrary field parallel along 7, we have v(&(tm(t))A() =0
ie., (101). )
Since, locally, the shape operator of G(N) w.r.t (M, g) vanishes and G(N) is lo-
cally Riemannian embedded submanifold of (M, g), we also have G,(R"(X,Y)Z) =

184



R(G.X,G.Y)(G.Z) forall X,Y,Z € T|.N, z € N (see [28], Proposition 3.8, Chap-
ter II) and hence for all X,Y, Z € T'| M

AW (R(X,Y)Z) = Gu(Flrw) (R(X,Y)Z) = G.(R"X,Y)Z)
=R(G.X,G.Y)(G.Z) = RA(t) X, A(Y )(A(t) 2),

where X = (Fi|r)) ' X ete. This proves (102).

On the other hand, suppose (iii)-(2) holds. First we see that Eq. (102) follows
from [28], Proposition 6.2, Chapter II (the operators A and T there vanish, by
assumptions on N and G) and the fact that F' is a Riemannian covering.

To prove (101) we proceed as follows. Taking the simply connected covering
of N, lifting the metric A and composing G and F' with the projection from this
covering to N, we see that the conditions (iii)-(2) still hold and thus we may assume
that N was simply connected in the first place. Take any piecewise C! curve w on
N and let Vj € ker G.|u(0), Xo € (ker G.)* o). If Z(t) is the parallel translate of
Xo + Vo along w, we get from [28], Proposition 6.1, Chapter II (again, the operators
A and T there vanish by assumptions) that

0 =VipZ(t) = (Vi Zt)) + (Vi Z®))",

where for Y € TN we wrote YT and Y+ for the components of Y in the distributions
(ker Gi,)* and ker G,, respectively (this notation is in accordance with the notation
in the referred result of [28] and is not completely compatible with ours). This proves
that Z(t)T and Z(t)* are fields parallel to w and since Z(0)T = X,, Z(0)* = V4,
we have that Z ()7 and Z(t)* are the parallel translates of X, and V;, respectively.
But this implies that

(PY")p(w)(ker Glu) = ker Gulugn,  (PY")5(w) ((ker Gelu) ™) = (ker Gilum) ™,

ie, TN = kerG, @ (ker G*)L is a splitting to T'N into two subbundles that are
invariant under V"-parallel transport.

Since N is simply connected and complete, it follows from de Rham’s Theorem
(see [28], Theorem 6.11, Chapter II) that (N, h) = (Ny, h1) X (Na, hy), a Riemannian
product, where (g, hy) and (Ns, hy) are both complete and simply connected and
TN, = (ker G,)*, TNy = ker G,.

To see now that Eq. (101) holds, let X be a vector field parallel along v in M,
write I' = (I';, ), take X = (X1, X,) (wr.t TN = TN; @ TN,) to be the unique
lift of X onto a vector field along I" in N and compute

0 ZA(t)V&(t)X( ) G, v =G, v

o faen X () = GVE (X1 + GV

X17

F(t 1 (t)

since VF (t)XQ € TN, = ker G,. On the other hand, G¥> : N; — M; y; — G(y1,v2)

is a local isometry for any y, € Ny and hence
0=G.V} (X1 = (G"1).V}

I (t
=V (G.X) = %@)(A(-)X(-)),

= Vigraoy. iy (G™0).X0)

A(t)

since A(t) = G.I'(t) = G.I'1(t) = (GW),I'(t) and G, X = G, X; = (G""), X,
Thus (101) holds and this finishes the proof of (101)-(102) in the case that (iii)-(2)
holds.
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Thus we have shown, because of (100) and (101), that t — (y(¢),5(t); A(t)) is
the unique rolling curve along v starting at ¢y = (%o, Z0; Ag) and defined on [0, 1]
and therefore curves of () formed in this fashion fill up the orbit Op, (qo). Therefore,
Eq. (102) implies that Rol vanishes on Op,(q) which means that we are in case
(ii).

To prove the last claim in the statement of the proposition, we continue the
deduction done above in the case that condition (iii)-(2) holds. Since for any ys € N,
G* : N; — M is a local Riemannian isometry and /N; is simply connected and
complete, it follows that G¥ is a universal Riemannian covering of M. We show that
the map G¥? is independent of the choice of yo € Ny i.e., that G(y1,y2) = G(y1, y5)
for all y; € Ny and yo,y5, € No. Indeed, take any smooth path I's in N, from
[5(0) = y» to To(1) = g4 Then, (G, o y(t)) = G.Is(t) = 0 for all ¢ since
I'y(t) € TNy = ker G,. This shows that Gy, oI’y is a constant curve in M and thus
G(y1,y2) = Gy, (12(0)) = Gy, (T2(1)) = G(y1, ).

We fix y, € Ny and deﬁne F:=G% : N, — M which is a universal Riemannian
covering. By what we just proved, it holds that G(y1,y2) = G(y1, y5) = 7(y1) which
establishes the claim. O

A  Fiber and Local Coordinates Point of View

Let F = (X;), F = (X;) be (not necessarily orthonormal) local frames of M and

M defined on the open subseps U,U, respectively. We have local frames of 1-forms
F* = ((6),U), F* = ((#7),U) dual to these frames i.e., defined by 67(X ) =

07(X;) = 6. The Christoffel symbols Iy = (Tr), FZ] = (Tp)k of V, V wrt
the frames F, F are defined by (see [31], p. 266) Vx,X; = 3, Iy Xk, inXJ =
D F’“ Xy Any (z,8;A) € T*,(M) ® T|3(M) with (z,2) € U x U can be written
in the form
A=A, ® Xils,
irj

i.e., (pry o 7pp)(A) = [AY] (see section 3.1.2). Moreover, if F, F are orthonormal
frames, then A € @ if and only if [A’] € SO(n).

Let t — ~(t), t — (), t € I, be smooth curves in U, U, respectively, such
that v(0) = xo, 4(0) = 2o, where [ is a compact interval containing 0. Moreover,
take qo = (xo,Z0;Ag) € T*M ® TM. The no-spinning condition (12) (i.e., the
parallel translation equation) for the curve ¢t — q(t) = (v(t),3(t); A(t)) (i.e., A(t) =
Pl(~,4)A) starting at ¢ can be written as

Z L KO0 () + Y T ) AT () = 0, (103)

where t € I and

dAZ

Y(t) = Zvi<t)Xi|v(t)v Z X l40)-

i

This shows immediately that the equation for no-spinning is a linear ODE in A;- and
thus the solution with the initial condition A(0) = Ay exists for the whole interval
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I where 7,4 are defined. The control system (X)yg can now be written locally in
the form

(4(t) = Z 0 (1) X

, tel,
dA’ Z Tk Z i Y™ (t)
or
(45() = 3 ()Xot
y(t) = i@i(t)f(ih(t)v tel,
(t) = i V' Las(X5,0)ag + Z 0" s 0, Xi)‘A(t)’
where the controls v = (vl, L), 0= (7717 ...,0") are elements of L110C<[ R™)

(actually an open subset of it since the images of 7,4 should belong to U, U, re-
spectively). From this local form, we see that (X)yg is a driftless control affine
system.

The curve t — q(t) = (v(t),5(t); A(t)) is a rolling curve i.e., satisfies conditions
(11) and (13) if and only if

0 t) = Z Aé(t)vk<t)v (104)
dA’
Z (Z L Z Lo M) AL(t )) v™(t) =0, (105)

where () = 32, 0/ (t) Xi| ), A(t) = Ziﬁi(t)f(i\:y(t). Supposing that U is a domain of
a coordinate chart ¢ = (#1,...,2") of M and taking as the frame F' the coordinate
fields X; = %, the previous equation can be written as

dy t) = A(t)h (L), (106)

A Ny
o D =30 (X Ths(0)40) = S TLAMA @ 40" 0), (107
k

where 4* = 2?04 and t € I. This system is nonlinear in 4°, Aé» and thus the existence
of solutions, for a given initial condition 4(0) = Zy, A(0) = A, cannot be guaranteed
on a given compact interval I > 0 where 7 is defined (even in a case where one is
able to get U = M).

Moving back to a general frame F (i.e., we are not assuming that it consists of
coordinate vector fields), the local form of the control system (X)g can be written
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as

tel,

\ 7

where the controls v = (v!,...,v") are elements of L} (I,R") as above. From this

1
v
local form, we see that (E) R is a driftless control affine system.

B Sasaki-metric on T*M @ TM and Q

The no-spinning distribution Dyg can be given a natural sub-Riemannian struc-
ture (see e.g. [21]) with the sub-Riemannian metric hxsp = (75(9))|pys since

(7Q )+ |Dus| (o5 15 @ linear isomorphism T'[(y4,4)Q — T (z,2) (M X M) at each point
q = (z,2;A) € Q and (7). (Ls(X, X)|,) = (X, X), for every ¢ = (z,4; A) € Q
and X € T|,M, X € T|; M.

Actually, we have more since there is a Sasaki-metric g: on the whole tensor
space T*(M) ® T'(M) given in the following.

Definition B.1 The Sasaki-metric g on T*(M) @ T(M) is defined by
91(&.m) =g(Lsl,  (pr(9)), Lsl,  (pri(n)))
+((g" ® g) o 7) (vl (pra(€)), vl (pra(m), (108)
where -
g = (2,2 A) € T"(M) @ T(M), &1 € T|(T"(M) @ T(M)),
pry, proy are projections of the decomposition
(1 (M) @ T(M)) = Dns @ V<7TT*(M)®T(M))7
(see (20)) onto the first and second factors, Zxs|, ", v|," are the inverse maps of
T3 (M x M) = T|(T*(M) © T(M))
X o %X, (109)

and

(T*(M) @ T(M))| @) = Vlg(Tpe s
B v(B)|,. (110)
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Note that ¢* : T*(M) ® T*(M) — R is the dual metric induced by g and finally 7 is
the R-linear isomorphism

(T"M @ TM) @ (T*M @ TM) — (T*M @ T*M) @ (TM @ T M)
uniquely determined by
((weX)@BeY))=(we) o (XeY).

Denote by g, the restriction (i.e., the pull-back) of the metric g1 onto Q.
Let us now use the local frames and notation as in Appendix A. Writing &, 7 €
T|q(T*M ® TM)a q= (ZL‘,i‘7 A)7 as

£= Z (& Xile + éz)mx) + qu;ﬂ”x ® Xils,
i ij

n=_ (Xl +nE'Xila) + Ym0 © Xils,

i 2,]

one gets
pra(§) = & — Zs (€Kil + EXils) |,
=3 (8 - STk A 4 B A0 @ X
2,] k,m
the similar formula holding for pr,(n) and hence

g1 = Z £ g(Xile, Xjle) + Z E g(Xila, Xjlz)

0]

1,7
+ 3 (6 - X Thden + 1,457
k,m

i7j7a76

(s = STk pATET B ABEM) g (01, 67)3(X, ).
k,m

Moreover, with this choice of the Riemannian metric on 7*M @ TM and Q we
have the following result.

Proposition B.2 Let U,V € C™ (T yrarirs Tremrerir)r X € Tl(woi0) (M X M) and
qo = (w0, To; Ap). Then the Sasaki-metric g1 has the following properties:

(i) Letting tr = try): mer),,m denote the trace of linear maps 7’|, M — T'[,, M and
T the (g, §)-transpose of the linear maps T'|,,M — T|z,M, one has

Filao (VU (A0) gy v(V (A0))io) = tr(U(A0) "V (Ao)) (111)

(i) Choosing a smooth local 7.,y -section Ast. Al = Ao and VyA =0
for all Y € T sy 20) (M x M),

s (X))o (1 (v(U (), v(V (1)) (112)
=31 (/(VU (A)laos v(V(40)) o) + 71 (V(U(A0)) g0 (VV () lao)-
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The same result holds if we throughout replace T*M @ T'M by Q and J: by Jo with
the exception that U,V € C*(nq, T yrorys) St U(A),V(A) € Aso(T|,M) for all
(x,2;A) € Q.

Proof. Let (X;), (X;) be smooth g¢,j-orthonormal frames of vector fields M, M
defined on the neighborhoods U, U of xq, &. Denote by (6%), (01) the correspondmg

dual frames. Then there are unique functions a}, b, € C>(, M®TM(U x U)) s.

U(A) =) ai(e, A0, @ Xils,  V(A) =D b, &5 A)], © Xils,
.3 .3

and thus (below we will denote a)(o, Zo; Ao), b (o, Zo; Ag) simply by a?, bY)

Jr 7
Filao (V(U(A0)) g0, (V (A0)) oo
:((g* ® g) o T)( Z aébf(@ﬂm ® XZ|560) ® (0l|x0 ® Xk|560))
ikl
= Z a; b 0j|x0 ® 0l|x0) (Xj|500 ® Xk|500) = Z a’;’bfdjléjk
i,5,k,l 1,9,k,l

—Za Zg (A0) X, V(A40)X,) = tr(U(Ao)"V (Ao))-

This proves (i). .
Next, by the definition of Zxg and the choice of A, we have

s (X )|qo(91( (U( ), v(V(: )))) X1 (v(U(A)], (V(A)|A))
:7(2% Z al (A)b (qo +Za( )X (b5(A)).

Assuming for simplicity that (X;), (X'Z) were chosen so that VyX; =0, Vo X; = 0
foralli and Y € T|,,M,Y € T|;,M (and hence Vy 6" = 0 for all i and Y e T|gg0 ),
we get
Vx(U(A) = Ls(X)lgo (@) g © Xilzo, VeV (A)) = Las(X) oo (0 |2y © Kilo-
This shows that
Zst Mao ()b (a0) + Y @l (q0) Lais (X)|g (B))
i.j
=tr(<Vy< (AD)TV(Ao)) + tr(U(A)(
=51 (V(VU(A)) g v(V(A0))lao) + G2 (v (U

x(V(4)
(Ao a0 (Ve V (A)|ao)-

O

Proposition B.3 The maps Tope (M)@T (V1) and 7 are surjective Riemannian submer-

sions onto M x M. Hence the restrictions of the Levi-Civita connection V¥ and the
Riemannian curvature R71 on the Dyg-horizontal fields are respectively given by

_ - — 1 AT
Vo s Zas(Vly = Ls(VxY)l, + S(ARXLY) = R(X, V) A),
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and

71 (R7 (Lis(X), Zs (V) Zs(X), Zas (V)

)
-1
91

with ¢ = (z,4;A) € T*M @ TM, X = (X, X) where X € VF(M), X € VF(M) and
similarly for Y. The same formulas hold if one replaces g} with g,.

Proof. The first statement is obvious by construction. For the statement about the
connection, we use Koszul’s formula (cf. [17]), to notice that

1 _ — — 1 ~ Y\ v
Vo0 Bis(V) = Ls(ViY) + 5 L %s(X), L (V)]

where for Z € T(T*M @ TM) we denote Z = Z" + Z* with Z" € Dyg and Z° €
V(T reprorar)- The fact about the Riemannian curvature is deduced similarly (see

17]). 0

Theorem B.4 Suppose t — q(t) = (x(t), 2(t); A(t)) is a smooth curve on T*(M) @
T (M) that is Dng-horizontal i.e., §(t) € Dys for all t. Then the following are equivalent:

(i) t = q(t) = (x(1),2(t); A(t)) is a geodesic of (T*(M) & T(M),q})
(i) t — x(t) and t — @(t) are geodesics of (M, g) and (M, §) respectively.
Moreover, in this case ¢ — A(t) is given by parallel transport as follows:
A(t) = Pi() o A(0) o PY(x) = Pi(z, %) A(0). (113)
The same facts hold if (T*M @ TM,g}) is replaced by (Q,790)-

Notice that the claim of the theorem can also be written more compactly as
follows: For any ¢ = (z,2;A) €e T*"M @ T M,

T MeT AL © expg% 0 Nslg = XDy 2 (114)
with a similar formula holding when T*M ® TM is replaced by Q.

Proof. This follows from the fact that 7 ., .,y (resp. ) is a Riemannian sub-
mersion. Nevertheless, for the sake of convenience we outline the easy proof here.

The fact that ¢ — q(t) = (x(t),2(t); A(t)) is Dys-horizontal implies that ¢(t) =
Ins(@(t), ()| for all t. Thus, by Proposition B.3, we get

ngt)q' = s (ng(t):t, V;C(t):f?) ’q(t)’
since R(&(t), #(t)) = 0, R(&(t), 2(t)) = 0. The claim follows from this since Zg(-) o)
is a linear isomorphism for each t. Also, Eq. (113) follows easily from the definition
of Dxs and Eq. (15).
O

Corollary B.5 The Dyg-horizontal curve on () is a geodesic of (Q, 7)) if and only if
it is a geodesic of (T*(M) @ T(M),qb).
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Theorem B.6 The Riemannian manifolds (17, g), (M, §) are complete Riemannian
manifolds if and only if (7*(M) ® T(M),g;) or (Q,7g) is complete.

Proof. The completeness of (T*(M) @ T(M),g!) (resp. (Q,9g)) implies the com-
pleteness of (M, g), (M, §) since T« (neT(r) (T€SP. TQ) is a Riemannian submersion

onto (M x M, g) and pry, pry, are Riemannian submersions from M x M onto M and
M, respectively (recall that Riemannian submersions map geodesics to geodesics).
This proves the direction “<=".

Thus assume that (M, g), (M , §) are complete, which is equivalent to the com-
pleteness of (M x M,g). Let (&, @n; A,) € (M) ® T(M) be a Cauchy-sequence.
Then (x,,2,) is a Cauchy sequence in M X M and hence converges to a point
(y,9) € M x M since M x M is a complete (metric) space. Choose a local triv-
ialization 7 : 7! )(U x U) — (U x U) x gl(n) of T*(M) x T(M) induced

T (M)xT
by some coordinate Charts ("), U), ((2'),U) (see Appendix A) of M, M around
y, § respectively. By Proposition IL.1.1 in [28], the metric dgj induced by gj on

T*(M)®T(M), and hence on (U x U) x gl(n) through 7, gives the original manifold
topology. Choose an open neighbourhood V'x V of (y,9) such that V' x V is a compact

subset of U x U. Then (V x V) x gl(n) is a complete space that contains a Cauchy-
sequence ((Tn,2y),an) = 7(xp, Tn; Ayn) for n large enough. Hence it converges to
(y,7,a) € (V x V) xgl(n) and thus (2, &n; Ay) converges to 7 (y, 9, a) = (y,9; A).
This proves the completeness of T*(M) ® T'(M). We thus get the completeness of
(@) since Q is a closed submanifold of T*(M) @ T'(M).

U

Remark B.7 More generally, suppose 7 : £ — N is a smooth bundle, (E, G), (N, g)
are Riemannian manifolds, 7 is a Riemannian submersion and the typical fiber of 7 is
complete (i.e., all the fibers 77! (x) are complete subsets of £). Then the argument of
the previous proof applies and shows that E is a complete Riemannian manifold if and
only if M is a complete Riemannian manifold.

We record the following result.

Proposition B.8 Let N be an integral manifold of Dy and equip it with the Rieman-
nian metric gy := gi|n. Then (N,gy) is a totally geodesic submanifold of (7*(M) ®
T(M),g1). )

The same claim holds if one replaces (T*M ® T'M,g1) by (Q,7) and assumes that
N C Q.

Proof. The assumptions immediately imply that the projection

TN =PIy o 77T*(M)®T(M)|Na

is a local isometric diffeomorphism from (N, gy) into (M, g) since pry © Ty er i
maps Dy isometrically onto T'M by the definition of g} and Dg.

Now if t — (x(t), z(t); A(t)), t €]a,b], is a geodesic of N then (since it is tangent
to Dg) we have 2(t) = A(t)@(t) and ¢ — 2(t) = my(z(t),2(t); At)), t €la,b], is a
geodesic of (M, g). We have

~ . ~ J—

Vin@(t) = Vi (AC)E) = (Vi i) A2 () + AlD) Vi,



and once we use the facts that Viyi = 0 (since x is a geodesic on M) and
V(i(t)i(t))A = 0 (by the definition of Dyg) to conclude that @é(t)f(t) = 0 ie.,
t — &(t), t €la,b], is a geodesic of M. Thus Theorem B.4 implies that ¢
(x(t),2(t); A(t)) is a (Dg-horizontal) geodesic of (T*(M) @ T(M),g:). The proof is
complete. O

C The Rolling Problem Embedded in RY

In this section, we compare the rolling model defined by the state space @) =
Q(M, M), whose dynamics is governed by the conditions (12)-(13) (or, equivalently,
by Dg), with the rolling model of two n-dimensional manifolds embedded in R as
given in [30] (Appendix B). See also [9], [12].

Let us first fix N € N and introduce some notations. The special Euclidean
group of RY is the set SE(N) := SO(N) x RY equipped with the group operation *
given by

(p, A) > (¢, B) = (Ag +p, AB), (p,A),(q, B) € SE(N).

We identify SO(N) with the subgroup {0} x SO(N) of SE(N), while RY is identified
with the normal subgroup RY x {idgn} of SE(NN). With these identifications, the
action x of the subgroup SO(N) on the normal subgroup RY is given by

(p,A)xq=Aq+p, (p,A)€SE(N), peR".

Let M and M C RY be two (embedded) submanifolds of dimension n. For
every z € M, we identify T'|.M with a subspace of RY (the same holding in the
case of M) i.e., elements of T|.M are derivatives ¢(0) of curves o : I — M with
0(0) = z (I 5 0 a nontrivial real interval).

The rolling of M against M without slipping or twisting in the sense of [30] is
realized by a smooth curves G : I — SE(N); G(t) = (p(t),U(t)) (I a nontrivial real
interval) called the rolling map and o : I — M called the development curve such
that the following conditions (1)-(3) hold for every ¢ € I:

(1) (a) 6(t) = G(t) x o(t) € M and
(b) Tl (G(t) x M) = T M.

(2) No-slip: G(t) * o(t) = 0.

(3) No-twist: (a) U(t)U(t)_1T|(;-(t)/\;l C (T|&(t)/\;l)L (tangential no-twist),
(b) U(t)U(t)*l(T|;,(t)/\;l)l C T|;,(t)/\;l (normal no-twist).

The orthogonal complements are taken w.r.t. the Euclidean inner product of RY.
In condition (2) we define the action 'x” of G(t) = (U(t), p(t)) on RN by the same
formula as for the action x" of SE(N) on RY.

The two manifolds M and M are embedded inside RY by embeddings ¢ : M —
RY and i : M — RY and their metrics g and g are induced from the Euclidean
metric sy of RY ie., g = t*sy and § = i*sy. In the above setting, we take now

M = (M), M = i(M).
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For z € M and 2 € M, consider the lincar orthogonal projections
PT.T|.RYN - T|,M and P*+: T|.RY — T|.M*,

and
PT:T|.:RY = T|:M and P : T|.RY — T|.M*,

respectively.

For X € T|.RY and Y € T['(mrpn|a) (here mprpn|ag is the pull-back bundle
of TRY over M), we use V%Y to denote PH(V3¥Y) and one proceeds similarly
@)l{}} = pi(V}NY) for X € T|:RY and Y € T(mpgn|y). We notice that, for any
zeM, X €T|.Mand Y € VF(M), we have

VY = L*(VL,ZI(X)LII(Y)) +VxY,

and similarly on M.
Notice that V* and V* determine (by restriction) connections of vector bundles
Trme : TME = M and mp o0 S TM*E = M. These connections can then be used

in an obvious way to determine a connection V" on the vector bundle
W(TML)*®TML . (TMJ_)* ® TMJ_ — M X M

Let us take any rolling map G : I — SE(N), G(t) = (p(t), U(t)) and development
curve o : I — M and define z = 17! o 0. We will go throught the meaning of each
of the above conditions (1)-(3).

(1) (a) Since 6(t) € M, we may define a smooth curve & := i~ 0 5.
(b) One easily sees that

U T |aM = Tlse (G(t) % M) = T3 M.

Thus A(t) := i;' o U(t) o tulr),, m defines a map Ty M — |46 M, which
is also orthogonal i.e., A(t) € Q|ww)zw) for all t. Moreover, if B(t) :=
U)|zr|,yme, then B(t) is a map TloyM*+ — T\g,(t)./\;ll and, by a slight
abuse of notation, we can write U(t) = A(t) & B(t).

Thus Condition (1) just determines a smooth curve ¢ = (z(t), £(t); A(t)) inside
the state space @ = Q(M, M).

(2) We compute

0=G(t)*o(t) = U(t)o(t) + p(t)

d .

=5 (GO x0(t)) ~U@®)s(t) = 5(t) = U(t) ot 01 0 6(8),
which, once composed with i;! from the left, gives 0 = &(t) — A(t)&(t). This
is exactly the no-slip condition, Eq. (13).

(3) Notice that, on RY x RY = R?V | the sum metric sy @ sy is just sony. Moreover,
if v : I — RY is a smooth curve, then smooth vector fields X : I — T(RY)
along v can be identified with smooth maps X : I — R and with this
observation one has: X (t) = VihX-
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(a) Since U(t) = A(t) ® B(t), we get, for t — X () € T|5-(t)M7 that

UMU®) X () = Ve X() = U@V (U)X ()

(6,6)(®) oL
T (s % L A
=P (V&Z)X(-))—l—v X ()

— UM (PT(V3(AC) X () + Vi (A() X ()
=(Vieiyn A AD @ X(®) + (V5 X () = B Vi (A0 X()),

from which it is clear that the tangential no-twist condition corresponds to the

condition that V i) AC) = 0. This means exactly that ¢ — (2(t), &(1); A(?))
is tangent to Dyg for all ¢ € I. Thus, the tangential no-twist condition (3)-(a)

is equivalent to the no-spinning condition, Eq. (11).

(b) Choose ¢ — X1(t) € T3 M™* and calculate as above
UNU#) ' X (1t) = PT(V%XL(-)) + V4a(t)
U (P (V5 (BO) X () + Vi (BOX()
—(PT (v, £() = AW PT (V3 (BO) X ()
+ (VeewawBO) B X (),

and hence we see that the normal no-twist condition (3)-(b) corresponds to
the condition that

L

ViewswB() =0, Vvt

In a similar spirit to how Definition 3.13 was given, one easily sees that this
condition just amounts to say that B maps parallel translated normal vectors
to M to parallel translated normal vectors to M. More precisely, if X, € TM*
and X (t) = (PV"),(0)X, is a parallel translate of X, along ¢ w.r.t. to the
connection V+ (notice that X (¢) € T|,4) M= for all ¢), then the normal no-
twist condition (3)-(b) requires that ¢ + B(¢)X(¢) (which is the same as
U(t)X(t)) is parallel to t — &(¢) w.r.t the connection V* i.c., for all ¢,

€ 1
B()((PY)5(0)Xo) = (P¥)5(6)(B(0) Xo).
We formulate the preceding remarks to a proposition.

Proposition C.1 Let . : M — RN and i : M — RY be smooth embeddings
and let ¢ = *(sy) and § = i*(sy). Fix points 29 € M, & € M and an element
By € SO(T|L(mO)Ml,T|;@O)/\;{L). Then, there is a bijective correspondence between
the smooth curves t — (x(t), z(t); A(t)) of ) tangent to Dys (resp. Dg), satisfying
(2(0),2(0)) = (zo,%) and the pairs of smooth curves ¢ — G(t) = (p(t),U(t)) of
SE(N) and t — o(t) of M which satisfy the conditions (1), (3) (resp. (1),(2),(3) i.e.,
rolling maps) and U(0)|7), , m+ = Bo.

Proof. Let t — ¢q(t) = (z(t),z(t); A(t)) to be a smooth curve in @ such that
(z(0),2(0)) = (z0,Z0). Denote 0 = 1oz, 6 =ioz and let B(t) = (PﬁL)f)((cr, 7))By
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be the parallel translate of By along t +— (o(t),d(t)) w.r.t the connection V. We
define R
U(t) := (t. 0 A(t) o L*_l) @ B(t) : T|oiyM = T|sM,

and p(t) = 6(t) — U(t)o(t). Then, by the above remarks, the smooth curve ¢
G(t) = (p(t),U(t)) satisfies Conditions (1),(3) (resp. (1),(2),(3)) if t — ¢(t) is
tangent to Dyg (resp. Dr). This clearly gives the claimed bijective correspondence.

U

D Special Manifolds in 3D Riemanniann Geometry

D.1 Preliminaries

On an oriented Riemannian manifold (M, g) one defines the Hodge-dual x,; as the
linear map uniquely defined by

*ar t AT M — AT My s (XA - AXE) = Xpr A A X,

withx € M, k=0,...,n=dim M and X;,...,X,, € T|,M any oriented basis.
For an oriented Riemannian manifold (M, g) and « € M, one defines so(7'|, M)

as the set of g-antisymmetric linear maps T|,M — T|,M. Moreover, we write
s0(M) as disjoint union of so(7'|, M), x € M. If A, B € so(T|,M), we define

[A,Blsy:= Ao B —BoAe€so(T|.M).
Also, we define the following natural isomorphism ¢ by
¢ N*TM — s0(M); ¢(XAY):=g(, X)Y —g(-,Y)X.

Using this isomorphism, we may consider, for each x € M, the curvature tensor R
of (M, g) as a linear map,

R:NT|.M — N*T|,M; R(XAY):=¢ (R(X,Y)),

where X, Y € T|,M. Here of course R(X,Y), as an element of 7|, M ® T'|, M,
belongs to so(T'|,M). It is a standard fact that R is a symmetric map when A*T|, M
is endowed with the inner product, also written as g,

g XANY, ZANW) :=g(X,2)g(Y, W) —g(X,W)g(Y, Z).
Notice also that for A, B € so(T|,M),
tr(AB) = g(¢7'(A), ¢~ (B)).

The map R is usually called the curvature operator and we will, with a slight abuse
of notation, write it simply as R.

In dimension dim M = 3 one has %3, = id when x,; is the map A*TM — TM
and TM — N*TM.

Let X,Y,Z € T|,M be an orthonormal positively oriented basis. Then

(X AY) =2, syu(YAZ)=X, «u(ZAX)=Y.
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In terms of this basis X, Y, Z one has

0 —a f Y
o'l a0 —y ] =8
-8 v 0 o

Indeed, since X, Y, Z € T|,M form an orthonormal positively oriented basis, then
fy

o(xar | 8] ) =0(r(arX) + BGarY) + (s 2)) = (1Y A Z +BZAX +aX AY)
(6%
0 —a p
=\| «a 0 —v
-5 v 0

Lemma D.1 If (M,g) is a 3-dimensional oriented Riemannian manifold and = € M.

(i) Then each 2-vector £ € A*T|,M is pure i.e. there exist X, Y € T|,M such that
E=XAY.

(ii) For every X,Y € T'|,M one has
[PmX), oG )so = (X NY).

Proof. (i) To see this, it is enough to take X, Y such that X, Y, %,,£ are orthonormal
in 7', M and form a positively oriented basis and that [ X||, = [xé]l,, [V, = 1.
Then

G (X AY), X) =+ (X AY AX) =0, gu(XAY),Y) =+ (X AY AY) =0,

so X, Y are orthogonal to xp;(X AY) and to %/, hence %y (X AY) is parallel to
*yr§ ie., X AY is parallel to . Since [[X AY|, = [IX]], [V, = [|€]l, and taking
into account the assumption that X, Y, %3/ and X, Y, x5 (X AY) are oriented basis
(in that order), it follows that X AY = &.

(ii) If X, Y, Z € T|,M form an orthonormal basis and if U,V € T|,M, then with
respect to the basis X, Y, Z,

0l c
U=aX+pBY +~yZ=[F], V=aX+bY+cZ=1]0Db
!
v c Ba — ab
UNV = 6 ANlb] =*u —fya—irozc
—fyb—l—ﬁc —va + ac
=¢ ! fyb—ﬁc —fa+ ab
ya — ac a—ab 0
0 —a f 0 —a b
06 l), oGV = [ @ 0 =y | fa 0 —
-8 v 0 b ¢ 0)°°
0 Bec—~b  ac—ra
= (Be —~b) 0 ab — fa
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D.2 Manifolds of class Mjp

In this subsection, we define and investigate some properties of special type of 3-
dimensional manifolds.
Following the paper [2] we make the following definition.

Definition D.2 A 3-dimensional manifold M is called a contact manifold of type
(k,0) where k € C*(M) if there are everywhere linearly independent vector fields
Fy, Fy, F3 € VE(M) and smooth functions ¢, 7,73 € C*°(M) such that

[Fl,FQ] :CF3
[FQ,Fg] :CFl
[Fs, Fi] = — 1 Fy + Fy — 3 F3

and

—k = F3(71) — Fi(ys) + (1)* + (13)° — c.

We call the frame Fi, F,, F5 an (normalized) adapted frame of M and ¢, v;,7v, the
corresponding structure functions.

Remark D.3 (i) If (M, g) is as above, then defining A € T'(wp+y/) by
A(F1) = A(F3) =0, A(F2) =1
one sees that \ is a contact form on (M, g) and F, is its Reeb vector field. Indeed,
if X € VF(M), write X = a1F; + asFy + a3F3 and compute
AN(Fy, X) =X(A(Fy)) — Fo(A(X)) = A([Fs, X])
=0 - FQ(CLQ) — (FQ(CLQ) -+ )\(al[Fz, FI] -+ CL3[F2, F3])) = 0.

(i) Contact manifolds in 3D are essentially classified by two functions «, x defined on
these manifolds. Thus one could say in general that a contact manifold is of class
(K, Xx). We are interested here only in the case where x = 0. For information on
the classification of contact manifolds, definition of y and references, see [2].

One may define on such a manifold a Riemannian metric in a natural way by
declaring F}, Fs, I3 orthogonal. The structure of connections coefficients and the
eigenvalues of the corresponding curvature tensor are given in the following lemma.

Lemma D.4 Let M be a contact manifold of type (k, 0) with adapted frame Fi, F5, F3
and structure functions c¢,7;,72. If g is the unique Riemannian metric which makes
Fi, F5, F5 orthonormal, then the connection table w.r.t. Fy, Fy, F3 is

0 0
I'= N C_% V3
0 0 1

2

Moreover, at each point, xF, xFy, xF3 (with x the Hodge dual) are eigenvectors of
the curvature tensor R with eigenvalues — K, —K5(-), — K, respectively, where

1
K = 7 (constant)
3

Ky(x) =kr(z) — 7 TE M.
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Proof. Since Fi, Iy, F3 are g-orthonormal, the Koszul formula simplifies to
2 = 20(V i Fy, i) = g([Fi, By, Fy) — g([Fs B, Fy) — g([F, B, F).
With this we have

QF%2,3) =ctl—c=-1, 211%3,1) =7 =0+ =27, 211%172) =0
21—‘%2,3) = O 21—‘%3 1) =c+c—1=2c— 1, 21—‘%172) =0
2F?273) :07 2F(3 1) == 0 — 2(—’)/3) = 2"}/37 QF?LQ) — 1 —|— cC—Cc= 1
Since Ty 5 = T, = 3 1 and [{i9 = 0= —T%, and they are constants, the

conditions of Proposition D 19 are fulfilled and hence xF, xF5, xF3 are eigenvectors
of R with eigenvalues —K, — Ky, — K where

— K =F5(0)+0— (%)2 = —i
1o . 1 1 , 3
—F>=(5) + Fs(n) = Flys) + (n)° =25 (e =5) + (1)° = —r +§

To justify somewhat our next definition, we make the following remark.

Remark D.5 Notice that if 5 € R, 8 # 0 and g5 := 3 ?g then the Koszul-formula
gives,

295(Vu Fy, Fu) =B72g([F;, Fj), Fi) — B72g([Fi, Fi], Fy) — B2g([F}, By, Fy)

21
=207y,
because gs(F;, F;) = 25,] Then, E;, := BF;, i = 1,2,3, is a gg-orthonormal basis
and if (I’ﬁ)z w = 98(VE,Ej, Ey), then for every 4, j, k.

B3 Cs)m = B 98(VREj, Ex) = gs(VE Fy, Fr) = 72T 5
e (T's){jk) = BT k-

Definition D.6 A 3-dimensional Riemannian manifold (M, g) is said to belong to
class Mg, for € R, if there exists an orthonormal frame E,, E», E5 € VF(M) with
respect to which the connection table is of the form

35 0 0
=Ty TGy Thy
0 0

In this case the frame 1, s, E5 is called an adapted frame of (M, g).

Remark D.7 For a given § € R, one can say that a Riemannian space (M, g) is
locally of class Mg, if every x € M has an open neighbourhood U such that (U, g|v) is
of class M. Since we are interested in local results, we usually speak of manifolds of
(globally) class M.
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Lemma D.8 If § # 0 and (M,g) is of class Mz with an adapted frame, then
*xEy,xEy,xE3 are eigenvectors of R with eigenvalues —3%, —K(+), — 3%, where

—Ky(r) = 8% + E3(F%3,1)) - El(F?B,l)) + (F%?),l))z + (F?3,1))2 - 261“%371), r e M.
Proof. Immediate from Proposition D.19, Eq. (117). O
Next lemma is the converse of what has been done before the above definition.
Lemma D.9 Let (M,g) be of class Mg, 5 # 0, with an adapted frame Ey, Es, Es.

Then M is a contact manifold of type (k, 0) with (normalized) adapted frame F; := %EZ
i =1,2,3. Moreover, k and the structure functions ¢, 1,3 are given by

cC :LF%?”I) — F%'?”l) _ _F??),l)
2/8 ) 4! 26 ) V3 26
Ky(x) 3
/ﬁ(ﬂf): 462 —Fz, T € M.

Proof. From the torsion freeness of the Levi-Civita connection on (M, g) and from
the connection table w.r.t. Ey, Fy, E3, we get

[Ey, Eo] =(8+ T ) Es
[Ey, Es] =(8 + T)) Er
[Es, Ey] = — F%&”El + 2BE, — F?371)E3.
From this and the fact that 5 # 0, the claims are immediate. O

Remark D.10 (i) We notice that the classes M and M _g are the same. Indeed,
if (M,g) is of class Mg and E\, Es, E5 is an adapted orthonormal frame, then
(M, g) is of class M_gz with a adapted frame Fy, F5, F; where F} = E5, F3 = E)
(i.e. the change of orientation of £, E5 plane moves from Mgz to M_3). So in
this sense it would be better to speak of Riemannian manifolds of class M with
B >0 or of class M g.

(i) If one has a Riemannian manifold (M, g) of class M, then scaling the metric by
A # 0 one gets a Riemannian manifold (M, A?g) of class Mg,y. This follows from
Remark D.5 above.

Remark D.11 If (M, g) is of class My, then since 5 = 0 and F%m) = (), one deduces
e.g. from Theorem D.14 that (M, g) is locally a warped product. Converse is easily seen
to be true i.e. that a Riemannian product manifold is locally of class M. Hence there
are many non-isometric spaces of class M.

To conclude this subsection, we will show that that for every g € R there exist
3-dimensional Riemannian manifolds of class Mz which are not all isometric. See
also [2].

Example D.12 (i) Let M be SO(3). There one has left-invariant vector fields
El, EQ, E3 such that

|E1, By =E;5
[E27 E3] :El
[E?n El] :E2
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Hence with the metric g rendering E1, E5, E5 orthonormal, we get a space (M, g)

of class M, /5. By the definition of x and Lemma D.9 we have k = 1 and K, = i.

(ii) Let M be the Heisenberg group Hs. Here one has left-invariant vector fields
Eh EQ, E3 which SatiSfy

[El, EQ] :0
[E27 E3] :O
[Es, Ey] =E,.

Hence M with the metric for which E,, E,, E5 are orthonormal, is of class M,
and Kk =0, Ky = —%.

(iii) Take M to be SL(2). Then on M there are left-invariant vector fields with

commutators
[E1, By = — Ej
[E27 E3] = - El
[E37 El] _E2

If g is a metric with respect to which £y, Es, E5 are orthonormal, it follows that
M is of class My 9, Here k = —1, so Ky = —1

Z.
Notice that if one takes the "usual" basis of s[(2) as a, b, ¢ satisfying,
lc,a] =2a, [c,b] = —=2b, a,b] =c,

then one may define ¢; = “TH’ ey = b ey = 5 to obtain

[61,62] = —e€s, [62,63] = —€, [63761] = €9.

None of the examples in (i)-(iii) of Riemannian manifolds of class Mz with 3 = 4
are (locally) isometric one to the other. This fact is immediately read from the different
values of K5 (constant).

Hence by Remarks D.10 and , we see that for every S € R there are non-isometric
Riemannian manifolds of the same class M.

D.3 Warped Products

Definition D.13 Let (M,g), (IV,h) be Riemannian manifolds and f € C*>(M).
Define a metric hy on M x N

hy = pri(g) + (f o pry)*pri(h),

where pry, pr, are projections onto the first and second factor of M x N, respectively.
Then the Riemannian manifold (M x N, hy) is called a warped product of (M, g) and
(N, h) with the warping function f.

One may write (M x N, hy) as (M, g) xs (N, h) for short and hy as g @ h if there
is a risk of ambiguity.
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We are mainly interested in the case where (M, g) = (I,s;), where I C R is
an open non-empty interval and s; is the standard Euclidean metric on R. By
convention, we write a— for the natural positively directed unit (w.r.t. s;) vector
field on R and identify it in the canonical way as a vector field on the product I x N
and notice that it is also a unit vector field w.r.t. hy.

Since needed in section 7, we formulate, and proof, (a local version of) the
main result of [11] in 3-dimensional case. The general result allows one to detect
Riemannian spaces which are locally warped products. In our setting we use it
(in the below form) to detect when a 3-dimensional Riemannian manifold (M, g)
is, around a given point, a warped product of the form (I x N, hy), with I C R,
f € C>(I), and (N, h) a 2-dimensional Riemannian manifold.

Theorem D.14 ([11]) Let (M, g) be a Riemannian manifold of dimension 3. Suppose
that at every point xy € M there is an orthonormal frame Ey, Es, F5 defined in a neigh-
bourhood of x4 such that the connection table w.r.t. E;, E, E5 on this neighbourhood
is of the form

10 20 I;%l 2)
I'= F(31) Iy T
ri 0 0

(1,2)

and moreover
X(Dl9) =0, VX €E;.

Then there is a neighbourhood U of z, an interval I C R, f € C*°(I) and a 2-
dimensional Riemannian manifold (NN, h) such that (U, g|y) is isometric to the warped
product (I x N, hy). If F': (I x N, hy) — (U, g|y) is the isometry in question, then for
all (r,y) e I x N,

fory ¢
0
F*E}(ny) :E2|¢(Tyy)'

T (Fry)

Proof. Write O for the domain of E, Ey, E5. According to the main result in [11],
whose proof in our special case will be outlined below, it is enough to prove the
following:

(i) E, is a geodesic vector field and the 2-dimensional distribution Ej is inte-
grable.

(ii) There exists a function n € C°°(O) such that for all U, W € Ej-,
9(VuW, E3) = ng(U, W)
and

9(Vu(nEz), Ez) = 0.
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(i) Since 0 = TP, 5 = —g(Vi, B2, B1) and 0 = Ty ) = —g(Vp, Bz, E3) by as-
sumption and since by normality 0 = F%2,2) = g(Vg,Ey, Ey), we see that Fy is a
geodesic vector field.

As for the integrability of E,, observe that since Ej is spanned by Fj, F3 and
by assumption and torsion freeness of the Levi-Civita connection,

g([El,Eg],Ez) = g(VElEg - VE‘SEl, EQ) = F%&Q) — F%L?) =0-0=0=0.

which shows that [Fy, F3] is tangent to Ey-. This shows that condition (i) holds.
As for (ii), we see that

9(VE B3, Ey) = F%s,z) =0, g(VgFEr, Ey) = F?m) =0
9(Vi,Br, By) =Ty 5 = —Tlhg) = 9(Vi, Es, By).

Thus defining n := F%1,2)’ we see that if U, W € VF(M) are tangent to F5 and hence
we may write U = aFy + bFE3, W = cE; + dFEj for some a,b,c,d € VF(M),

g(VuW, Ey) =ac F%m) +ad F%&Q) +be F‘?LQ) +bd F‘?&Q)
—— —— —— ——
=n =0 =0 :711?2,3):77
=n(ac + bd) = ng(U,W).
Finally, if U = aF; + bE3,

9(Vu(nEs), Ey) = U(n) +n9(VuEs, ) = U(n) = 0.

1
5Ug(E2,E2)=0

This proves that (ii) holds.
We will now show how to construct f, (I x N,hy) and F. First notice that a
simple computation of e.g. R(E; A Ey) with respect to the frame Fy, Ey, E5 yields

—K = _E2(P%1,2)) + (P%1,2))2'

Since F; is integrable, there is an integral manifold N of Ej through z,. Let
r(z) = dy(N,z) be the geodesic distance from = to N. By shrinking N (such that
it still contains zg) if necessary, we may find real numbers a < 0 < b such that on
V :=r~Y(Ja, b]) the function r is smooth. Write I =|a,b[ and define F': [ x N — M
by

F(t,y) = expy(tE2|y),

which is smooth, has image actually in V' and has a smooth inverse H : V — I x N
defined by

H{(x) = (r(x), exp, (=7 () Elz))-

Thus F' is a diffeomorphism [ x N — V.
Define f by an ODE

F'(@t) = —n(F(t,z0)) f(t), f(0)=1,
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where 1 = F%LQ) as above. We take I =la,b[ a smaller interval containing 0 if
necessary, so that f(t) > 0 for all t € I. Also, define the metric h on N by

h(X,Z) = (X,2), X,Z€Ey|l,=T|,N, z€N.

N
f(H ()’

Finally, we will prove that F' is an isometry between (I x N, hy) and (V,g|v).
At first we notice that

Let X € T|,N C Ty (I x N). Since

0 0
Pl = 1Blreoll, =1 = [l

hy

F(t,y) = (mram 0 Pe)(t, Ealy),
where G € VF(M) is the geodesic vector field and @ its flow, we get that
F. X = Jgy), x,vxB2)(t),

where for u, A, B € T|,M, Ju a,5)(t) is the Jacobi field of (M, g) along t — exp, (tu)
with initial conditions Ji, a,5)(0) = A, V% ‘oj(u,A,B) (t) = B. One easily computes
that

VxEy =—n(y)X.

Because Vg, FE; = —F%371)E3, Ve, B3 = F%&l)El, we have that for any vector
field U perpendicular to Es, the covariant derivative Vg, U is also perpendicular
to Ey. This implies that if we set y(t) := F(t,y) = exp,(tFsl,), then Pj(v)X is
perpendicular to Es, whose integral curve -« is (since Es is a geodesic vector field).

With this noticed, we take as an ansatz for the Jacobi field Jig,|, x,vyE.)(t) &
vector field J(t) along v of the form

J(t) = At) Py (7)X.

This satisfies

Moreover, J(0) = A(0)X,
Vi = N () ()X,
so ViJ(0) = N(0)X and

ViV = N (OR)X = 00

and thus we see that, in order to make J(t) a Jacobi field with the same initial
conditions as for Ji, 4,5)(t), we should choose A as a solution to

X'(t) = —~K(y(O)AD), A0)=1, X(0) = —n(y).



By uniqueness of solutions to 2nd order ODE, we hence have Jig,|, x v £.)(t) =
J(t) ie.

F.X = Mt)Pi(y)X.

Now one also has

—K(y(1) = =Baly(n) +1(y(t))* = %(];((f))> + ({Cf/((f)))Z - J;/g))’

Since f(0) =1 = A(0), f/(0) = =n(y)f(0) = —n(y) = X(0), we see that A(t) = f(t)

for all t € I and hence

F.X = f(HPI7)X.
Thus we finally have
2 2 2 2
IEX g = f)7 1 X, = 11X,

which establishes the fact that F'is an isometry (I x N, hy) — (V, g|v). Notice that
by definition of F,

0 d
*al(r,y dt'!r }

since Fs is a geodesic vector field.

We still need to prove first of the formulas at the end of the statement of the
theorem. Let (r,y) € I x N. Choose a path v in N from zy € N to y € N. Since
t — (r,7(t)) is perpendicular to %|(m(t)) in [ x N, it follows that, since F' is an
isometry, ¢ + F(r,~(t)) is perpendicular to Ejy. Hence 4TI} J(F(ry(2) =0,

F(t,y) ! exp, (tEa|y) = Eolp(iy),

(1,2
which implies that T'{; ,\(F(r,20)) = (5 (F(r,y)). On the other hand, by the
definition of f and 7, one has £ ((T)) = F%l 9)(F(r,20)). This completes the proof. [

Following example shows how to build constant curvature spaces from other
constant curvature spaces as a warped product illustrates the concept. The example
will also be used in the proof of Proposition 7.28.

Example D.15 In this example we show how one can locally write a 3-dimensional
Riemannian manifold (A7, g) of constant curvature K as a warped product (I x N, hy),
where [ is an open real interval containing 0 and (N, h) is a 2-dimensional space of
constant curvature.

Let 0, K € R and take any 2-dimensional Riemannian space (V,h) of constant
curvature o, let a,b € R,a > 0, and take f to be the solution to

f"t)=-Kf(t), [f(0)=a, [f(0)=nh.
This solution is positive for at least some open interval I C R containing 0. Since

jt( F@ + F1(1)%) = 2K f(0)f'(t) + 21" () f" (1) = 2 (1) f'(t) — 2K f'(t) f(t) = 0,

we have

Kf(t)* + (1) = Kf(0)* + ['(0)* = Ka® + 0",
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Compute also

E(_U+fﬁy)IQfGHWﬂf@Y—Qﬂwf@x—a+fWV)
der - f()? f(t)
_ 2 O fOEf)? + (1)) + 20 f(£) f'(t)
f)
_—2f' () f(O)(Ka® + %) + 20 f(1) f'(2)
f)

/@)
f

=—2(Ka*>+b* - o)

and define

Sk :={(a,b,0) €ER?* | a >0, Ka*> +b* = o}.

If (a,b,0) € Sk, it follows that %(7";({)/2@2) = 0 and hence
—o+ f'(t)?  —o+b
O

Suppose y € N, t € R and that X, Z, € T'|,N are h-orthonormal. We consider X, Z
and T := 2|, where 2 is the canonical positively directed vector field on I C R, as
vectors in T'|(; (1 x N) in the usual way. Then by [24], Chapter 7, Proposition 42, we

get (notice that there the definition of the curvature tensor differs by sign from ours),

—-K.

Thus if X,Z is an h-orthonormal frame on N, it follows that £, := %X, E, =T,

E3 = %Z is an g-orthonormal frame on I x N and

R"(E, NEy)) = —KE, N E,

R"(Ey N E3) = —KFE, A Fy

—o+ f'(t)?
f()?

Hence for every choice (a,b,0) € Sk we get also that R (Es A E,) = —KEs A E;
which then allows us to conclude that (I x N, hy) is a space of constant curvature K.

For any (a,b) € R? with a > 0, one may define as o(a,b) = Ka® + b?, which then
implies that (a,b,0(a,b)) € Sk and hence the set {(a,b) € R? | 30 € R s.t. (a,b,0) €
Sk} is the open right half-plane of R?.

The conclusion here is that for every K € R and a,b € R with a > 0, one can
construct a warped product (I x N, hy) which has constant curvature K and where N is
a space of constant curvature (with curvature Ka? + b*) and that the warping function
satisfies: f(0) = a, f'(0) = b. This will be used in the proof of Proposition D.12.

R"(Es N Ey) = EsNE;.
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Here we will make a remark about the intersection of the classes Mg and the
class of warped products of the form (I, s;) x¢ (N, h) with (N, h) two-dimensional.

Remark D.16 Suppose that a Riemannian 3-manifold (M, g) is at the same time a
warped product (I x N, hy) and belongs to class M, with E;, E5, E5 an adapted frame.
As a warped product, the curvature tensor R has eigenvalues (functions) — K (-), —Ks(+), — K (-)
(with some eigenvector fields) where — K (r,y) = ff”(gg) Since as a Mg, the operator R
has eigenvalues —3?, — K} (-), — 3%, we must have (taking any combination) that K = 3
is a constant and K} = K everywhere on M. Let us now consider three different cases:

(i) If B =0, then it immediately follows that (), g) is a Riemannian product, since
f is constant.

(il) Suppose that 8 # 0 and Ks(rg, yo) # 3% at some point (g, 7o) € M. Then there
is a neighbourhood U of (g, yo) where Ky # 3% It follows that Es|.,) = i%‘(r )
for (r,y) € U, from which it follows that in the connection table w.r.t. Fy, Fy, F3
one must have also T', 5 (r,y) = 0 and 8 = I'( 5 (r,y) = 0 for all (r,y) € U.
Therefore _ff(sg) = K = 32 = 0 for all r € I, which implies that f'(r) is a
constant function. But I'(, , (1, y) = —% vanishes on U, hence f’(r) vanishes
for some 7 and hence f’(r) = 0 for all » € I. This implies that (M, g) is a
Riemannian product.

(iii) If 8 # 0 and Ky(r,y) = 3%, then (M, g) has a constant curvature 3% and hence
is locally isometric to a sphere of curvature 5.

As a conclusion, if a warped product (M,g) = (I x N, hy) belongs to class Mg,
then either it is (a) a Riemannian product (5 = 0, f constant) or (b) a space of constant
curvature 32. Both (a) and (b) occur if and only if (M, g) is flat.

D.4 Technical propositions

Since we will be dealing frequently with orthonormal frames and connection coeffi-
cients, it is convenient to define the following concept.

Definition D.17 Let (M, g) be a 3-dimensional Riemannian manifold. If Ey, Ey, E3
is an orthonormal frame of M defined on an open set U, then FZZ. B = g(VEJ.Ei,Ek),
we call the matrix

F§2,3) Fgg,g) F§2,3)
P=1Tsy Tey ey

Iy Tha Tha

Y

the connection table w.r.t. Ei, Ey, E3. To emphasize the frame, we may write ' =
F(E17E27E3)'

Remark D.18 (i) Since Ey, By, E3 is orhonormal, one has T, = —IY,  for
all 7,7, k. These relations mean that to know all the connection coefficients (of
an orthonormal frame), it is enough to know exactly 9 of them. It is these 9
coefficients, that appear in the connection table.
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(ii) Here it is important that the frame E,, Es, E is ordered and hence one should
speak of the connection table w.r.t. (Ey, Es, E3) (asin the notation I' = I' (g, g, ).
but since we always list the frame in the correct order, there will be no room for
confusion.

(iii) Notice that the above connection table could be written as ' = [(Fil);] if one
writes x1 = (2,3), ¥2 = (3,1) and %3 = (1,2) i.e.

oo
F*3 F*?, F*?,

Proposition D.19 Suppose (M, g) is a 3-dimensional Riemannian manifold and in
some neighbourhood of 2 € M there is an orthonormal frame E;, E5, E3 defined on an
open set U with respect to which the connection table is of the form
Ly 0 —Thy
I'= F%?),l) P%:m) I1?3,1) )
Fhy 0 Thy

on U, and moreover it holds that

V(Féﬁ)) =0, V(r}m)) =0, VV €E, ;, y e U,

Then the following are true:

(i) For every y € U, xE4|,, *Es|,, xE3|, are eigenvectors of R with eigenvalues
—K(y), —K2(y), —K(y), respectively (i.e. the eigenvalues of xE;|, and xEjs],
coincide).

(i) T4 # 0on U and if U is connected, it follows that on U the coefficient '},

is constant, I', ,) = 0 and K (y) = (I'(,3))? (constant). Hence (U, g|v) is of class

Mﬁ, for ﬁ = F%273).

(iii) If F(lg’g) = 0 in the open set U, then every y € U has a neighbourhood U" C U
such that (U, g|y) is isometric to a warped product (I x N, hy) where I C R is
an open interval. Moreover, if F': I x; N — (U’, g|y) is the isometry in question,
then

"(r
J}((T)) == F%l,Z)(F(Tvy))a V(r,y) € I x N
0
F*E}(r,y) :E2|F(r7y)-

Moreover, one has

0=— Ez(F%zs)) + 21“%172)1“%273) (115)
—K =— EQ(P%Lz)) + (P%1,2))2 o (F%Z?)))Q (116)
— Ky =E3(Tig 1)) = Ba(T 1) + (g )* + (T ))° (117)

- 2F%2,3)F%3,1) + (F%Lz))Q + (F%2,3))2
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Proof. (i) We begin by computing in the basis xFy, xFy, xF3 that

_F%m) 1—‘%2,3) E3(F%2,3)) _El(r%l,z))
R<E3 A El) = F?3,1) A F%B,l) + E3<F%3,1)) - El(r?3,1))
F%Q,g) F%m) E3<F%1,2)) E1<F%2,3)>
o) 0 Ly 0
+ F%B,l) F%3,1) - 2F%2,3) F%?),l) + F??;,l) F?3,1) =|-Kaf,
1“%172) 0 F%&S) 0

where we omitted the further computation of row 2 and wrote it simply as — K,
and use the fact that Ey(T'(, ) =0, E;(T'l,5) = 0 for i € {1,3}. Thus By, is an
eigenvector of R|, for all y.

Now fix y € U. Since R|, is a symmetric linear map A?T|,M to itself and
since xFjs|, is an eigenvector for R|,, we know that the other eigenvectors lie in
*Es|,, which is spanned by *Ei|,, xEs|,. By rotating Ej, F3 among themselves
by a constant matrix, we may well assume that xE|,, #E3|, are eigenvectors of
R|, corresponding to eigenvalues, say, —K;(y), —K3(y). We want to show that
Ki(y) = Ks(y).

Computing R|,(Ey A Es) in the basis xE|,, xEs|,, *Es|, gives (we write simply

T'{; p for T, 4 (y) ete.)
0
0 =R[,(xE3) = R[,(Ey A E,)
—Ks(y)
Fiz’g) 20 02 EQ(F?’B))
= ng,l) A F(3,1) + El(r(?;,l)) - E2(F53,1))
1ﬂ(172) 0 0 E2(F(1,2))
) F%2,3) _1;%1,2)
1 2
+ T2 | P | — s +Ten) | Tey
Pl Pl
(1,2) (2,3)
—E2(F%2,3)) + 211%172)11%2,3)

= El(r%{i,l)) - E2(P%371)) + F%1,2)F%3,1) - (F%Q,?,) + F%&l))r?&l) )
_E2(F%1,2)) + (F%1,2))2 - (F%2,3))2

from where

—Ks3(y) = — E2|y<F%1,2)) + (F%l,z) (y))2 - (F%2,3) (y))Q-
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Similarly, computing R|,(E> A E3) in basis xE4 |y, xEs|,, xEs|,,

—Ki(y)
0 =R|,(xE1) = R|,(E2 A E)
0
20 _1;%1,2) _E2(I:;%1,2)) 02
= Ten | AL Tay |+ B2Tsy) | — | Bs(T0)
0 1—‘%2,3) E2(P%2,3)) 0
2 1 F?’g) 1 _1;%172)
— (I +Das) Pg:m) — L9 Pg:m)
L) Llas)
. _E2(2F%1,2)) - (E%z,:s))z ff (F%112))2 . .
= | B2(T0) — E3(F<3,1>)1‘ (M) - F(z,zl’»))P(&n —Tualey
E2<F(2,3)> - 2F(1,2)F(2,3)
leads us to

—Ki(y) = —E2|y(r%1,2)) - (F%z,:s) (?/))2 + (P%l,z)(y))Q-

By comparing to the result of the computations of R|,(Ey A Es) and R|,(E; A E3)
implies that K;(y) = K3(y). In other words, if one writes K (y) for this common
value Ki(y) = Ks(y), one sees that E,|, is contained in the eigenspace of R,
corresponding to the eigenvalue — K (y). This finishes the proof of (i).

(ii) Suppose now that P%2,3) # 0 on an open connected subset U of mo,,  (4),1(O).

Then since El(I‘%m)) =0, Eg(I’%Zg)) =0 on U, one has, on U,
[EBa E1]<F%2,3)) = EB(El(F%2,3)))E1(E3<F%2,3))) =0.
On the other hand,
(B3, Ey] = —F%3,1)E1 + 211%2,3)E2 - F?&I)E?”
SO

0 :[E?n E1]<F%2,3)) = _F%B,l)El (F%zs)) + 2F%2,3)E2(F%2,3)) - F?3,1)E3<F%2,3)>
:211%2,3)E2(F%2,3))-

Since F%2,3) # 0 everywhere on U, one has EQ(F%M)) =0 on U. Because Fi, Fs, Fs

span T'M on U, we have that all the derivatives of F%z 3) vanish on U and thus it is
constant.
From first row of the computation of R(E; A Es) in the case (ii) above, one gets

0= _E2(F%2,3)) + 2F%1,2)F%2,3) = 21’%172)11%273),

which implies F%m) = 0 on U. Finally from the last row computation of R(FE; A Es)
(recall that K (y) = K3(y) =: K(y))

—K(y) = —E2(F%1,2)) + (F%1,2))2 - (11%2,3))2 = _(F%2,3))2-

This concludes the proof of (ii).
(iii) This case follows from Theorem D.14. O
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