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Abstract

In this paper, we consider two cases of rolling of one smooth connected
complete Riemannian manifold (M,g) onto another one (M̂ , ĝ) of equal di-
mension n ≥ 2. The rolling problem (NS) corresponds to the situation where
there is no relative spin (or twist) of one manifold with respect to the other
one. As for the rolling problem (R), there is no relative spin and also no
relative slip. Since the manifolds are not assumed to be embedded into an
Euclidean space, we provide an intrinsic description of the two constraints
”without spinning” and ”without slipping” in terms of the Levi-Civita con-
nections ∇g and ∇ĝ. For that purpose, we recast the two rolling problems
within the framework of geometric control and associate to each of them a
distribution and a control system. We then investigate the relationships be-
tween the two control systems and we address for both of them the issue of
complete controllability. For the rolling (NS), the reachable set (from any
point) can be described exactly in terms of the holonomy groups of (M,g)
and (M̂ , ĝ) respectively, and thus we achieve a complete understanding of
the controllability properties of the corresponding control system. As for the
rolling (R), the problem turns out to be more delicate. We first provide gen-
eral properties for the reachable set and determine the associated Lie bracket
structure. Regarding the controllability issue, we only have partial results, for
instance dealing with the situation where one of the manifold is a space form.
Finally, we extend the two types of rolling to the case where the manifolds
have different dimensions.
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1 Introduction

In this paper, we study the rolling of a manifold over another one. Unless other-
wise precised, manifolds are smooth, connected, oriented, of finite dimension n ≥ 2,
endowed with a complete Riemannian metric. The rolling is assumed to be either
without spinning (NS) or without spinning nor slipping (R). When both manifolds
are isometrically embedded into an Euclidean space, the rolling problem is classical
in differential geometry (see [27]), through the notions of ”development of a man-
ifold” and ”rolling maps”. To get an intuitive grasp of the problem, consider the
rolling problem (R) of a 2D convex surface S1 onto another one S2 in the euclidean
space R

3, for instance the plate-ball problem, i.e., a sphere rolling onto a plane in
R

3, (cf. [12] and [20]). The two surfaces are in contact i.e., they have a common
tangent plane at the contact point and, equivalently, their exterior normal vectors
are opposite at the contact point. If γ : [0, T ] → S1 is a C

1 regular curve on S1, one
says that S1 rolls onto S2 along γ without spinning nor slipping if the following holds.
The curve traced on S1 by the contact point is equal to γ and let γ̂ : [0, T ] → S2

be the curve traced on S2 by the contact point. At time t ∈ [0, T ], the relative
orientation of S2 with respect to S1 is measured by the angle θ(t) between γ̇(t) and
˙̂γ(t) in the common tangent plane at the contact point. The state space Q of the
rolling problem is therefore five dimensional since a point in Q is defined by fixing
a point on S1, a point on S2 and an angle in S1, the unit circle. Requiring that
there is no instantaneous relative speed nor twist of S1 with respect to S2 defines
uniquely the curves γ̂ and θ once a point on S2 and an angle are chosen at time
t = 0. For the rolling (NS), one must choose two C1 regular curves γ and γ̂ on S1

and S2 respectively, and an angle θ0 so that one says that S1 rolls onto S2 along γ
and γ̂ without spinning if (a) the curves traced on S1 and S2 by the contact point
are equal to γ and γ̂ respectively; (b) the no-spin constraint and the initial condition
θ0 determine a unique curve θ which measures the relative orientation of S2 with
respect to S1 along the rolling. The most basic issue linked to the rolling problems
is that of controllability i.e., to determine, for two given points qinit and qfinal in the
state space Q, if there exists a curve γ so that the rolling of S1 onto S2 along γ
steers the system from qinit to qfinal. If this is the case for every points qinit and qfinal
in Q, then the rolling of S1 onto S2 is said to be completely controllable.

If the manifolds rolling on each other are two-dimensional, then the controlla-
bility issue is well-understood thanks to the work of [2], [5] and [16] especially. For
instance, in the simply connected case, the rolling (R) is completely controllable if
and only if the manifolds are not isometric. In the case where the manifolds are
isometric, [2] also provides a description of the reachable sets in terms of isometries
between the manifolds.

In particular, these reachable sets are immersed submanifolds of Q of dimension
either 2 or 5. In case the manifolds rolling on each other are isometric convex
surfaces, [16] provides a beautiful description of a two dimensional reachable set:
consider the initial configuration given by two (isometric) surfaces in contact so that
one is the image of the other one by the symmetry with respect to the (common)
tangent plane at the contact point. Then, this symmetry property (chirality) is
preserved along the rolling (R). Note that if the (isometric) convex surfaces are not
spheres nor planes, the reachable set starting at a contact point where the Gaussian
curvatures are distinct, is open (and thus of dimension 5).

3



From a robotics point of view, once the controllability is well-understood, the
next issue to address is that of motion planning, i.e., defining an effective procedure
that produces, for every pair of points (qinit, qfinal) in the state space Q, a curve
γqinit,qfinal so that the rolling of S1 onto S2 along γqinit,qfinal steers the system from
qinit to qfinal. In [7], an algorithm based on the continuation method was proposed to
tackle the rolling problem (R) of a strictly convex compact surface onto an Euclidean
plane. That algorithm was also proved in [7] to be convergent and it was numerically
implemented in [1] (see also [17] for another algorithm).

To the best of our knowledge, only the rolling (R) was considered in the litter-
ature, eventhough it is the more delicate, as explained below. The rolling problem
(R) is traditionally presented by isometrically embedding the rolling manifolds M
and M̂ in an Euclidean space (cf. [27], [10]) since it is the most intuitive way to
provide a rigorous meaning to the notions of relative spin (or twist) and relative slip
of one manifold with respect to the other one. However, the rolling model will de-
pend in general on the embedding. For instance, rolling two 2D spheres of different
radii on each other can be isometrically embedded in (at least) two ways in R

3: the
smaller sphere can roll onto the bigger one either inside of it or outside. Then one
should be able to define rolling without having to resort to any isometric embedding
into an Euclidean space. To be satisfactory, that intrinsic formulation of the rolling
should also allow one to address at least the controllability issue.

The first step towards an intrinsic formulation of the rolling starts with an in-
trinsic definition of the state space Q. It is of dimension 2n + n(n − 1)/2 since it
is locally diffeomorphic to neighborhoods of M × M̂ × SO(n). There are two main
approaches for an intrinsic formulation of the rolling problem (R), first considered
by [2] and [5] respectively. Note that the two references only deal with the two
dimensional case but it is not hard to generalize them to higher dimensions. In [2],
the state space Q is given by

Q = {A : T |xM → T |x̂M̂ | A o-isometry, x ∈M, x̂ ∈ M̂},

where ”o-isometry” means positively oriented isometry, (see Definition 3.1 below)
while in [5], one has equivalently

Q = (FOON(M)× FOON(M̂))/∆,

where FOON(M), FOON(M̂) be the oriented orthonormal frame bundles of (M, g),
(M̂, ĝ) respectively, and ∆ is the diagonal right SO(n)-action (see Proposition 3.9
below) .

The next step towards an intrinsic formulation consists of using either the par-
allel transports with respect to ∇g and ∇ĝ (Agrachev-Sachkov’s approach) or al-
ternatively, orthonormal moving frames and the structure equations (Bryant-Hsu’s
approach) to translate the constraints of no-spinning and no-slipping and derive the
admissible curves, i.e., the curves of Q describing the rolling (R), cf. Eq. (14).
Finally, one defines either a distribution or a codistribution depending which ap-
proach is chosen. In the present paper, we adopt the Agrachev-Sachkov’s approach
and we construct an n-dimensional distribution DR on Q so that the locally abso-
lutely continuous curves tangent to DR are exactly the admissible curves for the
rolling problem, cf. Definition 5.2. The construction of DR comes along with the
construction of (local) basis of vector fields, which allow one to compute the Lie
algebraic structure associated to DR.
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One should mention the recent work [8] dealing with an intrinsic formulation of
the rolling problem (R) (see Definition 4 page 18 in the reference therein). However,
that definition does not allow one to parameterize the admissible curves using a con-
trol system and a fortiori to construct a distribution (or a codistribution) associated
to the rolling. Therefore, the computations in that paper related to controllability
issues are all performed by embedding the rolling into an Euclidean space.

We now describe precisely the results of the present paper. In Section 2, are
gathered the notations used throughout the paper. After that, the control systems
associated to the rolling problems (NS) and (R) are introduced in Section 3. Besides
the state space Q, one must define the set of admissible controls. For (NS), it is
the set of locally absolutely continuous (l.a.c.) curves on M × M̂ while, for (R),
it is the set of locally absolutely continuous (l.a.c.) curves on M only. As control
systems, we obtain two driftless control systems affine in the control (Σ)NS and (Σ)R
for (NS) and (R) respectively. We also provide, in Appendix A, expressions in local
coordinates for these control systems.

The study of the rolling problem (NS) is the objet of Section 4. We first construct
the distribution DNS of rank 2n in Q so that its tangent curves coincide with the
admissible curves of (Σ)NS and we provide (local) basis of vector fields for DNS.
The controllability issue is completely addressed since we can describe exactly the
reachable sets of (Σ)NS in terms of H∇g

and Ĥ∇ĝ

, the holonomy groups of ∇g and
∇ĝ respectively. We thus derive a necessary and sufficient condition for complete
controllability of (NS) in terms of the Lie algebras of H∇g

and Ĥ∇ĝ

. For instance, if
both manifoldsM and M̂ are simply connected and non symmetric, then the rolling
problem (NS) is completely controllable in dimension n 6= 8 if and only if H∇g

or
Ĥ∇ĝ

is equal to SO(n). We conclude that section by computing Lie brackets of
vector fields tangent to DNS.

In Section 5, we start the study of the rolling problem (R). As done for (NS), we
construct the rolling distribution DR as a sub-distribution of rank n of DNS so that
its tangent curves coincide with the admissible curves of (Σ)R and we provide (local)
basis of vector fields for DR. We show that the rolling (R) ofM over M̂ is symmetric
to that of M̂ over M i.e., the reachable sets are diffeomorphic. Already from these
computations, one can see why we considered the rolling problem (NS): from a
technical point of view, it is much easier to perform Lie brackets computations first
with vector fields spanning DNS and then specify these computations to vector fields
spanning DR. Moreover, the complete controllability of (NS) being a necessary
condition for the complete controllability of (R), one can derive at once that, for
simply connected and non symmetric rolling manifolds, if the rolling problem (R)
is completely controllable in dimension n 6= 8 then H∇g

or Ĥ∇ĝ

must be equal to
SO(n).

The controllability issue for (R) turns out to be much more delicate than that
for (NS). One reason is that, in general, there is no ”natural” principal bundle
structure on πQ,M : Q → M which leaves invariant the rolling distribution DR.
Indeed, if it were the case, then all the reachable sets would be diffeomorphic and
this is not true in general (cf. the description of reachable sets of the rolling problem
(R) for two-dimensional isometric manifolds). Despite this fact, we prove that the
reachable sets are smooth bundles over M (cf. Proposition 5.11).

We also have an equivariance property of the reachable sets of DR with respect
to the (global) isometries of the manifoldsM and M̂ , as well as an interesting result
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linking the rolling problem (R) for a pair of manifolds M and M̂ and the rolling
problem (R) associated to Riemannian coverings of M and M̂ respectively. As a
consequence, we have that the complete controllability for the rolling problem (R)
associated to a pair of manifoldsM and M̂ is equivalent to that of the rolling problem
(R) associated to their universal Riemannian coverings. This implies that, as far
as complete controllability is concerned, one can assume without loss of generality
that M and M̂ are simply connected. We then compute the first order Lie brackets
of the vector fields generating DR and find that they are (essentially) equal to the
vector fields given by the vertical lifts of

Rol(X, Y )(A) := AR(X, Y )− R̂(AX,AY )A, (1)

where X, Y are smooth vector fields of M , q = (x, x̂;A) ∈ Q and R(·, ·), R̂(·, ·)
are the curvature tensors of g and ĝ respectively. We call the vertical vector field
defined in Eq. (1) the Rolling Curvature, cf Definition 5.18 below. Higher order Lie
brackets can now be expressed as linear combinations of covariant derivatives of the
Rolling Curvature for the vertical part and evaluations on M̂ of the images of the
Rolling Curvature and its covariant derivatives.

In dimension two, the Rolling Curvature is (essentially) equal toKM(x)−KM̂ (x̂),

where KM(·), KM̂(·) are the Gaussian curvatures of M and M̂ respectively. At

some point q ∈ Q where KM(x) − KM̂(x̂) 6= 0, one immediately deduces that the
dimension of the evaluation at q of the Lie algebra of the vector fields spanning DR

is equal to five, (the dimension of Q) and thus the reachable set from q is open in
Q. From that fact, one has the following alternative: (a) there exists q0 ∈ Q so

that KM −KM̂ ≡ 0 over the reachable set from q0, yielding easily that M and M̂
have the same Riemannian covering space (cf. [2] and [5]); (b) all the reachable sets
are open and then the rolling problem (R) is completely controllable. In dimension
n ≥ 3, the Rolling Curvature cannot be reduced to a scalar and it is seems difficult
compute in general the rank of the evaluations of the Lie algebra of the vector fields
spanning DR.

We however propose several characterizations of isometry between two Rieman-
nian manifolds based on the rolling perspective. The first one refers to a ”rolling
against loops” property which assumes that there is a q0 = (x0, x̂0;A0) ∈ Q such
that for every loop γ on M based at x0, the corresponding rolling curve γ̂DR

(γ, q0)

on M̂ starting from q0 is a loop based x̂0. Then we prove that, under the previ-
ous condition (M, g) and (M̂, ĝ) have the same universal Riemannian covering, cf.
Theorem 5.32.

The second characterization consists of revisiting the classical Ambrose theo-
rem (see [25] Theorem III.5.1) and showing how the standard argument actually
gets simplified when recast in the rolling context. We also prove a version of the
Cartan-Ambrose-Hicks theorem, Proposition 7.10, by using the rolling model. In
this version, we also also include a condition for certain submersions to exist, not
only (local) geodesic embeddings. Our proofs are in parallel to those presented in
[4], [23].

In Section 6, we present controllability results when one of the manifolds, let say
(M̂, ĝ), is a space form i.e., a simply connected complete Riemannian manifold of
constant curvature. Our results are actually preliminary and we hope to complete
them in a future version of the present draft. Let us summarize them. The main
feature of this particular case is that there is a principal bundle structure on the
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bundle πQ,M : Q→M , which is compatible with the rolling distribution DR. In the

case M̂ has non-zero constant curvature, this allows us to reduce the problem to a
study of a vector bundle connection ∇Rol of the vector bundle πTM⊕R : TM⊕R →M
and its holonomy group, which is a subgroup of SO(n + 1) or SO(n, 1) depending
whether the curvature of M̂ is positive or negative, respectively. If M̂ has zero
curvature i.e., it is the Euclidean plane, the problem reduces to the study of an
affine connection and its holonomy group, a subgroup of SE(n), in the sense of [13].
In all the cases, the fibers over M of the DR-orbits are all diffeomorphic to the
holonomy group of the connection in question.

In the zero curvature case, we prove that the rolling (R) is completely controllable
if and only if the (Riemannian) holonomy group of ∇g is equal to SO(n). This result
is actually similar to Theorem IV.7.1, p. 193 and Theorem IV.7.2, p. 194 in [13]. In
the non-zero curvature case, we only study the rolling onto an n-dimensional sphere.
We prove that if the holonomy group of the rolling connection ∇Rol is reducible, then
the sphere endowed with the metric induced by the Euclidean metric of Rn+1 must
be a Riemannian covering space of (M, g).

In Section 7, we show how to extend the formalism developed previously to the
case where the rolling manifolds have different dimensions. In that case, we show
that the rolling of M over M̂ is not anymore symmetric with that of M̂ over M ,
which is reasonable. We also provide basic controllability results.

We finally gather in a series of appendices several results either used in the text
or directly related to it. In particular, we show how the DNS relates to the Sasaki-
metric on the tensor space T ∗(M) ⊗ T (M̂). In the final appendix, we provide, for
the sake of completeness, the classical formulation of the rolling problem (R) as
embedded in an Euclidean space.

Acknowledgements. The authors want to thank P. Pansu and E. Falbel for
helpful comments as well as L. Rifford for having organized the conference ”New
Trends in Sub-Riemannian Geometry” in Nice and where this work was first pre-
sented in April 2010.

2 Notations

For any sets A,B,C and U ⊂ A×B and any map F : U → C, we write Ua and U b

for the sets defined by {b ∈ B | (a, b) ∈ U} and {a ∈ A | (a, b) ∈ U} respectively.
Similarly, let Fa : Ua → C and F b : U b → C be defined by Fa(b) := F (a, b) and
F b(a) := F (a, b) respectively. For any sets V1, . . . , Vn the map pri : V1×· · ·×Vn → Vi
denotes the projection onto the i-th factor.

For a real matrix A, we use Ai
j to denote the real number on the i-th row

and j-th column and the matrix A can then be denoted by [Ai
j ]. If, for example,

one has Ai
j = aij for all i, j, then one uses the notation Ai

j = (aij)
i
j and thus

A = [(aij)
i
j]. The matrix multiplication of A = [Ai

j] and B = [Bi
j ] is therefore given

by AB =
[(∑

k A
i
kB

k
j

)i
j

]
.

Suppose V,W are finite dimensional R-linear spaces, L : V → W is an R-
linear map and F = (vi)

dimV
i=1 , G = (wi)

dimW
i=1 are bases of V , W respectively. The

dimW × dimV -real matrix corresponding to L w.r.t the bases F and G is denoted
by MF,G(L). In other words, L(vi) =

∑
j MF,G(L)

j
iwj (corresponding to the right

multiplication by a matrix of a row vector). Notice that, ifK : W → U is yet another
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R-linear map to a finite dimensional linear space U with basis H = (ui)
dimU
i=1 , then

MF,H(K ◦ L) = MG,H(K)MF,G(L).

If (V, g), (W,h) are inner product spaces with inner products g and h, one defines
LTg,h : W → V as the transpose (adjoint) of A w.r.t g and h i.e., g(LTg,hw, v) =
h(w,Lv). With bases F and G as above, one has MF,G(L)

T = MG,F (L
Tg,h), where

T on the left is the usual transpose of a real matrix i.e., the transpose w.r.t standard
Euclidean inner products in R

N , N ∈ N.
In this paper, by a smooth manifold, one means a smooth finite-dimensional,

second countable, Hausdorff manifold (see e.g. [15]). A smooth manifold N ⊂ M
is an immersed submanifold of M if the inclusion map i : N → M is a smooth
immersion. We call N embedded submanifold if the topology on N induced by the
inclusion i coincides with the manifold topology of N . By a smooth submanifold of
M , we always mean a smooth embedded submanifold.

A smooth bundle (over M) is a smooth map π : E → M between two smooth
manifolds E and M together with a prescribed smooth manifold F (unique up to
diffeomorphism), called the typical fiber of π, such that, for each x ∈ M , there is
a neighbourhood U of x in M and a smooth diffeomorphism τ : π−1(U) → U × F
with the property that pr1 ◦ τ = π|π−1(U). Such maps τ are called (smooth) local
trivializations of π.

For any smooth map π : E → M between smooth manifolds E and M , the set
π−1({x}) =: π−1(x) is called the π-fiber over x and it is sometimes denoted by E|x,
when π is clear from the context. A smooth section of a smooth map π : E → M is
a smooth map s : M → E such that π ◦ s = idM . The set of smooth sections of π
is denoted by Γ(π). Local sections of π are sections defined only on open (possibly
proper) subsets of M . The value s(x) of a section s at x is usually denoted by s|x.

A smooth manifoldM is oriented if there exists a smooth (or continuous) section,
defined on all of M , of the bundle of n-forms π∧n(M) :

∧n(M) → M where n =
dimM . Otherwise mentioned, the smooth manifolds considered in this paper are
connected and oriented.

A smooth vector bundle is a smooth bundle where the typical fiber F is a finite
dimensional R-linear space together with a collection of local trivializations so that
there is a well defined vector space structure on each π-fiber (see [15] for the precise
definition). Some important vector bundles for us over a manifoldM are the tangent
bundle πT (M) : T (M) → M and different (k,m)-tensor bundles πT k

m(N) : T
k
m(M) →

M . We will many times write TM := T (M) etc. to ease the notation.
If G is a smooth Lie-group, a smooth bundle π : E → M is called a right

principal G-bundle if there exists a smooth right action µ : E × G → E of G on
E (i.e., µ(µ(y, g), h) = µ(y, gh) where the product gh is computed in G) such that
π ◦ µ = π ◦ pr1 and µ is free (i.e., µ(y, g) = y for a y ∈ E implies g = e the identity
of G) and transitive on π-fibers (i.e., for every y, z ∈ π−1(x) there is a g ∈ G such
that µ(y, g) = z). It follows from the definition that this bundle has G as the typical
fiber. Similarly, using a left action one defines a left principal G-bundle. For short,
by a principal bundle we mean a left or right principal bundle (the side of the action
being clear from context). There is no difference between left and right principal
bundles since a right principal bundle πE with action µ : E×G → E can be identified
with a left principal bundle πE with action λ : G× E → E; λ(g, y) = µ(y, g−1) and
vice versa.
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For a smooth map π : E →M and y ∈ E, let V |y(π) be the set of all Y ∈ T |yE
such that π∗(Y ) = 0. If π is a smooth bundle, the collection of spaces V |y(π), y ∈ E,
defines a smooth submanifold V (π) of T (E) and the restriction πT (E) : T (E) → E
to V (π) is denoted by πV (π). In this case πV (π) is a vector subbundle of πT (E) over
E.

For a smooth manifold M , one uses VF(M) to denote the set of smooth vector
fields onM i.e., the set of smooth sections of the tangent bundle πT (M) : T (M) →M .
The flow of a vector field Y ∈ VF(M) is a smooth onto map ΦY : D → M defined
on an open subset D of R×M containing {0}×M such that ∂

∂t
ΦY (t, y) = Y |ΦY (t,y)

for (t, y) ∈ D and ΦY (0, y) = y for all y ∈ M . As a default, we will take D to be
the maximal flow domain of X .

A subset D ⊂ T (M) of the tangent bundle of M is called a smooth distribution
on M if πT (M)|D is a smooth vector subbundle of πT (M) over M . For x ∈ M , the
fiber πT (M)|

−1
D ({x}) is denoted by D|x and the common dimension of the spaces D|x,

x ∈M , is called the rank of the distribution D.
For any distribution D on a manifold M , we use VFD to denote the set of vector

fields X ∈ VF(M) tangent to D (i.e., X|x ∈ D|x for all x ∈ M) and we define
inductively for k ≥ 2

VFk
D = VFk−1

D + [VFD,VF
k−1
D ],

where VF1
D := VFD. The Lie algebra generated by VFD is denoted by Lie(D) and

it equals
⋃

k VF
k
D.

For any maps γ : [a, b] → X , ω : [c, d] → X into a set X such that γ(b) = ω(c)
we define

ω ⊔ γ : [a, b+ d− c] → X ; (ω ⊔ γ)(t) =

{
γ(t), t ∈ [a, b]

ω(t− b+ c), t ∈ [b, b+ d− c].

A map γ : [a, b] → X is a loop in X based at x0 ∈ X if γ(a) = γ(b) = x0. In
the space of loops [0, 1] → X based at some given point x0, one defines a group
operation ”.”, concatenation, by

ω.γ := (t 7→ γ( t
2
)) ⊔ (t 7→ ω( t

2
)).

This operation gives a group structure on the set of loops of X based at a given
point x0. If N is a smooth manifold and y ∈ N , we use Ωy(N) to denote the set
of all piecewise C1-loops [0, 1] → N of N based at y. In particular, (Ωy(N), .) is a
group.

A continuous map c : I → M from a real compact interval I into a smooth
manifold M is called absolutely continuous, or a.c. for short if, for every t0 ∈ I,
there is a smooth coordinate chart (φ, U) of M such that c(t0) ∈ U and φ ◦ c|c−1(U)

is absolutely continuous.
Given a smooth distribution D on a smooth manifold M , we call an absolutely

continuous curve c : I → M , I ⊂ R, D-admissible if c it is tangent to D almost
everywhere (a.e.) i.e., if for almost all t ∈ I it holds that ċ(t) ∈ D|c(t). For x0 ∈M ,
the endpoints of all the D-admissible curves of M starting at x0 form the set called
D-orbit through x0 and denoted OD(x0). More precisely,

OD(x0) = {c(1) | c : [0, 1] →M, D−admissible, c(0) = x0}. (2)
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By the Orbit Theorem (see [3]), it follows that OD(x0) is an immersed smooth
submanifold of M containing x0. It is also known that one may restrict to piecewise
smooth curves in the description of the orbit i.e.,

OD(x0) = {c(1) | c : [0, 1] →M piecewise smooth and D−admissible, c(0) = x0}.

We call a smooth distribution D′ on M a subdistribution of D if D′ ⊂ D. An
immediate consequence of the definition of the orbit shows that in this case

OD′(x0) ⊂ OD(x0), ∀x0 ∈M.

If π : E → M , η : F → M are two smooth maps (e.g. bundles), let C∞(π, η)
be the set of all bundle maps π → η i.e., smooth maps g : E → F such that
η ◦ g = π. For a manifold M , let πMR

:M ×R → M be the projection onto the first
factor i.e., (x, t) 7→ x (i.e., πMR

= pr1). Recall that there is a canonical bijection
between the set C∞(M) of smooth functions on M and the set C∞(idM , πMR

) given
by f 7→ fR := (x 7→ (x, f(x))).

If π : E →M , η : F →M are any smooth vector bundles over a smooth manifold
M , f ∈ C∞(π, η) and u, w ∈ π−1(x), one defines the vertical derivative f at u in
the direction w by

ν(w)|u(f) := (Dνf)(u)(w) :=
d

dt

∣∣
0
f(u+ tw). (3)

Here w 7→ (Dνf)(u)(w) = ν(w)|u(f) is an R-linear map between fibers π−1(x) →
η−1(x).

In a similar way, in the case of f ∈ C∞(E) and u, w ∈ π−1(x), one defines the π-
vertical derivative ν(w)|u(f) := Dνf(u)(w) :=

d
dt
|0f(u+ tw) at u in the direction w.

This definition agrees with the above one modulo the canonical bijection C∞(E) ∼=
C∞(idE, πER

). This latter definition means that ν(w)|u can be viewed as an element
of V |u(π) and the mapping w 7→ ν(w)|u gives a (natural) R-linear isomorphism
between π−1(x) and V |u(π) where π(u) = x. If ũ ∈ Γ(π) is a smooth π-section, let
ν(w̃) be the π-vertical vector field on E defined by ν(w̃)|u(f) = ν(w̃|x)|u(f), where
π(u) = x and f ∈ C∞(E). The same remark holds also locally.

In the case of smooth manifoldsM and M̂ , x ∈M , x̂ ∈ M̂ , we will use freely and
without mention the natural inclusions (⊂) and isomorphisms (∼=): T |xM,T |x̂M̂ ⊂
T |(x,x̂)(M × M̂) ∼= T |xM ⊕ T |x̂M̂ , T ∗|xM,T ∗|x̂M̂ ⊂ T ∗|(x,x̂)(M × M̂) ∼= T ∗|xM ⊕

T ∗|x̂M̂ . An element of T |(x,x̂)(M × M̂) ∼= T |x(M) ⊕ T |x̂(M̂) with respect to the

direct sum splitting is denoted usually by (X, X̂), where X ∈ T |xM , X̂ ∈ T |x̂M̂ .
Sometimes it is even more convenient to write X + X̂ := (X, X̂) when we make the
identifications (X, 0) = X , (0, X̂) = X̂ .

If (M, g), (M̂, ĝ) are smooth Riemannian manifolds, the space M = M × M̂ is
a Riemannian manifold, called the Riemannian product manifold of (M, g), (M̂, ĝ),
when endowed with the product metric g := g ⊕ ĝ

Let ∇, ∇̂,∇ (resp. R, R̂, R) denote the Levi-Civita connections (resp. the Rie-
mannian curvature tensors) of (M, g), (M̂, ĝ), (M =M ×M̂, g = g⊕ ĝ) respectively.
From Koszul’s formula (cf. [15]), one has

∇(X,X̂)(Y, Ŷ ) = (∇XY, ∇̂X̂ Ŷ ), (4)
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when X, Y ∈ VF(M), X̂, Ŷ ∈ VF(M̂) and hence from the definition of the Rieman-
nian curvature tensor

R((X, X̂), (Y, Ŷ ))(Z, Ẑ) = (R(X, Y )Z, R̂(X̂, Ŷ )Ẑ), (5)

where X, Y, Z ∈ T |xM , X̂, Ŷ , Ẑ ∈ T |x̂M̂ .
For any (k,m)-tensor field T on M we define ∇T to be the (k,m + 1)-tensor

field such that (see [25], p. 30)

(∇T )(X1, . . . , Xm, X) = (∇XT )(X1, . . . , Xm), (6)

X1, . . . , Xm, X ∈ T |xM .
Let x : I → M and X : I → TM be a smooth curve and a smooth vector field

along x respectively i.e., a smooth map such that X(t) ∈ T |x(t)M for all t ∈ I. A

local extension of X around t0 is a vector field X̃ ∈ VF(M) such that there is an
open interval J with t0 ∈ J ⊂ I and X̃|x(t) = X(t) for all t ∈ J . Then one defines

∇ẋ(t0)X as ∇ẋ(t0)X̃ and it is easily seen that this vector does not depend on the
choice of a local extension of X around t0. The same construction holds true for
tensor fields along the path x(·).

The parallel transport of a tensor T0 ∈ T k
m|x(0)(M) from x(0) to x(t) along an

absolutely continuous curve x : I → M (with 0 ∈ I) and with respect to the
Levi-Civita connection of (M, g) is denoted by (P∇g

)t0(x)T0. In the notation of the
Levi-Civita connection ∇g (resp. parallel transport P∇g

), the upper index g (resp.
∇g) referring to the Riemannian metric g (resp. the connection ∇g) is omitted if it
is clear from the context. We also recall the following basic observation.

Proposition 2.1 Let (M, g) be a smooth Riemannian manifold and t 7→ x(t) an
absolutely continuous (a.c. for short) curve on M defined on an open interval I ∋ 0.
Then the parallel transport T (t) = (P∇g

)t0(x)T0 along t 7→ x(t) w.r.t g of any (k,m)-
tensor T0 ∈ T k

m|x(0)(M) uniquely exists and is absolutely continuous.

Let (x, x̂) : I → M × M̂ be a smooth curve on M × M̂ defined on an open real
interval I containing 0. If (X(t), X̂(t)) : I → T (M × M̂) is a smooth vector field on
M × M̂ along (x, x̂) i.e., (X(t), X̂(t)) ∈ T |(x(t),x̂(t))(M × M̂) then one has

∇(ẋ(t), ˙̂x(t))(X, X̂) = (∇ẋ(t)X, ∇̂ ˙̂x(t)X̂) (7)

only if the covariant derivatives on the right-hand side are well defined (see the next
remark).

Remark 2.2 Let M = R, M̂ = R and (c(t), ĉ(t)) = (t, 0), (X(t), X̂(t)) = (1, t) and
equip M and M̂ with the Euclidean metrics: g(Y, Z) = Y Z, ĝ(Ŷ , Ẑ) = Ŷ Ẑ. Then the
left hand side of (7) is defined and equals (0, 1) but on the right hand side the covariant
derivative ∇̂ ˙̂c(t)X̂ = ∇̂0t is not defined: if Ŷ ∈ VF(M̂) were a local extension of X̂

around t = 0 then t = X̂(t) = Ŷ |ĉ(t) = Ŷ (0) for all t in some open interval containing

0. This is a contradiction. Note that an extension of (X(t), X̂(t)) = (1, t) around t = 0
is provided for example by (x, x̂) 7→ (1, x).

If (N, h) is a Riemannian manifold we define Iso(N, h) to be the (smooth Lie)
group of isometries of (N, h) i.e., the set of diffeomorphisms F : N → N such that
F∗|y : T |yN → T |F (y)N is an isometry for all y ∈ N , cf. [25], Lemma III.6.4, p. 118.
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It is clear that the isometries respect parallel transport in the sense that for any
absolutely continuous γ : [a, b] → N and F ∈ Iso(N, g) one has (cf. [25], p. 41, Eq.
(3.5))

F∗|γ(t) ◦ (P
∇h

)ta(γ) = (P∇h

)ta(F ◦ γ) ◦ F∗|γ(a). (8)

The following result is standard.

Theorem 2.3 Let (N, h) be a Riemannian manifold and for any absolutely continuous
γ : [0, 1] → M , γ(0) = y0, define

Λ∇h

y0 (γ)(t) =

∫ t

0

(P∇h

)0s(γ)γ̇(s)ds ∈ T |y0N, t ∈ [0, 1].

Then the map Λ∇h

y0
: γ 7→ Λ∇h

y0
(γ)(·) is an injection from the set of absolutely continuous

curves [0, 1] → N starting at y0 onto an open subset of the Banach space of absolutely
continuous curves [0, 1] → T |y0N starting at 0.

Moreover, the map Λ∇h

y0
is a bijection onto the latter Banach space if (and only if)

(N, h) is a complete Riemannian manifold.

Remark 2.4 (i) For example, in the case where γ is the geodesic t 7→ expy0(tY )
for Y ∈ T |y0N , one has

Λ∇h

y0
(γ)(t) = tY.

(ii) It is directly seen from the definition of Λ∇h

y0
that it maps injectively (piecewise)

Ck-curves, k = 1, . . . ,∞, starting at y0 to (piecewise) Ck-curves starting at 0.
Moreover, these correspondences are bijective if (N, h) is complete.

(iii) The map Λ∇h

y0 could be used to give the space of absolutely continuous curves
[0, 1] → N starting at y0 a structure of a Banach space if (N, h) is complete or
an open subset of a Banach space in the case (N, h) is not complete.

3 Characterization of the Rolling Problems as Con-

trol Problems

3.1 Definition of the State Space

Following [2], [3] we make the following definition.

Definition 3.1 The state space Q = Q(M, M̂) for the rolling of two n-dimensional
connected, oriented smooth Riemannian manifolds (M, g), (M̂, ĝ) is defined as

Q = {A : T |xM → T |x̂M̂ | A o-isometry, x ∈M, x̂ ∈ M̂},

where “o-isometry” stands for “orientation preserving isometry” i.e., if (Xi)
n
i=1 is a

positively oriented g-orthonormal frame ofM at x then (AXi)
n
i=1 is a positively oriented

ĝ-orthonormal frame of M̂ at x̂.
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The linear space of R-linear map A : T |xM → T |x̂M̂ is canonically isomorphic
to the tensor product T ∗|xM ⊗ T |x̂M̂ . On the other hand, by using the canonical
inclusions T ∗|xM ⊂ T ∗|(x,x̂)(M × M̂), T |x̂M̂ ⊂ T |(x,x̂)(M × M̂), the space T ∗|xM ⊗

T |x̂M̂ is canonically included in the space T 1
1 (M×M̂)|(x,x̂) of (1, 1)-tensors ofM×M̂

at (x, x̂). These inclusions make T ∗M⊗TM̂ :=
⋃

(x,x̂)∈M×M̂ T ∗|xM⊗T |x̂M̂ a subset

of T 1
1 (M × M̂) such that πT ∗M⊗TM̂ := πT 1

1 (M×M̂)|T ∗M⊗TM̂ : T ∗M ⊗ TM̂ → M × M̂

is a smooth vector subbundle of the bundle of (1, 1)-tensors πT 1
1 (M×M̂) on M × M̂ .

The state space Q = Q(M, M̂) can now be described as a subset of T ∗M ⊗ TM̂
as

Q = {A ∈ T ∗(M)⊗ T (M̂)|(x,x̂) | (x, x̂) ∈M × M̂,

‖AX‖ĝ = ‖X‖g , ∀X ∈ T |xM, det(A) = 1}.

In the next subsection, we will show that πQ := πT ∗M⊗TM̂ |Q is moreover a smooth
subbundle of πT ∗M⊗TM̂ though it is not a vector subbundle.

It is also convenient to consider the manifold T ∗M ⊗ TM̂ and we will refer to
it as the extended state space for the rolling. This concept of extended state space
naturally makes sense also in the case where M and M̂ are not assumed to be
oriented (or connected).

A point A ∈ T ∗M ⊗ TM̂ with πT ∗M⊗TM̂(A) = (x, x̂) (or A ∈ Q with πQ(A) =
(x, x̂)) will be sometimes denoted by (x, x̂;A) to emphasize the fact that A : T |xM →
T |x̂M̂ . Thus the notation q = (x, x̂;A) simply means that q = A.

3.2 The Bundle Structure of Q

In this subsection, it is shown that πQ is a bundle with typical fiber SO(n). We will
also argue that, even though SO(n) is a Lie-group, the bundle πQ cannot in general
be given a natural (or useful) SO(n)-principal bundle if n > 2 (see also Theorem
4.14). We will now present the local trivializations of πQ.

Definition 3.2 Suppose the vector fields Xi ∈ VF(M) (resp. X̂i ∈ VF(M̂)), i =
1, . . . , n form a g-orthonormal (resp. ĝ-orthonormal) frame of vector fields on an open
subset U of M (resp. Û of M̂). We denote F = (Xi)

n
i=1, F̂ = (X̂i)

n
i=1 and for x ∈ U ,

x̂ ∈ Û we let F |x = (Xi|x)
n
i=1, F̂ |x̂ = (X̂i|x̂)

n
i=1 Then a local trivialization τ = τF,F̂ of

Q over U × Û induced by F, F̂ is given by

τ : π−1
Q (U × Û) → (U × Û)× SO(n)

(x, x̂;A) 7→
(
(x, x̂),MF |x,F̂ |x̂(A)

)
,

where MF |x,F̂ |x̂(A)
j
i = ĝ(AXi, X̂j) since AXi|x =

∑
j ĝ(AXi|x, X̂j|x̂)X̂j |x̂.

For the sake of clarity, we shall write MF |x,F̂ |x̂(A) as MF,F̂ (A). Obviously

‖AX‖ĝ = ‖X‖g for all X ∈ T |xM is equivalent to ATg,ĝA = idT |xM and thus we
get

MF,F̂ (A)
TMF,F̂ (A) = MF̂ ,F (A

Tg,ĝ)MF,F̂ (A) = MF,F (idT |xM) = idRn,

where T denotes the usual transpose in gl(n), the set of Lie algebra of n × n-real
matrices. Since detMF,F̂ (A) = det(A) = +1, one finally has MF,F̂ (A) ∈ SO(n).
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Remark 3.3 Notice that the above local trivializations τF,F̂ of πQ are just the restric-
tions of the vector bundle local trivializations

(πT ∗(M)⊗T (M̂ ))
−1(U × Û) → (U × Û)× gl(n)

of the bundle πT ∗(M)⊗T (M̂ ) induced by F, F̂ and defined by the same formula as τF,F̂ .

In this setting, one does not even have to assume that the local frames F , F̂ are g-
or ĝ-orthonormal. Hence πQ is a smooth subbundle of πT ∗M⊗TM̂ with Q a smooth

submanifold of T ∗M ⊗ TM̂ .

We next spell out the transition functions of the above defined local trivializations
of πQ (and also of πT ∗M⊗TM̂ by the above remark). If F ′ = ((X ′

i), U
′),F̂ ′ = ((X̂ ′

i), Û
′)

are other g-, ĝ-orthonormal frames (with U ∩ U ′ 6= ∅, Û ∩ Û ′ 6= ∅) and A = [Aj
i ] ∈

SO(n), then

(τF ′,F̂ ′ ◦ τ
−1

F,F̂
)((x, x̂), A) = τF ′,F̂ ′

(
x, x̂;

∑

i,j

Aj
ig(Xi, ·)X̂j

)

=
(
(x, x̂),

[(∑

i,j

Aj
ig(Xi, X

′
k)ĝ(X̂j , X̂

′
l))

)l

k

])

=
(
(x, x̂), [(ĝ(X̂j , X̂

′
l))

l
j ]A[(g(Xi, X

′
k))

k
i ]

T
)

=
(
(x, x̂),MF̂ ,F̂ ′(idT |x̂M̂)AMF,F ′(idT |xM)T

)

for x ∈ U ∩ U ′, x̂ ∈ Û ∩ Û ′.
Any local trivialization τ : π−1

Q (U) → U × SO(n) of πQ defined on an open set

U ⊂M × M̂ would define a principal SO(n)-bundle structure on π−1
Q (U) (or rather

for πQ|π−1
Q

(U)) by the formula (see [28], p. 307)

µ((x, x̂;A), B) = τ−1((x, x̂), (pr2 ◦ τ)(x, x̂;A)B), (9)

with µ : π−1
Q (U)× SO(n) → π−1

Q (U) the right SO(n)-action of this principal bundle
structure. However, we will show that if we take for the local trivializations τ the
ones induced by local orthonormal frames τ = τF,F̂ as above, then the (local) actions
µF,F̂ defined by the above formula by these different local trivializations τF,F̂ do not
glue up to form a global principal bundle structure for πQ if the dimension n of M

and M̂ is greater than 2. We state this in the following proposition.

Proposition 3.4 The local actions (9) do not render the bundle πQ to a principal
SO(n)-bundle except when n ≤ 2.

Proof. If πQ were a principal SO(n)-bundle w.r.t local trivializations induced by the

orthonormal frames ofM and M̂ , then the right action µ : Q×SO(n) → Q of SO(n)
on Q of this principal bundle structure would be given (locally) by (see above)

µ((x, x̂;A), B) = τ−1((x, x̂), (pr2 ◦ τ)(x, x̂;A)B),

for any of the local trivializations τ = τF,F̂ induced by orthonormal local frames

F, F̂ of M , M̂ and any (x, x̂;A) with x, x̂ in these domains and any B ∈ SO(n).
Equivalently, the above condition could be written as

(pr2 ◦ τ)(µ(q, B)) = (pr2 ◦ τ)(q)B,
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for any q ∈ Q in the domain of definition of τ and B ∈ SO(n).
The formula for the transition maps of these local trivializations as expressed

before this proposition shows that the action µ is not well defined if n ≥ 3. In fact
we would be led to an equation of the type

(pr2 ◦ τF ′,F̂ ′)(x, x̂;A)B = (pr2 ◦ τF ′,F̂ ′ ◦ τ
−1

F,F̂
)
(
(x, x̂), (pr2 ◦ τF,F̂ )(x, x̂;A)B

)
,

i.e.,

MF ′,F̂ ′(A)B = MF̂ ,F̂ ′(idT |x̂M̂)
(
MF,F̂ (A)B

)
MF,F ′(idT |xM)−1

= MF,F̂ ′(A)BMF ′,F (idT |xM)

which, by multiplying by MF,F̂ ′(A)−1 from the left, is equivalent to

MF ′,F (idT |xM)B = BMF ′,F (idT |xM) (10)

Since SO(n) is not commutative for n ≥ 3, the left and right hand sides are not
equal in general: they are equal for all B,F, F ′ if and only if SO(n) is commutative
i.e. if and only if n ∈ {1, 2}. Hence πQ is not a principal SO(n)-bundle, at least
w.r.t the trivializations that we used, if n ≥ 3.

Remark 3.5 If M and M̂ are parallelizable (e.g. if M and M̂ are Lie groups) i.e.,
if there are global frames and hence global orthonormal frames F , F̂ , then one can
introduce a principal SO(n)-bundle structure for πQ by Eq. (9) even for n > 2. However,

this principal bundle structure then depends on the choice of the global frames F , F̂
i.e., we might (and could if n > 2) get a different principal bundle structure by the
choosing the orthonormal frames differently. We will define on Q a distribution DR

(see Definition 5.2) that models the natural constraints for the rolling problem and by
simple computations one can check that in general for n ≥ 3 the distribution DR is not
invariant with respect to this principal bundle action for πQ.

Hence the principal bundle structure on parallelizable manifolds (or, in the general
case, the local principal bundle structures defined by (9)) is (in general) not useful for
the study of the rolling model.

We will also study briefly a less restrictive model of rolling (rolling with spinning
allowed) where one considers a distribution DNS on Q. In this case, it will be shown in
Theorem 4.14 below that in general there cannot be a principal bundle structure for πQ
which leaves DNS invariant.

Remark 3.6 Clearly the fact that we chose SO(n) to act on the right in (9) does
not affect the conclusion of the previous Proposition: Left local actions (in an obvious
manner) lead to the same conclusion i.e., they don’t glue up correctly to give a ”natural”
global SO(n)-action.

Indeed, if instead of (9) we tried to define the left SO(n)-action on Q by demanding
that locally

λ(B, (x, x̂;A)) = τ−1
(
(x, x̂), B(pr2 ◦ τ)(x, x̂;A)

)
,

we still could not define the action globally. Indeed, it is enough to notice that instead
of (10) we would get

BMF ′,F̂ ′(A) =MF̂ ,F̂ ′(idT |x̂M̂)
(
BMF,F̂ (A)

)
MF,F ′(idT |xM)−1

=MF̂ ,F̂ ′(idT |x̂M̂)BMF ′,F̂ (A)
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i.e.

BMF̂ ,F̂ ′(idT |x̂M̂) = MF̂ ,F̂ ′(idT |x̂M̂)B

which, again, is only true for all B, F̂ , F̂ ′ if and only if n ∈ {1, 2}.

Despite the lack of a ”natural” principal bundle structure for πQ when n ≥ 3, we
may still make use of the vector bundle structure of the ambient bundle πT ∗(M)⊗T (M̂)

(the extended state space).
Notice that any πQ-vertical tangent vector (i.e., an element of V |q(πQ)) is of

the form ν(B)|q for a unique B ∈ T ∗M ⊗ TM̂ |(x,x̂) where q = (x, x̂;A) ∈ Q. The

following simple proposition gives the condition when, for a B ∈ T ∗M⊗TM̂ |(x,x̂), the
vector ν(B)|q ∈ V |q(πT ∗M⊗TM̂) is actually tangent to Q i.e., an element of V |q(πQ).

Proposition 3.7 Let q = (x, x̂;A) ∈ Q and B ∈ T ∗(M)⊗T (M̂ )|(x,x̂). Then ν(B)|q
is tangent to Q (i.e., is an element of V |q(πQ)) if and only if

ĝ(AX,BY ) + ĝ(BX,AY ) = 0

for all X, Y ∈ T |xM . Denoting T = Tg,ĝ, this latter condition can be stated equivalently

as ATB +BTA = 0 or more compactly as B ∈ A(so(T |xM))

We will be denoting the (g, ĝ)-transpose operation Tg,ĝ by T also in the se-
quel. The proposition says that V |(x,x̂;A)(πQ) is naturally R-linearly isomorphic to
A(so(T |xM)).

Remark 3.8 We may reformulate the fact given by the previous proposition as follows.
Define so(M) =

⋃
x∈M so(T |xM) (with M a Riemannian manifold) i.e.,

so(M) = {B ∈ T 1
1 (M) | BTg +B = 0}.

One sees that so(M) is a closed embedded submanifold of T 1
1 (M) = T ∗M ⊗ TM .

Moreover, the map πso(M) := πT 1
1 (M)|so(M) clearly defines a smooth vector bundle with

typical fiber so(n), where n = dim(M).
We may pull back πso(M) with a map πQ,M := pr1 ◦ πQ : Q → M to a smooth

bundle (πQ,M)∗(πso(M)) : (πQ,M)∗(so(M)) → Q over Q. Its elements are all pairs
((x, x̂;A), B) ∈ Q × so(M) where x = πso(M)(B) and the bundle map is defined by
(πQ,M)∗(πso(M))((x, x̂;A), B) = (x, x̂;A).

Proposition 3.7 shows that the bundle map L : (πQ,M)∗(πso(M)) → V (πQ) defined
by L((x, x̂;A), B) = ν(AB)|(x,x̂;A) is a diffeomorphism.

3.3 The State Space as a Quotient

In this subsection, we will show that (the n-dimensional version of) the construction
of the state space for rolling that has been used e.g. in [5] in dimension two is actually
isomorphic to the state space Q.

Proposition 3.9 Let FOON(M), FOON(M̂) be the oriented orthonormal frame bun-
dles of (M, g), (M̂, ĝ) (resp. let F (M), F (M̂) be the frame bundles of M and M̂).
Denote by µ, µ̂ the right SO(n)-actions (resp. right GL(n)-actions) defining the usual
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principal bundle structures on these spaces i.e., µ((Xk)
n
k=1, [A

i
j ]) = (

∑
k A

k
iXk)

n
i=1 and

similarly for µ̂. Define a diagonal right SO(n)-action

∆ : (FOON(M)× FOON(M̂))× SO(n) → FOON(M)× FOON(M̂),

by (resp. right GL(n)-action ∆ : (F (M)× F (M̂))×GL(n) → F (M)× F (M̂)))

∆(((Xi), (X̂j)), A) = (µ((Xi), A), µ̂((X̂i), A)).

The map ξ : FOON(M) × FOON(M̂) → Q(M, M̂) (resp. ξ : F (M) × F (M̂) →
T ∗M ⊗ TM̂) such that

ξ((Xi), (X̂j)) :=
(∑

i

aiXi 7→
∑

i

aiX̂i)

is a smooth surjective submersion. Moreover, for each q ∈ Q(M, M̂) (resp. q ∈
T ∗M ⊗ TM̂) the inverse image ξ−1(q) coincides with an orbit of ∆. Thus ξ induces
a diffeomorphism ξ : (FOON(M) × FOON(M̂))/∆ → Q(M, M̂). (resp. ξ : (F (M) ×
F (M̂))/∆ → {A ∈ T ∗M ⊗ TM̂ | A is invertible}).

Proof. The smoothness and surjectivity of ξ are obvious and it is also easy to see
that ξ is a submersion. Thus it is enough to show that ξ−1(q) coincides with an
orbit of ∆. First suppose that

µ((Xi), A)i =
∑

j

Aj
iXj, µ̂((X̂i), A)i =

∑

j

Aj
iX̂j .

Then, for any real numbers a1, · · · , an, one has

ξ
(
∆
(
((Xi), (X̂i)), A

))
(
∑

k

akXk) = ξ(µ((Xi), A), µ̂((X̂i), A))(
∑

k

akXk)

=ξ(µ((Xi), A), µ̂((X̂i), A))(
∑

k,i

ak(A
−1)ikµ((Xj), A)i)

=
∑

k,i

ak(A
−1)ikµ̂((X̂j), A)i =

∑

k,i,j

ak(A
−1)ikA

j
i X̂j =

∑

k

akX̂k = ξ((Xi), (X̂i))(
∑

k

akXk).

This shows that

∆
(
{((Xi), (X̂i))} ×G

)
⊂ ξ−1(ξ((Xi), (X̂i))),

with G = SO(n) (resp. G = GL(n)). The orbits of ∆ all have the same dimension

as SO(n), i.e., n(n−1)
2

(resp. dimGL(n) = n2) and since

dim ξ−1(q) = dim(FOON(M)× FOON(M̂))− dimQ(M, M̂) = dimSO(n),

for any q ∈ Q(M, M̂) (resp.

dim ξ−1(q) = dim(F (M)× F (M̂))− dimT ∗M ⊗ TM̂ = dimGL(n)),

we have that this inclusion is actually an equality. This proves the proposition.
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Remark 3.10 In the above proposition we implicitly assumed that (FOON(M) ×
FOON(M̂))/∆ (resp. (F (M)× F (M̂))/∆) already has a natural structure of a smooth
manifold namely that of a quotient manifold. But it is easily seen that the action ∆ is
free and proper and hence by a well known result (see [15] Theorem 9.16) it follows that
unique smooth quotient manifold structures for the above quotient sets exist. Hence the
facts established in the above proof guarantee that ξ is a diffeomorphism.

Remark 3.11 Here is the product right action

µ× µ̂ : (FOON(M)× FOON(M̂))× (SO(n)× SO(n)) → FOON(M)× FOON(M̂)

of SO(n)× SO(n) on FOON(M)× FOON(M̂) given by

µ× µ̂
(
((Xi), (X̂i)), (A, Â)) = (µ((Xi), A), µ̂((X̂i), Â)).

As it is easily seen, it is unfortunately not true that the action µ × µ̂ maps a ∆-orbit
into a ∆-orbit, unless the dimension n is equal to two (in which case SO(n) = SO(2)
is commutative) and hence, in the case n > 2, the map µ × µ̂ does not induce a map
Q × SO(n) → Q (where Q ∼= (FOON(M) × FOON(M̂))/∆ by the above proposition).
This is yet another way of seeing that Q = Q(M, M̂ ) cannot be given a ”natural”
SO(n)-principal bundle structure for n ≥ 3 i.e., we cannot induce on Q the principal
bundle structures of the frame bundles FOON(M) and FOON(M̂) if n > 2.

Remark 3.12 Notice that on F (M) (resp. on FOON(M))one may also consider the
left GL(n) (resp. SO(n)) action λ given by λ(A, (Xi))i =

∑
j A

i
jXj . Since A

i
j = (AT )ji

it is trivial that this is related to the above right action by λ(A, (Xi)) = µ((Xi), A
T ).

Notice that µ(λ(A, (Xi)), B) = µ(µ((Xi), A
T ), B) = µ((Xi), A

TB) which, if n ≥
3 and ATB 6= BAT , is different from λ(A, µ((Xi)), B)) = µ(µ((Xi), B), AT ) =
µ((Xi), BA

T ). This means that the left and right actions λ and µ do not ”commute”.
Another way to define naturally a left actions is to use instead of above λ the in-

verse right-action λI(A, (Xi)) := µ((Xi), A
−1). Also in this case, µ(λI(A, (Xi)), B) =

µ(µ((Xi), A
−1), B) = µ((Xi), A

−1B) is not equal, if n ≥ 3 and AB 6= BA, to
λI(A, µ((Xi)), B)) = µ(µ((Xi), B), A−1) = µ((Xi), BA

−1). On FOON(M) it is clear
that the actions λ and λI coincide.

It was proposed in [8] that one could use the inverse left action on FOON(M) and
the left action on FOON(M̂) to induce, respectively, left and right actions on Q. How-
ever this is not possible for the following reason (which basically is a repetition of
what has been said above). Suppose q = (x, x̂;A) ∈ Q and let F, F ′ ∈ FOON(M),
F̂ , F̂ ′ ∈ FOON(M̂) are such that ξ(F, F̂ ) = q and ξ(F ′, F̂ ′) = q. Then there is a
B ∈ SO(n) such that µ(F,B) = F ′, µ̂(F̂ , B) = F̂ ′. By using, for example, the left
SO(n)-action λ on FOON(M) we get λ(C, F ′) = λ(C, µ(F,B)) = µ(F,BCT ) and
also µ(λ(C, F ), B) = µ(F,CTB). But ξ(λ(C, F ′), F̂ ′) = ξ(λ(C, F ), F̂ ) if and only if
µ(λ(C, F ), B) = λ(C, F ′) which thus is not true unless CTB = BCT . The case of
the inverse left action (which is just the right action µ̂) on FOON(M̂) leads to the same
conclusion.

3.4 The Control Problem

Each point (x, x̂;A) of the state space Q = Q(M, M̂) can be viewed as describing
a contact point of the two manifolds which is given by the points x and x̂ of M
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and M̂ , respectively, and an isometry A of the tangent spaces T |xM , T |x̂M̂ at this
contact point. The isometry A can be viewed as measuring the relative orientation
of these tangent spaces relative to each other in the sense that rotation of, say, T |x̂M̂
corresponds to a unique change of the isometry A from T |xM to T |x̂M̂ . A curve
t 7→ (x(t), x̂(t);A(t)) in Q can then be seen as a motion of M against M̂ such that
at an instant t, x(t) and x̂(t) represent the common point of contact in M and M̂ ,
respectively, and A(t) measures the relative orientation of coinciding tangent spaces
T |x(t)M , T |x̂(t)M̂ at this point of contact.

In order to call this motion rolling, there are two kinematic constraints that will
be demanded (see e.g. [2], [3] Chapter 24, [7]) namely

(i) the no-spinning condition;

(ii) the no-slipping condition.

In this section, these conditions will be defined explicitly and it will turn out
that they are modeled by certain smooth distributions on the state space Q. The
subsequent sections are then devoted to the detailed definitions and analysis of the
distribution DNS and DR on the state space Q, the former capturing the no-spinning
condition (i) while the latter capturing both of the conditions (i) and (ii).

The first restriction (i) for the motion is that the relative orientation of the two
manifolds should not change along motion. This no-spinning condition (also known
as the no-twisting condition) can be formulated as follows.

Definition 3.13 An absolutely continuous (a.c.) curve

q : I → Q,

t 7→ (x(t), x̂(t);A(t)),

defined on some real interval I = [a, b], is said to describe a motion without spinning of
M against M̂ if, for every a.c. curve [a, b] → TM ; t 7→ X(t) of vectors along t 7→ x(t),
we have

∇ẋ(t)X(t) = 0 =⇒ ∇̂ ˙̂x(t)(A(t)X(t)) = 0 for a.e. t ∈ [a, b]. (11)

(See also [8] for a similar definition.) Notice that Condition (11) is equivalent to
the following: for almost every t and all parallel vector fields X(·) along x(·), one
has

(∇(ẋ(t), ˙̂x(t))A(t))X(t) = 0.

(This is well defined as mentioned in the paragraph immediately below Eq. (6).)
Since the parallel translation P t

0(x) : T |x(0)M → T |x(t)M along x(·) is an (iso-
metric) isomorphism (here X(t) = P t

0(x)X(0)), this shows that (11) is equivalent
to

∇(ẋ(t), ˙̂x(t))A(t) = 0 for a.e. t ∈ [a, b]. (12)

The second restriction (ii) is that the manifolds should not slip along each other
as they move i.e., the velocity of the contact point should be the same w.r.t both
manifolds. This no-slipping condition can be formulated as follows.
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Definition 3.14 An a.c. curve I → Q; t 7→ (x(t), x̂(t);A(t)), defined on some real
interval I = [a, b], is said to describe a motion without slipping of M against M̂ if

A(t)ẋ(t) = ˙̂x(t) for a.e. t ∈ [a, b]. (13)

Definition 3.15 An a.c. curve I → Q; t 7→ (x(t), x̂(t);A(t)), defined on some real
interval I = [a, b], is said to describe a rolling motion i.e., a motion without slipping or
spinning of M against M̂ if it satisfied both of the conditions (11),(13) (or equivalently
(12),(13)). The corresponding curve t 7→ (x(t), x̂(t);A(t)) that satisfies these conditions
is called a rolling curve.

It is easily seen that t 7→ q(t) = (x(t), x̂(t);A(t)), t ∈ [a, b], is a rolling curve if
and only if it satisfies the following driftless control affine system

(Σ)R





ẋ(t) = u(t),
˙̂x(t) = A(t)u(t),

∇(u(t),A(t)u(t))A(t) = 0,

for a.e. t ∈ [a, b]. (14)

where the control u belongs to U(M), the set of measurable TM-valued functions u
defined on some interval I = [a, b] such that there exists a.c. y : [a, b] →M verifying
u = ẏ a.e. on [a, b]. Conversely, given any control u ∈ U(M) and q0 = (x0, x̂0;A0) ∈
Q, a solution q(·) to this control system exists on a subinterval [a, b′], a < b′ ≤ b
satisfying the initial condition q(a) = q0. The fact that System (14) is driftless and
control affine can be seen from its representation in local coordinates (see (90) in
Appendix A).

We end up this subsection by the following simple remark.

Remark 3.16 In many cases, it is more convenient to work in the extended state
space T ∗(M)⊗T (M̂) rather than in (its submanifold) Q because πT ∗(M)⊗T (M̂ ) is a vector
bundle. Since the above constraints of motion (11) and (13) can also be formulated
in this space in verbatim, we will sometimes take this more general approach and then
restrict to Q.

4 Study of the Rolling problem (NS)

4.1 The No-Spinning Distribution DNS

In this section, we build a smooth distribution DNS on the spaces Q and T ∗M⊗TM̂
which plays the role of modelling the no-spinning condition for the rolling, see (11).
We will also study the geometry related to this distribution. For more general
constructions and some more general results than the ones in this section, see [11],
[13].

We begin by recalling some basic observations on parallel transport. As noted
in Proposition 2.1, if one starts with a (1, 1)-tensor A0 ∈ T 1

1 |(x0,x̂0)(M × M̂) and has

an a.c. curve t 7→ (x(t), x̂(t)) on M × M̂ with x(0) = x0, x̂(0) = x̂0, defined on an
open interval I ∋ 0, then the parallel transport A(t) = P t

0(x, x̂)A0 exists on I and
determines an a.c. curve. But now, if A0 rather belongs to the subspace T ∗M⊗TM̂
or Q of T 1

1 (M × M̂), it will actually happen that the parallel translate A(t) belongs
to this subspace as well for all t ∈ I. This is the content of the next proposition.
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Proposition 4.1 Let t 7→ (x(t), x̂(t)) be an absolutely continuous curve in M × M̂
defined on some real interval I ∋ 0. Then we have

A0 ∈ T ∗M ⊗ TM =⇒ A(t) = P t
0(x, x̂)A0 ∈ T ∗M ⊗ TM̂ ∀t ∈ I,

A0 ∈ Q =⇒ A(t) = P t
0(x, x̂)A0 ∈ Q ∀t ∈ I,

and

P t
0(x, x̂)A0 = P t

0(x̂) ◦ A0 ◦ P
0
t (x) ∀t ∈ I. (15)

Proof. Let Y ∈ T |x(0)M , Ŷ ∈ T |x̂(0)M̂ and let Y (t) = P t
0(x)Y , Ŷ (t) = P t

0(x̂)Ŷ be
their parallel translates along t 7→ x(t) and t 7→ x̂(t) respectively. Similarly, choose
ω ∈ T ∗|x(0)M and denote ω(t) = P t

0(x)ω its parallel translate. Then Y (t), Ŷ (t) and

ω(t) can be viewed as a curves in T (M × M̂) and T ∗(M × M̂) using the canonical
inclusions T |x(t)M,T |x̂(t)M̂ ⊂ T |(x(t),x̂(t))(M × M̂), T ∗|x(t)M ⊂ T ∗|(x(t),x̂(t))(M × M̂).

With A0 ∈ T ∗M⊗TM̂ |(x(0),x̂(0)) ⊂ T 1
1 (M×M̂ )|(x(0),x̂(0)) and A(t) = P t

0(x, x̂)A0 ∈

T 1
1 (M × M̂)|(x(t),x̂(t)), we have, for a.e. t (the contractions that use are obvious),

∇(ẋ(t), ˙̂x(t))(A(·)ω(·)) = (∇(ẋ(t), ˙̂x(t))A(·))ω(t) + A(t)(∇ẋ(t)ω(·)) = 0,

and similarly ∇(ẋ(t), ˙̂x(t))(A(·)Ŷ (·)) = 0. It implies that A(t)ω(t), A(t)Ŷ (t) (as ele-

ments of T 1
1 (M×M̂)) are parallel to t 7→ (ẋ(t), ˙̂x(t)) with initial conditions A0ω = 0

and A0Ŷ = 0 since A0 ∈ T ∗M ⊗ TM̂ . By the uniqueness of solutions of ODEs,
this shows that A(t)ω(t) = 0 and A(t)Ŷ (t) = 0 for all t ∈ I i.e., since Ŷ , ω were
arbitrary, A(t) ∈ T ∗M ⊗ TM̂ for all t ∈ I.

Suppose next that A0 ∈ Q|(x(0),x̂(0)) and denote A(t) = P t
0(x, x̂)A0. Then A0 ∈

T ∗M ⊗TM̂ and, by what we just proved, A(t) ∈ T ∗M ⊗TM̂ for all t ∈ I. It follows
that A(t)Y (t) ∈ T |x̂(t)M̂ and thus taking its norm w.r.t ĝ allows us to compute a.e.

d

dt
‖A(t)Y (t)‖2ĝ = 2ĝ

(
(∇(ẋ(t), ˙̂x(t))A(·))Y (t) + A(t)∇ẋ(t)Y (·), A(t)Y (t)

)
= 0.

The initial condition for ‖(A(t)Y (t)‖2g at t = 0 is ‖(A(0)Y (0)‖2g = ‖Y ‖2g, since

A0 = A(0) is an isometry (and Y (0) = Y ). Since ‖Y (t)‖2g also satisfies
d
dt
‖Y (t)‖2g = 0

and the initial condition ‖Y (0)‖2g = ‖Y ‖2g, we see that ‖A(t)Y (t)‖2g = ‖Y (t)‖2ĝ for all

t ∈ I (since the maps t 7→ ‖A(t)Y (t)‖2g, t 7→ ‖Y (t)‖2ĝ were a.c.). Since the parallel
translation P t

0(x) : T |x(0)M → T |x(t)M is a linear (isometric) isomorphism for every

t, this proves that A(t) : T |x(t)M → T |x̂(t)M̂ is an isometry for every t. Because
t 7→ det(A(t)) is a continuous map I → {−1,+1} and det(A(0)) = det(A0) = +1,
it follows that det(A(t)) = +1 for all t. Hence A(t) ∈ Q for all t.

Finally Eq. (15) is proved as follows. Consider B(t) := P t
0(x̂)◦A0 ◦P

0
t (x), which

is an a.c. curve in T ∗M ⊗ TM̂(or even in Q if A0 ∈ Q) along t 7→ (x(t), x̂(t)). Now
B(0) = A0 and, for X0 ∈ T |x(0)M , X(t) := P t

0(x)X0, we have

0 =∇̂ẋ(t)(P
t
0(x̂)(A0X0)) = ∇̂ ˙̂x(t)(B(t)X(t))

=
(
∇(ẋ, ˙̂x)(t)B(t)

)
X(t) +B(t)∇ẋ(t)X(t) =

(
∇(ẋ, ˙̂x)(t)B(t)

)
X(t),
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from which it follows, since X0 was arbitrary, that ∇(ẋ, ˙̂x)(t)B(t) = 0 for a.e. t ∈ I.
Thus t 7→ A(t) and t 7→ B(t) solve the same initial value problem and hence (being
a.c.) are equal A(t) = B(t) i.e.,

P t
0(x, x̂)A0 = P t

0(x̂) ◦ A0 ◦ P
0
t (x), ∀t ∈ I,

which is what we wished to prove.

Let T (M × M̂) ×M×M̂ (T ∗(M) ⊗ T (M̂)) be the total space of the product vec-

tor bundle πT (M×M̂ ) ×M×M̂ πT ∗(M)⊗T (M̂ ) over M × M̂ . We will define certain lift

operations corresponding to parallel translation of elements of T ∗M ⊗ TM̂ .

Definition 4.2 The No-Spinning lift is defined to be the map

LNS : T (M × M̂)×M×M̂

(
T ∗(M)⊗ T (M̂)

)
→ T

(
T ∗(M)⊗ T (M̂)

)
,

such that, if q = (x, x̂;A) ∈ T ∗(M) ⊗ T (M̂), X ∈ T |xM , X̂ ∈ T |x̂M̂ and t 7→
(x(t), x̂(t)) is a smooth curve on in M × M̂ defined on an open interval I ∋ 0 s.t.
ẋ(0) = X , ˙̂x(0) = X̂, then one has

LNS((X, X̂), q) =
d

dt

∣∣
0
P t
0(x, x̂)A ∈ T |q

(
T ∗(M)⊗ T (M̂)

)
. (16)

The smoothness of the map LNS can be easily seen by using fiber or local coor-
dinates (see Appendix A). We will usually use a notation LNS(X)|q for LNS(X, q)

when X ∈ T |(x,x̂)(M × M̂) and q = (x, x̂;A) ∈ T ∗(M) ⊗ T (M̂). In particular,

when X ∈ VF(M × M̂), we get a lifted vector field on T ∗(M) ⊗ T (M̂) given by
q 7→ LNS(X)|q. The smoothness of LNS(X) for X ∈ VF(M × M̂) follows imme-
diately from the smoothness of the map LNS. Notice that, by Proposition 4.1, the
No-Spinning lift map LNS restricts to

LNS : T (M × M̂)×M×M̂ Q→ TQ,

where T (M×M̂ )×M×M̂Q is the total space of the fiber product πT (M×M̂)×M×M̂ πQ.

We now define the distribution DNS on T ∗(M) ⊗ T (M̂) and Q capturing the
no-spinning condition (see Eq. (11)).

Definition 4.3 The No-Spinning (NS) distribution DNS on T ∗(M)⊗ T (M̂) is a 2n-
dimensional smooth distribution defined pointwise by

DNS|(x,x̂;A) = LNS(T |(x,x̂)(M × M̂))|(x,x̂;A), (17)

with (x, x̂;A) ∈ T ∗(M) ⊗ T (M̂). Since DNS|Q ⊂ T (Q) (by Proposition 4.1) this
distribution restricts to a 2n-dimensional smooth distribution on Q which we also denote
by DNS (instead of DNS|Q).

The No-Spinning lift LNS will also be called DNS-lift since it maps vectors of
M × M̂ to vectors in DNS.

The distribution DNS is smooth since LNS(X) is smooth for any smooth vector
field X ∈ VF(M × M̂). Also, the fact that the rank of DNS exactly is 2n follows
from the next proposition, which itself follows immediately from Eq. (16).
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Proposition 4.4 For every q = (x, x̂;A) ∈ T ∗M ⊗ TM̂ and X ∈ T |(x,x̂)M × M̂ ,
one has

(πT ∗M⊗TM̂)∗(LNS(X)|q) = X,

and in particular (πQ)∗(LNS(X)|q) = X if q ∈ Q.

Thus (πT ∗M⊗TM̂)∗ (resp. πQ) mapsDNS|(x,x̂;A) isomorphically onto T |(x,x̂)(M×M̂ )

for every (x, x̂;A) ∈ T ∗M ⊗ TM̂ (resp. (x, x̂;A) ∈ Q) and the inverse map of
(πT ∗M⊗TM̂)∗|DNS|q (resp. (πQ)∗|DNS|q) is X 7→ LNS(X)|q.

Remark 4.5 It should now be clear that an a.c. map t 7→ q(t) = (x(t), x̂(t);A(t))
in T ∗M ⊗ TM̂ or Q satisfies (11) if and only if q is tangent a.e. to DNS i.e., for a.e. t
it holds that q̇(t) ∈ DNS|q(t).

The following basic formula for the lift LNS will be useful.

Theorem 4.6 For X ∈ T |(x,x̂)(M × M̂) and A ∈ Γ(πT ∗M⊗TM̂), we have

LNS(X)|A|(x,x̂) = A∗(X)− ν
(
∇XA

)
|A|(x,x̂), (18)

where ν denotes the vertical derivative in the vector bundle πT ∗M⊗TM̂ and A∗ is the

map T (M × M̂) → T (T ∗M ⊗ TM̂).

Proof. Choose smooth paths c : [−1, 1] →M , ĉ : [−1, 1] → M̂ such that (ċ(0), ˙̂c(0)) =
X and take an arbitrary f ∈ C∞(T ∗M ⊗ TM̂). Define Ã(t) = P t

0(c, ĉ)A|(x,x̂). Then

LNS(X)|A|(x,x̂) =
˙̃A(0) = Ã∗(

∂

∂t
).

Also, it is known that (see e.g. [25], p.29)

P 0
t (c, ĉ)(A|(c(t),ĉ(t)) = A|(x,x̂) + t∇XA + t2F (t), (19)

with t 7→ F (t) a C∞-function ] − 1, 1[→ T ∗|xM ⊗ T |x̂M̂ . On the other hand, one
has

(
A∗(X)− Ã∗(

∂

∂t
)
)
f = lim

t→0

f(A|(c(t),ĉ(t)))− f(P t
0(c, ĉ)A|(x,x̂))

t

= lim
t→0

f(P t
0(c, ĉ)A|(x,x̂) + tP t

0(c, ĉ)∇XA+ t2P t
0(c, ĉ)F (t))− f(P t

0(c, ĉ)A|(x,x̂))

t

= lim
t→0

1

t

∫ t

0

d

ds
f
(
P t
0(c, ĉ)A|(x,x̂) + sP t

0(c, ĉ)∇XA+ s2P t
0(c, ĉ)F (t)

)
ds

=
d

ds

∣∣∣
s=0

f
(
A|(x,x̂) + s∇XA+ s2F (0)

)
= ν(∇XA)|Af.

We shall write Eq. (18) from now on with a compressed notation

LNS(X)|A = A∗(X)− ν(∇XA)|A.
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Remark 4.7 If A ∈ Γ(πT ∗(M)⊗T (M̂ )) and q := A|(x,x̂) ∈ Q (e.g. if A ∈ Γ(πQ)), then

on the right hand side of (18), both terms are elements of T |q(T
∗M ⊗ TM̂) but their

difference is actually an element of T |qQ.
Also, it is clear that Eq. (18) only indicates the decomposition of the map A∗ w.r.t

to the direct sum decomposition

T
(
T ∗M ⊗ TM̂

)
= DNS ⊕T ∗M⊗TM̂ V (πT ∗M⊗TM̂), (20)

when A ∈ Γ(πT ∗(M)⊗T (M̂ )) and

TQ = DNS ⊕Q V (πQ), (21)

when A ∈ Γ(πQ) respectively.

As a trivial corollary of the theorem, one gets the following.

Corollary 4.8 Suppose t 7→ (x(t), x̂(t);A(t)) is an a.c. curve on T ∗M ⊗ TM̂ or Q
defined on an open real interval I. Then, for a.e. t ∈ I,

LNS

(
ẋ(t), ˙̂x(t)

)∣∣
(x(t),x̂(t);A(t))

= Ȧ(t)− ν(∇(ẋ(t), ˙̂x(t))A)|(x(t),x̂(t);A(t)).

Hence t 7→ (x(t), x̂(t);A(t)) is tangent to DNS at t0 ∈ I if and only if ∇(ẋ(t0), ˙̂x(t0))
A = 0.

4.2 The Control System Associated to the No-Spinning Prob-

lem

We next parameterize the set of all absolutely continuous curves which are tangent
to the distribution DNS as a driftless control affine system.

An a.c. curve t 7→ q(t) = (x(t), x̂(t);A(t)) in Q describes a rolling motion of M
against M̂ without spinning if and only if q̇(t) = LNS(ẋ(t), ˙̂x(t))|q(t) for a.e. t. This
can be expressed equivalently by saying that q(·) is a solution of a control affine
driftless system

(Σ)NS





ẋ(t) = u(t),
˙̂x(t) = û(t),

∇(u(t),û(t))A(·) = 0

, for a.e. t ∈ [a, b], (22)

where the control (u, û) belongs to the set U([a, b],M)×U([a, b], M̂). The fact that
System (22) is driftless and control affine can also be seen from its representation in
local coordinates; see (90) in Appendix A.

4.3 The Analysis of the Control System (Σ)NS

In this subsection, we investigate the structure of the reachable sets associated to
(Σ)NS and relate them to the holonomy groups of the Riemannian manifolds (M, g)
and (M̂, ĝ).
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4.3.1 Description of the Orbits of (Σ)NS

We begin this section by recalling some standard definitions and introducing some
notation concerning the subsequent subsections. If (N, h) is a Riemannian manifold,
then the holonomy group H∇h

|y of it at y is defined by

H∇h

|y = {(P∇h

)10(γ) | γ ∈ Ωy(N)},

and it is a subgroup O(T |yN) of all h-orthogonal transformations of T |yN . If N is

oriented, then one can easily prove that H∇h

|y is actually a subgroup of SO(T |yN).
If F = (Yi)

n
i=1, n = dimN , is an orthonormal frame of N at y we write

H∇h

|F = {MF,F (A) | A ∈ H∇h

|y}.

This is a subgroup of SO(n), isomorphic (as Lie group) to H∇h

|y. Lie algebra of the

holonomy group H∇h

|y (resp. H∇h

|F ) will be denoted by h∇
h

|y (resp. h∇
h

|F ). The

Lie algebra h∇
h

|y is a Lie subalgebra of the Lie algebra so(T |yN) of h-antisymmetric

linear maps T |yN → T |yN while h∇
h

|F is a Lie subalgebra of so(n).

In this setting, we will be using the notations H|x = H∇|x and Ĥ|x̂ = H∇̂|x̂
respectively for the holonomy groups of (M, g) and (M̂, ĝ) at x ∈ M and x̂ ∈ M̂ .
If F and F̂ are respectively orthonormal frames of M and M̂ we use H|F and Ĥ|F̂
respectively to denote H∇|F and H∇̂|F̂ . The corresponding Lie algebras will be

written as h|x, ĥ|x̂, h|F , ĥ|F̂ .
We now describe the structure of the orbit ODNS

(A0) of DNS through a point
(x0, x̂0;A0) ∈ Q as follows.

Theorem 4.9 Let q0 = (x0, x̂0;A0) ∈ Q. Then the part of the orbit ODNS
(q0) of

DNS through q0 that lies in the πQ-fiber over (x0, x̂0) is given by

ODNS
(q0) ∩Q|(x0,x̂0) = {ĥ ◦ A0 ◦ h | ĥ ∈ Ĥ|x̂0, h ∈ H|−1

x0
} (23)

=: Ĥ|x̂0 ◦ A0 ◦H|−1
x0
,

and is an immersed submanifold of the fiber Q|(x0,x̂0) = π−1
Q (x0, x̂0).

Moreover, if F , F̂ are orthonormal frames at x0, x̂0, as above, then there is a
diffeomorphism (depending on F and F̂ )

ODNS
(q0) ∩Q|(x0,x̂0)

∼= Ĥ|F̂MF,F̂ (A0)H|−1
F , (24)

where the groups on the right hand side are Lie subgroups of SO(n).

In the previous statement, we have used the following notation. If G is a group
and S is a subset of G, then S−1 := {g−1 | g ∈ S}. Of course G−1 = G but, in Eq.
(23), it is somewhat more convenient to leave H|−1

x0
and not to replace it by H|x0.

Proof. Notice that q1 = (x0, x̂0;A1) ∈ ODNS
(q0) ∩ π

−1
Q (x0, x̂0) if and only if there is

a piecewise C1 path t 7→ q(t) = (x(t), x̂(t);A(t)), t ∈ [0, 1], with q(0) = q0, q(1) = q1
and tangent to DNS. This is, on the other hand, equivalent, by the definiton of DNS,
to the fact that A(t) = P t

0(x, x̂)A0. It is also clear that t 7→ (x(t), x̂(t)) is a piecewise
C1 loop of M × M̂ based at (x0, x̂0) i.e., it belongs to Ω(x0,x̂0)(M × M̂) which can
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be identified, in a natural way, with Ωx0(M)×Ωx̂0(M̂). By these remarks, Eq. (15)
and the above definition of the holonomy groups, we get

ODNS
(q0) ∩ π

−1
Q (x0, x̂0) = {P 1

0 (x)A0 | x ∈ Ω(x0,x̂0)(M × M̂)}

={P 1
0 (x, x̂)A0 | x ∈ Ωx0(M), x̂ ∈ Ωx̂0(M̂)}

={P 1
0 (x̂) ◦ A0 ◦ P

0
1 (x) | x ∈ Ωx0(M), x̂ ∈ Ωx̂0(M̂)} = Ĥ|x̂0 ◦ A0 ◦H|−1

x0
.

We next prove that Ĥ|x̂0 ◦A0 ◦H|−1
x0

is an immersed submanifold of Q|(x0,x̂0). Let

f : Ĥ|x̂0 ×H|x0 → Q|(x0,x̂0) be a map given by f(ĥ, h) := ĥ ◦A0 ◦ h
−1. The map f is

clearly smooth, when we consider H|x0 (resp. Ĥ|x̂0) as a Lie subgroup of SO(T |x0M)
(resp. SO(T |x̂0M̂)). Moreover, denote G = Ĥ|x̂0 × H|x0 and consider the smooth
(left) group actions µ : G×Q|(x0,x̂0) → Q|(x0,x̂0) and m : G×G→ G of G on Q|(x0,x̂0)

and itself given by µ((ĥ, h), A) = ĥ ◦ A ◦ h−1, m((ĥ, h), (k̂, k)) = (ĥk̂, hk). Then we
see that

µ((ĥ, h), f(k̂, k)) = ĥ ◦
(
k̂ ◦ A0 ◦ k

−1
)
◦ h−1

=(ĥk̂) ◦ A0 ◦ (hk)
−1 = f(ĥk̂, hk) = f

(
m((ĥ, h), (k̂, k))

)
,

which shows that f is G-equivariant map. Since G acts transitively (by the action
m) on itself, it follows that f has constant rank (see [15] Theorem 9.7).

Unfortunately f is not injective but there is an easy solution to this obstacle.
Notice that K := f−1(A0) is a closed subgroup of G, hence G/K (the right coset
space) is a smooth manifold and f induces a smooth map f : G/K → Q|(x0,x̂0),
which is still G-equivariant, when one uses the (left) G-action m on G/K induced
by m. Now f is injective and constant rank, hence an injective immersion (see [15]
Theorem 7.14) into Q|(x0,x̂0). But the image of f is exactly Ĥ|x̂0 ◦ A0 ◦H|−1

x0
.

Moreover, given orthonormal frames F and F̂ , we clearly see that

ĥ ◦ A0 ◦ h 7→ MF̂ ,F̂ (ĥ)MF,F̂ (A0)MF,F (h)

gives the desired diffeomorphism

Ĥ|x̂0 ◦ A0 ◦H|−1
x0

→ Ĥ|F̂MF,F̂ (A0)H|−1
F .

Corollary 4.10 If M and M̂ are simply-connected, then each πQ-fiber ODNS
(q0) ∩

Q|(x,x̂), with (x, x̂) ∈ M × M̂ , of any orbit ODNS
(q0), q0 = (x0, x̂0;A0), is a compact

connected embedded smooth submanifold Q. In particular, if a DNS-orbit is open in Q
then it is equal to Q.

Proof. Without loss of generality we may assume that (x, x̂) = (x0, x̂0). By Theorem
3.2.8 in [11] (in this relation, see also Appendix 5 in [13]), the simply connectedness
assumption implies that H|x0 and Ĥ|x̂0 are respectively (closed and hence) compact
connected Lie-subgroups of SO(T |x0M) and SO(T |x̂0M̂).

Now ODNS
(q0) ∩ Q|(x0,x̂0) is compact (as a subset of Q) and connected since it

is a continuous image (by the map f in the proof of Theorem 4.9) of the compact
connected set Ĥ|x̂0 ×H|x0, Finally notice that a compact immersed submanifold is
embedded.
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The last claim follows from the fact that an open orbit ODNS
(q0) has a open fiber

ODNS
(q0) ∩ Q|(x0,x̂0) in Q|(x0,x̂0). This fiber is also compact by what we just proved

and hence ODNS
(q0)∩Q|(x0,x̂0) = Q|(x0,x̂0) by connectedness of Q|(x0,x̂0). This clearly

implies that Q = ODNS
(q0).

The next corollary gives the infinitesimal version of Theorem 4.9.

Corollary 4.11 Let q0 = (x0, x̂0;A0) ∈ Q. Then

T |q0ODNS
(q0) ∩ V |q0(πQ) = ν({k̂ ◦ A0 −A0 ◦ k | k ∈ h|x0, k̂ ∈ ĥ|x̂0})|q0 (25)

=: ν(ĥ|x̂0 ◦ A0 −A0 ◦ h|x0)|q0,

where h|x0, ĥ|x̂0 are the Lie algebras of the holonomy groups H|x0, Ĥ|x̂0 of M, M̂ .

Proof. As in the previous proof, consider the map

f : Ĥ|x̂0 ×H|x0 → ODNS
(q0) ∩ π

−1
Q (x0, x̂0),

(ĥ, h) 7→ ĥ ◦A0 ◦ h
−1,

which is known to be a submersion by the previous considerations. We deduce that

f∗(ĥ× h) = T |q0(ODNS
(A0) ∩ π

−1
Q (x0, x̂0)) = T |q0ODNS

(q0) ∩ V |q0(πQ).

But it is obvious that f∗|ĥ×h(k̂, k) = ν(k̂ ◦ A0 − A0 ◦ k)|q0, which then proves the
claim.

Remark 4.12 By the previous corollary and the Ambrose-Singer holonomy theorem
(see [11], [13]), we have for q0 = (x0, x̂0;A0) ∈ Q,

T |q0ODNS(q0) ∩ V |q0(πQ) =
{
P 0
1 (ĉ)R̂|x̂(X̂, Ŷ )P

1
0 (ĉ)A0 − A0P

0
1 (c)R|x(X, Y )P

1
0 (c)

∣∣
x ∈M, x̂ ∈ M̂, X, Y ∈ T |xM, X̂, Ŷ ∈ T |x̂M̂,

c ∈ C1
pw([0, 1],M), c(0) = x0, c(1) = x,

ĉ ∈ C1
pw([0, 1], M̂), ĉ(0) = x̂0, ĉ(1) = x̂

}
,

where C1
pw([0, 1],M) (resp. C1

pw([0, 1], M̂)) is the set of piecewise continuously differ-

entiable maps [0, 1] →M (resp. [0, 1] → M̂).

Theorem 4.9 shows that, since M, M̂ are connected, all the πQ-fibers of the
reachable set ODNS

(q0) are diffeomorphic i.e.,

ODNS
(q0) ∩ π

−1
Q (x0, x̂0) ∼= ODNS

(q0) ∩ π
−1
Q (x1, x̂1),

for every (x1, x̂1) ∈M × M̂ . This follows from the fact that if points x, y ∈ M , then
(since M is connected) H|x and H|y are isomorphic, the same observation holding

in M̂ . We will now prove that the reachable set ODNS
(q0) has actually a bundle

structure over M × M̂ .

Proposition 4.13 For q0 = (x0, x̂0;A0) ∈ Q, denote πODNS
(q0) := πQ|ODNS

(q0).

Then πODNS
(q0) : ODNS

(q0) → M × M̂ is a smooth subbundle of πQ with typical fiber

Ĥ|x̂0 ◦ A0 ◦H|−1
x0

and ODNS
(q0) is a smooth immersed submanifold of Q.

27



Proof. The surjectivity of πODNS
(q0) onto M × M̂ follows immediately from the con-

nectivity of M , M̂ .
Choose local charts (φ, U) and (φ̂, Û) of M and M̂ around x0, x̂0 centered at x0,

x̂0 (i.e., φ(x0) = 0, φ̂(x̂0) = 0) and so that φ(U) and φ̂(Û) are convex. Then, define

τ(φ,φ̂) : π
−1
ODNS

(q0)
(U × Û) → (U × Û)×

(
Ĥ|x̂0 ◦ A0 ◦H|−1

x0

)

(x, x̂;A) 7→
(
(x, x̂), P 0

1

(
t 7→ (φ−1(tφ(x)), φ̂−1(tφ̂(x̂)))

)
A
)
,

where we notice that, since A = P 1
0 (c, ĉ)A0 = P 1

0 (ĉ) ◦ A0 ◦ P
0
1 (c) for some piecewise

C1 paths c : [0, 1] → M and ĉ : [0, 1] → M̂ with c(0) = x0, ĉ(0) = x̂0, one has

P 0
1

(
t 7→ (φ−1(tφ(x)), φ̂−1(tφ̂(x̂)))

)
A

= P 1
0

(
t 7→ φ̂−1(tφ̂(x̂))

)
◦ A ◦ P 0

1

(
t 7→ φ−1(tφ(x)))

)

= P 1
0

(
t 7→ φ̂−1(tφ̂(x̂))

)
◦ P 1

0 (ĉ) ◦ A0 ◦ P
0
1 (c) ◦ P

0
1

(
t 7→ φ−1(tφ(x)))

)
.

The concatenation of the path c and t 7→ φ−1(tφ(x)) is a piecewise C1 loop of
M based at x0 and the concatenation of ĉ and t 7→ φ̂−1(tφ̂(x̂)) is a piecewise C1

loop based of M̂ at x̂0. Thus P 0
1

(
t 7→ (φ−1(tφ(x)), φ̂−1(tφ̂(x̂)))

)
A is an element of

Ĥ|x̂0 ◦ A0 ◦H|−1
x0
.

It is clear that τ(φ,φ̂) is a smooth bijection onto (U × Û)×
(
Ĥ|x̂0 ◦A0 ◦H|−1

x0

)
. Its

inverse map is given by ψ(φ,φ̂),

ψ(φ,φ̂)((x, x̂), B) =
(
x, x̂;P 1

0

(
t 7→ (φ−1(tφ(x)), φ̂−1(tφ̂(x̂)))

)
B
)
,

which is clearly smooth into Q with image contained in ODNS
(q0) and hence it is

smooth into ODNS
(q0) by the basic properties of an orbit. This shows that ODNS

(q0)
is a smooth bundle.

Since the maps τ (φ,φ̂) defined on π−1
Q (U × Û) by the same formula as τ(φ,φ̂) are

diffeomorphisms (by an identical argument as above) onto (U × Û) × π−1
Q (x0, x̂0),

we see that πODNS
(q0) is a smooth (immersed) subbundle of πQ.

We may now also prove that πQ : Q → M × M̂ cannot be equipped with a
principal bundle structure leaving the distribution DNS invariant except in special
cases.

Theorem 4.14 Generically, in dimension n ≥ 3, πQ cannot be equipped with a
principal bundle structure which leaves DNS invariant.

More precisely, if n ≥ 3 and F, F̂ are oriented orthonormal frames of M and M̂ at
x0 and x̂0, respectively, and if H|F ⊂ SO(n), Ĥ|F̂ ⊂ SO(n) are the holonomy groups

with respect to these frames, then H|F ∩Ĥ |F̂ 6= {idRn} implies that there is no principal
bundle structure on πQ which leaves DNS invariant.

Especially this holds if M (resp. M̂) has full holonomy SO(n) and M̂ (resp. M) is
not flat.

Proof. Suppose µ : G × Q → Q is a left principal bundle structure for πQ leaving
DNS invariant. Notice that G is diffeomorphic to the πQ-fibers i.e., to SO(n) (but,
of course, does not need to be isomorphic to it as a Lie group). The fact that for
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all g ∈ G we have (µg)∗DNS ⊂ DNS is clearly equivalent to (µg)∗LNS(X, X̂)|q =

LNS(X, X̂)|µ(g,q) for all q = (x, x̂;A) ∈ Q and X ∈ T |xM , X̂ ∈ T |x̂M̂ . But this
means that for all g ∈ G, (x, x̂;A) ∈ Q and a.c. paths γ, γ̂ starting at x, x̂
respectively, we have µ(g, qDNS

(q)(t)) = qDNS
(µ(g, q))(t) where qDNS

(q) is the unique
solution to q̇(t) = LNS(γ̇(t), ˆ̇γ(t))|q(t), q(0) = q. Since we know that if q = (x, x̂;A) ∈
Q, then qDNS

(q)(t) = (γ(t), γ̂(t);P t
0(γ̂) ◦ A ◦ P 0

t (γ)) for all t, we get that

µ
(
g, P t

0(γ̂) ◦ A ◦ P 0
t (γ)

)
= P t

0(γ̂) ◦ µ(g, A) ◦ P
0
t (γ).

Let F , F̂ be chosen as in the statement above. Define (x0, x̂0;A0) ∈ Q by
A0 =

∑
i g(Xi, ·)X̂i and choose B ∈ H|F ∩ Ĥ|F̂ , B 6= idRn. Choose loops γ, γ̂ based

at x0, x̂0 such that MF,F (P
1
0 (γ)) = B, MF̂ ,F̂ (P

1
0 (γ̂)) = B. Since MF,F̂ (A0) = idRn

by the definition of A0, we have

MF,F̂ (A0) =idRn = BidRnB−1 = MF̂ ,F̂ (P
1
0 (γ̂))MF,F̂ (A0)MF,F (P

1
0 (γ))

−1

︸ ︷︷ ︸
=MF,F (P 0

1 (γ))

=MF,F̂ (P
1
0 (γ̂) ◦ A0 ◦ P

0
1 (γ))

i.e.,

A0 = P 1
0 (γ̂) ◦ A0 ◦ P

0
1 (γ).

Applying to this what was done above, we get

µ(g, A0) = µ(g, P 1
0 (γ̂) ◦ A0 ◦ P

0
1 (γ)) = P 1

0 (γ̂) ◦ µ(g, A0) ◦ P
0
1 (γ), ∀g ∈ G

i.e.,

MF,F̂ (µ(g, A0)) = BMF,F̂ (µ(g, A0))B
−1, g ∈ G.

But µ(G,A0) = π−1
Q (x0, x̂0) whence MF,F̂ (µ(G,A0)) = SO(n) and thus we have

found a B ∈ SO(n) which is not the identity idRn such that C = BCB−1 for all
C ∈ SO(n) i.e., B belongs to the center of SO(n). But in dimension n ≥ 3 the
center of SO(n) is {idRn}, contradicting the fact that B 6= idRn. This contradiction
shows that the existence of a principal bundle structure µ on πQ that preserves DNS

is impossible in this case.

4.3.2 Consequences for Controllability

From the previous characterizations of the reachable set of (Σ)NS, we now derive
consequences for the controllability of the control system (Σ)NS.

We start with the following remark.

Remark 4.15 All the results, except Theorem 4.14, of the previous section can ob-
viously be formulated in verbatim in the space T ∗M ⊗ TM̂ instead of Q (i.e., we may
replace Q by T ∗M ⊗ TM̂ everywhere) and the statements hold true in this setting.
However, Theorem 4.9 (formulated in T ∗M ⊗TM̂) then implies each orbit ODNS

(q0) of

DNS in T ∗M ⊗ TM̂ , q0 = (x0, x̂;A0) ∈ T ∗M ⊗ TM̂ , can have dimension of at most
2n + dimH|x0 + dim Ĥ|x̂0 ≤ n2 + n. Since the dimension of T ∗M ⊗ TM̂ is n2 + 2n,
the orbit ODNS

(q0) has a codimension of at least n. This shows that DNS (or the related

control problem) is never completely controllable in T ∗M ⊗ TM̂ .
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Theorem 4.9 states that the controllability of DNS is completely determined by
the holonomy groups of M and M̂ . The next theorem highlights that fact at the
Lie algebraic level.

Theorem 4.16 The control system (Σ)NS is completely controllable if and only if,
for every A ∈ SO(n), the following holds:

h+ A−1ĥA = so(n), (26)

where h and ĥ are respectively the Lie subalgebras of so(n) isomorphic (as Lie algebras)
to the holonomy Lie algebras of ∇ and ∇̂.

Proof. Clearly, an orbit ODNS
(q0) = Q, where (x0, x̂0;A0) = q0 ∈ Q, is an open

subset of Q if and only if T |qODNS
(q0) = T |qQ for some (and hence every) q ∈

ODNS
(q0). Thus the decomposition given by Eq. (21) implies that an orbit ODNS

(q0)
is open in Q if and only if V |q(πQ) ⊂ T |qODNS

(q0) for some q ∈ ODNS
(q0).

By connectedness of Q, we get that DNS is controllable i.e., ODNS
(q0) = Q for

some (and hence every) (x0; x̂0;A0) = q0 ∈ Q if and only if every orbit ODNS
(q),

(x, x̂;A) = q ∈ Q is open in Q.
From now on, fix (x0, x̂0) ∈ M × M̂ . Proposition 4.13 implies that every DNS

orbit intersects every πQ-fiber. Hence DNS is controllable if and only if V |q(πQ) ⊂
T |qODNS

(q) for every q = (x0, x̂0;A) ∈ Q|(x0,x̂0). By Corollary 4.11, this condition is
equivalent to the condition that, for every q = (x0, x̂0;A) ∈ Q|(x0,x̂0),

ν(ĥ|x̂0 ◦ A− A ◦ h|x0) = V |q(πQ).

Next, by Proposition 3.7, one deduces that, for every q ∈ Q,

V |q(πQ) = ν(A(so(T |xM)))|q

and thus we conclude that DNS is controllable if and only if, for all q = (x0, x̂0;A) ∈
Q|(x0,x̂0),

A−1 ◦ ĥ|x̂0 ◦ A− h|x0 = so(T |xM).

Choosing arbitrary orthonormal local frames F and F̂ of M and M̂ at x0 and
x̂0, respectively, we see that the above condition is equivalent to

MF,F̂ (A)
−1ĥ|F̂MF,F̂ (A)− h|F = so(n), ∀A ∈ Q|(x0,x̂0),

where
h|F = {MF (k) | k ∈ h}, ĥ|F̂ = {MF̂ (k̂) | k̂ ∈ ĥ},

are the holonomy Lie algebras as subalgebras of so(n) w.r.t. the frames F and F̂
respectively.

The proof is finished by noticing that {MF,F̂ (A) | A ∈ Q|(x0,x̂0)} = SO(n) and

that the orthonormal frames F , F̂ were arbitrary chosen.
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Theorem 4.17 Suppose M, M̂ are simply connected. Then (Σ)NS is completely
controllable if and only if

h+ ĥ = so(n) (27)

where h,ĥ are the Lie subalgebra of so(n) isomorphic (as Lie algebras) to the holonomy
Lie algebras of ∇ and ∇̂ respectively.

Proof. By Theorem 4.16, necessity of the condition is obvious.
Conversely suppose that the condition in Eq. (27) holds. This condition implies

that for (x0, x̂0) ∈M × M̂ there is an q0 = (x0, x̂0;A0) ∈ Q|(x0,x̂0) such that

A−1
0 ◦ ĥ|x̂0 ◦ A0 − h|x0 = so(T |x0M).

By Proposition 3.7 and Corollary 4.11 this means that T |q0ODNS
(q0) ∩ V |q0(πQ) =

V |q0(πQ) and hence T |q0ODNS
(q0) = T |q0Q by Eq. (21) which implies that ODNS

(q0)
is open in Q. Corollary 4.10 then implies thatODNS

(q0) = Q i.e., (Σ)NS is completely
controllable.

There is a complete classification of holonomy groups of Riemannian manifolds
by Cartan (for symmetric spaces, see [9]) and Berger (for non-symmetric spaces, see
[11]). Hence the above theorems reduce the question of complete controllability of
(Σ)NS to an essentially linear algebraic problem.

For instance, in the case where both manifolds are non-symmetric, simply con-
nected and irreducible, we get the following proposition.

Theorem 4.18 Assume that the manifolds M and M̂ are complete non-symmetric,
simply connected, irreducible and n 6= 8. Then, the control system (Σ)NS is completely
controllable if and only if either H or Ĥ is equal to SO(n) (w.r.t some orthonormal
frames).

Proof. Suppose first that H|F = SO(n). Choose any q0 = (x0, x̂0;A0) ∈ Q and
define F̂ = A0F (which is an orthonormal frame of M̂ at x̂0 since A0 ∈ Q) and
compute, noticing that MF,F̂ (A0) = idRn ,

π−1
Q (x0, x̂0) ∩ ODNS

(q0) ∼= Ĥ|F̂H|F = H|F̂SO(n) = SO(n),

where the first diffeomorphism comes from Theorem 4.9. But the πQ-fibers of Q
are diffeomorphic to SO(n) and hence π−1

Q (x0, x̂0) ∩ ODNS
(q0) = π−1

Q (x0, x̂0). By

connectedness of M, M̂ it follows that Q = ODNS
(q0).

Assume now that both holonomy groups are different from SO(n). We also
remark that if one holonomy group is included in the other one, then complete
controllability cannot hold according to Eq. (26). Using Berger’s list, see [11], and
taking into account that

Sp(m) ⊂ SU(2m) ⊂ U(2m) ⊂ SO(4m)

where n = 4m, it only remains to study the following case: n = 4m with m ≥ 2,
one group is equal to U(2m) and the other one to Sp(m) · Sp(1). Recall that

dim
(
U(2m)

(
Sp(m) · Sp(1)

)
︸ ︷︷ ︸

U(2m)·Sp(1)

)
≤ dimU(2m) + dim Sp(1) = 4m2 + 3.

31



On the other hand dimSO(4m) = 8m2 − 2m which is always strictly larger than
4m2 + 3 for all m ≥ 2.

Remark 4.19 If n = 8, one is left with the study of the case where one of the
holonomy groups is equal to Spin(7) and the other one is either equal to U(4) or to
Sp(2) · Sp(1).

As a corollary to Theorem 4.9 and Theorem 4.16, we get the following result of
non controllability in the case where both manifolds are reducible.

Proposition 4.20 Suppose that both (M, g) and (M̂, ĝ) are reducible Riemannian
manifolds. Then (Σ)NS is not completely controllable.

Proof. We need to show that, under the assumptions, there exists q0 = (x0; x̂0;A0) ∈
Q so that the orbit ODNS

(q0) is a proper subset of Q.

Fix x0 ∈ M and x̂0 ∈ M̂ . Since (M, g) and (M̂, ĝ) are reducible, there exist
subspaces V1, V2 ⊂ T |x0M and V̂1, V̂2 ⊂ T |x̂0M̂ , with ni = dim(Vi) ≥ 1, n̂i =
dim(V̂i) ≥ 1 and such that H|x0(Vi) ⊂ Vi, Ĥ|x̂0(V̂i) ⊂ V̂i, for i = 1, 2.

Let X1
1 , . . . , X

1
n1

and X2
1 , . . . , X

2
n2

be an orthonormal basis of V1 and an orthonor-

mal basis of V2 respectively and, similarly, let X̂1
1 , . . . , X̂

1
n̂1

and X̂2
1 , . . . , X̂

2
n̂2

be an

orthonormal basis of V̂1 and an orthonormal basis of V̂2 respectively . Here, Vi and V̂i,
i = 1, 2, are equipped with the metrics induced by g|x0 and ĝ|x̂0 respectively. These
vectors form orthonormal frames F and F̂ of M and M̂ at x0 and x̂0 respectively.

It follows from the Ambrose-Singer Holonomy Theorem (cf. [11] Theorem 2.4.3,
[13] Theorem 8.1) that the Lie algebras h|F and ĥ|F̂ of H|F and Ĥ|F̂ respectively
split into direct sums of Lie-subalgebras,

h|F = h1 ⊕ h2 ⊂ so(n1)⊕ so(n2),

ĥ|F̂ = ĥ1 ⊕ ĥ2 ⊂ so(n̂1)⊕ so(n̂2).

Without loss of generality, we assume that n̂1 ≥ n1.
Finally, we define the linear map A0 : T |x0M → T |x̂0M̂ by

A0(X
1
j ) = X̂1

j , j = 1, . . . , n1, A0(X
2
j ) = X̂1

n1+j , j = 1, . . . , n̂1 − n1,

and
A0(X

2
j ) = X̂2

j−(n̂1−n1)
, j = n̂1 − n1 + 1, . . . , n2.

Thus, we have MF,F̂ (A0) = idRn and hence

h|F +MF,F̂ (A0)
−1ĥ|F̂MF,F̂ (A0) = h1 ⊕ h2 + ĥ1 ⊕ ĥ2.

The latter linear vector space is necessarily a proper subset of so(n). In fact, if Eij

is the n×n-matrix with 1 at the i-th row, j-th column and zero otherwise, then the
above linear space does not contain En1−E1n ∈ so(n). Therefore, the claim follows
from Theorem 4.16.

Corollary 4.21 Suppose that (M, g) and (M̂, ĝ) are equal to the Riemannian prod-
ucts (M1×M2, g1⊕g2) and (M̂1×M̂2, ĝ1⊕ ĝ2), with dimMi ≥ 1, dim M̂i ≥ 1, i = 1, 2
respectively. Then, (Σ)NS is not controllable on Q.
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Proof. From the basic result on holonomy groups, we get the following decomposi-
tionH|x = H∇g1 |x1×H

∇g2 |x2, where x = (x1, x2) ∈M , and Ĥ|x = H∇ĝ1 |x̂1×H
∇ĝ2 |x̂2,

where x̂ = (x̂1, x̂2) ∈ M̂ . This shows that the actions of H and Ĥ on T |xM , T |x̂M̂ ,
respectively, are both reducible. Thus, the claim follows from the previous proposi-
tion.

4.4 Computations of Lie Brackets

In this section, we compute commutators of the vectors fields of T ∗M ⊗ TM̂ and
Q with respect to the splitting of T (T ∗M ⊗ TM̂) (resp. TQ) as a direct sum
DNS ⊕ V (πT ∗M⊗TM̂) (resp. DNS ⊕ V (πQ)) as given in Remark 4.7 above. The
main results are Propositions 4.25, 4.25 and 4.28. These computations will serve as
preliminaries for the Lie bracket computations relative to the rolling distribution DR

studied in the next section. It is convenient to make the computations in T ∗M⊗TM̂
and then to simply restrict the results to Q.

We will now introduce some notations that will be used in the sequel. If T ∈
C∞(πT ∗M⊗TM̂ , πT (M×M̂)) (resp. T ∈ C∞(πQ, πT (M×M̂))), we will denote by LNS(T (·))

the vector field on T ∗M ⊗ TM̂ (resp. Q) defined by

(x, x̂;A) 7→ LNS(T (A))|(x,x̂;A).

If U ∈ C∞(πT ∗M⊗TM̂ , πT ∗M⊗TM̂) (resp. U ∈ C∞(πQ, πT ∗M⊗TM̂) such that U(A) ∈
A(so(T |xM)) for all (x, x̂;A) ∈ Q, see Proposition 3.7) we will use ν(U(·)) to denote
the (vertical) vector field on T ∗M ⊗ TM̂ (resp. Q) defined by

(x, x̂;A) 7→ ν(U(A))|(x,x̂;A).

Next, for (x0, x̂0;A0) ∈ T ∗M ⊗ TM̂ and

X ∈ T |(x0,x̂0)(M × M̂), U ∈ C∞(πT ∗M⊗TM̂ , πT ∗M⊗TM̂),

(resp. (x0, x̂0;A0) ∈ Q and U ∈ C∞(πQ, πT ∗M⊗TM̂) such that U(A) ∈ A(so(T |xM))

for all (x, x̂;A) ∈ Q), we define LNS(X)|(x0,x̂0;A0)U ∈ T ∗M ⊗ TM̂ by

LNS(X)|(x0,x̂0;A0)U = ∇X(U(Ã))− ν(∇XÃ)|(x0,x̂0;A0)U, (28)

where Ã is any local smooth πT ∗M⊗TM̂ -section (resp. πQ-section) such that Ã|(x0,x̂0) =

A0 and we have written U(Ã) for the composition U ◦ Ã. We will use this latter
compactified notation also in the sequel. It is easy to check that Formula (28) is
well defined (i.e., does not depend on the choice of the extension Ã).

We next have the following simple proposition.

Proposition 4.22 Let X ∈ VF(T ∗M⊗TM̂). Then, there are unique smooth bundle
maps T ∈ C∞(πT ∗M⊗TM̂ , πT (M×M̂)), U ∈ C∞(πT ∗M⊗TM̂ , πT ∗M⊗TM̂) such that

X |(x,x̂;A) = LNS(T (A))|(x,x̂;A) + ν(U(A))|(x,x̂;A), (x, x̂;A) ∈ T ∗M ⊗ TM̂. (29)

Conversely, the smooth bundle maps T and U defined previously determine a unique
smooth vector field on X on T ∗M ⊗ TM̂ by the above formula.

The same result also holds on Q by assuming that

X ∈ VF(Q), T ∈ C∞(πQ, πT (M×M̂)), U ∈ C∞(πQ, πT ∗M⊗TM̂),

such that U(A) ∈ A(so(T |xM)) for all (x, x̂;A) ∈ Q (see Proposition 3.7).
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Proof. First of all, there are unique smooth vector fields X h and X v such that

X h|(x,x̂;A) ∈ DNS|(x,x̂;A), X
v|(x,x̂;A) ∈ V |(x,x̂;A)(πT ∗M⊗TM̂),

for all (x, x̂;A) ∈ T ∗M ⊗ TM̂ and X = X h + X v. Then, we define

T (A) = (πT ∗M⊗TM̂)∗X
h|(x,x̂;A), U(A) = ν|−1

(x,x̂;A)(X
v|(x,x̂;A)),

where ν|(x,x̂;A) is the isomorphism

T ∗M ⊗ TM̂ |(x,x̂;A) → V |(x,x̂;A)(πT ∗M⊗TM̂); B 7→ ν(B)|(x,x̂;A).

In the case of Q this last isomorphism is replaced by the isomorphism

A(so(T |xM)) → V |(x,x̂;A)(πQ); B 7→ ν(B)|(x,x̂;A).

This clearly proves the claims.

The next lemma will be useful in the subsequent calculations.

Lemma 4.23 Let (x, x̂;A) ∈ T ∗M ⊗ TM̂ (resp. (x, x̂;A) ∈ Q). Then there exists
a local πT ∗M⊗TM̂ -section (resp. πQ-section) Ã around (x, x̂) such that Ã|(x,x̂) = A and

∇XÃ = 0 for all X ∈ T |(x,x̂)(M × M̂).

Proof. Let U be an open neighborhood of the origin of T |(x,x̂)(M × M̂), where the

g-exponential map exp : U → M × M̂ is a diffeomorphism onto its image. Parallel
translate A along geodesics t 7→ exp(tX), X ∈ U , to get a local section Ã of
T ∗(M)⊗ T (M̂) in a neighborhood of x = (x, x̂). More explicitly, one has

Ã|y = P 1
0

(
t 7→ exp

(
t(expx)

−1(y)
))
A,

for y ∈ U . If (x, x̂;A) ∈ Q, this actually provides a local πQ-section. Moreover, we

clearly have ∇XÃ = 0 for all X ∈ T |(x,x̂)(M × M̂).

Notice that the choice of Ã corresponding to (x, x̂;A) is, of course, not unique.

Lemma 4.24 Let Ã be a smooth local πT ∗M⊗TM̂ -section and Ã|(x,x̂) = A. Then, for

any vector fields X, Y ∈ VF(M × M̂) such that X|(x,x̂) = (X, X̂), Y |(x,x̂) = (Y, Ŷ ),
one has

([∇X ,∇Y ]Ã)|(x,x̂) = −AR(X, Y ) + R̂(X̂, Ŷ )A + (∇[X,Y ]Ã)|(x,x̂). (30)

Here [∇X ,∇Y ] is given by ∇X ◦ ∇Y −∇Y ◦ ∇X and is an R-linear map on the set of
local sections of πT ∗M⊗TM̂ around (x, x̂).
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Proof. For an arbitrary Z ∈ VF(M), which we may interpret as a vector field on
M × M̂ as usual, we calculate

([∇X ,∇Y ]Ã)Z = ∇X((∇Y Ã)Z)− (∇Y Ã)(∇XZ)−∇Y ((∇XÃ)Z) + (∇XÃ)(∇YZ)

=∇X(∇Y (ÃZ)− Ã∇Y Z)− (∇Y Ã)(∇XZ)

−∇Y (∇X(ÃZ)− Ã∇XZ) + (∇XÃ)(∇Y Z)

=[∇X ,∇Y ](ÃZ)− (∇XÃ)(∇YZ)− Ã∇X(∇Y Z)− (∇Y Ã)(∇XZ)

+ (∇Y Ã)(∇XZ) + Ã∇Y (∇XZ) + (∇XÃ)(∇Y Z)

=[∇X ,∇Y ](ÃZ) + Ã[∇Y ,∇X ]Z

=R(X, Y )(ÃZ) +∇[X,Y ](ÃZ) + Ã(R(Y ,X)Z) + Ã∇[Y ,X]Z

=− Ã(R(X, Y )Z) +R(X, Y )(ÃZ) + (∇[X,Y ]Ã)Z,

and evaluating the above quantity at (x, x̂), we get

([∇X ,∇Y ]Ã)Z|(x,x̂) = −A(R(X, Y )Z) + R̂(X̂, Ŷ )(AZ) + (∇[X,Y ]Ã)Z|(x,x̂).

Since the value Z|x can be chosen arbitrarily in T |xM , the claim follows.

Proposition 4.25 Let T = (T, T̂ ), S = (S, Ŝ) ∈ C∞(πT ∗M⊗TM̂ , πT (M×M̂)) and

q = (x, x̂;A) ∈ T ∗M ⊗ TM̂ . Then

[LNS(T (·)),LNS(S(·))]|q =LNS([T (Ã), S(Ã)])|q

+ ν
(
AR(T (A), S(A))− R̂(T̂ (A), Ŝ(A))A

)
|q, (31)

where Ã is chosen to be any local section as in Lemma 4.23 corresponding to q =
(x, x̂;A). The same result also holds on Q by assuming that T , S ∈ C∞(πQ, πT (M×M̂)).

Proof. Let f ∈ C∞(T ∗M ⊗TM̂). By using the definition of LNS and ν, one obtains
that

LNS(T (A))|q(LNS(S(·)(f))

= T (A)(LNS(S(Ã))|Ã(f))−
d

dt

∣∣
0
LNS(S(A+ t∇T (A)Ã))|A+t∇

T (A)Ã
(f)

= T (A)
(
S(Ã)(f(Ã))−

d

dt

∣∣
0
f(Ã+ t∇S(Ã)Ã)

)

−
d

dt

∣∣
0
S(A+ t∇T (A)Ã)(f(Ã+ t∇T (Ã)Ã))

+
∂2

∂t∂s

∣∣
0
f
(
A+ t∇T (A)Ã+ s∇S(A+t∇

T (A)Ã)(Ã+ t∇T (Ã)Ã))
)
.

Here, we used the fact that ∇XÃ = 0 for all X ∈ T |(x,x̂)(M × M̂) and the fact

that ∂
∂t

and T (Ã) commute (as the obvious vector fields on M × M̂ ×R with points
(x, x̂, t)) to write the last expression in the form

T (A)(S(Ã)(f(Ã))
)
−

d

dt

∣∣
0
T (A)(f(Ã+ t∇S(Ã)Ã))−

d

dt

∣∣
0
S(A)(f(Ã+ t∇T (Ã)Ã))

+
∂2

∂t∂s

∣∣
0
f
(
A+ st∇S(A)(∇T (Ã)Ã))

)
.
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By interchanging the roles of T and S and using the definition of commutator of
vector fields, we get from this

[LNS(T (·)),LNS(S(·))]|q(f)

=[T (Ã), S(Ã)]|q(f(Ã)) +
∂2

∂t∂s

∣∣
0
f
(
A + st∇S(A)(∇T (Ã)Ã))

)

−
∂2

∂t∂s

∣∣
0
f
(
A+ st∇T (A)(∇S(Ã)Ã))

)

=[T (Ã), S(Ã)]|q(f(Ã)) +
d

dt

∣∣
0
ν(t∇S(A)(∇T (Ã)Ã))|q(f)

−
d

dt

∣∣
0
ν(t∇T (A)(∇S(Ã)Ã))|q(f)

=[T (Ã), S(Ã)]|q(f(Ã)) + ν(∇S(A)(∇T (Ã)Ã))|q(f)− ν(∇T (A)(∇S(Ã)Ã))|q(f)

=[T (Ã), S(Ã)]|q(f(Ã))− ν([∇T (Ã),∇S(Ã)]Ã))|q(f).

Finally, using Lemma 4.24, we get that the last line is equal to

[T (Ã), S(Ã)]|(x,x̂)(f(Ã))

− ν(∇[T (Ã),S(Ã)]|(x,x̂)Ã−AR(T (A), S(A)) + R̂(T̂ (A), Ŝ(A))A)|q(f),

from which the claim follows by using the definition of LNS and the linearity of
ν(·)|q.

Notice that the expression LNS([T (Ã), S(Ã)])|q in the statement of the propo-
sition only depends on A but not on the choice of the local smooth section Ã as
long as it has the properties: Ã|(x,x̂) = A and ∇XÃ = 0 ∀X ∈ T |(x,x̂)(M × M̂) as in
Lemma 4.23.

Proposition 4.26 Consider

T ∈ C∞(πT ∗M⊗TM̂ , πT (M×M)), U ∈ C∞(πT ∗M⊗TM̂ , πT ∗M⊗TM̂),

and q = (x, x̂;A) ∈ T ∗M ⊗ TM̂ . Then

[LNS(T (·)), ν(U(·))]|q =− LNS(ν(U(A))|qT )
∣∣
q
+ ν

(
∇T (A)(U(Ã))

)∣∣
q
, (32)

where Ã is chosen to be any local section as in Lemma 4.23 corresponding to q =
(x, x̂;A). The same result also holds on Q by assuming that

T ∈ C∞(πQ, πT (M×M̂)), U ∈ C∞(πQ, πT ∗M⊗TM̂),

such that U(A) ∈ A(so(T |xM)) for all (x, x̂;A) ∈ Q.

Proof. Let f ∈ C∞(T ∗M ⊗ TM̂). Then LNS(T (A))|q
(
ν(U(·))(f)

)
is equal to

T (A)
(
ν(U(Ã))

∣∣
Ã
(f)

)
−

d

dt

∣∣
0
ν(U(A + t∇T (A)Ã))

∣∣
A+t∇

T (A)Ã
(f),
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which is equal to T (A)
(
ν(U(Ã))

∣∣
Ã
(f)

)
once we recall that ∇T (A)Ã = 0. In addition,

one has

ν(U(A))|q
(
LNS(T (·))(f)

)
=

d

dt

∣∣
0
LNS(T (A+ tU(A))

∣∣
A+tU(A)

(f)

=
d

dt

∣∣
0
T (A + tU(A))

(
f(Ã+ tU(Ã))

)

−
∂2

∂s∂t

∣∣
0
f
(
A + tU(A) + s∇T (A+tU(A))(Ã+ tU(Ã))

)

=
d

dt

∣∣
0
T (A+ tU(A))

(
f(Ã+ tU(Ã))

)
−

∂2

∂s∂t

∣∣
0
f
(
A+ tU(A) + st∇T (A+tU(A))(U(Ã))

)
,

since ∇T (A+tU(A))Ã = 0.
We next simplify the first term on the last line to get

d

dt

∣∣
0
T (A + tU(A))

(
f(Ã+ tU(Ã))

)

= DνT (A)(U(A))
(
f(Ã)

)
+ T (A)

(
ν(U(Ã))|Ã(f)

)
,

and then, for the second term, one obtains

∂2

∂s∂t

∣∣
0
f
(
A+ tU(A) + st∇T (A+tU(A))(U(Ã))

)

=
d

ds

∣∣
0
Dνf(A)

(
U(A) + s∇T (A)(U(Ã))

)
= Dνf(A)

(
∇T (A)(U(Ã))

)
.

Therefore one deduces

[LNS(T (·)), ν(U(·))]|q(f) = −DνT (A)(U(A))
(
f(Ã)

)
+Dνf(A)

(
∇T (A)(U(Ã))

)

=− Ã∗(ν(U(A))|qT )(f) + ν
(
∇T (A)(U(Ã))

)∣∣
q
(f)

=− LNS(ν(U(A))|qT )|q(f) + ν
(
∇T (A)(U(Ã))

)∣∣
q
(f),

where the last line follows from the definition of LNS and the fact that
∇ν(U(A))|qT Ã = 0. This completes the proof.

Remark 4.27 Notice that the term ν
(
∇T (A)(U(Ã))

)∣∣
q
in the statement of the propo-

sition only depends on A but not on the choice of the local smooth section Ã as long as
it has the properties: Ã|(x,x̂) = A and ∇XÃ = 0 ∀X ∈ T |(x,x̂)(M × M̂) as in Lemma

4.23. There is an alternative way of seeing this: If f ∈ C∞(T ∗M ⊗ TM̂), then from
the definition of LNS, one has

ν
(
∇T (A)(U(Ã))

)∣∣
U(A)

(f) = −LNS(T (A))|U(A)(f) + T (A)
(
f(U(Ã))

)

=− LNS(T (A))|U(A)(f) + Ã∗(T (A))
(
f ◦ U)

)

=− LNS(T (A))|U(A)(f) + LNS(T (A))
∣∣
q
(f ◦ U),

where the right hand side only depends on A and not on the choice of the local section
Ã as explained above. Notice also that the map v 7→ ν(v)|u is always injective on any
vector bundle.
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From the above calculation, we actually get the following formula

ν
(
∇T (A)(U(Ã))

)∣∣
U(A)

= −LNS(T (A))|U(A) + U∗(LNS(T (A))
∣∣
q
). (33)

Unfortunately, this is not much use to simplify Formula (32) since there one has to
calculate ν

(
∇T (A)(U(Ã))

)∣∣
(x,x̂;A)

but not ν
(
∇T (A)(U(Ã))

)∣∣
U(A)

.

By using the notation introduced at the beginning of this section, the result of
the previous proposition can be written into the form (q = (x, x̂;A))

[LNS(T (·)), ν(U(·))]|q = ν
(
LNS(T (A))|qU)

)∣∣
q
− LNS(ν(U(A))|qT )

∣∣
q
, (34)

and this provides us with another argument for seeing the fact explained in the
previous remark.

Finally, we derive a formula for the commutators of two vertical vector fields.

Proposition 4.28 Let U, V ∈ C∞(πT ∗M⊗TM̂ , πT ∗M⊗TM̂) and q = (x, x̂;A) ∈ T ∗M⊗

TM̂ . Then

[ν(U(·)), ν(V (·))]|q =ν
(
ν(U(A))|qV − ν(V (A))|qU

)
|q. (35)

The same result also holds on Q by assuming that U, V ∈ C∞(πQ, πT ∗M⊗TM̂) such that
U(A), V (A) ∈ A(so(T |xM)) for all (x, x̂;A) ∈ Q.

Proof. Let f ∈ C∞(T ∗M ⊗ TM̂). Then,

ν(U(A))|q
(
ν(V (·))(f)

)
=

d

dt

∣∣
0
ν(V (A+ tU(A))|A+tU(A)(f)

=
∂2

∂t∂s

∣∣
0
f(A+ tU(A) + sV (A + tU(A))) =

d

ds

∣∣
0
Dν(f)(A)(V (A+ tU(A))

=Dν(f)(A)(ν(U(A))|qV ) =
d

dt

∣∣
0
f(A+ tν(U(A))|qV ) = ν(ν(U(A))|qV )|q(f),

from which the result follows.

5 Study of the Rolling problem (R)

5.1 The Rolling Distribution DR

In this section, we investigate the rolling problem as a control system (Σ)R associated
to a subdistribution DR of DNS defined as follows.

Recall that the no-spinning distribution DNS defined on Q models the fact that
the admissible curves t 7→ q(t) = (x(t), x̂(t);A(t)) inscribed on Q, i.e., the curves
describing the motion of M against M̂ , must verify the no-spinning condition (11).
The latter is equivalent to the condition that t 7→ q(t) is tangent (a.e.) to DNS,
q̇(t) = LNS

(
ẋ(t), ˙̂x(t)

)∣∣
q(t)

for a.e. t. As regards the rolling of one manifold onto

another one, the admissible curve q(·) must also verify the no-slipping condition (13)
that we recall next. Since q(·) is tangent to DNS, we have A(t) = P t

0(x, x̂)A(0), and
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hence the no-slipping condition (13) writes A(t)ẋ(t) = ˙̂x(t). It forces one to have,
for a.e. t,

q̇(t) = LNS

(
ẋ(t), A(t)ẋ(t)

)∣∣
q(t)
.

Evaluating at t = 0 and noticing that if q0 := q(0), with q0 = (x0, x̂0;A0) ∈ Q and
ẋ(0) =: X ∈ T |x0M are arbitrary, we get

q̇(0) = LNS(X,A0X)|q0.

This motivates the following definition.

Definition 5.1 For q = (x, x̂;A) ∈ Q, we define the Rolling lift or DR-lift as a
bijective linear map

LR : T |xM ×Q|(x,x̂) → T |qQ,

given by

LR(X, q) = LNS(X,AX)|q. (36)

This map naturally induces LR : VF(M) → VF(Q) as follows. For X ∈ VF(M)
we define LR(X), the Rolling lifted vector field associated to X , by

LR(X) : Q→ T (Q);

q 7→ LR(X)|q,

where LR(X)|q := LR(X, q).
The Rolling lift map LR allows one to construct a distribution on Q (see [6])

reflecting both of the rolling restrictions of motion defined by the no-spinning con-
dition, Eq. (11), and the no-slipping condition, Eq. (13).

Definition 5.2 The rolling distribution DR on Q is the n-dimensional smooth distri-
bution defined pointwise by

DR|(x,x̂;A) = LR(T |xM)|(x,x̂;A), (37)

for (x, x̂;A) ∈ Q.

The Rolling lift LR will also be called DR-lift since it maps vectors of M to
vectors in DR. Thus an absolutely continuous curve t 7→ q(t) = (x(t), x̂(t);A(t)) in
Q is a rolling curve if and only if it is a.e. tangent to DR i.e., q̇(t) ∈ DR|q(t) for a.e.
t or, equivalently, if q̇(t) = LR(ẋ(t))|q(t) for a.e. t.

Define πQ,M = pr1 ◦ πQ : Q → M and notice that its differential (πQ,M)∗ maps
each DR|(x,x̂;A), (x, x̂;A) ∈ Q, isomorphically onto T |xM . This implies the following
standard result.

Proposition 5.3 For any q0 = (x0, x̂0;A0) ∈ Q and absolutely continuous γ :
[0, a] → M , a > 0, such that c(0) = x0, there exists a unique absolutely continu-
ous q : [0, a′] → Q, q(t) = (γ(t), γ̂(t);A(t)), with 0 < a′ ≤ a (and a′ maximal with

39



the latter property), which is tangent to DR a.e. and q(0) = q0. We denote this unique
curve q by

t 7→ qDR
(γ, q0)(t) = (γ(t), γ̂DR

(γ, q0)(t);ADR
(γ, q0)(t)),

and refer to it as the rolling curve with initial conditions (γ, q0) or along γ with initial
position q0. In the case that M̂ is a complete manifold one has a′ = a.

Conversely, any absolutely continuous curve q : [0, a] → Q, which is a.e. tangent to
DR, is a rolling curve along γ = πQ,M ◦ q i.e., has the form qDR

(γ, q(0)).

Proof. We need to show only that completeness of (M̂, ĝ) implies that a′ = a. In
fact, X̂(t) := A0

∫ t

0
P 0
s (γ)γ̇(s)ds defines an a.c. curve t 7→ X̂(t) in T |x̂0M̂ defined

on [0, a] and the completeness of M̂ implies that there is a unique a.c. curve γ̂
on M̂ defined on [0, a] such that X̂(t) =

∫ t

0
P 0
s (γ̂)

˙̂γ(s)ds for all t ∈ [0, a] (see also
Remark 5.5 below). Defining A(t) = P t

0(γ̂)◦A0◦P
0
t (γ), t ∈ [0, a] (parallel transports

are always defined on the same interval as the a.c. curve along which the parallel
transport takes place) we notice that t 7→ (γ(t), γ̂(t);A(t)) is the rolling curve along
γ starting at q0 that is defined on the interval [0, a]. Hence a′ = a.

Of course, it is not important in the previous result that we start the parametriza-
tion of the curve γ at t = 0.

Remark 5.4 It follows immediately from the uniqueness statement of the previous
theorem that, if γ : [a, b] →M and ω : [c, d] →M are two a.c. curves with γ(b) = ω(c)
and q0 ∈ Q, then

qDR
(ω ⊔ γ, q0) = qDR

(ω, qDR
(γ, q0)(b)) ⊔ qDR

(γ, q0). (38)

On the group Ωx0(M) of piecewise differentiable loops of M based at x0 one has

qDR
(ω.γ, q0) = qDR

(ω, qDR
(γ, q0)(1)).qDR

(γ, q0),

where γ, ω ∈ Ωx0(M).

Specializing to (M, g) and (M̂, ĝ), we will write in the sequel Λx0 and Λ̂x̂0 for

Λ∇
x0

and Λ̂∇̂
x̂0

respectively, where x0 ∈M , x̂0 ∈ M̂ .

Remark 5.5 It follows from Proposition 4.1 that, for q0 = (x0, x̂0;A0) and an a.c.
curve γ starting from x0, the corresponding rolling curve is given by

qDR
(γ, q0)(t) = (γ(t), Λ̂−1

x̂0
(A0 ◦Λx0(γ))(t);P

t
0

(
Λ̂−1

x̂0
(A0 ◦Λx0(γ))

)
◦A0 ◦P

0
t (γ)

)
. (39)

In the case where the curve γ on M is a geodesic, we can give a more precise
form of the rolling curve along γ with a given initial position.

Proposition 5.6 Consider q0 = (x0, x̂0;A0) ∈ Q, X ∈ T |x0M and γ : [0, a] → M ;
γ(t) = expx0

(tX), a geodesic of (M, g) with γ(0) = x0, γ̇(0) = X . Then the rolling
curve qDR

(γ, q0) = (γ, γ̂DR
(γ, q0);ADR

(γ, q0)) : [0, a
′] → Q, 0 < a′ ≤ a, along γ with

initial position q0 is given by

γ̂DR
(γ, q0)(t) = êxpx̂0

(tA0X), ADR
(γ, q0)(t) = P t

0(γ̂DR
(γ, q0)) ◦ A0 ◦ P

0
t (γ).

Of course, a′ = a if M̂ is complete.
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Proof. Let 0 < a′ ≤ a such that γ̂(t) := êxpx̂0
(tA0X) is defined on [0, a′]. Then, by

proposition 4.1, q(t) := (γ(t), γ̂(t);A(t)) with A(t) := P t
0(γ̂) ◦ A0 ◦ P

0
t (γ), t ∈ [0, a′],

is a curve on Q and A(t) is parallel to (γ, γ̂) in M × M̂ . Therefore t 7→ q(t) is
tangent to DNS on [0, a′] and thus q̇(t) = LNS(γ̇(t), ˙̂γ(t))|q(t). Moreover, since γ and
γ̂ are geodesics,

A(t)γ̇(t) = (P t
0(γ̂) ◦ A0)(P

0
t (γ)γ̇(t)) = P t

0(γ̂)(A0X) = ˙̂γ(t),

which shows that for t ∈ [0, a′],

q̇(t) = LNS(γ̇(t), A(t)γ̇(t))|q(t)

= LR(γ̇(t))
∣∣
q(t)
.

Hence t 7→ q(t) is tangent to DR i.e., it is a rolling curve along γ with initial position
q(0) = (γ(0), γ̂(0);A(0)) = (x0, x̂0;A0) = q0.

Remark 5.7 If γ(t) = expx0
(tA0X) and q0 = (x0, x̂0;A0), the statement of the

proposition can be written in a compact form as

ADR
(γ, q0)(t) = P t

0

(
s 7→ exp(x0,x̂0)(s(X,A0X))

)
A0,

for all t where defined.

The next proposition describes the symmetry of the study of the rolling problem
of (M, g) rolling against (M̂, ĝ) to the problem of (M̂, ĝ) rolling against (M, g).

Proposition 5.8 Let D̂R be the rolling distribution in Q̂ := Q(M̂,M). Then the
map

ι : Q→ Q̂; ι(x, x̂;A) = (x̂, x;A−1)

is a diffeomorphism of Q onto Q̂ and

ι∗DR = D̂R.

In particular, ι(ODR
(q)) = OD̂R

(ι(q)).

Proof. It is obvious that ι is a diffeomorphism (with the obvious inverse map) and
for an a.c. path q(t) = (γ(t), γ̂(t);A(t)) in Q, (ι ◦ q)(t) = (γ̂(t), γ(t);A(t)−1) is a.c.
in Q̂ and for a.e. t,
{
˙̂γ(t) = A(t)γ̇(t)

A(t) = P t
0(γ̂) ◦ A(0) ◦ P

0
t (γ)

⇐⇒

{
γ̇(t) = A(t)−1 ˙̂γ(t)

A(t)−1 = P t
0(γ) ◦ A(0)

−1 ◦ P 0
t (γ̂)

.

These simple remarks prove the claims.

Remark 5.9 Notice that Definitions 5.1 and 5.2 make sense not only in Q but also
in the space T ∗M ⊗ TM̂ . It is easily seen that DR defined on T ∗M ⊗ TM̂ by Eq. (37)
is actually tangent to Q so its restriction to Q gives exactly DR on Q as defined above.
Similarly, Propositions 5.3, 5.6 and 5.8 still hold if we replace Q by T ∗M ⊗ TM̂ and Q̂
by T ∗M̂ ⊗ TM everywhere in their statements.

41



5.2 The Bundle Structure of a DR-orbit

We begin with the following remark.

Remark 5.10 Notice that the map πQ,M : Q → M is in fact a bundle. Indeed, let
F = (Xi)

n
i=1 be a local oriented orthonormal frame of M defined on an open set U .

Then the local trivialization of πQ,M induced by F is

τF : π−1
Q,M(U) → U × FOON(M̂); τF (x, x̂;A) = (x, (AXi|x)

n
i=1),

is a diffeomorphism.
We also notice that since πQ,M -fibers are diffeomorphic to FOON(M̂), in order that

there would be a principal G-bundle structure for πQ,M , it is necessary (but not sufficient)

that FOON(M̂) is diffeomorphic to the Lie-group G. In section 6 we consider special
cases where there is indeed a principal bundle structure on πQ,M which moreover leaves
DR invariant.

From Proposition 5.6, we deduce that each DR-orbit is a smooth bundle over M .
This is given in the next proposition (the proof being similar to that of Proposition
4.13).

Proposition 5.11 Let q0 = (x0, x̂0;A0) ∈ Q and suppose that M̂ is complete. Then

πODR
(q0),M := πQ,M |ODR

(q0) : ODR
(q0) →M,

is a smooth subbundle of πQ,M .

Proof. We first show that πODR
(q0),M is surjective. If x ∈ M , there is a piecewise

smooth path γ : [a, b] → M from x0 to x such that each smooth piece is a g-geodesic.
By Proposition 5.6 and completeness of M̂ it follows that there is a rolling path
qDR

(γ, q0) : [a, b] → Q along γ with initial position q0 defined on the whole interval
[a, b]. But then πODR

(q0),M(qDR
(γ, q0)(b)) = x which proves the claimed surjectivity.

Since DR|q ⊂ T |qODR
(A0) for every q ∈ ODR

(q0) and (πQ,M)∗ maps DR|q iso-
morphically onto T |πQ,M(q)M , one immediately deduces that πODR

(q0),M is also a

submersion. This implies that each fiber (πODR
(q0),M)−1(x) = ODR

(q0) ∩ π−1
Q,M(x),

x ∈M , is a smooth closed submanifold of ODR
(q0).

Choose next, for each x ∈ M , an open convex Ux ⊂ T |xM such that expx |Ux
is

a diffeomorphism onto its image and 0 ∈ U . Define

τx : π−1
Q,M(Ux) → Ux × π−1

Q,M(x),

q = (y, ŷ;A) 7→
(
y,
(
x, γ̂DR

(γy,x, q)(1);ADR
(γy,x, q)(1)

))
,

where γy,x : [0, 1] →M ; γy,x(t) = expx((1− t) exp−1
x (y)) is a geodesic from y to x. It

is obvious that τx is a smooth bijection. Moreover, restricting τx to ODR
(q0) clearly

gives a smooth bijection

ODR
(q0) ∩ π

−1
Q,M(Ux) → Ux × (ODR

(q0) ∩ π
−1
Q,M(x)).

The inverse of τx, τ
−1
x : Ux × π−1

Q,M(x) → π−1
Q,M(Ux) is constructed with a formula

similar to that of τx and is seen, in the same way, to be smooth. This inverse
restricted to Ux × (ODR

(q0) ∩ π−1
Q,M(x)) maps bijectively onto ODR

(q0) ∩ π−1
Q,M(Ux)

and thus τx is a smooth local trivialization of ODR
(q0). This completes the proof.
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In the case where M̂ is not complete, the result of Proposition 5.11 remains
valid if we just claim that πODR

(q0),M is a bundle over its image, which is an open
connected subset of M . The next remark illustrates this point.

Remark 5.12 In the previous proposition, the assumption of completeness of M̂
cannot be removed. In fact, choose M = R

2, M̂ = {x̂ ∈ R
2 | ‖x̂‖ < 1} (with ‖·‖ the

Euclidean norm). Then

Q ∼=M × M̂ × SO(2), T (Q) ∼= Q× R
2 × R

2 × so(2)

and DR is given by

DR|(x,x̂;A) = {(v, Av, 0) | v ∈ R
2},

as a subspace of T |(x,x̂;A)Q ∼= R
2 × R

2 × so(2). If x0 = 0, x̂0 = 0 and A0 = idR2 is

the identity map T |0M ∼= R
2 → T |0M̂ ∼= R

2, we have that the orbit is equal to the
2-dimensional submanifold of Q given by {(x,A0x,A0) | ‖x‖ < 1} and its image under
the projection on the first factor, πQ,M is a proper open subset {x ∈ R

2 | ‖x‖ < 1} of
M . Thus πQ,M |ODR

(x0,x̂0;A0) is not a bundle over M , since this map is not surjective.

Proposition 5.13 For any Riemannian isometries F ∈ Iso(M, g) and F̂ ∈ Iso(M̂, ĝ)
of (M, g), (M̂, ĝ) respectively, one defines smooth free right and left actions of Iso(M, g),
Iso(M̂, ĝ) on Q by

q0 · F := (F−1(x0), x̂0;A0 ◦ F∗|F−1(x0)), F̂ · q0 := (x0, F̂ (x̂0); F̂∗|x̂0 ◦ A0),

where q0 = (x0, x̂0;A0) ∈ Q. We also set

F̂ · q0 · F := (F̂ · q0) · F = F̂ · (q0 · F ).

Then for any q0 = (x0, x̂0;A0) ∈ Q, a.c. γ : [0, 1] → M , γ(0) = x0, and F ∈
Iso(M, g), F̂ ∈ Iso(M̂, ĝ), one has

F̂ · qDR
(γ, q0)(t) · F = qDR

(F−1 ◦ γ, F̂ · q0 · F )(t), (40)

for all t ∈ [0, 1]. In particular,

F̂ · ODR
(q0) · F = ODR

(F̂ · q0 · F ).

Proof. The fact that the group actions are well defined is clear and the smoothness of
these actions can be proven by writing out the Lie-group structures of the isometry
groups (using e.g. Lemma III.6.4 in [25]). If q0 ·F = q0 ·F

′ for some F, F ′ ∈ Iso(M, g)
and q0 ∈ Q, then F−1(x0) = F ′−1(x0), F∗|x0 = F ′

∗|x0 and hence F = F ′ since M is
connected (see [25], p. 43). This proves the freeness of the right Iso(M, g)-action.
The same argument proves the freeness of the left Iso(M̂, ĝ)-action.

Finally, Eq. (40) follows from a simple application of Eq. (8). In fact, by
Remark 5.5 the rolling curve qDR

(γ, q0) = (γ, γ̂DR
(γ, q0);ADR

(γ, q0)) is defined by

P 0
t (γ̂DR

(γ, q0)) ˙̂γDR
(γ, q0)(t) = A0P

0
t (γ)γ̇(t),

ADR
(γ, q0)(t) = P t

0(γ̂DR
(γ, q0)) ◦ A0 ◦ P

0
t (γ).
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First, by using (8), we get

P 0
t (F̂ ◦ γ̂DR

(γ, q0))
d

dt
(F̂ ◦ γ̂DR

(γ, q0))(t) = F̂∗P
0
t (γ̂DR

(γ, q0))F̂
−1
∗ (F̂∗ ˙̂γDR

(γ, q0)(t))

=F̂∗A0P
0
t (γ)γ̇(t) = (F̂∗A0F∗)(F

−1
∗ P 0

t (γ)F∗)F
−1
∗ γ̇(t)

=(F̂∗A0F∗)P
0
t (F

−1 ◦ γ)
d

dt
(F−1 ◦ γ)(t),

and since by definition one has

P 0
t (γ̂DR

(F−1 ◦ γ, F̂ · q0 · F )) ˙̂γDR
(F−1 ◦ γ, F̂ · q0 · F )

=(F̂∗A0F∗)P
0
t (F

−1 ◦ γ)
d

dt
(F−1 ◦ γ)(t),

the uniqueness of solutions of a system of ODEs gives that

F̂ ◦ γ̂DR
(γ, q0) = γ̂DR

(F−1 ◦ γ, F̂ · q0 · F ).

Hence

F̂∗ADR
(γ, q0)F∗ = F̂∗(P

t
0(γ̂DR

(γ, q0)) ◦ A0 ◦ P
0
t (γ))F∗

=P t
0(F̂ ◦ γ̂DR

(γ, q0)) ◦ (F̂∗A0F∗) ◦ P
0
t (F

−1 ◦ γ)

=P t
0(γ̂DR

(F−1 ◦ γ, F̂ · q0 · F )) ◦ (F̂∗A0F∗) ◦ P
0
t (F

−1 ◦ γ) = ADR
(F−1 ◦ γ, F̂ · q0 · F )

which proves (40).

Corollary 5.14 Let q0 = (x0, x̂0;A0) ∈ Q and γ, ω : [0, 1] → M be absolutely
continuous such that γ(0) = ω(0) = x0, γ(1) = ω(1). Then assuming that qDR

(γ, q0),

qDR
(ω, q0), qDR

(ω−1.γ, q0) exist and if there exists F̂ ∈ Iso(M̂, ĝ) such that

F̂ · q0 = qDR
(ω−1.γ, q0)(1),

then

F̂ · qDR
(ω, q0)(1) = qDR

(γ, q0)(1).

Proof.

qDR
(γ, q0)(1) = qDR

(ω.ω−1.γ, q0)(1) =
(
qDR

(ω, qDR
(ω−1.γ, q0)(1)).qDR

(ω−1.γ, q0)
)
(1)

=
(
qDR

(ω, F̂ · q0).qDR
(ω−1.γ, q0)

)
(1) = qDR

(ω, F̂ · q0)(1) = F̂ · qDR
(ω, q0)(1).

Proposition 5.15 Let π1 : (M1, g1) → (M, g) and π̂ : (M̂1, ĝ1) → (M̂, ĝ) be
Riemannian coverings. Write Q1 = Q(M1, M̂1) and (DR)1 for the rolling distribution in
Q1. Then the map

Π : Q1 → Q; Π(x1, x̂1;A1) =
(
π(x1), π̂(x̂1); π̂∗|x̂1 ◦ A1 ◦ (π∗|x1)

−1
)

is a covering map of Q1 over Q and

Π∗(DR)1 = DR.

Moreover, for every q1 ∈ Q1 the restriction onto O(DR)1(q1) of Π is a covering map
O(DR)1(q1) → ODR

(Π(q1)). Then, for every q1 ∈ Q1, Π(O(DR)1(q1)) = ODR
(Π(q1))

and one has O(DR)1(q1) = Q1 if and only if ODR
(Π(q1)) = Q.
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As an immediate corollary of the above proposition, we obtain the following
result regarding the complete controllability of (DR).

Corollary 5.16 Let π1 : (M1, g1) → (M, g) and π̂ : (M̂1, ĝ1) → (M̂, ĝ) be Rieman-
nian coverings. Write Q = Q(M, M̂), DR and Q1 = Q(M1, M̂1), (DR)1 respectively
for the state space and for the rolling distribution in the respective state space. Then
the control system associated to DR is completely controllable if and only if the control
system associated to (DR)1 is completely controllable. As a consequence, when one ad-
dresses the complete controllability issue for the rolling distribution DR, one can assume
with no loss of generality that both manifolds M and M̂ are simply connected.

We now proceed with the proof of Proposition 5.15.

Proof. It is clear that Π is a local diffeomorphism onto Q. To show that it is a
covering map, let q1 = (x1, x̂1;A1) and choose evenly covered w.r.t π, π̂ open sets U
and Û of M , M̂ containing π(x1), π̂(x̂1), respectively. Thus π−1(U) =

⋃
i∈I Ui and

π̂−1(Û) =
⋃

i∈Î Ûi where Ui, i ∈ I (resp. Ûi, i ∈ Î) are mutually disjoint connected

open subsets of M1 (resp. M̂1) such that π (resp. π̂) maps each Ui (resp. Ûi)
diffeomorphically onto U (resp. Û). Then

Π−1(π−1
Q (U × Û)) = π−1

Q1
((π × π̂)−1(U × Û)) =

⋃

i∈I,j∈Î

π−1
Q1
(Ui × Ûj),

where π−1
Q1
(Ui×Ûj) for (i, j) ∈ I×Î are clearly mutually disjoint and connected. Now

if for a given (i, j) ∈ I × Î we have (y1, ŷ1, B1), (z1, ẑ1;C1) ∈ π−1
Q1
(Ui × Ûj) such that

Π(y1, ŷ1;B1) = Π(z1, ẑ1, C1), then y1 = z1, ŷ1 = ẑ1 and hence B1 = C1, which shows
that Π restricted to π−1

Q1
(Ui × Ûj) is injective. It is also a local diffeomorphism,

as mentioned above, and clearly surjective onto π−1
Q (U × Û), which proves that

π−1
Q (U × Û) is evenly covered with respect to Π. This finishes the proof that Π is a

covering map.
Suppose next that q1(t) = (γ1(t), γ̂1(t);A1(t)) is a smooth path on Q1 tangent to

(DR)1 and defined on an interval containing 0 ∈ R. Define q(t) = (γ(t), γ̂(t);A(t)) :=
(Π ◦ q1)(t). Then

˙̂γ(t) =π̂∗ ˙̂γ1(t) = π̂∗A1(t)γ̇1(t) = A(t)π∗γ̇1(t) = A(t)γ̇(t)

A(t) =π̂∗|γ̂1(t) ◦ P
t
0(γ̂1(t)) ◦ A1(0) ◦ P

0
t (γ1) ◦ (π∗|γ1(t))

−1

=P t
0(γ̂(t)) ◦ π̂∗|γ̂1(t) ◦ A1(0) ◦ (π∗|γ1(t))

−1 ◦ P 0
t (γ)

=P t
0(γ̂(t)) ◦ A(0) ◦ P

0
t (γ),

which shows that q(t) is tangent to DR. This shows that Π∗(DR)1 ⊂ DR and the
equality follows from the fact that Π is a local diffeomorphism and the ranks of
(DR)1 and DR are the same i.e., = n.

Let q1 = (x1, x̂1;A1). We proceed to show that the restriction of Π gives a
covering O(DR)1(q1) → ODR

(Π(q1)). First, since Π∗(DR)1 = DR and Π : Q1 → Q is
a covering map, it follows that Π(O(DR)1(q1)) = ODR

(Π(q1)).
Let q := Π(q1) and let U ⊂ Q be an evenly covered neighbourhood of q

w.r.t. Π. By the Orbit Theorem, there exists vector fields Y1, . . . , Yd ∈ VF(Q)
tangent to DR and (u1, . . . , ud) ∈ (L1([0, 1]))d and a connected open neighbour-
hood W of (u1, . . . , ud) in (L1([0, 1]))d such that the image of the end point map
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end(Y1,...,Yd)(q,W ) is an open subset of the orbit ODR
(q) containing q and included

in the Π-evenly covered set U . Let (Yi)1, i = 1, . . . , d, be the unique vector fields on
Q1 defined by Π∗(Yi)1 = Yi, i = 1, . . . , d. Since Π∗(DR)1 = DR, it follows that (Yi)1
are tangent to (DR)1 and also, Π◦end((Y1)1,...,(Yd)1) = end(Y1,...,Yd) ◦ (Π× id). It follows
that end((Y1)1,...,(Yd)1)(q

′
1,W ) is an open subset of O(DR)1(q1) contained in Π−1(U) for

every q′1 ∈ (Π|O(DR)1
(q1))

−1(q).
Since end((Y1)1,...,(Yd)1) is continuous and W is connected, it thus follows that for

each q′1 ∈ (Π|O(DR)1
(q1))

−1(q), the connected set end((Y1)1,...,(Yd)1)(q
′
1,W ) is contained

in a single component of Π−1(U) which, since U was evenly covered, is mapped
diffeomorphically by Π onto U . But then Π maps end((Y1)1,...,(Yd)1)(q

′
1,W ) diffeomor-

phically onto end(Y1,...,Yd)(q,W ). Since it is also obvious that

(Π|O(DR)1
(q1))

−1
(
end(Y1,...,Yd)(q,W )

)
=

⋃

q′1∈(Π|O(DR)1
(q1)

)−1(q)

end((Y1)1,...,(Yd)1)(q
′
1,W ),

we have proved that end(Y1,...,Yd)(q,W ) is an evenly covered neighbourhood of q in
ODR

(q) w.r.t Π|O(DR)1
(q1).

Finally, let us prove that for every q1 ∈ Q1, the following implication holds true,

ODR
(Π(q1)) = Q =⇒ O(DR)1(q1) = Q1,

(the converse statement being trivial). Indeed, if ODR
(Π(q1)) = Q, then, for every

q ∈ Q, ODR
(q) = Q and, on the other hand, the fact that Π restricts to a covering

map O(DR)1(q
′
1) → ODR

(Π(q′1)) = Q for any q′1 ∈ Q1 implies that all the orbits
O(DR)1(q

′
1), q

′
1 ∈ Q1, are open onQ1. But Q1 is connected (and orbits are non-empty)

and hence there cannot be but one orbit. In particular, O(DR)1(q1) = Q1.

5.3 Computations of some Lie Brackets

We compute some commutators of the vector fields of the form LR(X) with X ∈
VF(M). The formulas obtained hold both in Q and T ∗M ⊗ TM̂ and thus we do
them in the latter space.

The first commutators of the DR-lifted fields are given in the following theorem.

Proposition 5.17 If X, Y ∈ VF(M), q = (x0, x̂0;A) ∈ T ∗(M) ⊗ T (M̂), then the
commutator of the lifts LR(X) and LR(Y ) at q is given by

[LR(X),LR(Y )]|q = LR([X, Y ])|q + ν(AR(X, Y )− R̂(AX,AY )A)|q. (41)

Proof. Choosing T (B) = (X,BX), S(B) = (Y,BY ) for B ∈ T ∗(M) ⊗ T (M̂) in
proposition 4.25 we have

[LR(X),LR(Y )]|q = LNS([X + ÃX, Y + ÃY ])|q + ν(AR(X, Y )− R̂(AX,AY )A)|q,

where

[
(X, ÃX), (Y, ÃY )

]∣∣
(x0,x̂0)

= ∇(X,ÃX)(Y, ÃY )−∇(Y,ÃY )(X, ÃX)

=
(
∇XY −∇YX, ∇̂AX(ÃY )− ∇̂AX(ÃY )

)∣∣
(x0,x̂0)

+∇(0,AX)Y −∇(0,AY )X

+∇(X,0)(ÃY )|(x0,x̂0) −∇(Y,0)(ÃX)|(x0,x̂0),
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in which e.g.

∇̂AX(ÃY )|x̂0 = (∇(0,AX)Ã)|(x0,x̂0)Ỹ |x̂0 + Ã|(x0,x̂0)(∇0Y )|x0 = 0,

∇(0,AX)Y = 0,

∇(X,0)(ÃY )|(x0,x̂0) = (∇(X,0)Ã)|(x0,x̂0)Y |x0 + A∇XY |x0 = A∇XY |x0 .

Therefore

[LR(X),LR(Y )]|q =LNS

((
∇XY −∇YX, 0

)
+ 0 +

(
0, A∇XY − A∇YX

))∣∣∣
q

+ ν(AR(X, Y )− R̂(AX,AY )A)|q,

which proves the claim after noticing that, by torsion freeness of ∇, one has ∇XY −
∇YX = [X, Y ].

Proposition 5.17 justifies the next definition.

Definition 5.18 Given vector fields X, Y, Z1, . . . , Zk ∈ VF(M), we define the Rolling
Curvature of the rolling of M against M̂ as the smooth mapping

Rol(X, Y ) : πT ∗M⊗TM̂ → πT ∗M⊗TM̂ ,

by

Rol(X, Y )(A) := AR(X, Y )− R̂(AX,AY )A, (42)

and similarly, the smooth mapping

∇
k
Rol(X, Y, Z1, . . . , Zk) : πT ∗M⊗TM̂ → πT ∗M⊗TM̂ ,

by

∇
k
Rol(X, Y, Z1, . . . , Zk)(A) := A∇kR(X, Y, (·), Z1, . . . , Zk)

− ∇̂kR̂(AX,AY,A(·), AZ1, . . . , AZk). (43)

Restricting to Q, we have

Rol(X, Y ),∇
k
Rol(X, Y, Z1, . . . , Zk)(A) ∈ C∞(πQ, πT ∗M⊗TM̂),

such that, for all (x, x̂;A) ∈ Q,

Rol(X, Y )(A),∇
k
Rol(X, Y, Z1, . . . , Zk)(A) ∈ A(so(T |xM)).

Remark 5.19 With this notation, Eq. (41) of Proposition 5.17 can be written as

[LR(X),LR(Y )]|q = LR([X, Y ])|q + ν(Rol(X, Y )(A))|q.

Recall that, on a Riemannian manifold (N, h), a smooth vector field t 7→ Y (t)
along a smooth curve t 7→ γ(t) is a Jacobi field if Y satisfies the following second
order ODE:

∇h
γ̇(t)∇

h
γ̇(·)Y (·) = Rh(γ̇(t), Y (t))γ̇(t).

The next lemma relates the rolling curvature Rol to the Jacobi fields of M and M̂ .
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Lemma 5.20 Suppose that q0 = (x0, x̂0;A0) ∈ T ∗M ⊗ TM̂ , γ : [a, b] → M is
a smooth curve with γ(a) = x0 and that the rolling problem along γ has a solution
qDR

(γ, q0) = (γ, γ̂DR
(γ, q0);ADR

(γ, q0)) on the interval [a, b]. If t 7→ Y (t) is a Jacobi

field of (M, g) along γ, then Ŷ (t) = ADR
(γ, q0)(t)Y (t) is a vector field along γ̂DR

(γ, q0)
and, for all t ∈ [a, b],

∇̂ ˙̂γDR
(γ,q0)(t)

∇̂ ˙̂γDR
(γ,q0)(·)Ŷ (·) =R̂

(
˙̂γDR

(γ, q0)(t), Ŷ (t)
)
˙̂γDR

(γ, q0)(t)

+ Rol(γ̇(t), Y (t))(ADR
(γ, q0)(t))γ̇(t).

Proof. Since ∇(γ̇(t), ˙̂γDR
(γ,q0)(t))

ADR
(γ, q0)(·) = 0 and Y is a Jacobi field, one has

∇̂ ˙̂γDR
(γ,q0)(t)

∇̂ ˙̂γDR
(γ,q0)(·)Ŷ (·)

=ADR
(γ, q0)(t)∇γ̇(t)∇γ̇(·)Y (·) = ADR

(γ, q0)(t)R(γ̇(t), Y (t))γ̇(t)

=Rol(γ̇(t), Y (t))(ADR
(γ, q0)(t))γ̇(t)

+ R̂(ADR
(γ, q0)(t)γ̇(t), ADR

(γ, q0)(t)Y (t))ADR
(γ, q0)(t)γ̇(t)

from which the claim follows by using the facts that

ADR
(γ, q0)(t)γ̇(t) = ˙̂γDR

(γ, q0)(t) and ADR
(γ, q0)(t)Y (t) = Ŷ (t).

We will use Lemma 5.20 to prove Theorem 5.44.

Remark 5.21 Notice that if, in Lemma 5.20, it held that

Rol(Y (t), γ̇(t))(ADR
(γ, q0)(t))γ̇(t) = 0,

for all t ∈ [a, b], then Ŷ defined there would be a Jacobi field along γ̂DR
(γ, q0). Hence,

Rol measures the obstruction for Ŷ = ADR
(γ, q0)(t)Y (t) to be a Jacobi field of M̂ , if

Y (t) is a Jacobi field on M along γ.

Before proceeding with the computations of higher order brackets of the vector
fields LR(X), we prove the following lemma.

Lemma 5.22 Let Ã ∈ Γ(πT ∗M⊗TM̂) and (x, x̂;A) ∈ T ∗M ⊗TM̂ such that Ã|(x,x̂) =

A and ∇XÃ = 0 for all X ∈ T |(x,x̂)(M × M̂). Then, for X1, . . . , Xk+2, Y ∈ VF(M),

∇(Y,AY )

(
∇

k
Rol(X1, X2, X3, . . . , Xk+2)(Ã)

)
(44)

=∇
k+1

Rol(X1, . . . , Xk+2, Y )(A) +
k+2∑

i=1

∇
k
Rol(X1, . . . ,∇YXi . . . , Xk+2)(A) (45)

Proof. If k = 0, we have ∇
0
Rol(X1, X2)(Ã) = Rol(X1, X2)(Ã) and since ∇(Y,AY )Ã =

0, one gets

∇(Y,AY )Rol(X1, X2)(Ã) = ∇(Y,AY )

(
ÃR(X1, X2)− R̂(ÃX1, ÃX2)Ã

)

=A∇Y (R(X1, X2))− (∇(Y,AY )R̂(ÃX1, ÃX2))Ã

=A∇R(X1, X2, (·), Y ) + AR(∇YX1, X2) + AR(X1,∇YX2)

− ∇̂R̂(AX1, AX2, A(·), AY )− R̂(A∇YX1, AX2)A− R̂(AX1, A∇YX2),

where on the last line we have computed ∇(Y,AY )(ÃXi) = A∇YXi. The case k > 0
is proved by induction and similar computations.
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Proposition 5.23 Let X, Y, Z ∈ VF(M). Then, for q = (x, x̂;A) ∈ T ∗M ⊗ TM̂ ,
one has

[LR(Z), ν(Rol(X, Y )(·))]|q =− LNS(Rol(X, Y )(A)Z)|q + ν
(
∇

1
Rol(X, Y, Z)(A)

)∣∣
q

+ ν
(
Rol(∇ZX, Y )(A)

)∣∣
q
+ ν

(
Rol(X,∇ZY )(A)

)∣∣
q
.

Proof. Taking T (B) = (Z,BZ) and U = Rol(X, Y ) for B ∈ T ∗M ⊗ TM̂ in Propo-
sition 4.26, we get

[LR(Z), ν(Rol(X, Y )(·))]|q

=− LNS(ν(Rol(X, Y )(A))|q(Z + (·)Z))|q + ν(∇Z+AZ(Rol(X, Y )(Ã)))|q.

From here, one easily computes that

ν(Rol(X, Y )(A))|q(Z + (·)Z) =
d

dt
|0
(
Z + (A+ tRol(X, Y )(A))Z

)
= Rol(X, Y )(A)Z,

and by Lemma 5.22, one gets

∇Z+AZ(Rol(X, Y )(Ã)) = ∇
1
Rol(X, Y, Z)(A) + Rol(∇ZX, Y )(A) + Rol(X,∇ZY )(A).

By Proposition 5.17, the last two terms (when considered as vector fields on
T ∗M ⊗ TM̂) on the right hand side belong to VF2

DR
.

Since for X, Y ∈ VF(M) and q = (x, x̂;A) ∈ Q we have ν(Rol(X, Y )(A))|q ∈
ODR

(q) by Proposition 5.17, it is reasonable to compute the Lie-bracket of two
elements of this type. This is given in the following proposition.

Proposition 5.24 For any q = (x, x̂;A) ∈ Q and X, Y, Z,W ∈ VF(M) we have

[
ν(Rol(X, Y )(·)), ν(Rol(Z,W )(·))

]∣∣
q

=ν
(
Rol(X, Y )(A)R(Z,W )− R̂(Rol(X, Y )(A)Z,AW )A− R̂(AZ,Rol(X, Y )(A)W )A

− R̂(AZ,AW )Rol(X, Y )(A)− Rol(Z,W )(A)R(X, Y ) + R̂(Rol(Z,W )(A)X,AY )A

+ R̂(AX,Rol(Z,W )(A)Y )A+ R̂(AX,AY )Rol(Z,W )(A)
)∣∣

q
.

Proof. We use Proposition 4.28 where for U, V we take U(A) = Rol(X, Y )(A) and
V (A) = Rol(Z,W )(A). First compute for B such that ν(B)|q ∈ V |q(Q) that

ν(B)|qU =ν(B)|q
(
Ã 7→ ÃR(X, Y )− R̂(ÃX, ÃY )Ã

)

=
d

dt

∣∣
0

(
(A+ tB)R(X, Y )− R̂((A + tB)X, (A+ tB)Y )(A+ tB)

)

=BR(X, Y )− R̂(BX,AY )A− R̂(AX,BY )A− R̂(AX,AY )B

So by taking B = V (A) we get

ν(V (A))|qU =Rol(Z,W )(A)R(X, Y )− R̂(Rol(Z,W )(A)X,AY )A

− R̂(AX,Rol(Z,W )(A)Y )A− R̂(AX,AY )Rol(Z,W )(A)

and similarly for ν(U(A))|qV .

49



From Proposition 4.26 we get the following proposition.

Proposition 5.25 Let q0 = (x0, x̂0;A0) ∈ Q. Suppose that, for some X ∈ VF(M)
and a real sequence (tn)

∞
n=1 s.t. tn 6= 0 for all n, limn→∞ tn = 0, we have

V |ΦLR(X)(tn,q0)(πQ) ⊂ T (ODR
(q0)), ∀n. (46)

Then LNS(Y, Ŷ )
∣∣
q0

∈ T |q0ODR
(q0) for every Y ∈ T |x0M that is g-orthogonal to X|x0

and every Ŷ ∈ T |x̂0M̂ that is ĝ-orthogonal to A0X|x0. Hence the orbit ODR
(q0) has

codimension at most 1 inside Q.

Proof. Letting n tend to infinity, it follows from (46) that V |q0(πQ) ⊂ T |q0ODR
(q0).

Recall, from Proposition 3.7, that every element of V |q0(πQ) is of the form ν(B)|q0 ,

with a unique B ∈ Q|(x0,x̂0) satisfying A
T
0B ∈ so(T |x0M). Fix such a B and define

a smooth local section S̃ of so(TM) →M defined on an open set W ∋ x0 by

S̃|x = P 1
0

(
t 7→ expx0

(t exp−1
x0
(x))

)
(AT

0B).

Then clearly, S̃|x0 = AT
0B and ∇Y S̃ = 0 for all Y ∈ T |x0M and it is easy to verify

that S̃|x ∈ so(T |xM) for all x ∈ W .
We next define a smooth map U : π−1

Q (W × M̂) → T ∗M ⊗ TM̂ by U(x, x̂;A) =

AS̃|x. Obviously ν(U(x, x̂;A)) ∈ V |(x,x̂;A)(πQ) for all (x, x̂;A). Then, choosing in
Proposition 4.26, T = X + (·)X (and the above U) and noticing that

ν(U(A0))|q0T = U(A0)X = BX,

one gets

[LR(X), ν(U(·))]|q0 = −LNS(BX)|q0 + ν(∇(X,A0X)(U(Ã)))|q0 (47)

where Ã|(x0,x̂0) = A0. By the choice of S̃ and Ã, we have, for all Y = (Y, Ŷ ) ∈

T |(x0,x̂0)M × M̂ ,

∇Y (U(Ã)) = ∇Y (ÃS̃) = (∇Y Ã)S̃|(x0,x̂0) + Ã|(x0,x̂0)∇Y S̃ = 0,

and hence the last term on the right hand side of (47) actually vanishes.
By definition, the vector field q 7→ LR(X)|q is tangent to the orbit ODR

(q0)
and, by the assumption of Equation (46), the values of the map q = (x, x̂;A) 7→
ν(U(A))|q are also tangent to ODR

(q0) at the points ΦLR(X)(tn, q0), n ∈ N. Hence(
(ΦLR(X))−tn

)
∗ν(U(·))|ΦLR(X)(tn,q0) ∈ T |q0ODR

(q0) and therefore,

[LR(X), ν(U(·))]|q0

= lim
n→∞

(
(ΦLR(X))−tn

)
∗ν(U(·))|ΦLR(X)(tn,q0) − ν(B)|q0

tn
∈ T |q0ODR

(q0),

i.e., the left hand side of (47) must belong to T |q0ODR
(q0). But this implies that

LNS(BX)|q0 ∈ T |q0ODR
(q0), ∀B s.t. ν(B) ∈ V |q0(πQ)
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i.e.,

LNS(A0so(T |x0M)X)|q0 ⊂ T |q0ODR
(q0).

Notice next that so(T |x0M)X is exactly the set X|⊥x0
of vectors of T |x0M that are

g-perpendicular to X|x0. Since A0 ∈ Q, it follows that the set A0so(T |x0M)X is
equal to A0X|⊥x0

which is the set of vectors of T |x̂0M̂ that are ĝ-perpendicular to
A0X|x0. We conclude that LNS(Y )|q0 = LR(Y )|q0 −LNS(A0Y )|q0 ∈ T |q0ODR

(q0) for
all Y ∈ X|⊥x0

.
Finally notice that since the subspaces X⊥×{0}, R(X,A0X) and {0}× (A0X)⊥

of T |(x0,x̂0)(M × M̂) are linearly independent, their LNS-lifts at q0 are that also
and hence these lifts span a (n − 1) + 1 + (n − 1) = 2n − 1 dimensional subspace
of T |q0ODR

(q0). This combined with the fact that V |q0(πQ) ⊂ T |q0ODR
(q0) shows

dimODR
(q0) ≥ 2n − 1 + dimV |q0(πQ) = dim(Q) − 1 i.e., the orbit ODR

(q0) has
codimension at most 1 in Q. This finishes the proof.

Corollary 5.26 Suppose there is a point q0 = (x0, x̂0;A0) ∈ Q and ǫ > 0 such that
for every X ∈ VF(M) with ‖X‖g < ǫ on M one has

V |ΦLR(X)(t,q0)(πQ) ⊂ T
(
ODR

(q0)
)
, |t| < ǫ.

Then the orbit ODR
(q0) is open in Q.

As a consequence, we have the following characterization of complete controllability:
the control system (Σ)R is completely controllable if and only if

∀q ∈ Q, V |q(πQ) ⊂ T |qODR
(q). (48)

Proof. For the first part of the corollary, the assumptions and the previous propo-
sition imply that for every X ∈ T |x0M we have LNS(Y, Ŷ )|q0 ∈ T |q0ODR

(q0) for

every Y ∈ X⊥, Ŷ ∈ A0X
⊥. But since X is an arbitrary element of T |x0M , this

means that DNS|q0 ⊂ T |q0ODR
(q0) and because T |q0Q = DNS|q0 ⊕ V |q0(πQ), we get

T |q0Q = T |q0
(
ODR

(q0)
)
. This implies that ODR

(q0) is open in Q. The last part of the
corollary is an immediate consequence of this and the fact that Q is connected.

Remark 5.27 The above corollary is intuitively obvious. Assumption given by Eq.
(48) simply means that there is complete freedom for infinitesimal spinning, i.e., for
reorienting one manifold with respect to the other one without moving in M × M̂ . In
that case, proving complete controllability is easy, by using a crab-like motion.

5.4 Controllability Properties of DR

5.4.1 First Results

Proposition 5.17 has the following simple consequence.

Corollary 5.28 The following cases are equivalent:

(i) The rolling distribution DR on Q is involutive.
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(ii) For all X, Y, Z ∈ T |xM and (x, x̂;A) ∈ T ∗(M)⊗ T (M̂)

Rol(X, Y )(A) = 0.

(iii) (M, g) and (M̂, ĝ) both have constant and equal curvature.

The same result holds when one replaces Q by T ∗M ⊗ TM̂ .

Proof. (i) ⇐⇒ (ii) follows from Proposition 5.17.
For the rest of the proof, we use

σ(X,Y ) = g(R(X, Y )Y,X), and σ(X̂,Ŷ ) = ĝ(R̂(X̂, Ŷ )Ŷ , X̂),

to denote the sectional curvature of M w.r.t orthonormal vectors X, Y ∈ T |xM and
the sectional curvature of M̂ w.r.t. orthonormal vectors X̂, Ŷ ∈ T |x̂M̂ respectively.
We have seen that the involutivity of DR is equivalent to the condition in (ii) which
is again equivalent (since sectional curvatures completely determine Riemannian
curvatures) to the equation

σ(X,Y ) = σ̂(AX,AY ), ∀(x, x̂;A) ∈ Q, X, Y ∈ T |xM. (49)

(ii)⇒(iii) If we fix x ∈ M and g-orthonormal vectors X, Y ∈ T |xM , then, for any
x̂ ∈ M̂ and any ĝ-orthonormal vectors X̂, Ŷ ∈ T |x̂M̂ , we may choose A ∈ Q|(x,x̂)
such that AX = X̂, AY = Ŷ (in the case n = 2 we may have to replace, say, X̂ by
−X̂ but this does not change anything in the argument below). Hence the above
equation (49) shows that the sectional curvatures at every point x̂ ∈ M̂ and w.r.t
every orthonormal pair X̂, Ŷ are all the same i.e., σ(X,Y ). Thus (M̂, ĝ) has constant
sectional curvatures i.e., it has a constant curvature. Changing the roles of M and
M̂ we see that (M, g) also has constant curvature and the constants of curvatures
are the same.

(iii)⇒(ii) Suppose thatM, M̂ have constant and equal curvatures. By a standard
result (see [25] Lemma II.3.3), this is equivalent to the fact that there exists k ∈ R

such that

R(X, Y )Z = k
(
g(Y, Z)X − g(X,Z)Y

)
, X, Y, Z ∈ T |xM, x ∈M,

R̂(X̂, Ŷ )Ẑ = k
(
ĝ(Ŷ , Ẑ)X̂ − ĝ(X̂, Ẑ)Ŷ

)
, X̂, Ŷ , Ẑ ∈ T |x̂M̂, x̂ ∈ M̂.

On the other hand, if A ∈ Q, X, Y, Z ∈ T |xM , we would then have

R̂(AX,AY )(AZ) = k(ĝ(AY,AZ)AX − ĝ(AX,AZ)(AY ))

=A(k(g(Y, Z)X − g(X,Z)Y ) = A(R(X, Y )Z).

This implies that Rol(X, Y )(A) = 0 since Z was arbitrary.

In the situation of the previous corollary, the control system (Σ)R is as far away
from being controllable as possible: all the orbits ODR

(q), q ∈ Q, are integral
manifolds of DR.

The next consequence of Proposition 5.17 can be seen as a (partial) generalization
of the previous corollary and a special case of the Ambrose’s theorem 5.42. The
corollary gives a necessary and sufficient condition describing the case in which at
least one DR-orbit is an integral manifold of DR. It will be used in the proof of
Theorem 5.32 below.
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Corollary 5.29 Suppose that (M, g) and (M̂, ĝ) are complete. The following cases
are equivalent:

(i) There exists a q0 = (x0, x̂0;A0) ∈ Q such that the orbit ODR
(q0) is an integral

manifold of DR.

(ii) There exists a q0 = (x0, x̂0;A0) ∈ Q such that

Rol(X, Y )(A) = 0, ∀(x, x̂;A) ∈ ODR
(q0), X, Y ∈ T |xM.

(iii) There is a complete Riemannian manifold (N, h) and Riemannian covering maps
F : N →M , G : N → M̂ .

Proof. (i) ⇒ (ii): Notice that the restrictions of vector fields LR(X), X ∈ VF(M),
to the orbit ODR

(q0) are smooth vector fields of that orbit. Thus [LR(X),LR(Y )] is
also tangent to this orbit for any X, Y ∈ VF(M) and hence Proposition 5.17 implies
the claim.

(ii) ⇒ (i): It follows, from Proposition 5.17, that DR|ODR
(q0), the restriction

of DR to the manifold ODR
(q0), is involutive. Since maximal connected integral

manifolds of an involutive distribution are exactly its orbits, it follows that ODR
(q0)

is an integral manifold of DR.
(i) ⇒ (iii): Let N := ODR

(q0) and h := (πQ,M |N)
∗(g) i.e., for q = (x, x̂;A) ∈ N

and X, Y ∈ T |xM , define

h(LR(X)|q,LR(Y )|q) = g(X, Y ).

If F := πQ,M |N and G := πQ,M̂ |N , we immediately see that F is a local isometry
(note that dim(N) = n) and the fact that G is a local isometry follows from the
following computation: for q = (x, x̂;A) ∈ N , X, Y ∈ T |xM , one has

ĝ(G∗(LR(X)|q), G∗(LR(Y )|q)) = ĝ(AX,AY ) = g(X, Y ) = h(LR(X)|q,LR(Y )|q).

The completeness of (N, h) can be easily deduced from the completeness of M and
M̂ together with Proposition 5.6. Proposition II.1.1 in [25] proves that the maps
F,G are in fact (surjective and) Riemannian coverings.

(iii) ⇒ (ii): Let x0 ∈ M and choose z0 ∈ N such that F (z0) = x0. Define
x̂0 = G(z0) ∈ M̂ and A0 := G∗|z0 ◦ (F∗|z0)

−1 which is an element of Q|(x0,x̂0) since
F,G were local isometries. Write q0 = (x0, x̂0;A0) ∈ Q.

Let γ : [0, 1] → M be an a.c. curve with γ(0) = x0. Since F is a smooth covering
map, there is a unique a.c. curve Γ : [0, 1] → N with γ = F ◦ Γ and Γ(0) = z0.
Define γ̂ = G ◦ Γ and A(t) = G∗|Γ(t) ◦ (F∗|Γ(t))

−1 ∈ Q, t ∈ [0, 1]. It follows that, for
a.e. t ∈ [0, 1],

˙̂γ(t) = G∗|Γ(t)Γ̇(t) = A(t)γ̇(t).

Since F,G are local isometries, ∇(γ̇(t), ˙̂γ(t))A(·) = 0 for a.e. t ∈ [0, 1]. Thus t 7→
(γ(t), γ̂(t);A(t)) is the unique rolling curve along γ starting at q0 and defined on [0, 1]
and therefore curves of Q formed in this fashion fill up the orbit ODR

(q0). Moreover,
since F,G are local isometries, it follows that for every z ∈ N and X, Y ∈ T |F (z)M ,
Rol(X, Y )(G∗|z ◦ (F∗|z)

−1) = 0. These facts prove that the condition in (ii) holds
and the proof is therefore finished.
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We conclude this subsection with a necessary condition for complete controlla-
bility, which is an immediate consequence of Theorem 4.18.

Proposition 5.30 Assume that the manifoldsM and M̂ are complete non-symmetric,
simply connected, irreducible and n 6= 8. If the control system (Σ)R is completely
controllable, then one of the holonomy groups ofM or M̂ is equal to SO(n) (w.r.t some
orthonormal frames).

5.4.2 A ”Rolling Along Loops” Characterization of Isometry

In this paragraph, we provide a general non-controllability result that will be used
later on. It will be the converse of the following simple proposition.

Proposition 5.31 Suppose (M, g) and (M̂, ĝ) have a common Riemannian covering
space (N, h) with projections (local isometries) F : N → M and G : N → M̂ . Then if
there exist x0 ∈M , x̂0 ∈ M̂ such that

F−1(x0) ⊂ G−1(x̂0),

then for q0 = (x0, x̂0;A0) ∈ Q with A0 = G∗ ◦ (F∗|q0)
−1 one has that for every loop

γ ∈ Ωx0(M) based at x0 the corresponding curve γ̂DR
(γ, q0) on M̂ determined by the

rolling curve starting from q0 (exists and) is a loop based x̂0 i.e.,

γ ∈ Ωx0(M) =⇒ γ̂DR
(γ, q0) ∈ Ωx̂0(M̂).

Proof. If γ ∈ Ωx0(M), let Γ be the unique lift of γ to N such that Γ(0) = q0 and
define γ̂ = F ◦Γ, A(t) = G∗ ◦ (F∗|Γ(t))

−1. Then q(t) = (γ(t), γ̂(t);A(t)) is an element
of Q|(γ(t),γ̂(t)), since F,G are local isometries and moreover, q0 = q(0),

˙̂γ(t) =
d

dt
(G ◦ Γ)(t) = G∗Γ̇(t) = (G∗ ◦ (F∗|Γ(t))

−1)(F∗Γ̇(t)) = A(t)γ̇(t)

∇̂ ˙̂γ(t)(A(t)P
t
0(γ)X) =∇̂G∗Γ̇(t)

(G∗(F∗|Γ(t))
−1P t

0(γ)X)

=G∗∇
h
(F∗|Γ(t))−1γ̇(t)((F∗|Γ(t))

−1P t
0(γ)X)

=(G∗ ◦ (F∗|Γ(t))
−1)∇γ̇(t)(P

t
0(γ)X) = 0,

for every t ∈ [0, 1] and every X ∈ T |x0M . This proves that q(t) = qDR
(γ, q0)(t)

and since γ is a loop based at x0, F (Γ(1)) = γ(1) = x0, which means that Γ(1) ∈
F−1(x0) ⊂ G−1(x̂0) and thus γ̂DR

(γ, q0)(1) = γ̂(1) = G(Γ(1)) = x̂0. By definition,

γ̂DR
(γ, q0)(0) = x̂0 and hence γ̂DR

(γ, q0) ∈ Ωx̂0(M̂). This completes the proof.

Conversely, we have the following theorem which is the main result of this sub-
section.

Theorem 5.32 Let (M, g), (M̂, ĝ) be complete Riemannian manifolds and suppose
that there is a q0 = (x0, x̂0;A0) ∈ Q such that for every loop γ ∈ Ωx0(M) based at x0
the corresponding curve γ̂DR

(γ, q0) on M̂ determined by the rolling curve starting from
q0 is a loop based x̂0 i.e.,

γ ∈ Ωx0(M) =⇒ γ̂DR
(γ, q0) ∈ Ωx̂0(M̂). (50)
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Then (M, g) and (M̂, ĝ) have a common Riemannian covering space (N, h) such that
if F : N → M , G : N → M̂ are the corresponding covering maps, then

F−1(x0) ⊂ G−1(x̂0).

Proof. For u, v ∈ T |x0M , a Jacobi field along the geodesic t 7→ expx0
(tu) =: γu(t) is

given by

Yu,v(t) =
∂

∂s

∣∣
s=0

expx0
(t(u+ sv)) = t(expx0

)∗|tu(v),

together with the initial conditions: Yu,v(0) = 0, ∇γ̇u(0)Yu,v = v. Define a function

ω̂u,v : [0, 1]× [−1, 1] → M̂ by

ω̂u,v(t, s) :=

γ̂DR

(
τ 7→ expx0

(
(1− τ)(u+ sv)

)
, qDR

(
σ 7→ expx0

(u+ σv), qDR
(γu, q0)(1)

)
(s)

)
(t).

It is clear from Proposition 5.6 that for every s ∈ [−1, 1] the map t 7→ ω̂u,v(t, s) is a
geodesic and moreover it is clear that ω̂(t, 0) = γ̂DR

(γu, q0)(1− t). This implies that

Ŷu,v(t) :=
∂

∂s

∣∣∣
s=0

ω̂u,v(1− t, s), t ∈ [0, 1],

defines a Jacobi field of (M̂, ĝ) along the geodesic γ̂DR
(γu, q0). We now derive some

properties of this Jacobi field.
We first observe that

Ŷu,v(1) =
∂

∂s

∣∣
s=0

γ̂DR

(
σ 7→ expx0

(u+ σv), qDR
(γu, q0)(1)

)
(s)

=ADR
(γu, q0)(1)

∂

∂s

∣∣
0
expx0

(u+ sv)

=ADR
(γu, q0)(1)Yu,v(1). (51)

We now claim that ω̂u,v(1, s) = x̂0 for all s. Indeed, we may write ω̂u,v(1, s) as

ω̂u,v(1, s) = γ̂DR

( (
τ 7→ expx0

((1− τ)(u+ sv))
)
.
(
σ 7→ expx0

(u+ σsv)
)
.γu︸ ︷︷ ︸

=:(⋆)∈Ωx0 (M)

, q0
)
(1) = x̂0

and since the expression (⋆) is a loop on M based at x0, it follows from the assump-
tion that the path defined on right of the first equality sign is a loop on M̂ based
at x̂0, hence its value at t = 1 is x̂0. From this follows the second property of Ŷu,v,
namely

Ŷu,v(0) = 0, (52)

since Ŷu,v(0) =
∂
∂s

∣∣
s=0

ω̂u,v(1, s) =
∂
∂s

∣∣
0
(s 7→ x0) = 0.

This is a key property since it implies that Ŷu,v has the form

Ŷu,v(t) =
∂

∂s

∣∣
0
êxpx̂0

(
t(A0u+ sv̂(u, v))

)
= t(êxpx̂0

)∗|tA0u(v̂(u, v)), (53)

where v̂(u, v) := ∇̂ d
dt

êxpx̂0
(tA0u)

Ŷu,v
∣∣
t=0

. It is clear that (u, v) 7→ v̂(u, v) is a smooth

map (T |x0M)2 → T |x̂0M̂ . We also observed that γ̂u(t) := γ̂DR
(γu, q0) = êxpx̂0

(tA0u).
We next show the following relation.
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Lemma 5.33 With the above notations,

∇̂ ˙̂γu(t)
Ŷu,v|t=1 = ADR

(γu, q0)(1)∇γ̇u(t)Yu,v|t=1. (54)

Proof. Writing ∂t :=
∂
∂t
expx0

(t(u+sv)), ∂s :=
∂
∂s

expx0
(t(u+sv)) ∂̂t :=

∂
∂t
ω̂(1− t, s),

∂̂s :=
∂
∂s
ω̂(1− t, s) and ∂s = (∂s, ∂̂s), we have

∇̂ ˙̂γu(t)
Ŷu,v|t=1 = ∇̂∂̂t

∂

∂s

∣∣∣
0
ω̂(1− t, s)

∣∣∣
t=1

= ∇̂∂̂s

∂

∂t

∣∣∣
1
ω̂(1− t, s)

∣∣∣
s=0

=∇̂∂̂s

∂

∂t

∣∣∣
1
γ̂DR

(
τ 7→ expx0

((1− τ)(u+ sv)),

qDR

((
σ 7→ expx0

(u+ σsv)
)
.γu, q0

)
(1)

)
(1− t)

∣∣∣
s=0

=∇̂∂̂s

(
ADR

((
σ 7→ expx0

(u+ σsv)
)
.γu, q0

)
(1)

∂

∂t

∣∣
1
expx0

(t(u+ sv))
)∣∣∣

s=0

=∇̂∂̂s

(
ADR

(
σ 7→ expx0

(u+ σv), qDR
(γu, q0)(1)

)
(s)

∂

∂t

∣∣
1
expx0

(t(u+ sv))
)∣∣∣

s=0

=
(
∇∂s

ADR

(
σ 7→ expx0

(u+ σv), qDR
(γu, q0)(1)

)
(s)

)∣∣∣
s=0︸ ︷︷ ︸

=0

∂

∂t

∣∣
1
expx0

(t(u+ sv))

+ ADR

(
σ 7→ expx0

(u+ σv), qDR
(γu, q0)(1)

)
(0)

(
∇∂s

∂

∂t

∣∣
1
expx0

(t(u+ sv))
)∣∣∣

s=0

=ADR
(γu, q0)(1)∇∂t

∂

∂s

∣∣
0
expx0

(t(u+ sv))
︸ ︷︷ ︸

=Yu,v(t)

∣∣
t=1

=ADR
(γu, q0)(1)∇γ̇u(t)Yu,v|t=1,

which gives (54).

The next technical result goes as follows.

Lemma 5.34 Consider v̂(u, v) defined by (53). Then,

v̂(u, v) = A0v, ∀u, v ∈ T |x0M. (55)

Proof. Notice first that for any τ ∈ R,

Yτu,v(t) =
∂

∂s

∣∣
0
expx0

(t(τu+ sv)) =
1

τ

∂

∂σ

∣∣
0
expx0

(tτ(u+ σv)) =
1

τ
Yu,v(tτ),

where, in the first equality, we substituted σ := s
τ
. Therefore (51) implies that

Ŷτu,v(1) = ADR
(γτu, q0)(1)Yτu,v(1) =

1

τ
ADR

(γu, q0)(τ)Yu,v(τ),

i.e.,

ADR
(γu, q0)(τ)Yu,v(τ) = τ Ŷτu,v(1). (56)
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On one hand, from (54), (56) and (53) one has (recall that γ̂u(t) = γDR
(γu, q0)(t) =

êxpx̂0
(tA0u))

∇̂ ˙̂γu(t)
Ŷu,v

∣∣
t=1

=ADR
(γu, q0)(1)∇γ̇u(t)Yu,v|t=1 = ∇̂ ˙̂γu(t)

(
ADR

(γu, q0)(t)Yu,v(t)
)
|t=1

=∇̂ ˙̂γu(t)
(tŶtu,v(1))

∣∣
t=1

= Ŷu,v(1) + ∇̂ ˙̂γu(t)
Ŷtu,v(1)

∣∣
t=1

=Ŷu,v(1) + ∇̂ ˙̂γu(t)

∂

∂s

∣∣
0
êxpx̂0

(
tA0u+ sv̂(tu, v))

)∣∣
t=1

=Ŷu,v(1) + ∇̂ ˙̂γu(t)

(
(êxpx̂0

)∗|tA0u(v̂(tu, v)
)∣∣

t=1
.

On the other hand, using only (53) one has

∇̂ ˙̂γu(t)
Ŷu,v

∣∣
t=1

=∇̂ ˙̂γu(t)

∂

∂s

∣∣
0
êxpx̂0

(
t(A0u+ sv̂(u, v))

)∣∣
t=1

=∇̂ ˙̂γu(t)

(
t(êxpx̂0

)∗|tA0u(v̂(u, v))
)∣∣

t=1

=(êxpx̂0
)∗|A0u(v̂(u, v)) + ∇̂ ˙̂γu(t)

(
(êxpx̂0

)∗|tA0u(v̂(u, v))
)∣∣

t=1

=
∂

∂s

∣∣
0
êxpx̂0

(A0u+ sv̂(u, v)) + ∇̂ ˙̂γu(t)

(
(êxpx̂0

)∗|tA0u(v̂(u, v))
)∣∣

t=1

=Ŷu,v(1) + ∇̂ ˙̂γu(t)

(
(êxpx̂0

)∗|tA0u(v̂(u, v))
)∣∣

t=1
.

Combining these two formulas, whose left hand sides are equal, and canceling the
common terms Ŷu,v(1) we end up with

∇̂ ˙̂γu(t)

(
(êxpx̂0

)∗|tA0u(v̂(tu, v))
)∣∣

t=1
= ∇̂ ˙̂γu(t)

(
(êxpx̂0

)∗|tA0u(v̂(u, v))
)∣∣

t=1
.

Here we can simplify the left hand side by the following computation: With the
notation

Ds :=
∂

∂s
êxpx̂0

(
tA0u+ sv̂(tu, v))

)
, Dt :=

∂

∂t
êxpx̂0

(
tA0u+ sv̂(tu, v))

)
,

(notice also that Dt|s=0 = ˙̂γu(t)) we get

∇̂ ˙̂γu(t)

(
(êxpx̂0

)∗|tA0u(v̂(tu, v))
)∣∣

t=1
= ∇̂Dt

∂

∂s

∣∣
0
êxpx̂0

(
tA0u+ sv̂(tu, v))

)∣∣
t=1

=∇̂Ds

∂

∂t

∣∣
1
êxpx̂0

(
tA0u+ sv̂(tu, v))

)∣∣
s=0

=∇̂Ds
(êxpx̂0

)∗|A0u+sv̂(u,v)

(
A0u+ s∂1v̂(u, v)(u))

)∣∣
s=0

=∇̂Ds
(êxpx̂0

)∗|A0u+sv̂(u,v)

(
A0u

)
|s=0 + ∇̂Ds

(êxpx̂0
)∗|A0u+sv̂(u,v)

(
s∂1v̂(u, v)(u)

)∣∣
s=0

=∇̂Ds

∂

∂t

∣∣
1
êxpx̂0

(tA0u+ sv̂(u, v))
∣∣
s=0

− ∇̂Ds

∂

∂t

∣∣
1
êxpx̂0

(
A0u+ sv̂(u, v) + (1− t)s∂1v̂(u, v)(u)

)∣∣
s=0

=∇̂Dt

∂

∂s

∣∣
0
êxpx̂0

(
tA0u+ sv̂(u, v))

)∣∣
t=1

− ∇̂Dt

∂

∂s

∣∣
0
êxpx̂0

(
A0u+ sv̂(u, v) + (1− t)s∂1v̂(u, v)(u)

)∣∣
t=1

=∇̂ ˙̂γu(t)

(
(êxpx̂0

)∗|tA0u(v̂(u, v))
)∣∣

t=1

− ∇̂Dt
(êxpx̂0

)∗|A0u

(
v̂(u, v) + (1− t)∂1v̂(u, v)(u)

)∣∣
t=1
,
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where ∂1v̂(u, v)(w) for u, v, w ∈ T |x0M denotes the directional derivative of v̂ at
(u, v) in the direction w. The last term on the right of the previous formula simplifies
to

∇̂Dt
(êxpx̂0

)∗|A0u

(
v̂(u, v) + (1− t)∂1v̂(u, v)(u)

)∣∣
t=1

=∇̂Dt

(
(êxpx̂0

)∗|A0u

(
v̂(u, v)

)
+ (1− t)(êxpx̂0

)∗|A0u

(
∂1v̂(u, v)(u)

))∣∣∣
t=1

=− (êxpx̂0
)∗|A0u

(
∂1v̂(u, v)(u)

)
.

Combining the last three formulas, one obtains

(êxpx̂0
)∗|A0u

(
∂1v̂(u, v)(u)

)
= 0.

Thus for all u such that A0u is not in the tangent conjugate locus Q̂x̂0 of êxpx̂0
one

has ∂1v̂(u, v)(u) = 0. Moreover, since the complement of Q̂x̂0 is a dense subset of
T |x̂0M̂ , the continuity of (u, v) 7→ ∂1v̂(u, v)(u) implies that

∂1v̂(u, v)(u) = 0, ∀u, v ∈ T |x̂0M.

But this implies that

v̂(u, v)− v̂(0, v) =

∫ 1

0

d

dt
v̂(tu, v)dt =

∫ 1

0

1

t
∂1v̂(tu, v)(tu)︸ ︷︷ ︸

=0

dt = 0,

and hence we need only to know the values of v̂(0, v) to know all values of v̂(u, v).
By the definition of ω̂u,v(t) one sees that

ω̂0,v(t, s) =γ̂DR

(
τ 7→ expx0

(
(1− τ)sv

)
, qDR

(
σ 7→ expx0

(σv), qDR
(γ0, q0)(1)︸ ︷︷ ︸

=q0

)
(s)

)
(t)

=γ̂DR

(
τ 7→ expx0

(
(1− τ)sv

)
, qDR

(
σ 7→ expx0

(σsv), q0
)
(1)

)
(t)

=γ̂DR

(
τ 7→ expx0

(
τsv

)
, q0

)
(1− t) = êxpx̂0

((1− t)sA0v),

which implies that

Ŷ0,v(t) =
∂

∂s

∣∣
0
ω̂0,v(1− t, s) =

∂

∂s

∣∣
0
êxpx̂0

(
t(0 + sA0v)

)
,

and therefore, comparing to (53), one obtains

v̂(0, v) = A0v.

This finally proves (55) since by the above considerations, v̂(u, v) = v̂(0, v) = A0v.

Equations (51), (53) and (55) show that (take t = 1)

(êxpx̂0
)∗|A0u(A0v) = ADR

(γu, q0)(1)
(
(expx0

)∗|u(v)
)
, ∀u, v ∈ T |x0M. (57)

We now show that (50) holds with q0 replaced by any element of the fiber
ODR

(q0) ∩ π
−1
Q,M(x0) of the orbit above x0.
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Lemma 5.35 Write Fx0 := ODR
(q0) ∩ π

−1
Q,M(x0). Then

q ∈ Fx0 , γ ∈ Ωx0(M) =⇒ γ̂DR
(γ, q) ∈ Ωx̂0(M̂). (58)

Remark: πQ(Fx0) = (x0, x̂0).

Proof. Let q ∈ Fx0. Then there is a ω ∈ Ωx0(M) such that q = qDR
(ω, q0)(1). Then

if γ ∈ Ωx0(M),

γ̂DR
(γ, q)(1) = γ̂DR

(γ, qDR
(ω, q0)(1))(1) = γ̂DR

(γ.ω, q0)(1) = x̂0,

where the last equality follows from (50) since γ.ω ∈ Ωx0(M). Since γ̂DR
(γ, q)(0) =

πQ,M̂(q) = x̂0 as remarked just before the proof, we have γ̂DR
(γ, q) ∈ Ωx̂0(M̂).

Define U to be the subset of T |x0M of points before the cut time i.e., if for
X ∈ T |x0M , ‖X‖g = 1 we let τ(X) ∈]0,∞] denote the time such that the geodesic
γX is optimal on [0, τ(X)] but not after, then

U = {sX | X ∈ T |x0M, ‖X‖g = 1, 0 ≤ s < τ(X)}.

Since (M, g) is complete, Ũ := expx0
(U) is dense in M and expx0

: U → Ũ is a
diffeomorphism.

We now have the following result.

Lemma 5.36 For each q ∈ Fx0 let

φq : Ũ → M̂ ; φq = êxpx̂0
◦A ◦ (expx0

|U)
−1

where q = (x0, x̂0;A). Then each mapping φq is a local isometry (Ũ , g|Ũ) → (M̂, ĝ)
and (φq)∗|T |x0M = A.

Proof. Since q = (x0, x̂0;A) ∈ Fx0 , the previous lemma implies that (57) holds
with q0 = (x0, x̂0;A0) replaced by q. Therefore, if x ∈ Ũ and X ∈ T |xM write
u = (expx0

|U)
−1(x) ∈ T |x0M and v = ((expx0

|U)
−1)∗(X) ∈ T |u(T |x0M) = T |x0M

and (57) with q0 replaced by q implies

‖(φq)∗(X)‖ĝ =
∥∥((êxpx̂0

)∗ ◦ A ◦ ((expx0
|U)

−1)∗
)
(X)

∥∥
ĝ

=
∥∥(êxpx̂0

)∗|Au(Av)
∥∥
ĝ
=

∥∥ADR
(γu, q)(1)(expx0

)∗|u(v)
∥∥
ĝ

=
∥∥(expx0

)∗|u(v)
∥∥
g
=

∥∥(expx0
)∗|u

(
((expx0

|U)
−1)∗(X)

)∥∥
g

= ‖X‖g ,

where the 4. equality follows from the fact that A ∈ T |x0M → T |x̂0M̂ is an isometry.
The claim (φq)∗|T |x0M = A is obviously true.

We will now start proving that Rol(·, ·)(ADR
(γ, q0)(t)) = 0 for every piecewise

C1-path (not necessarily a loop) γ on M such that γ(0) = x0 and for all t. First we
prove a special case of this (but with q0 replaced by any q ∈ Fx0).
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Lemma 5.37 Let q ∈ Fx0 , u ∈ T |x0M be a unit vector and let γu be the geodesic
t 7→ expx0

(tu), Then

Rol(·, ·)(ADR
(γu, q)(t)) = 0, ∀t ∈ [0, τ(u)].

Proof. Write q = (x0, x̂0;A) and notice that by definition of U we have tu ∈ U for
all t ∈ [0, τ(u)[.

Since φq of the previous lemma is a local isometry, it follows that

P t
0(φq(γu)) ◦ A = (φq)∗ ◦ P

t
0(γu), ∀0 ≤ t < τ(u).

Also, d
dt
φq(γu)(t) = (φq)∗γ̇u(t) for all t so we may conclude that

qDR
(γu, q)(t) =

(
γu(t), (φq ◦ γu)(t); (φq)∗|γu(t)

)
, ∀0 ≤ t < τ(u).

Again, since φq is a local isometry, for all X, Y, Z ∈ T |xM , x ∈ Ũ we have

(φq)∗(R(X, Y )Z) = R̂((φq)∗X, (φq)∗Y )((φq)∗Z) i.e., Rol(·, ·)((φq)∗|x) = 0 for all
x ∈ Ũ . But then

Rol(·, ·)(ADR
(γu, q)(t)) = Rol(·, ·)

(
(φq)∗|γu(t)

)
= 0, 0 ≤ t < τ(u).

Continuity of Rol and qDR
(γu, q) now allows us to conclude that the above equation

holds for all 0 ≤ t ≤ τ(u).

Now we may prove the claim that was asserted before the previous lemma.

Lemma 5.38 Let γ : [0, 1] → M a piecewise C1-path on M such that γ(0) = x0.
Then

Rol(·, ·)(ADR
(γ, q0)(t)) = 0, ∀t ∈ [0, 1].

Proof. It is clearly enough to prove the claim in the case t = 1. Choose any vector
u ∈ T |x0M such that γu : [0, 1] →M is the minimal geodesic from x0 to γ(1). Define
q := qDR

(γ−1
u .γ, q0)(1) and notice that since γ−1

u .γ ∈ Ωx0(M), we have q ∈ Fx0 . Thus
by the previous lemma,

Rol(·, ·)(ADR
(γu, q)(1)) = Rol(·, ·)(ADR

(γ u
‖u‖g

, q)(‖u‖g)) = 0,

since τ( u
‖u‖g

) = ‖u‖g. But

qDR
(γu, q)(1) = qDR

(γu, qDR
(γ−1

u .γ, q0)(1))(1) = qDR
(γu.γ

−1
u .γ, q0)(1) = qDR

(γ, q0)(1)

and hence

0 = Rol(·, ·)(ADR
(γu, q)(1)) = Rol(·, ·)(ADR

(γ, q0)(1))

which concludes the proof.

Finally we may proceed to the proof of the theorem itself. Indeed, since ODR
(q0)

is the set of all qDR
(γ, q0)(1) with all the possible piecewise C1-curves γ : [0, 1] →M

such that γ(0) = x0, the previous lemma implies that the condition (ii) of Corollary
5.29 is satisfied. Thus there is a Riemannian manifold (N, h) and Riemannian
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covering maps F : N → M , G : N → M̂ i.e., (M, g) and (M̂, ĝ) have a common
Riemannian covering space.

Actually, by Corollary 5.29, we may take N = ODR
(q0), F = πQ,M |N , G =

πQ,M̂ |N and hence if q ∈ F−1(x0), then there exists a γ ∈ Ωx0(M) such that q =

qDR
(γ, q0)(1) and hence G(q) = γ̂DR

(γ, q0)(1) = x̂0 since γ̂DR
(γ, q0) ∈ Ωx̂0(M̂) by the

assumption. This shows that F−1(x0) ⊂ G−1(x̂0) and concludes the proof.

Remark 5.39 The difficulty in the proof of the previous theorem is due to the fact
that the contact points x0, x̂0 are fixed i.e., we only assume that loops that are based
at x0 generate, by rolling, loops that are based at x̂0.

If we were allowed to have an open neighbourhood of points onM with the property
that loops based at these points generate loops on M̂ , one could prove that (M, g) and
(M̂, ĝ) have the same universal Riemannian covering by an easier argument than above.

More precisely, suppose there is a q0 = (x0, x̂0;A0) ∈ Q and a neighbourhood U of
x0 which consists of points x such that whenever one rolls along a geodesic from x0 to
x followed by any loop at x, then the corresponding curve on M̂ , generated by rolling,
is a geodesic followed by a loop based at the end point of this geodesic.

This means that there is a (possibly smaller) normal neighbourhood U of x0 such
that defining a local πQ,M -section q̃ on U by

q̃(x) = (x, f̂(x); Ã|x) := qDR

(
(t 7→ expx0

(t exp−1
x0
(x))), q0

)
(1),

then it holds that

∀x ∈ U, γ ∈ Ωx(M) =⇒ γ̂DR
(γ, q̃(x)) ∈ Ωf̂(x)(M̂).

Notice that q0 = q̃(x0). (In the case of the previous theorem, we had U = {x0}, which
is not open.)

We will now sketch an easy argument to reach the conclusion of the theorem under
this stronger assumption.

Write πODR
(q0) = πQ,M |ODR

(q0) as usual. We show that the vertical bundle V (πODR
(q0))

is actually trivial in the sense that all its fibers consist of one point only (the origin).
From this one concludes that ODR

(q0) is an integral manifold of DR an hence πODR
(q0)

is (complete and) a Riemannian covering map once the manifold ODR
(q0) is equipped

with the Riemannian metric pulled back from that of M (or M̂).
Take x ∈ U and v ∈ V |q̃(x)(πODR

(q0)). This means that there is a smooth curve

s 7→ Γ(s), s ∈ [0, 1], in ODR
(q0) such that πQ,M(Γ(s)) = x for all s and Γ̇(0) = v.

One may then choose for each s a smooth path γs in M starting at x and defined
on [0, 1] such that qDR

(γs, q̃(x))(1) = Γ(s). We have γs ∈ Ωx(M) since

γs(1) = πQ,M

(
qDR

(γs, q̃(x))(1)
)
= πQ,M(Γ(s)) = x.

Thus by assumption,

γ̂DR
(γs, q̃(x)) ∈ Ωf̃(x)(M̂)

from which

(πQ,M̂)∗v =
d

ds

∣∣
0
πQ,M̂(Γ(s)) =

d

ds

∣∣
0
γ̂DR

(γs, q̃(x))(1) =
d

ds

∣∣
0
(s 7→ f̃(x)) = 0.
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This proves that every element of V |q̃(x)(πODR
(q0)), x ∈ U , is of the form ν(B)|q̃(x)

where B ∈ T ∗|xM ⊗ T |f̃(x)M̂ and ĝ(BX, Ã|xY ) + ĝ(Ã|xX,BY ) = 0, ∀X, Y ∈ T |xM .
Take a vector field of the form q 7→ ν(B|q)|q on ODR

(q0) defined along the image
of q̃. Arguing as in Proposition 5.25 and using Eq. (47), we conclude that for every
X ∈ T |x0M we have

−LNS(B|q0X)|q0 + ν
(
∇(X,A0X)B|q̃(·)

)
∈ T |q0ODR

(q0)

and hence, by what we just proved above, the image of this vector under (πQ,M̂)∗ must
be zero i.e., B|q0X = 0. Since this holds for all X ∈ T |x0M , it means that B|q0 = 0
and hence we have that V |q0(πODR

(q0)) = {0}. Thus the vertical bundle V (πODR
(q0))

has rank = 0 since its fiber is = {0} at one point.

Remark 5.40 The assumption given by Formula (50) is a special case of a more
general one: There is q0 = (x0, x̂0;A0) ∈ Q and points x1 ∈ M , x̂1 ∈ M̂ such that

γ ∈ Ωx0,x1(M) =⇒ γ̂DR
(γ, q0) ∈ Ωx̂0,x̂1(M̂), (59)

where Ωx0,x1(M) is used to denote the set of piecewise C1-curves from x0 to x1 in M

with Ωx̂0,x̂1(M̂) defined similarly for M̂ .
We actually reduce this setting to the one given in Theorem 5.32 as follows. Fix

once and for all a curve ω : [0, 1] → M s.t. ω(0) = x0, ω(1) = x1 and write q1 =
qDR

(ω, q0)(1). Then q1 = (x1, x̂1;A1) by assumption given by Eq. (59), with A1 :

T |x1M → T |x̂1M̂ . Then if γ ∈ Ωx1(M) is any loop in M based at x1, one gets that
γ.ω ∈ Ωx0,x1(M) is a path from x0 and x1. By assumption in Eq. (59) again, one has

γ̂DR
(γ, q1)(1) = γ̂DR

(γ.ω, q0)(1) = x̂1,

and since γ̂DR
(γ, q1)(0) = x̂1, we have obtained

γ ∈ Ωx1(M) =⇒ γ̂DR
(γ, q1) ∈ Ωx̂1(M̂).

Therefore any result obtained under Assumption (50) will also hold true under the as-
sumption given by Formula (59).

5.4.3 The Ambrose’s Theorem Revisited

The results developed so far allow us to somewhat simplify the proof of the Am-
brose’s theorem (see [25] Theorem III.5.1). In fact, the elaborate construction of
the covering space X (of the manifold M) is no longer needed since we build this
space by simple integrating the distribution DR. Actually, as in [25], we will first
prove (a version of) the Cartan’s theorem ([25] Theorem II.3.2) by using the rolling
framework and then use that result and some “patching” to obtain the Ambrose’s
theorem. The considerations are in parallel to those found in [4], [23].

Definition 5.41 A continuous curve γ : [0, a] →M on a Riemannian manifold (M, g)
is called once broken geodesic, broken at t0, if there is a t0 ∈ [0, a] such that γ|[0,t0],
γ|[t0,a] are geodesics of (M, g).

Notice that if q = (x, x̂;A) ∈ Q and γ is a once broken geodesic on M starting
at x broken at t0, then γ̂DR

(γ, q) is a once broken geodesic on M̂ broken at t0.
Ambrose’s theorem can now be stated as follows.
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Theorem 5.42 (Ambrose) Let (M, g), (M̂, ĝ) be complete n-dimensional Rieman-
nian manifolds and let q0 = (x0, x̂0;A0) ∈ Q. Suppose that M is simply connected and
that, for any once broken geodesic γ : [0, a] →M starting from x0, we have

ADR
(γ, q0)(t)(R(X, Y )Z) = R̂(ADR

(γ, q0)(t)X,ADR
(γ, q0)(t)Y )(ADR

(γ, q0)(t)Z),
(60)

for allX, Y, Z ∈ T |γ(t)M and t ∈ [0, a]. Then, if for any minimal geodesic γ : [0, a] →M
starting from x0, one defines Φ(γ(t)) = êxpx̂0

(tA0γ̇(0)), t ∈ [0, a], it follows that the

map Φ :M → M̂ is a well-defined Riemannian covering.

Remark 5.43 The assumption of Ambrose’s theorem is equivalent to the following:
For any once broken geodesic γ : [0, a] →M starting from x0 and for allX, Y ∈ VF(M),
t ∈ [0, a],

Rol(X, Y )(ADR
(γ, q0)(t)) = 0,

which by Proposition 5.17 is equivalent to

[LR(X),LR(Y )]|qDR
(γ,q0)(t) = LR([X, Y ])|qDR

(γ,q0)(t).

i.e., that the distribution DR is involutive at each point of Q of the form qDR
(γ, q0)(t).

This should suggest that it is worthwhile to study the integrability of DR near the point
q0 ∈ Q, although we are not allowed to use Frobenius theorem.

On a Riemannian manifold (N, h), we use dh to denote the distance function
(metric) on N induced by h and, for y ∈ N , X ∈ T |yN , r > 0, we use Bdh(y, r) ⊂ N
(resp. Bh(X, r) ⊂ T |yN) to denote the open ball of radius r on N (resp. T |yN)
centered at y (resp. X) w.r.t dh (resp. h).

The next result provides a local integral manifold ofDR under milder assumptions
than those given in the statement of Ambrose’s theorem.

Theorem 5.44 (Cartan) Let (M, g) and (M̂, ĝ) be (not necessarily complete) Rie-
mannian manifolds. Consider q = (x, x̂;A) ∈ Q and ǫ > 0 such that the exponential
maps expx : Bg(0x, ǫ) ⊂ T |xM → Bdg(x, ǫ) and êxpx̂ : B(0x̂, ǫ) ⊂ T |x̂M̂ → Bdĝ(x̂, ǫ)
are (defined and) diffeomorphisms. Then the following are equivalent:

(i) For every (non-broken) geodesic γ : [0, 1] → Bdg(x, ǫ) starting from x, we have

ADR
(γ, q)(t)(R(X, Y )Z)

=R̂(ADR
(γ, q)(t)X,ADR

(γ, q)(t)Y )(ADR
(γ, q)(t)Z) (61)

i.e., Rol(X, Y )(ADR
(γ, q)(t))Z = 0 for every X, Y, Z ∈ T |γ(t)M and t ∈ [0, 1].

(ii) For every (non-broken) geodesic γ : [0, 1] → Bdg(x, ǫ) starting from x, we have

ADR
(γ, q)(t)(R(X, γ̇(t))γ̇(t))

=R̂(ADR
(γ, q)(t)X, ˙̂γDR

(γ, q)(t)) ˙̂γDR
(γ, q)(t) (62)

i.e., Rol(X, γ̇(t))(ADR
(γ, q)(t))γ̇(t) = 0 for every X ∈ T |γ(t)M and t ∈ [0, 1]

(except the break point of γ).
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(iii) There is a connected integral manifold N of DR passing through q such that
πQ,M |N → Bdg(x, ǫ) (or πQ,M̂ |N → Bdĝ(x̂, ǫ)) is a bijection.

(iv) The map Φ := êxpx̂ ◦ A ◦ exp−1
x |Bdg (x,ǫ)

is an isometric diffeomorphism (onto
Bdĝ(x̂, ǫ)).

Moreover, if any of the above cases holds, then, for every X ∈ Bg(0x, ǫ), it holds
that

Φ∗|expx(X) = P 1
0 (s 7→ êxpx̂(sAX)) ◦ A ◦ P 0

1 (s 7→ expx(sX))

= P 1
0

(
s 7→ exp(x,x̂)

(
s(X,AX)

))
. (63)

Proof. (i) ⇒ (iii): By taking Y = Z = γ̇, one has

ADR
(γ, q)(t)Y = ADR

(γ, q)(t)Z = ˙̂γDR
(γ, q)(t),

for all t ∈ [0, 1].
(ii) ⇒ (iv): Let u, v ∈ T |xM , ‖u‖g < ǫ and define for t ∈ [0, 1]

Yu,v(t) :=
d

ds

∣∣
0
expx(t(u+ sv)) = t(expx)∗|tuv.

It is the Jacobi field on M along the geodesic γu(t) := expx(tu), t ∈ [0, 1], with
Yu,v(0) = 0, ∇uYu,v = v.

Proposition 5.6 implies that the rolling curve qDR
(γu, q) along γu is given as

γ̂DR
(γu, q)(t) = êxpx̂(tAu), ADR

(γu, q)(t) = P t
0(γ̂DR

(γu, q)) ◦ A ◦ P 0
t (γu).

On the other hand, the assumption implies that

Rol(Yu,v(t), γ̇u(t))(ADR
(γu, q)(t))γ̇u(t) = 0, t ∈ [0, 1]

and Proposition 5.20 imply that Ŷu,v := ADR
(γu, q)Yu,v is a Jacobi field on M̂ along

the geodesic γ̂DR
(γu, q).

Clearly, Ŷu,v(0) = 0 and ∇̂AuŶu,v = A∇uYu,v = Av, from which it follows (by the

uniqueness of solutions of second order ODEs) that Ŷu,v must be the Jacobi field
given by

Ŷu,v(t) =
d

ds

∣∣
0
êxpx̂(tA(u+ sv)) = t(êxpx̂)∗|tAu(Av).

Setting t = 1, we see that

ADR
(γu, q)(1)(expx)∗|uv = (êxpx̂)∗|Au(Av),

for all u, v ∈ T |xM with ‖u‖g < ǫ. In other words, this means that

Φ∗|y = (êxpx̂)∗|Au ◦ A ◦ (exp−1
x )∗|y = ADR

(γexp−1
x (y), q)(1),

for every y ∈ Bdg(x, ǫ), where Bdg(x, ǫ) is also equal to {expx(u) ∈ T |xM | ‖u‖g < ǫ}.

Since ADR
(γexp−1

x (y), q)(1) ∈ Q, this means that Φ∗|y is an isometry T |yM → T |Φ(y)M̂
i.e., Φ is an isometry.
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(iv) ⇒ (iii): This follows from Lemma 5.45 below.
(iii)⇒ (i): Proposition 5.17 implies that Rol(X, Y )(A′) = 0 for all (x′, x̂′;A′) ∈ N

and X, Y ∈ T |x′M .
On the other hand, the assumption implies that f := (πQ,M)|−1

N is a smooth local
section of πQ,M defined on Bdg(x, ǫ) whose image is the integral manifold N of DR.

Let γ(t) = expx(tu), t ∈ [0, 1], be a geodesic of M with ‖u‖g < ǫ. Then, since
f ◦ γ is an integral curve of DR and f(γ(0)) = q, the rolling curve qDR

(γ, q) is
defined on [0, 1] and is given by qDR

(γ, q)(t) = f(γ(t)) for all t ∈ [0, 1]. Hence
qDR

(γ, q)(t) ∈ N for all t ∈ [0, 1], which implies that Rol(X, Y )(ADR
(γ, q)(t))Z = 0

for all X, Y, Z ∈ T |γ(t)M . This completes the proof.

Lemma 5.45 Let x0 ∈ M and x̂0 ∈ M̂ with corresponding open neighborhoods U
and Û . Then there is a isometry onto Φ : U → Û if and only if there is a smooth
local πQ,M -section f : U → Q, whose image is an integral manifold of DR and projects

bijectively by πQ,M̂ onto Û .
Moreover, the correspondence Φ ↔ f is given by

fΦ(x) = (x,Φ(x); Φ∗|x),

Φf (x) = πQ,M̂ ◦ f.

Proof. Let Φ be an isometry onto U → Û and define fΦ as above. For every x ∈ U
and u ∈ T |xM , let γu(t) := expx(tX). Since Φ is an isometry, Φ ◦ γu is a ĝ-geodesic
starting at Φ(x). Moreover, defining A(t) = Φ∗|γu(t) ∈ Q and taking any X0 ∈ T |xM ,
X(t) = P t

0(γu)X0, we have A(t)X(t) = P t
0(Φ ◦ γu)(Φ∗(X0)) and hence

(
∇(γ̇u(t),

d
dt

(Φ◦γu)(t))A(t)
)
X(t) = ∇̂Φ∗γ̇u(t)(A(t)X(t))− A(t)∇γ̇u(t)X(t) = 0,

which proves that t 7→ (γu(t), (Φ ◦ γu)(t);A(t)) =: q(t) is an integral curve of DR

through q(0) = (x,Φ(x); Φ∗|x). On the other hand, q(t) = fΦ(γu(t)) and thus it
follows that

(fΦ)∗(u) = q̇(0) ∈ DR|q(0).

Hence the image of fΦ is an integral manifold of DR and it clearly projects bijectively
onto Û by πQ,M̂ .

Conversely, suppose that f : U → Q is a local πQ-section whose image is an

integral manifold of DR and which projects onto Û . Define Φf as above. Then

Φf : U → Û and, for every x ∈ U and X ∈ T |xM , we have f∗(X) = LR(X)|f(x) and
thus

‖(Φf )∗X‖ĝ =
∥∥∥(πQ,M̂)∗(f∗(X))

∥∥∥
ĝ
=

∥∥∥(πQ,M̂)∗(LR(X)|f(x))
∥∥∥
ĝ
= ‖f(x)X‖ĝ = ‖X‖g ,

where the final equality follows from the fact that f(x) ∈ Q. The fact that Φ is a
bijection U → Û is clear. Hence the conclusion.

We can now provide an argument for Theorem 5.42. According to the assump-
tions done in the statement, Theorem 5.44 implies that there is an integral manifold
of DR passing through q0 = (x0, x̂0;A0). Hence, we may choose the maximal con-
nected integral manifold N of DR passing throught q0 (where N is the union of all
connected integral manifold of DR passing through q0, see e.g. Lemma 3.19 in [14]).
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EndowN with a Riemannian metric h given by: h(LR(X)|q,LR(Y )|q) = g(X, Y )
for q = (x, x̂;A) ∈ N and X, Y ∈ T |xM . It is then clear that

F := pr1 ◦ πQ|N : N → M, and G := pr2 ◦ πQ|N : N → M̂,

are local isometries onto open subsets of M and M̂ (see also the proof of Corollary
5.29).

We next intend to prove that (N, h) is a complete Riemannian manifold. Here,
we have to be more careful than in the proof of ”(i) ⇒ (iii)” in Corollary 5.29 since
we cannot assume that N is the whole orbit ODR

(q0).
First of all, the facts thatN is an integral manifold ofDR and F is a local isometry

imply that, for any q = (x, x̂;A) ∈ N and any g-geodesic t 7→ γ(t) = expx(tX) on
M starting at x, the rolling curve t 7→ qDR

(γ, q)(t) stays in N is a h-geodesic on N
for t in a small interval containing 0.

Let us assume that N is not complete. Then there exists a h-geodesic Γ : [0, T [→
N starting from q0 where [0, T [ is the maximal non-negative interval of definition
and T < ∞. Since F is a local isometry, F ◦ Γ is a g-geodesic on M and since Γ is
an integral curve of DR, it follows that there is a unique X ∈ T |x0M such that, for
t ∈ [0, T [, one has

Γ(t) = qDR

(
(s 7→ expx0

(sX)), q0
)
(t)

=
(
expx0

(tX), êxpx0
(tA0X);P t

0(s 7→ êxpx̂0
(sA0X)) ◦ A0 ◦ P

0
t (s 7→ expx0

(sX))
)
.

We write (γ(t), γ̂(t);A(t)) := Γ(t). Since M and M̂ are complete, the right hand
side of the above equation makes sense for all t ≥ 0 and we define Γ on [T,∞[ by
this formula. We emphasize that we assume Γ to be a geodesic on N only for [0, T [.

Write qT = (xT , x̂T ;AT ) := Γ(T ). Choose ǫ > 0 such that expxT
and êxpx̂T

are
diffeomorphisms B(0, ǫ) → Bdg(xT , ǫ), B(0, ǫ) → Bdĝ(x̂T , ǫ) respectively.

If ω is any geodesic [0, 1] → Bdg(xT , ǫ) starting from xT , then the concatenation
ω ⊔ γ of ω and γ is a once broken geodesic starting from x0 and therefore, Eq. (60)
implies that the assumptions of Theorem 5.44, Case (i), are satisfied (with (ω, qT )
in place of (γ, q)). Indeed, for every X, Y ∈ T |ω(t)M and t,

Rol(X, Y )(ADR
(ω, qT )(t)) = Rol(X, Y )(ADR

(ω, qDR
(γ, q0)(T ))(t))

=Rol(X, Y )(ADR
(ω ⊔ γ, q0)(t + T )) = 0.

Therefore, Case (iii) there implies the existence of a connected integral manifold Ñ
of DR passing through qT = Γ(T ).

Since Ñ is an integral manifold of DR and Γ is an integral curve of DR and since
Γ(T ) ∈ Ñ , it follows that Γ(t) ∈ Ñ for all t in an open interval ]T − η, T + η[
containing T . Since Γ(t) ∈ N for t ∈ [0, T [, it follows that, for some t0 ∈]T − η, T [,
we have Γ(t0) ∈ N ∩ Ñ .

Thus N ∩ Ñ 6= ∅ and hence N ∪ Ñ is a connected integral manifold of DR

passing through q0 which, because of the maximality of N , implies that Ñ ⊂ N .
This implies that Γ is a geodesic of N (since F ◦ Γ = γ is a geodesic of M and F
is a local isometry) on the interval [0, T + η[, contradicting the choice of the finite
time T . Thus (N, h) is complete.

Since F = pr1 ◦πQ|N and G = pr2 ◦πQ|N are local Riemannian isometries, it fol-
lows from Proposition II.1.1 in [25] that they are covering maps. Taking finally into
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account thatM is simply connected, one gets that F is an isometric diffeomorphism
N →M and hence G ◦ F−1 :M → M̂ is a Riemannian covering map.

Finally notice that if γ : [0, a] → M is a minimal geodesic starting from x0, then
(G ◦ F−1)(γ(t)) = êxpx̂0

(tA0γ̇(0)) and hence Φ = G ◦ F−1.

6 Rolling Against a Space Form

This section is devoted to the special case of the rolling problem (R) with one of
the Riemannian manifolds, usually (M̂, ĝ), being equal to a space form i.e., a simply
connected complete Riemannian manifold of constant curvature. The possible cases
are: (i) Euclidean space with Euclidean metric (zero curvature), (ii) Sphere (positive
curvature) and (iii) Hyperbolic space (negative curvature), cf. e.g. [25].

As mentioned in the introduction, the rolling problem against a space form ac-
tually presents a fundamental feature: on the bundle πQ,M : Q→M one can define
a principal bundle structure that preserves the rolling distribution DR, and this
renders the study of controllability of (Σ)R easier to handle.

We will first provide a detailed study for the rolling against an Euclidean space
and then proceed to the case of space forms with non-zero curvature.

6.1 Rolling Against an Euclidean Space

In this section, we give a necessary and sufficient condition for the controllability of
(Σ)R in the case that M̂ = R

n equipped with the Euclidean metric ĝ = sn.
Recall that if V is a finite dimensional inner product space with h the inner

product, the special Euclidean group of (V, h) also denoted SE(V ) is equal to V ×
SO(V ), and is equipped with the group operation ⋆ given by

(v, L) ⋆ (u,K) := (Lu+ v, L ◦K).

Here SO(V ) is defined with respect to the inner product h of V . In particular, we
write SE(n) for SE(Rn) with R

n equipped with the standard inner product.
Now fix a point q0 of Q = Q(M,Rn) of the form q0 = (x0, 0;A0) i.e., the initial

contact point on M is equal to x0 and, on R
n, it is the origin. Since (Rn, sn) is flat,

for any a.c. curve t 7→ x̂(t) in R
n and X̂ ∈ R

n we have P t
0(x̂(t))X̂ = X̂ , where we

understand the canonical isomorphisms T |x̂(0)R
n ∼= R

n ∼= T |x̂(t)R
n. It follows that

we parameterize the rolling curves explicitly in the form:

qDR
(γ, (x0, x̂;A))(t) =

(
γ(t), x̂+ A

∫ t

0

P 0
s (γ)γ̇(s)ds;AP

0
t (γ)

)
, (64)

where γ ∈ Ωx0(M).
From this it follows that for any (x0, 0;A0), (x0, x̂;A) ∈ Q and γ ∈ Ωx0(M), the

point qDR
(γ, (x0, x̂;A))(1) is equal to
(
x0, x̂+ AA−1

0 γ̂DR
(γ, (x0, 0;A0))(1);AA

−1
0 ADR

(γ, (x0, 0;A0))(1)
)
.

Let γ ∈ Ωx0(M) be a piecewise C1-loop of M based at x0. We define a map

ρ = ρq0 : Ωx0(M) → SE(n);

ρ(γ) =
(
γ̂DR

(γ, q0)(1), ADR
(γ, q0)(1)A

−1
0

)
,
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where q0 = (x0, 0;A0) ∈ Q. Hence by Remark 5.4 and the above formulas we have

ρ(ω.γ) =
(
γ̂DR

(
ω, qDR

(γ, q0)(1)
)
(1), ADR

(
ω, qDR

(γ, q0)(1)
)
(1)A−1

0

)

=
(
γ̂DR

(γ, q0)(1) + ADR
(γ, q0)(1)A

−1
0 γ̂DR

(ω, q0)(1),

ADR
(γ, q0)(1)A

−1
0 ADR

(ω, q0)(1)A
−1
0

)

=
(
γ̂DR

(γ, q0)(1), ADR
(γ, q0)(1)A

−1
0

)
⋆
(
γ̂DR

(ω, q0)(1), ADR
(ω, q0)(1)A

−1
0

)

=ρ(γ) ⋆ ρ(ω).

Thus ρ is a group anti-homomorphism (Ωx0(M), .) → (SE(n), ⋆). This proves that
the elements of the form ρ(ω), ω ∈ Ωx0(M), form a subgroup of SE(n). We also see
that

(γ̂DR
(γ, q)(1), ADR

(γ, q)(1)) = (x̂, A) ⋆ (0, A0)
−1 ⋆ ρq0(γ) ⋆ (0, A0),

where q = (x0, x̂;A), q0 = (x0, 0;A0) ∈ Q and γ ∈ Ωx0(M).
We also make the simple observation from Eq. (64) that the image of pr2 ◦

ρ : Ωx0(M) → SO(n) is exactly A0H|x0A
−1
0 , where H|x0 is the holonomy group

of (M, g) at x0. Here A0H|x0A
−1
0 = H|F with respect to the orthonormal frame

F = (A−1
0 e1, . . . , A

−1
0 en) where e1, . . . , en is the standard basis of Rn.

From these remarks the next proposition follows easily.

Proposition 6.1 Let Q = Q(M,Rn) and q0 = (x0, x̂0;A0) ∈ Q. Then the map

Kq0 : π
−1
Q,M(x0) → SE(n);

(x0, x̂;A) 7→ (x̂− x̂0, AA
−1
0 )

is a diffeomorphism which carries the fiber π−1
ODR

(q0),M
(x0) of the orbit ODR

(q0) to a

submanifold of SE(n). In particular, if x̂0 = 0 we have that

Kq0(π
−1
ODR

(q0),M
(x0)) = ρq0(Ωx0(M))

which is a Lie subgroup of SE(n).

We will make some standard observations of subgroups G of an Euclidean group
SE(V ), where (V, h) is a finite dimensional inner product space. Call an element of
G of the form (v, idV ) a pure translation of G and write T = T (G) for the set that
they form. Clearly T is a subgroup of G. As before, pr1, pr2 denote the projections
SE(V ) → V and SE(V ) → SO(V ). The natural action, also written by ⋆, of SO(V )
on V is defined as

(u,K) ⋆ v := Kv + u, (u,K) ∈ SO(V ), v ∈ V.

Proposition 6.2 Let G be a Lie subgroup of SE(V ) with pr2(G) = SO(V ). Then
either of the following cases hold:

(i) G = SE(V ) or

(ii) there exists v∗ ∈ V which is a fixed point of G.
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Proof. Suppose first that T = T (G) is non-trivial i.e., there exists a pure translation
(v, idV ) ∈ T , v 6= 0. Then for any (w,A) ∈ G it holds that

G ∋(w,A)−1 ⋆ (v, idV ) ⋆ (w,A) = (−A−1w,A−1) ⋆ (v + w,A)

= (A−1(v + w)−A−1w, idV ) = (A−1v, idV )

which implies that

T ⊃ {(A−1v, idV ) | (w,A) ∈ G} ={(A−1v, idV ) | A ∈ pr2(G) = SO(V )}

=Sn−1(0, ‖v‖)× {idV }

where Sn−1(w, r), w ∈ R
n, r > 0 is the sphere of radius r centered at w ∈ V and

‖·‖ = h(·, ·)1/2. If w ∈ V such that ‖w‖ ≤ ‖v‖ then it is clear that there are
u, u′ ∈ Sn−1(0, ‖v‖) such that u + u′ = w (choose u ∈ Sn−1(0, ‖v‖) ∩ Sn−1(w, ‖v‖)
and u′ = w − u). Therefore

(w, idV ) = (u, idV ) ⋆ (u
′, idV ) ∈ T

i.e., B(0, ‖v‖) ⊂ T where B(w, r) is the closed ball of radius r centered at w. Thus
for all k ∈ N,

{B(0, ‖v‖) + · · ·+B(0, ‖v‖)︸ ︷︷ ︸
k times

} × {idV }

=(B(0, ‖v‖)× {idV }) ⋆ · · · ⋆ (B(0, ‖v‖)× {idV })︸ ︷︷ ︸
k times

⊂ T.

From this we conclude that V × {idV } = T .
Therefore we get the case (i) since

G =T ⋆ G = {(u, idV ) ⋆ (w,A) | u ∈ V, (w,A) ∈ G}

={(u+ w,A) | u ∈ V, (w,A) ∈ G}

={(u,A) | u ∈ V, A ∈ pr2(G) = SO(V )}

=V × SO(V ) = SE(V ).

The case that is left to investigate is the one where T is trivial i.e., T = {(0, idV )}.
In this case the smooth surjective Lie group homomorphism pr2|G : G → SO(V )
is also injective. In fact, if A = pr2(v, A) = pr2(w,A) for (v, A), (w,A) ∈ G and
v 6= w, then

G ∋ (w,A) ⋆ (v, A)−1 = (w,A) ⋆ (−A−1v, A−1) = (w − v, idV ) ∈ T

and since (w − v, idV ) 6= (0, idV ), this contradicts the triviality of T . It follows
that pr2|G is a Lie group isomorphism onto SO(V ) and hence a diffeomorphism. In
particular, G is compact since SO(V ) is compact.

We next show that there exists v∗ ∈ V which is a fixed point of G. Indeed,
taking arbitrary v ∈ V and writing µH for the (right- and) left-invariant normalized
(to 1) Haar measure of the compact group G, then we may define

v∗ :=

∫

G

(B ⋆ v)dµH(B).
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Thus for (w,A) ∈ G,

(w,A) ⋆ v∗ =w + Av∗ =

∫

G

(
w + A(B ⋆ v)

)
dµH(B) =

∫

G

(
((w,A) ⋆ B) ⋆ v

)
dµH(B)

=

∫

G

(B ⋆ v)dµH(B) = v∗,

where, in the second equality, we have used the linearity of the integral and normality
of the Haar measure and in the last phase the left invariance of the Haar measure.
This proves that v∗ is a fixed point of G and completes the proof.

Remark 6.3 With a slight modification, the previous proof actually gives the following
generalisation of the last proposition: If G is a connected subgroup of SE(V ) such that
the subgroup pr2(G) of SO(V ) acts transitively on the unit sphere of V then either (i)
G = V × pr2(G) or (ii) there is a fixed point v∗ of G.

The previous proposition allows us prove the main theorem of this section.

Theorem 6.4 Suppose (M, g) is a complete Riemannian n-manifold and (M̂, ĝ) =
(Rn, sn) is the Euclidean n-space. Then the rolling problem (Σ)R is completely con-
trollable if and only if the holonomy group of (M, g) is SO(n) (w.r.t. an orthonormal
frame).

Proof. Suppose first that (Σ)R is completely controllable. Then for any given q0 =
(x0, x̂0;A0) ∈ Q we have that π−1

Q,M(x0) = π−1
ODR

(q0),M
(x0). In particular, taking any

q0 ∈ Q of the form q0 = (x0, 0;A0) (i.e., x̂0 = 0), we have by Proposition 6.1 that

SE(n) = Kq0(π
−1
Q,M(x0)) = Kq0(π

−1
ODR

(q0),M
(x0)) = ρq0(Ωx0(M)).

Hence the image of pr2 ◦ ρq0 is SO(n) and, on the other hand, this image is also
A0H|x0A

−1
0 as noted previously. This proves the necessity of the condition.

Assume now that the holonomy group of M is SO(n) or, more precisely, that
for any x ∈ M we have H|x = SO(T |xM). Let q = (x, 0;A) ∈ Q and let Gq :=
Kq(π

−1
ODR

(q),M(x)) (see Proposition 6.1) which is a subgroup of SE(n). Since

SO(n) = AH|xA
−1 = (pr2 ◦ ρ)(Ωx(M)) = pr2(Kq(π

−1
ODR

(q),M (x))) = pr2(Gq),

by Proposition 6.2, either (i) Gq = SE(n) or (ii) there exists a fixed point w∗
q ∈ R

n

of Gq.
If (i) is the case for some q0 = (x0, 0;A0) ∈ Q, then, since Kq0 maps π−1

Q,M(q0) ∩

ODR
(q0) diffeomorphically onto Gq = SE(n), it follows that π−1

Q,M(q0) ∩ ODR
(q0) =

π−1
Q,M(q0) and hence ODR

(q0) = Q (since πODR
(q0),M is a subbundle of πQ,M) i.e., (Σ)R

is completely controllable.
Therefore suppose that (ii) holds i.e., for every q ∈ Q of the form q = (x, 0;A)

there is a fixed point w∗
q ∈ R

n of Gq. We will prove that this implies that (M, g) is
flat which is a contradiction since (M, g) does not have a trivial holonomy group.

Thus for any point of Q of the form q = (x, 0;A) we have for all loops γ ∈ Ωx(M)
that

AP 0
1 (γ)A

−1w∗
q + A

∫ 1

0

P 0
s (γ)γ̇(s)ds = w∗

q ,
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since ρq is a bijection onto Gq and w
∗
q is a fixed point of Gq. In other words we have

(P 0
1 (γ)− id)A−1w∗

q +

∫ 1

0

P 0
s (γ)γ̇(s)ds = 0.

Thus if q = (x, 0;A) and q′ = (x, 0;A′) are on the same πQ fiber over (x, 0), then

(P 0
1 (γ)− id)(A−1w∗

q − A′−1w∗
q′) = 0

for every γ ∈ Ωx(M). On the other hand, since M has full holonomy i.e., H|x =
SO(T |xM), and H|x = {P 0

1 (γ) | γ ∈ Ωx(M)}, it follows from the above equation
that

A−1w∗
q = A′−1w∗

q′.

This means that for every x ∈M there is a unique vector V |x ∈ T |xM such that

V |x = A−1w∗
q , ∀q ∈ π−1

Q (x, 0).

Moreover, the map V :M → TM ; x 7→ V |x is a vector field on M satisfying

P 0
1 (γ)V |x − V |x = −

∫ 1

0

P 0
s (γ)γ̇(s)ds, ∀γ ∈ Ωx(M). (65)

It follows from this that, for any piecewise C1 path γ ∈ C1
pw([0, 1],M), we have

V |γ(1) = P 1
0 (γ)

(
V |γ(0) −

∫ 1

0

P 0
s (γ)γ̇(s)ds

)
. (66)

Indeed, if ω ∈ Ωγ(1)(M), then γ−1.ω.γ ∈ Ωγ(0)(M) and therefore

P 0
1 (γ)P

0
1 (ω)P

1
0 (γ)V |γ(0) − V |γ(0) = P 0

1 (γ
−1.ω.γ)V |γ(0) − V |γ(0)

=−

∫ 1

0

P 0
s (γ

−1.ω.γ)
d

ds
(γ−1.ω.γ)(s)ds

=−

∫ 1

0

P 0
s (γ)γ̇(s)ds− P 0

1 (γ)

∫ 1

0

P 0
s (ω)ω̇(s)ds− P 0

1 (γ)P
0
1 (ω)

∫ 1

0

P 0
s (γ

−1)
d

ds
γ−1(s)ds

=−

∫ 1

0

P 0
s (γ)γ̇(s)ds+ P 0

1 (γ)(P
0
1 (ω)V |γ(1) − V |γ(1))

+ P 0
1 (γ)P

0
1 (ω)P

1
0 (γ)

∫ 1

0

P 0
s (γ)γ̇(s)ds,

that is

(
P 0
1 (ω)− id

)
P 1
0 (γ)

(
V |γ(0) −

∫ 1

0

P 0
s (γ)γ̇(s)ds

)
=

(
P 0
1 (ω)− id

)
V |γ(1).

Equation (66) then follows from this since {P 0
1 (ω) | ω ∈ Ωγ(1)(M)} = H|γ(1) =

SO(T |γ(1)M).
Since (M, g) is complete, the geodesic γX(t) = expx(tX) is defined for all t ∈

[0, 1]. Inserting this to Eq. (66) and noticing that P 0
s (γX)γ̇X(s) = X in this case for

all s ∈ [0, 1], we get

V |γX(1) = P 1
0 (γX)(V |x −X),
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Therefore, if X = V |x and z := γX(1) = expx(V |x), we get

V |z = 0. (67)

Inserting this fact into Eq. (65), one gets

∫ 1

0

P 0
s (γ)γ̇(s)ds = 0, ∀γ ∈ Ωz(M).

Fix q∗ = (z, 0;A0) ∈ Q (for any isometry A0 : T |zM → T |0R
n). Eq. (64) implies

that

γ̂DR
(γ, (x0, 0;A0))(1) = 0, ∀γ ∈ Ωz(M).

We now apply Theorem 5.32 to conclude that (M, g) has (Rn, sn) as a Rie-
mannian covering (i.e., (M, g) is flat) and hence reach the desired contradiction
mentioned above. Even though this allows to conclude the proof, we will also give
below a direct argument showing this.

Equation (66) is trivially equivalent to

P 0
t (γ)V |γ(t) = V |γ(0) −

∫ t

0

P 0
s (γ)γ̇(s)ds

where γ ∈ C1
pw([a, b],M), a < b, is arbitrary. Taking γ to be smooth and differen-

tiating the above equation w.r.t to t (notice that both sides of the equation are in
T |γ(0)M for all t), we get

P 0
t (γ)∇γ̇(t)V |γ(·) = −P 0

t (γ)γ̇(t),

that is

∇γ̇(t)V |γ(·) = −γ̇(t).

Since γ was an arbitrary smooth curve, this implies that V is a smooth vector field
on M and

∇XV = −X, ∀X ∈ VF(M). (68)

For any X ∈ VF(M), the special curvature R(X, V )V can be seen to vanish
everywhere since

R(X, V )V =∇X∇V V −∇V∇XV −∇[X,V ]V = −∇XV +∇VX + [X, V ]

=[V,X ] + [X, V ] = 0,

where, in the second equality, we used (68).
For any X ∈ T |zM , we write γX(t) = expz(tX) for the geodesic through z in the

direction of X . It follows that

V |γX(t) =P
t
0(γX)(V |z −

∫ t

0

P 0
s (γX)γ̇X(s)ds)

=P t
0(γX)(−

∫ t

0

Xds) = P t
0(γX)(−tX) = −tγ̇X(t). (69)
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Now for given X, v ∈ T |zM let Y (t) = ∂
∂s

∣∣
0
expz(t(X+sv)) be the Jacobi field along

γX such that Y (0) = 0, ∇γ̇X(t)Y |t=0 = v. Then one has

∇γ̇X (t)∇γ̇XY = R(γ̇X(t), Y (t))γ̇X(t) =
1

t2
R(V |γX(t), Y (t))V |γX(t) = 0,

for t 6= 0 which means that t 7→ ∇γ̇X(t)Y is parallel along γX i.e.,

∇γ̇X (t)Y = P t
0(γX)∇γ̇X(0)Y = P t

0(γX)v.

This allows us to compute

d2

dt2
‖Y (t)‖2g =2

d

dt
g(∇γ̇X(t)Y, Y (t))

=2g(∇γ̇X(t)∇γ̇XY︸ ︷︷ ︸
=0

, Y (t)) + 2g(∇γ̇X(t)Y,∇γ̇X(t)Y )

=2g(P t
0(γX)v, P

t
0(γX)v) = 2 ‖v‖2g

and hence for any t

d

dt
‖Y (t)‖2g = 2 ‖v‖2g t +

d

dt

∣∣
0
‖Y (t)‖2g = 2 ‖v‖2g t,

because d
dt

∣∣
0
‖Y (t)‖2g = 2g(∇γ̇X(0)Y, Y (0)) = 0 since Y (0) = 0. Again, since Y (0) =

0,

‖Y (t)‖2g = ‖v‖2g t
2 + ‖Y (0)‖2g = ‖v‖2g t

2

which, when spelled out, means that ‖t(expz)∗|tX(v)‖g = ‖tv‖g and hence, when
t = 1,

‖(expz)∗|X(v)‖g = ‖v‖g , ∀X, v ∈ T |zM. (70)

This proves that expz is a local isometry (T |zM, g|z) → (M, g) and hence a
Riemannian covering. Thus (M, g) is flat and the proof if finished.

Remark 6.5 For results and proofs in similar lines to those of the above Proposition
and Theorem, see Theorem IV.7.1, p. 193 and Theorem IV.7.2, p. 194 in [13].

6.2 Rolling Against a Non-Flat Space Form

In this subsection, we study the controllability problem of (Σ)R in the case where
M̂ is a simply connected n-dimensional manifold with non zero constant curvature
equal to 1

k
, with k 6= 0.

6.2.1 Standard Results on Space Forms

Following section V.3 of [13], we define the space form M̂k of curvature 1
k
as a subset

of Rn+1, n ∈ N, given by

M̂k :=
{
(x1, . . . , xn+1) ∈ R

n+1 | x21 + · · ·+ x2n + kx2n+1 = k, xn+1 +
k

|k|
≥ 0

}
.
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Equip M̂k with a Riemannian metric ĝk defined as the restriction to M̂k of the
non-degenerate symmetric (0, 2)-tensor

sn,k := (dx1)
2 + · · ·+ (dxn)

2 + k(dxn+1)
2.

The condition xn+1 +
k
|k| ≥ 0 in the definition M̂k guarantees that M̂k is connected

also when k < 0. If the dimension n is not clear from context, we write (M̂n,k, ĝn,k)
for the above Riemannian manifolds.

Remark 6.6 (i) If k = 1 then M̂1 = Sn (the usual Euclidean unit sphere in R
n+1)

and sn,1 is the usual Euclidean metric sn+1 on R
n+1. For a fixed n ∈ N, the

spaces M̂k for k > 0 are all diffeomorphic: the map φk : (x1, . . . , xn, xn+1) 7→
( x1√

k
, . . . , xn√

k
, xn+1) gives a diffeomorphism from M̂k onto M̂1. Moreover, φk is a

homothety since φ∗
kĝ1 =

1
k
ĝk.

(ii) If k = −1 then sn,−1 is the usual Minkowski ”metric” on R
n+1. For a fixed n ∈ N,

the spaces M̂k for k < 0 are all diffeomorphic: the map φk : (x1, . . . , xn, xn+1) 7→
( x1√

−k
, . . . , xn√

−k
, xn+1) gives a diffeomorphism from M̂k onto M̂−1. Moreover, φk

is a homothety since φ∗
kĝ1 = − 1

k
ĝk.

Let G(n, k) be the Lie group of linear maps R
n+1 → R

n+1 that leave invariant
the bilinear form

〈x, y〉n,k :=
n∑

i=1

xiyi + kxn+1yn+1,

for x = (x1, . . . , xn+1), y = (y1, . . . , yn+1) and having determinant +1. In other
words, a linear map B : Rn+1 → R

n+1 belongs to G(n, k) if and only if det(B) = +1
and

〈Bx,By〉n,k = 〈x, y〉n,k , ∀x, y ∈ R
n+1,

or, equivalently,

BT In,kB = In,k, det(B) = +1,

where In,k = diag(1, 1, . . . , 1, k). In particular, G(n, 1) = SO(n+1) and G(n,−1) =
SO(n, 1).

The Lie algebra of the Lie group G(n, k) will be denoted by g(n, k). Notice that
an (n+ 1)× (n+ 1) real matrix B belongs to g(n, k) if and only if

BT In,k + In,kB = 0,

where In,k was introduced above.
Sometimes we identify the form sn,k on R

n+1 with 〈·, ·〉n,k using the canonical

identification of the tangent spaces T |vR
n+1 with R

n+1. Notice that if x̂ ∈ M̂k and
V ∈ T |x̂R

n+1, then

V ∈ T |x̂M̂k ⇐⇒ sn,k(V, x̂) = 0.
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In fact, if we identify V as a vector (V1, . . . , Vn+1) in R
n+1, then the condition for V

to be tangent to the hypersurface M̂k is

0 =
〈
V, grad (x21 + · · ·+ x2n + kxn+1)

〉
n+1

= 〈V, (x1, . . . , xn, kxn+1)〉n+1

=
n∑

i=1

xiVi + kxn+1Vn+1

=sn,k(V, x̂),

with 〈·, ·〉n+1 the standard Euclidean inner product of Rn+1.

Remark 6.7 By using the bilinear form 〈·, ·〉n,k one may restate the definition of M̂k

by

M̂k =
{
x̂ ∈ R

n+1 | 〈x̂, x̂〉n,k = k, xn+1 +
k

|k|
≥ 0

}
.

Remark 6.8 For convenience we recall a standard result ([13], Theorem V.3.1): The
Riemannian manifold (M̂k, ĝk) has constant sectional curvature

1
k
and the isometry group

Iso(M̂k, ĝk) is equal to G(n, k).

We understand without mention that when considering the action of G(n, k) on
M̂k we consider the restriction of the maps of G(n, k) onto the set M̂k.

6.2.2 Orbit Structure

Proposition 6.9 The bundle πQ,M : Q→M is a principal G(n, k)-bundle with a left
action µ : G(n, k)×Q→ Q defined by

µ(B, q) = (x,Bx̂;B ◦ A),

where q = (x, x̂;A) and in B ◦A we understand the range T |x̂M̂k of A to be identified
with a linear subspace of Rn+1 in the canonical way.

Moreover, the action µ preserves the distribution DR i.e., for any q ∈ Q and B ∈
G(n, k),

(µB)∗DR|q = DR|µ(B,q)

where µB : Q→ Q; q 7→ µ(B, q).

Proof. Let us first check that for (x, x̂;A) ∈ Q, B ◦A : T |xM → R
n+1 can be viewed

as an orientation preserving map T |xM → T |Bx̂M̂k and that really (x,Bx̂;B ◦A) is
an element of Q. First of all, Bx̂ ∈ M̂k when x̂ ∈ M̂k as remarked above. Moreover,
for X ∈ T |xM ,

sn,k((B ◦ A)(X), Bx̂) = sn,k(AX, x̂) = 0,

since AX ∈ T |x̂M̂k. Hence B ◦ A : T |xM → T |Bx̂M̂ . Similarly, for X, Y ∈ T |xM ,

ĝk((B ◦ A)(X), (B ◦ A)(Y )) = sn,k((B ◦ A)(X), (B ◦ A)(Y ))

=sn,k(AX,AY ) = ĝk(AX,AY ) = g(X, Y ),
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and clearly B◦A preserves orientation (since G(n, k) is connected). Thus (x,Bx̂;B◦
A) ∈ Q.

It is clear that µ is a well defined left G(n, k)-action on Q, that it is free, maps
each πQ,M -fiber to itself (πQ,M ◦µ(B, q) = πQ,M(q)) and that it is transitive fiberwise
(for each q, q′ ∈ π−1

Q,M(x), µ(B, q) = q′ for some B ∈ G(n, k)). It remains to check
the claim that this action preserves DR in the sense stated above.

Let B ∈ G(n, k) and q0 = (x0, x̂0;A0). The fact that Iso(M̂k, ĝ) = G(n, k) means
that defining F : M̂k → M̂k; F = B|M̂k

then F ∈ Iso(M̂k, ĝ). Clearly F (x̂0) = Bx̂0

and F̂∗|x̂0 = B|T |x̂0M̂k
and hence by Proposition 5.13

µ(B, qDR
(γ, q0)(t)) = F̂ · qDR

(γ, q0)(t) = qDR
(γ, F̂ · q0)(t) = qDR

(γ, µ(B, q0))(t),

for any smooth curve γ : [0, 1] → M , γ(0) = x0 and t ∈ [0, 1]. Taking derivative
with respect to t at t = 0 and using the fact that, by definition, qDR

(γ, q0) is tangent
to DR, we find that

(µB)∗LR(γ̇(0))|q0 =(µB)∗
d

dt

∣∣
0
qDR

(γ, q0)(t) =
d

dt

∣∣
0
µ(B, qDR

(γ, q0)(t))

=
d

dt

∣∣
0
qDR

(γ, µ(B, q0))(t) = LR(γ̇(0))|µ(B,q0).

This allows us to conclude.

We will denote the left action of B ∈ G(n, k) on q ∈ Q usually by B ·q = µ(B, q).

Proposition 6.10 For any given q = (x, x̂;A) ∈ Q there is a unique subgroup Gq of
G(n, k), called the holonomy group of DR, such that

Gq · q = ODR
(q) ∩ π−1

Q,M(x).

Also, if q′ = (x, x̂′;A′) ∈ Q is in the same πQ,M -fiber as q, then Gq and Gq′ are
conjugate in G(n, k) and all conjugacy classes of Gq in G(n, k) are of the form Gq′.
This conjugacy class will be denoted by G.

Moreover, πODR
(q),M : ODR

(q) →M is a principal G-bundle over M .

Proof. These results follow from the general theory of principal bundle connections
(cf. [11], [13]) but the argument is reproduced here for convenience.

Let q′ ∈ ODR
(q) ∩ π−1

Q,M(x) and choose a γ ∈ Ωx(M) such that q′ = qDR
(γ, q)(1).

Since the G(n, k) action is free and transitive on π−1
Q,M(x), it follows that there is

a unique Bq(γ) ∈ G(n, k) such that Bq(γ) · q = q′. We define Gq = {Bq(γ) | γ ∈
Ωx(M)} and note that for γ, ω ∈ Ωx(M) one has

(Bq(γ)Bq(ω)) · q = Bq(γ) · (Bq(ω) · q) = Bq(γ) · qDR
(ω, q)(1) = qDR

(ω,Bq(γ) · q)(1)

=qDR
(ω, qDR

(γ, q)(1))(1) = qDR
(ω.γ, q)(1) ∈ ODR

(q) ∩ π−1
Q,M(x),

which proves that Bq(γ)Bq(ω) = Bq(ω.γ) ∈ Gq. Next if γ−1 : [0, 1] → M denotes
the inverse path of γ i.e., γ−1(t) = γ(1− t) for t ∈ [0, 1], it follow that

(Bq(γ)Bq(γ
−1)) · q = qDR

(γ−1.γ, q)(1) = q,
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i.e., Bq(γ)
−1 = Bq(γ

−1) ∈ Gq. This shows that Gq is indeed a subgroup of G(n, k).
Moreover, it is clear that

Gq · q = ODR
(q) ∩ π−1

Q,M(x),

where the left hand side is {B · q | B ∈ Gq}.
Let us prove the statement about the conjugacy class ofGq. Take q

′ = (x, x̂′;A′) ∈
Q. Because G(n, k) acts transitively on the fibers, there exists a B ∈ G(n, k) such
that q′ = B · q. Therefore for any γ ∈ Ωx(M),

(B−1Bq′(γ)B) · q =(B−1Bq′(γ)) · q
′ = B−1 · qDR

(γ, q′)

=qDR
(γ, B−1 · q′) = qDR

(γ, q) = Bq(γ) · q,

i.e., B−1Bq′(γ)B = Bq(γ) since theG(n, k) action is free. This proves thatB−1Gq′B =
Gq. Moreover, if there is a B ∈ G(n, k) and a subgroup G′ of G(n, k) such that
B−1G′B = Gq, then defining q′ := B · q one gets that G′ = Gq′.

By Proposition 5.11, πODR
(q),M is a smooth bundle and, by what has been said

already, it is clear that Gq preserves the fibers π−1
ODR

(q),M(x) = π−1
Q,M(x) ∩ ODR

(q)

and the action is free. Recall that, if a map from some manifold to the ambient
manifold is smooth and its image is contained in the orbit (as a set), then this map
is also smooth as a map into the orbit (as a manifold) (cf. [14], Theorem 3.22 and
Lemma 2.17). As a consequence, the action of Gq is also smooth. From this, one
concludes that πODR

(q),M is a Gq-bundle and hence a G-bundle since the Lie groups
in the conjugacy class are all isomorphic.

6.2.3 The Rolling Connection

Let πTM⊕R : TM ⊕ R → M be the vector bundle over M where πTM⊕R(X, r) =
πTM(X). In this section we will prove the following result.

Theorem 6.11 There exists a vector bundle connection ∇Rol of the vector bundle
πTM⊕R that we call the rolling connection, and which we define as follows: for every
x ∈M , Y ∈ T |xM , X ∈ VF(M), r ∈ C∞(M),

∇Rol

Y (X, r) =
(
∇YX + r(x)Y, Y (r)−

1

k
g
(
X|x, Y )

)
, (71)

such that in the case of M rolling against the space form M̂k, k 6= 0, the holonomy
group G of DR is isomorphic to the holonomy group H∇Rol

of ∇Rol.
Moreover, if one defines a fiber inner product hk on TM ⊕ R by

hk((X, r), (Y, s)) = g(X, Y ) + krs,

where X, Y ∈ T |xM , r, s ∈ R, then ∇Rol is a metric connection in the sense that for
every X, Y, Z ∈ VF(M), r, s ∈ C∞(M),

Z
(
hk((X, r), (Y, s))

)
= hk(∇

Rol

Z (X, r), (Y, s)) + hk((X, r),∇
Rol

Z (Y, s)).

Before providing the proof of the theorem, we present the equations of parallel
transport w.r.t ∇Rol along a general curve and along a geodesic of M and also the
curvature of ∇Rol. Let γ : [0, 1] → M be an a.c. curve on M , γ(0) = x and let

77



(X0, r0) ∈ T |xM ⊕R. Then the parallel transport (X(t), r(t)) = (P∇Rol

)t0(γ)(X0, r0)
of (X0, r0) is determined from the equations




∇γ̇(t)X + r(t)γ̇(t) = 0,

ṙ(t)−
1

k
g(γ̇(t), X(t)) = 0,

(72)

for a.e. t ∈ [0, 1]. In particular, if γ is a geodesic on (M, g), one may derive the
following uncoupled second order differential equations for X and r,





∇γ̇(t)∇γ̇(t)X +
1

k
g(X(t), γ̇(t))γ̇(t) = 0,

r̈(t) +
‖γ̇(t)‖2g
k

r(t) = 0,

(73)

for all t.
One easily checks by direct computation that the connection ∇Rol on πTM⊕R has

the curvature,

R∇Rol

(X, Y )(Z, r) =
(
R(X, Y )Z −

1

k
(g(Y, Z)X − g(X,Z)Y ), 0

)
, (74)

where X, Y, Z ∈ VF(M), r ∈ C∞(M).
We will devote the rest of the subsection to prove Theorem 6.11.

Proof. The rolling distribution DR is a principal bundle connection for the principal
G(n, k)-bundle πQ,M : Q → M and hence there is a vector bundle ξ : E → M with
fibers isomorphic to Rn+1 and a unique linear vector bundle connection ∇Rol : Γ(ξ)×
VF(M) → Γ(ξ) which induces the distribution DR on Q. This clearly implies that
the holonomy group G of DR and H∇Rol

of ∇Rol are isomorphic. We will eventually
show that ξ is further isomorphic to πTM⊕R and give the explicit expression (71) for
the connection of πTM⊕R induced by this isomorphims from ∇Rol on ξ.

There is a canonical non-degenerate metric hk : E⊙E →M on the vector bundle
ξ (positive definite when k > 0 and indefinite of Minkowskian type if k < 0) and
the connection ∇Rol is a metric connection w.r.t. to hk i.e., for any Y ∈ VF(M) and
s, σ ∈ Γ(ν),

Y
(
hk(s, σ)

)
= hk(∇

Rol

Y s, σ) + hk(s,∇
Rol

Y σ). (75)

The construction of ξ goes as follows (see [11], section 2.1.3). Define a left
G(n, k)-group action β on Q× R

n+1 by

β(B, (q, v)) = (B · q, Bv),

where q ∈ Q, v ∈ R
n+1, B ∈ G(n, k). The action β is clearly smooth, free and proper.

Hence E := (Q×R
n+1)/β is a smooth manifold of dimension n+(n+1) = 2n+1. The

β-equivalence classe (i.e., β-orbit) of (q, v) ∈ Q× R
n+1 is denoted by [(q, v)]. Then

one defines ξ
(
[(q, v)]

)
= πQ,M(q) which is well defined since the β-action preserves

the fibers of Q×R
n+1 → M ; (q, v) 7→ πQ,M(q). We prove now that ξ is isomorphic,

as a vector bundle over M , to

πTM⊕R : TM ⊕ R →M,

(X, t) 7→ πTM(X).
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Indeed, let f ∈ Γ(ξ) and notice that for any q ∈ Q there exists a unique f(q) ∈ R
n+1

such that [(q, f(q))] = f(πQ,M(q))) by the definition of the action β. Then f : Q→
R

n+1 is well defined and, for each q = (x, x̂;A), there are unique X|q ∈ T |xM ,
r(q) ∈ R such that

f(q) = AX|q + r(q)x̂.

The maps q 7→ X|q and q 7→ r(q) are smooth. We show that the vector X|q
and the real number r(q) depend only on x and hence define a vector field and
a function on M . One has [((x, x̂;A), v)] = [((x, ŷ;B), w)] if and only if there
is C ∈ G(n, k) such that Cx̂ = ŷ, CA = B and Cv = w. This means that
C|imA = BA−1|imA : T |x̂M̂k → T |ŷM̂k (with imA denoting the image of A) and
this defines C uniquely as an element of G(n, k) and also, by the definition of f ,
Cf(x, x̂, A) = f(x, ŷ, B). Therefore,

BX|(x,ŷ;B) + r(x, ŷ;B)ŷ = C(AX|(x,x̂;A) + r(x, x̂;A)x̂) = BX|(x,x̂;A) + r(x, x̂;A)ŷ,

which shows that X|(x,ŷ;B) = X|(x,x̂;A), r(x, ŷ;B) = r(x, x̂;A) and proves the claim.
Hence for each f ∈ Γ(ξ) there are unique Xf ∈ VF(M) and rf ∈ C∞(M) such

that

f(x) =
[(
(x, x̂;A), AXf |x + rf (x)x̂

)]
,

(here the right hand side does not depend on the choice of (x, x̂;A) ∈ π−1
Q,M(x)).

Conversely, given X ∈ VF(M), r ∈ C∞(M) we may define f(X,r) ∈ Γ(ξ) by

f(X,r)(x) =
[(
(x, x̂;A), AX|x + r(x)x̂

)]
,

where the right hand side does not depend on the choice of (x, x̂;A) ∈ π−1
Q,M(x).

Clearly, for f ∈ Γ(ξ), one has f(Xf ,rf ) = f and, for (X, r) ∈ VF(M) × C∞(M),
one has (Xf(X,r)

, rf(X,r)
) = (X, r). This proves that the map defined by

Γ(ξ) → VF(M)× C∞(M)

f 7→ (Xf , rf)

is a bijection. It is easy to see that it is actually a C∞(M)-module homomor-
phism. Since C∞(M)-modules Γ(ξ) and VF(M)×C∞(M) are isomorphic and since
VF(M) × C∞(M) is obviously isomorphic, as a C∞(M)-module, to Γ(πTM⊕R), it
follows that ξ and πTM⊕R are isomorphic vector bundles over M .

We now describe the connection ∇Rol and the inner product structure hk on ξ
and we determine to which objects they correspond to in the isomorphic bundle
πTM⊕R.

By Section 2.1.3 in [11] and the above notation, one defines for f ∈ Γ(ξ), Y ∈
T |xM , x ∈ M

∇Rol

Y f |x :=
[(
(x, x̂;A),LR(Y )|(x,x̂;A)f

)]
,

where f : Q → R
n+1 is defined above and LR(Y )|(x,x̂;A)f is defined componentwise

(i.e., we let LR(Y )|(x,x̂;A) to operate separately to each of the n + 1 component

functions of f). The definition does not depend on (x, x̂;A) ∈ π−1
Q,M(x) as should be
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evident from the above discussions. The inner product on ξ, on the other hand, is
defined by

hk([((x, x̂;A), v)], [((x, ŷ;B), w)]) = g(X, Y ) + krt,

where v = AX + rx̂, w = BY + tŷ. It is clear that hk is well defined.
We slightly work out the expression for ∇Rol. Let f ∈ Γ(ξ), Y ∈ T |xM , x ∈ M .

Then f(y, ŷ, B) = BXf |y + rf(y)ŷ where Xf ∈ VF(M), rf ∈ C∞(M),

LR(Y )|(x,x̂;A)f = LR(Y )|(x,x̂;A)

(
(y, ŷ;B) 7→ BXf |y

)
+ Y (rf )x̂+ rf(x)AY

and choosing some path γ on M such that γ̇(0) = Y , then q̇DR
(γ, q)(0) = LR(Y )|q,

where q = (x, x̂;A) and therefore

sn,k
(
LR(Y )|(x,x̂;A)

(
(y, ŷ;B) 7→ BXf |y

)
, x̂
)
= sn,k

( d
dt

∣∣
0
(ADR

(γ, q)(t)Xf |γ(t)), x̂
)

=
d

dt

∣∣
0
sn,k

(
ADR

(γ, q)(t)Xf |γ(t), γ̂DR
(γ, q)(t)

)
− sn,k

(
AXf |x, AY )

=− ĝk(AXf |x, AY ) = −g
(
Xf |x, Y ) = sn,k(−

1
k
g
(
Xf |x, Y )x̂, x̂).

Therefore,

LR(Y )|(x,x̂;A)

(
(y, ŷ;B) 7→ BXf |y

)
+

1

k
g
(
Xf |x, Y )x̂ ∈ T |x̂M̂k,

and we write

LR(Y )|(x,x̂;A)f =
(
LR(Y )|(x,x̂;A)

(
(y, ŷ;B) 7→ BXf |y

)
+

1

k
g
(
Xf |x, Y )x̂+ rf (x)AY

)

+ (Y (rf)−
1

k
g(Xf |x, Y ))x̂.

Correspondingly, using the isomorphism of ξ and πTM⊕R, to the connection ∇Rol

and the non-degenerate metric hk on ξ, there is a connection ∇Rol and an indefinite
metric hk (with the same names as the ones on ξ) on πTM⊕R such that for X ∈
VF(M), r ∈ C∞(M) and Y ∈ T |xM ,

∇Rol

Y (X, r) =
(
A−1

(
LR(Y )|(x,x̂;A)

(
(y, ŷ;B) 7→ BX|y

)
+

1

k
g
(
X|x, Y )x̂

)
+ r(x)Y,

Y (r)−
1

k
g
(
X|x, Y )

)
, (76)

where (x, x̂;A) ∈ Q is arbitrary point of Q over x and

hk((X, r), (Y, s)) = g(X, Y ) + krs,

for X, Y ∈ T |xM , r, s ∈ R.
We will now prove the metric property (75) of the connection ∇Rol. This will be

done in the case of the bundle πTM⊕R but it gives the equivalent result on ξ.
If (X, r), (Y, s) ∈ Γ(πTM⊕R) and Z ∈ T |xM then

Z(hk((X, r), (Y, s))) =Z(g(X, Y ) + krs)

=g(∇ZX, Y |x) + g(X|x,∇ZY ) + kZ(r)s(x) + kr(x)Z(s).
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On the other hand,

hk(∇
Rol

Z (X, r), (Y, s)) =sn,k

(
LR(Z)|(x,x̂;A)

(
(y, ŷ;B) 7→ BX|y

)

+
1

k
g(X|x, Z)x̂+ r(x)AZ,AY

)
+ k

(
Z(r)−

1

k
g(X|x, Z)

)
s(x),

for any q = (x, x̂;A) ∈ π−1
Q,M(x) and choosing a path γ s.t. γ̇(0) = Z we get

h(∇Rol

Z (X, r), (Y, s)) =sn,k(
d

dt

∣∣
0

(
ADR

(γ, q)(t)X|γ(t)
)
, AY )

+ r(x)g(Z, Y |x) +
(
kZ(r)− g(X|x, Z)

)
s(x),

from which we finally get

hk(∇
Rol

Z (X, r), (Y, s)) + hk((X, r),∇
Rol

Z (Y, s))

=sn+1(
d

dt

∣∣
0

(
ADR

(γ, q)(t)X|γ(t)
)
, AY ) + sn+1(AX,

d

dt

∣∣
0

(
ADR

(γ, q)(t)Y |γ(t)
)
)

+ r(x)g(Z, Y |x) +
(
kZ(r)− g(X|x, Z)

)
s(x) + s(x)g(Z,X|x)

+
(
kZ(s)− g(Y |x, Z)

)
r(x)

=
d

dt

∣∣
0
sn+1(ADR

(γ, q)(t)X|γ(t), ADR
(γ, q)(t)Y |γ(t)) + kZ(r)s(x) + kr(x)Z(s)

=
d

dt

∣∣
0
g(X|γ(t), Y |γ(t)) + kZ(r)s(x) + kr(x)Z(s)

=g(∇ZX, Y |x) + g(X|x,∇ZY ) + kZ(r)s(x) + kr(x)Z(s),

which is exactly Z
(
hk((X, r), (Y, s))

)
.

Motivated by Eq. (76), we make the following definition. If Y ∈ T |xM and
X ∈ VF(M) then define

∇̃Rol

Y X := A−1
(
LR(Y )|(x,x̂;A)

(
(y, ŷ;B) 7→ BX|y

)
+

1

k
g
(
X|x, Y )x̂

)
,

where (x, x̂;A) is an arbitrary point on the fiber π−1
Q,M(x) over x. It is easily seen

that it is R-linear in X and Y and, for f ∈ C∞(M),

∇̃Rol

Y (fX) = Y (f)X|x + f(x)∇̃Rol

Y X,

so ∇̃Rol is a connection on M . Moreover, from the above computations, we see that
∇̃Rol is a metric connection with respect to g i.e., for X, Y ∈ VF(M) and Z ∈ T |xM ,

Z(g(X, Y )) = g(∇̃Rol

Z X, Y ) + g(X, ∇̃Rol

Z Y ).

We will prove that ∇̃Rol = ∇ i.e., that ∇̃Rol is the Levi-Civita connection of g.
To do this, we show that the connection ∇̃Rol is torsion-free.

Let X, Y ∈ VF(M), x ∈ M . Then taking any q = (x, x̂;A) ∈ π−1
Q,M(x) and any

local smooth πQ-section Ã such that Ã|x = A and ∇A|x = 0, we compute

(∇̃Rol

X Y − ∇̃Rol

Y X)|x =A−1
(
LR(X)|(x,x̂;A)((y, ŷ;B) 7→ BY |y) + g(X|x, Y |x)x̂

)

− A−1
(
LR(Y )|(x,x̂;A)((y, ŷ;B) 7→ BX|y) + g(X|x, Y |x)x̂

)

=A−1
(
∇(Y,AY )(ÃX)−∇(Y,AY )(ÃX)

)

=(∇XY −∇YX)|x = [X, Y ]|x.
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Since ∇̃Rol is a torsion-free metric connection w.r.t. g onM , it follows by unique-
ness of Levi-Civita connection that

∇̃Rol = ∇.

Thus if X ∈ VF(M), r ∈ C∞(M) and Y ∈ T |xM ,

∇Rol

Y (X, r) =
(
∇YX + r(x)Y, Y (r)−

1

k
g
(
X|x, Y )

)
.

This concludes the proof of Theorem 6.11.

Remark 6.12 Define a number δkij for i, j = 1, . . . , n+ 1 as follows,

δkij :=





0, i 6= j,

1, i = j = 1, . . . , n,

k, i = j = n+ 1.

We say that a frame (Xi, ti)
n+1
i=1 of T |xM⊕R is hk-orthonormal if hk((Xi, ti), (Xj, tj)) =

δkij. We may build the manifold F hk

OON(πTM⊕R) of hk-orthonormal frames in the standard
way.

Now we will prove that the bundle F hk

OON(πTM⊕R) of hk-orthonormal frames of
πTM⊕R is isomorphic to πQ,M as a bundle over M . The isomorphism Φk : πQ,M →
F hk

OON(πTM⊕R) can be described as follows. Let (x, x̂;A) ∈ Q. Then there are unique
(Xi, ti) ∈ T |xM⊕R, i = 1, . . . , n+1 such that ei = AXi+tix̂ where ei, i = 1, . . . , n+1,
is the standard basis of Rn+1. One easily computes that

hk((Xi, ti), (Xj, tj)) = g(Xi, Xj) + ktitj = sn,k(AXi, AXj) + sn,k(tix̂, tj x̂)

=sn,k(ei, ej) = δkij ,

since sn,k(AXi, tjx̂) = 0, sn,k(tix̂, AXj) = 0. Thus define Φ(x, x̂;A) := (Xi, ti)
n+1
i=1 .

We will give a description the inverse map Φ−1. Let (Xi, ti)
n+1
i=1 ∈ F hk

OON(πTM⊕R).
Then there are unique ai ∈ R such that

∑n+1
i=1 ai(Xi, ti) = (0, 1). We notice that

ai = kti for all i = 1, . . . , n and an+1 = tn+1, since

0 = g(

n+1∑

i=1

aiXi, Xj) =

n+1∑

i=1

ai(δ
k
ij − ktitj),

and because
∑n+1

i=1 aiti = 1. Hence k
∑n

i=1 t
2
i + t2n+1 = 1. Define x̂ :=

∑n
i=1(kti)ei +

tn+1en+1 for which sn,k(x̂, x̂) = k(k
∑n

i=1 t
2
i + t2n+1) = k i.e., x̂ ∈ M̂k. Moreover,

it is easy to see that each ei − tix̂ is sn,k-orthogonal to x̂ and hence we may define

A : T |xM → T |x̂M̂k by requiring that AXi = ei − tix̂, i = 1, . . . , n + 1. It can
be shown that A is well defined by this formula and an orthogonal linear map i.e.,
(x, x̂;A) ∈ Q. Also, evidently Φ(x, x̂;A) = (Xi, ti)

n+1
i=1 .

6.3 Controllability Results for Rolling Against a Non-Flat
Space Form

It is now clear, thanks to Theorem 6.11, that the controllability of the rolling prob-
lem of a manifold M against a space form M̂k amounts to checking whether the
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connection ∇Rol of πTM⊕R has full holonomy or not i.e., whether H∇Rol

= G(n, k) or
not.

For the rest of the section, we assume that k only takes the values 1 and −1, and
for notational purposes, we use the letter ”c” instead of ”k” and thus c ∈ {+1,−1}.

In Riemannian geometry, the reducibility of the Riemannian holonomy group is
characterized (in the complete simply connected case) by the de Rham Theorem
(see [25]). We aim at giving an analog of this result w.r.t. ∇Rol in Theorem 6.14
below. Before doing so, we first prove a simpler result showing that the conclusion
of Theorem 6.14 below is not trivial.

Proposition 6.13 Suppose that (M, g) is a space form of constant curvature equal
to c ∈ {+1,−1}. Then the rolling connection ∇Rol defined by the rolling problem(R)
of (M, g) against (M̂c, sn,c) (i.e., we roll (M, g) against itself) is reducible and, for

each x ∈M , the irreducible subspaces of the action of the holonomy group H∇Rol

|x on
T |xM ⊕ R are all 1-dimensional.

Proof. Let (p1, . . . , pn+1) be the canonical chart of Rn+1 where pj is the projection
onto the j-th factor and write h = hc for the inner product in TM ⊕ R. We will
assume that the space formM is the subset M̂c of R

n+1 as defined previously. Define
a vector field Z :=

∑n+1
i=1 p

i ∂
∂pi

i.e., Z is equal to the half of the gradient in (Rn+1, sn,c)

of the function (p1)2+ · · ·+(pn)2+ c(pn+1)2. Notice that Z is sn,c-orthogonal to the

submanifold M = M̂c of Rn+1 and hence T |xM is the sn,c-orthogonal complement
of Z|x for x ∈M . Moreover, sn,c(Z,Z) = c.

Next we define, for j = 1, . . . , n+ 1, the vector fields

Yj :=
∂

∂pj
− csn,c

( ∂

∂pj
, Z)Z

and functions

rj(x) = csn,c(
∂

∂pj
, Z|x).

The restrictions of Z, Yj, r
j onto M will be denoted by the same letters. Notice that

(Yj, r
j), j = 1, . . . , n + 1 are h-orthogonal at each point of M and hence they form

a global orthogonal frame of πTM⊕R.
Denote, as usual, by ∇ the Levi-Civita connection of (M, g). Take any vector

fields X =
∑n+1

i=1 X
i ∂
∂pi

∈ VF(M) and U =
∑n+1

i=1 U
i ∂
∂pi

∈ VF(M) and let Ũ be some

extension of U onto a neighbourhood of M in R
n+1 with corresponding components

Ũ i. Then we have for x ∈M ,

∇XU |x = Ũ∗(X|x)− csn,c(Ũ∗(X|x), Z|x)Z|x.

where we understand Ũ∗ as a map TRn+1 → TRn+1 using the obvious isomorphisms
T |X(TR

n+1) → T |xR
n+1 for each X ∈ T |xR

n+1.
Then we compute for any x ∈M and X =

∑n+1
i=1 X

i ∂
∂pi

∈ T |xM

Z∗(X) =

n+1∑

i=1

X iZ∗
( ∂

∂pi
)
=

n+1∑

i=1

X i ∂

∂pi
= X,
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and (notice that ( ∂
∂pj

)
∗ = 0)

(Yj)∗(X) =
n+1∑

i=1

X i(Yj)∗
( ∂

∂pi
)
= −csn,c(

∂

∂pj
, Z∗(X))Z|x − csn,c(

∂

∂pj
, Z|x)Z∗(X)

=− csn,c(
∂

∂pj
, X)Z|x − csn,c(

∂

∂pj
, Z|x)X,

from which we get

∇XYj = (Yj)∗(X|x)− csn,c((Yj)∗(X|x), Z|x)Z|x

=− csn,c(
∂

∂pj
, X)Z|x − csn,c(

∂

∂pj
, Z|x)X + csn,c(

∂

∂pj
, X)Z|x

+sn,c(
∂

∂pj
, Z|x) sn,c(X,Z|x)︸ ︷︷ ︸

=0

Z|x = −csn,c(
∂

∂pj
, Z|x)X.

Moreover,

X(rj) =csn,c(
∂

∂pj
, Z∗(X)) = csn,c(

∂

∂pj
, X)

sn,c(X, Yj) =sn,c
(
X,

∂

∂pj
)
− c sn,c

(
X,Z|x

)
︸ ︷︷ ︸

=0

sn,c
(
Z,

∂

∂pj
)
= sn,c

(
X,

∂

∂pj
)
,

and thus

∇Rol

X (Yj, r
j) =

(
∇XYj + rj(x)X,X(rj)−

1

c
sn,c(X, Yj|x)

)

=
(
− csn,c(

∂

∂pj
, Z|x)X + csn,c(

∂

∂pj
, Z|x)X, csn,c(

∂

∂pj
, X)− csn,c

(
X,

∂

∂pj
))

=(0, 0).

This means that all the πTM⊕R-sections (Yj, r
j), j = 1, . . . , n+1 are ∇Rol-parallel

globally. In particular, for any x ∈ M and loop γ ∈ Ωx(M),

d

dt
(P∇Rol

)0t (γ)
(
(Yj, p

j)|γ(t)
)
= (P∇Rol

)0t (γ)∇γ̇(t)(Yj, p
j) = 0,

which means that (x = γ(0))

(Yj, p
j)|γ(t) = (P∇Rol

)t0(γ)(Yj, p
j)|x, ∀t,

and hence

(P∇Rol

)t0(γ)(Yj, p
j)|x = (Yj, p

j)|γ(1) = (Yj, p
j)|x,

i.e., that the 1-dimensional subbundles spanned by each (Yj, r
j) are invariant under

the holonomy group of ∇Rol. Thus we have proved what we claimed.

Below we will only consider the case of positive curvature c = +1 i.e., rolling
against the unit sphere.
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Theorem 6.14 Let (M, g) be a complete Riemannian manifold and (M̂1, sn+1) be
the unit sphere with the metric induced from the Euclidean metric of R

n+1. If the
rolling connection ∇Rol (see (71)) corresponding to rolling of (M, g) against (M̂1, sn+1)
is reducible, then (M̂1, sn+1) is a Riemannian covering of (M, g) .

Recall that the reducibility of the connection ∇Rol means that its holonomy
group, which is a subgroup of G(n, c), is reducible i.e., there exists two nontrivial
invariant subspaces V1, V2 /∈ {{0},Rn+1} of Rn+1 which are invariant by the action
of this group.

Proof. In this case we have c = +1 (corresponding to the sphere space form) and
we will write h = h1 for the inner product on TM ⊕ R.

Fix once and for all a point x0 ∈ M . The assumption that ∇Rol is reducible
means that there are two subspaces V1, V2 ⊂ T |x0M ⊕ R which are nontrivial (i.e.,
V1, V2 /∈ {{0}, T |x0M ⊕ R}) and invariant by the action of the holonomy group of
∇Rol at x0. Since the holonomy group of ∇Rol acts h-orthogonally on T |x0M , it
follows that V1 ⊥ V2.

Define subbundles πDj
: Dj → M , j = 1, 2 of πTM⊕R such that for any x ∈ M

one chooses a piecewise C1 curve γ : [0, 1] →M from x0 to x and defines

Dj|x = (P∇Rol

)10(γ)Vj , j = 1, 2.

These definitions are independent of the chosen path γ since if ω is another such
curve, then ω−1.γ ∈ Ωx0(M) is a loop based at x0 and hence by the invariance of
Vj, j = 1, 2 under the holonomy of ∇Rol,

(P∇Rol

)10(γ)Vj = (P∇Rol

)10(ω) (P
∇Rol

)10(ω
−1.γ)Vj︸ ︷︷ ︸

=Vj

= (P∇Rol

)10(ω)Vj.

Moreover, since parallel transport (P∇Rol

)10(γ) is an h-orthogonal map, it follows that
D1 ⊥ D2 w.r.t the vector bundle metric h.

It is a standard fact that Dj, j = 1, 2, are smooth embedded submanifolds of
TM ⊕ R and that the restriction of πTM⊕R to Dj defines a smooth subbundle πDj

as claimed. Moreover, it is clear that

πD1 ⊕ πD2 = πTM⊕R,

and this sum is h-orthogonal.
We will now assume that both Dj, j = 1, 2, have dimension at least 2. The case

where one of them has dimension = 1 can be treated in a similar fashion and will be
omitted. So we letm+1 = dimD1 where m ≥ 1 and then n−m = (n+1)−(m+1) =
dimD2 ≥ 2 i.e., 1 ≤ m ≤ n− 2. Define for j = 1, 2

DM
j = pr1(Dj) =

{
X | (X, r) ∈ Dj} ⊂ TM,

and

Nj = {x ∈ M | (0, 1) ∈ Dj|x} ⊂M.

Trivially, N1 ∩ N2 = ∅. Also, Nj , j = 1, 2, are closed subsets of M since they can
be written as Nj = {x ∈ M | p⊥j (T |x) = T |x} where p⊥j : TM ⊕ R → Dj is the
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h-orthogonal projection onto Dj and T is the (smooth) constant section x 7→ (0, 1)
of πTM⊕R.

We next briefly sketch the rest of proof. We will show that Nj are nonempty
totally geodesic submanifolds ofM and, for any given xj ∈ Nj , j = 1, 2, that (M, g)
is locally isometric to the sphere

S = {(X1, X2) ∈ T |⊥x1
N1 ⊕ T |⊥x2

N2 | ‖X1‖
2
g + ‖X2‖

2
g = 1},

with the metric G := (g|T |⊥x1N1
⊕ g|T |⊥x2N2

)|S. Here ⊥ denotes the orthogonal com-

plement inside T |xM w.r.t. g. Since (S,G) is isometric to the Euclidean sphere
(M̂1, sn,1) this would finish the argument. The latter is rather long and we decom-
pose it in a sequence of ten lemmas and we start with the first one.

Lemma 6.15 The sets Nj , j = 1, 2, are non-empty.

Proof. Note first that N1 ∪ N2 6= M since otherwise N1 = M\N2 would be open
and closed and similarly for N2. But then if, say, N1 6= ∅ we have N1 = M by
connectedness of M i.e., the point (0, 1) ∈ D1|x for all x ∈ M . Then for all x ∈ M ,
X ∈ VF(M) one has, by the invariance of D1 by the holonomy of ∇Rol and by (71),

D1|x ∋ ∇Rol

X|x(0, 1) = (X|x, 0),

which implies that D1 = TM ⊕ R, a contradiction.
Let x′ ∈ M\(N1 ∪ N2) be arbitrary. Choose a basis (X0, r0), . . . (Xm, rm) of

D1|x′. Then at least one of the numbers r0, . . . , rm is non-zero, since otherwise
one would have (Xi, ri) = (Xi, 0) ⊥ (0, 1) for all i and thus D1|x′ ⊥ (0, 1) i.e.,
(0, 1) ∈ D2|x′ i.e., x′ ∈ N2 which is absurd. We assume that it is r0 which is non-
zero. By taking appropriate linear combinations of (Xi, ri), i = 0, . . . , m (and by
Gram-Schmidt’s process), one may change the basis (Xi, ri), i = 0, . . . , m, of D1|x so
that r1, . . . , rm = 0, r0 6= 0 and that (X0, r0), (X1, 0) . . . , (Xm, 0) are h-orthonormal.
Also, X0, . . . , Xm are non-zero: for X1, . . . , Xm this is evident, and for X0 it follows
from the fact that if X0 = 0, then r0 = 1 and hence x′ ∈ N1, which contradicts our
choice of x′.

Now let γ : R → M be the unit speed geodesic with γ(0) = x′, γ̇(0) = X0

‖X0‖g
.

Parallel translate (Xi, ri) along γ by ∇Rol to get πD1-sections (Xi(t), ri(t)) along γ.
In particular, from (73) one gets

r̈i(t) + ri(t) = 0,

with r0(0) 6= 0, r1(0) = · · · = rm(0) = 0. From the second equation in (72)
one obtains ṙi(0) = g(γ̇(0), Xi(0)) = ‖X0‖

−1
g g(X0, Xi) and thus ṙi(0) = 0 for i =

1, . . . , m since (Xi, 0) is h-orthogonal to (X0, r0). Moreover, ṙ0(0) = ‖X0‖g. Hence
ri(t) = 0 for all t and i = 1, . . . , m and r0(t) = ‖X0‖g sin(t)+r0 cos(t). In particular,
at t = t0 := arctan(− r0

‖X0‖g
) one has ri(t0) = 0 for all i = 0, . . . , m which implies

that D1|γ(t0) ⊥ (0, 1) i.e., γ(t0) ∈ N2. This proves that N2 is non-empty. The same
argument with D1 and D2 interchanged shows that N1 is non-empty.

Lemma 6.16 For any x ∈M and any unit vector u ∈ T |xM ,

(P∇Rol

)t0(γu)(0, 1) = (− sin(t)γ̇u(t), cos(t)). (77)
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Proof. Here and in what follows, γu(t) := expx(tu). Write

(X0(t), r0(t)) := (P∇Rol

)t0(γu)(0, 1).

The second equation in (72) implies that ṙ0(0) = g(γ̇u(0), X0(0)) = g(u, 0) = 0 and,
since r0(0) = 1, the second equation in (73) gives

r0(t) = cos(t).

Notice that, for all t ∈ R,

∇γ̇u(t)(− sin(t)γ̇u(t)) + r0(t)γ̇u(t)

=∇γ̇u(t)(− sin(t))γ̇u(t)− sin(t)∇γ̇u(t)γ̇u(t) + cos(t)γ̇u(t)

=− cos(t)γ̇u(t)− 0 + cos(t)γ̇u(t) = 0,

i.e., − sin(t)γ̇u(t) solves the same first order ODE as X0(t), namely ∇γ̇u(t)X0 +
r0(t)γ̇u(t) = 0 for all t by the first equation in (72). Moreover, since

(
− sin(t)γ̇u(t)

)
|t=0 = 0 = X0(0),

it follows that X0(t) = − sin(t)γ̇u(t), which, combined with the fact that r0(t) =
cos(t) proven above, gives (77).

Lemma 6.17 The sets Nj , j = 1, 2, are complete, totally geodesic submanifolds of
(M, g) and DM

j |x = T |xNj , ∀x ∈ Nj , j = 1, 2.

Proof. We show this for N1. The same argument then proves the claim for N2. Let
x ∈ N1 and u ∈ DM

1 |x a unit vector. Since (0, 1) ∈ D1|x, Eq. (77) implies that

D1|γu(t) ∋ (P∇Rol

)t0(γu)(0, 1) = (− sin(t)γ̇u(t), cos(t))

Next notice that

∇Rol

γ̇u(t)

(
cos(t)γ̇u(t), sin(t)

)
=
(
− sin(t)γ̇u(t) + sin(t)γ̇u(t), cos(t)− g(γ̇u(t), cos(t)γ̇u(t))

)

=(0, 0),

and hence, since
(
cos(t)γ̇u(t), sin(t)

)
|t=0 = (u, 0) ∈ D1|x (this is so because u ∈

DM
1 |x, hence there is some r ∈ R such that (u, r) ∈ D1|x and since (0, 1) ∈ D1|x

because x ∈ N1, then D1|x ∋ (u, r)− r(0, 1) = (u, 0)), we have, for all t ∈ R,

(
cos(t)γ̇u(t), sin(t)

)
= (P∇Rol

)t0(u, 0) ∈ D1|γu(t).

Hence for all t ∈ R,

D1|γu(t) ∋ sin(t)
(
cos(t)γ̇u(t), sin(t)

)
+ cos(t)

(
− sin(t)γ̇u(t), cos(t)

)
= (0, 1).

This proves that any geodesic starting from a point ofN1 with the initial direction
fromDM

1 stays inN1 forever. Hence, once it has been shown thatN1 is a submanifold
of M with tangent space T |xN1 = DM

1 |x for all x ∈ N1, then automatically N1 is
totally geodesic and complete.
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Let x ∈ N1. If one takes an open neighbourhood U of x and local πD2-sections
(Xm+1, rm+1), . . . , (Xn, rn) which form a basis of D2 over U , then it is clear that
N1 ∩ U = {x ∈ U | rm+1(x) = · · · = rn(x) = 0}

Thus let (Xm+1, rm+1), . . . , (Xn, rn) ∈ D2|x be a basis of D2|x. Choose ǫ > 0 such
that expx is a diffeomorphism from Bg(0, ǫ) onto its image Uǫ and define for y ∈ Uǫ,
j = m+ 1, . . . , n,

(Xj , rj)|y = (P∇Rol

)10
(
τ 7→ expx(τ exp

−1
x (y))

)
(Xj, rj).

Then (Xj , rj) are local πD2-sections and it is clear that

N1 ∩ Uǫ = {y ∈ Uǫ | rm+1(y) = · · · = rn(y) = 0}.

Moreover, from (72),

∇rj |x = Xj|x, j = m+ 1, . . . , n,

which are linearly independent. Hence, by taking ǫ > 0 possibly smaller, we may
assume that the local vector fields ∇rj , j = m + 1, . . . , n, are linearly independent
on Uǫ. But this means that N1 ∩ Uǫ = {y ∈ Uǫ | rm+1(y) = · · · = rn(y) = 0} is a
smooth embedded submanifold of Uǫ with tangent space

T |xN1 ={X ∈ T |xM | g(∇rj, X) = 0, j = m+ 1, . . . , n}

={X ∈ T |xM | g(Xj, X) = 0, j = m+ 1, . . . , n}

=DM
1 |x.

Since x ∈ N1 was arbitrary, this proves that N1 is indeed an embedded subman-
ifold of M and T |xN1 = DM

1 |x for all x ∈ N1.

Lemma 6.18 Let di(x) := dg(Ni, x), x ∈M . Then in the set where di is smooth,

(∇ cos(di(·)), cos(di(·))) ∈ DM
i , (78)

where ∇ is the gradient w.r.t g.

Proof. Let x ∈ M\N1. Choose y ∈ N1, u ∈ (T |yN1)
⊥ such that γu : [0, di(x)] → M

is the minimal normal unit speed geodesic from N1 to x. Since (0, 1) ∈ D1|y (because
y ∈ N1), it follows that the parallel translate of (0, 1) along γu stays in D1 which, in
view of (77), gives

D1|x ∋ (P∇Rol

)
d1(x)
0 (γu)(0, 1) =

(
− sin(d1(x))γ̇u(d1(x)), cos(d1(x))

)

=
(
− sin(d1(x))∇(d1(·))|x, cos(d1(x))

)

=
(
∇ cos(d1(·))|x, cos(d1(x))

)
,

where the last two equalities hold true if x is not in the cut nor the conjugate locus
of N1 (nor is x in N1, by assumption). Working in the complement of these points,
which is a dense subset of M and using a continuity argument, we may assure that
the result holds true everywhere where di is smooth. The same argument proves the
formula (78) for d2 as well.
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Lemma 6.19 For every Y ∈ VF(M), one has

g
(
R(Y,∇d1(·))∇d1(·), Y

)
= g(Y, Y )−

(
∇Y (d1(·))

)2
, (79)

wherever d1(·) is smooth.

Proof. It is known (see [24]) that for any Y, Z ∈ VF(M), d1(·) satisfies a PDE

−g(R(Y |y,∇d1(y))∇d1(y), Z|y) =Hess2(d1(·))(Y |y, Z|y)

+
(
∇∇d1(y)Hess(d1(·))

)
(Y |y, Z|y),

for every y ∈M such that d1 is smooth at y (and this is true in a dense subset ofM).
In particular, y /∈ N1. Also, since the set of points y ∈ M where cos(d1(y)) = 0 or
sin(d1(y)) = 0 is clearly Lebesgue zero-measurable, we may assume that cos(d1(y)) 6=
0 and sin(d1(y)) 6= 0.

Notice that (X0, r0) := (∇ cos(d1(·)), cos(d1(·))) belongs to D1 and has h-norm
equal to 1. We may choose in a neighbourhood U of y vector fields X1, . . . , Xm ∈
VF(U) such that (X0, r0), (X1, 0), . . . , (Xm, 0) is an h-orthonormal basis of D1 over
U . Assume also that (X0, r0) is smooth on U . This implies that there are smooth
one-forms ωi

j , i, j = 0, . . . , m defined by (set here r1 = · · · = rm = 0)

∇Rol

Y (Xi, ri) =
m∑

i=0

ωj
i (Y )(Xj, rj), Y ∈ VF(M),

or, more explicitly,





∇YXj + rjY =

m∑

i=0

ωi
j(Y )Xi

Y (rj)− g(Y,Xj) =
m∑

i=0

ωi
j(Y )ri,

Since (X0, r0), . . . , (Xm, rm) are h-orthonormal, it follows that ωi
j = −ωj

i . The fact
that r1 = · · · = rm = 0 implies that

−g(Y,Xj) = ω0
j (Y )r0, j = 1, . . . , m

i.e.,

ωj
0(Y ) =

g(Y,Xj)

cos(d1(·))
.

But then one has that (notice that ω0
0 = 0)

∇YX0 + r0Y =

m∑

j=1

ωj
0(Y )Xj ,

which simplifies to

− sin(d1(·))∇Y∇d1(·)− cos(d1(·))∇Y (d1(·))∇d1(·)

=− cos(d1(·))Y +
1

cos(d1(·))

m∑

j=1

g(Xj, Y )Xj,

89



or

∇Y∇d1(·) =− cot(d1(·))∇Y (d1(·))∇d1(·) + cot(d1(·))Y

−
1

sin(d1(·)) cos(d1(·))

m∑

j=1

g(Xj, Y )Xj .

Writing S(Y ) := ∇Y∇d1(·) = Hess(d1(·))(Y, ·), one obtains

(∇∇d1(·)S)(Y ) = ∇∇d1(·)(S(Y ))− S(∇∇d1(·)Y )

=
1

sin2(d1(·))
∇Y (d1(·))∇d1(·)− cot(d1(·))g(∇∇d1(·)Y,∇d1(·))∇d1(·)

−
1

sin2(d1(·))
Y −

( 1

cos2(d1(·))
−

1

sin2(d1(·))

) m∑

j=1

g(Y,Xj)Xj

−
1

sin(d1(·)) cos(d1(·))

m∑

j=1

(
g(Y,∇∇d1(·)Xj)Xj + g(Y,Xj)∇∇d1(·)Xj

)

+ cot(d1(·))∇∇∇d1(·)
Y (d1(·))︸ ︷︷ ︸

=g(∇d1(·),∇∇d1(·)
Y )

∇d1(·),

where we used that ∇∇d1(·)(d1(·)) = g(∇d1(·),∇d1(·)) = 1. On the other hand,

Hess2(d1(·))(Y, ·) = S2(Y ) = S(S(Y ))

=S
(
− cot(d1(·))∇Y (d1(·))∇d1(·) + cot(d1(·))Y

−
1

sin(d1(·)) cos(d1(·))

m∑

j=1

g(Xj, Y )Xj

)

=− cot2(d1(·))∇Y (d1(·))∇d1(·) + cot2(d1(·))Y −
2

sin2(d1(·))

m∑

j=1

g(Xj, Y )Xj

+
1

sin2(d1(·)) cos2(d1(·))

m∑

j=1

g(Xj, Y )Xj,

where we used that∇d1(·), X1, . . . , Xm are g-orthonormal (recall thatX0 = − sin(d1(·))∇d1(·)).
Thus, for any Y, Z ∈ VF(M), one has on U that

− g(R(Y,∇d1(·))∇d1(·), Z)

=− g(Y, Z) +
( 1

sin2(d1(·))
− cot2(d1(·))

)
∇Y (d1(·))∇Z(d1(·))

−
1

sin(d1(·)) cos(d1(·))

m∑

j=1

(
g(Y,∇∇d1(·)Xj)g(Xj, Z) + g(Y,Xj)g(∇∇d1(·)Xj , Z)

)
.

We also set Z = Y and hence get

−g(R(Y,∇d1(·))∇d1(·), Y ) =− g(Y, Y ) +∇Y (d1(·))∇Y (d1(·))

−
2

sin(d1(·)) cos(d1(·))

m∑

j=1

g(Y,∇∇d1(·)Xj)g(Xj, Y ).
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Here

m∑

j=1

g(Y,∇∇d1(·)Xj)g(Xj, Y ) = −
1

sin(d1(·))

m∑

j=1

g(Y,∇X0Xj)g(Xj, Y )

=−
1

sin(d1(·))

m∑

j=1

g(Y,

m∑

i=1

ωi
j(X0)Xig(Xj, Y )

=−
1

sin(d1(·))

m∑

i,j=1

ωi
j(X0)︸ ︷︷ ︸
(⋆)1

g(Y,Xi)g(Xj, Y )︸ ︷︷ ︸
(⋆)2

= 0,

where expression (⋆)1 is skew-symmetric in (i, j) while (⋆)2 is symmetric on (i, j).
Hence the sum is zero. We finally obtain

g(R(Y,∇d1(·))∇d1(·), Y ) = g(Y, Y )−
(
∇Y (d1(·))

)2
,

as claimed. It is clear that this formula now holds at every point ofM where d1(·) is
smooth and for any Y ∈ VF(M). In particular, if Y is a unit vector g-perpendicular
to ∇d1(·) at a point y of M , then ∇Y d1(·)|y = g(∇d1(·)|y, Y |y) = 0 and hence

sec(Y, d1(·))|y = +1.

Lemma 6.20 For every x ∈ N1, a unit vector u ∈ (T |xN1)
⊥ and v ∈ T |xM with

v ⊥ u,

‖(expx)∗|tu(v)‖g =
∣∣sin(t)

t

∣∣ ‖v‖g , t ∈ R. (80)

In particular, for all unit vectors u1, u2 ∈ (T |xN1)
⊥ one has

expx(πu1) = expx(πu2).

Proof. Let Yu,v(t) =
∂
∂s
|0 expx(t(u + sv)) be the Jacobi field along γu(t) = expx(tu)

such that Yu,v(0) = 0, ∇γ̇u(0)Yu,v = v. Since v ⊥ u, it follows from the Gauss lemma
(see [25]) that Yu,v(t) ⊥ γ̇u(t) for all t. Moreover, the assumption u ∈ (T |xN1)

⊥

implies that ∇d1(·)|γu(t) = γ̇u(t) and thus ∇Yu,v(t)(d1(·)) = g(γ̇u(t), Yu,v(t)) = 0.
By polarization, one may write (79) into the form

R(Z(t), γ̇u(t))γ̇u(t) = Z(t)− g(Z(t), γ̇u(t))γ̇u(t),

for any vector field Z along γu. In particular,

∇γ̇u∇γ̇uYu,v = −R(Yu,v, γ̇u)γ̇u = −Yu,v,

since g(Yu,v(t), γ̇u(t)) = 0 for all t. On the other hand, the vector field Z(t) =
sin(t)P t

0(γu)v satisfies along γu

∇γ̇u(t)∇γ̇uZ = −Z(t), ∀t

Z(0) = 0, ∇γ̇uZ|t=0 = v,
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i.e., the same initial value problem as Yu,v. This implies that

Yu,v(t) = sin(t)P t
0(γu)v, (81)

from which we obtain (80) because Yu,v(t) = t(expx)∗|tu(v).
The last claim follows from the fact that the map expx |S : S → M where

S = {u ∈ (T |xN1)
⊥ | ‖u‖ = π} is a constant map. Indeed, if u ∈ S, v ∈ T |uS and

we identify v as an element of T |xM as usual, then by what we have just proved
(note that u = π u

‖u‖g
),

‖(expx)∗|u(v)‖g =
sin(π)

π
‖v‖g = 0.

Hence expx |S has zero differential on all over S which is connected, since its dimen-
sion is n−m− 1 ≥ 1 by assumption. Hence expx |S is a constant map.

Lemma 6.21 For every x ∈ N1 and unit normal vector u ∈ (T |xN1)
⊥, the geodesic

t 7→ γu(t) meets N2 exactly at t ∈ (Z+ 1
2
)π. The same holds with the roles of N1 and

N2 interchanged.

Proof. Let x ∈ N1 and u ∈ (T |xN1)
⊥ be a unit vector normal vector to N1. For

(X, r) ∈ D1|x define (X(t), r(t)) = (P∇Rol

)t0(γu)(X, r). Then by (72), (73) we have
(notice that g(u,X) = 0 since u ∈ (T |xN1)

⊥ = (DM
1 |x)

⊥ and X ∈ DM
1 |x)

r(t) = r(0) cos(t).

Hence, (X(t), r(t)) is h-orthogonal to (0, 1) if and only of r(t) = 0 i.e., r(0) cos(t) = 0.
This proves that (0, 1) ⊥ D1|γu(t) i.e., (0, 1) ∈ D2|γu(t) i.e., γu(t) ∈ N2 if and only if
t ∈ (1

2
+ Z)π (obviously, there is a vector (X, r) ∈ D1|x with r 6= 0).

Lemma 6.22 The submanifolds N1, N2 are isometrically covered by Euclidean spheres
of dimensions m and n−m, respectively, and the fundamental groups of N1 and N2 are
finite and have the same number of elements. More precisely, for any x ∈ N1 define

Sx = {u ∈ (T |xN1)
⊥ | ‖u‖g = 1},

equipped with the restriction of the metric g|x of T |xM . Then

Sx → N2; u 7→ expx(
π

2
u),

is a Riemannian covering. The same claim holds with N1 and N2 interchanged.

Proof. Denote by C1 the component of N1 containing x. We will show first that
C1 = N1 i.e., N1 is connected.

Let y1 ∈ N1. Since C1 is a closed subset of M , there is a minimal geodesic γv
in M from C1 to y1 with γ̇v(0) = v a unit vector, x1 := γv(0) ∈ C1 and γv(d) = y1,
with d := dg(y1, C1). By minimality, v ∈ (T |x1C1)

⊥ = (T |x1N1)
⊥. Hence by Lemma

6.21 the point x2 := expx1
(π
2
v) = γv(

π
2
) belongs to N2. Since the set

Sx2 = {u ∈ (T |x2N2)
⊥ | ‖u‖g = 1}.
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is connected (its dimension is m ≥ 1, by assumption that we made before), Lemma
6.21 implies that expx2

(
π
2
Sx2

)
is contained in a single component C ′

1 of N1. Writing
u := γ̇v(

π
2
), we have ±u ∈ Sx2 so

C ′
1 ∋ expx2

(−π
2
u) = expx2

(
−
π

2

d

dt

∣∣
π
2

expx1
(tv)

)
= expx1

((π
2
− t)v)|t=π

2
= x1,

and since also x1 ∈ C1, it follow that C ′
1 = C1. But this implies that

γv(π) = expx1
(πv) = expx2

(π
2

d

dt

∣∣
π
2

expx1
(tv)

)
= expx2

(π
2
u) ∈ C1.

It also follows from u ∈ (T |x2N2)
⊥ that γ̇v(π) =

d
dt

∣∣
π
2

expx2
(tu) ∈ (T |γv(π)N1)

⊥. Since

expx2
((d− π

2
)u) = y1 ∈ N1, Lemma 6.21 implies that d− π

2
∈ (1

2
+Z)π, from which,

since d ≥ 0, we get d ∈ N0π, where N0 = {0, 1, 2, . . .}.
By taking x′2 = γv(

3
2
π) ∈ N2 we may show similarly that γv(2π) ∈ C1 and by

induction we get γv(kπ) ∈ C1 for every k ∈ N0. In particular, since d ∈ N0π, we get
y1 = γv(d) ∈ C1. Since y1 ∈ N1 was arbitrary, we get N1 ⊂ C1 which proves the
claim.

By repeating the argument with N1 and N2 interchanged, we see that N2 is
connected.

Eq. (80) shows that, taking u ∈ Sx and v ∈ T |uSx, i.e., v ⊥ u, v ⊥ T |xN1,

∥∥∥∥
d

dt

∣∣
0
expx

(π
2
(u+ tv)

)∥∥∥∥
g

=
∥∥∥(expx)∗|π2 u(

π

2
v)
∥∥∥
g
= ‖v‖g .

This shows that u 7→ expx(
π
2
u) is a local isometry Sx → N2. In particular, the

image is open and closed in N2, which is connected, hence u 7→ expx(
π
2
u) is onto

N2. According to Proposition II.1.1 in [25], u 7→ expx(
π
2
u) is a covering Sx → N2.

Similarly, for any y ∈ N2 the map Sy → N1; u 7→ expy(
π
2
u) is a Riemannian

covering.
Finally, let us prove the statement about fundamental groups. Fix a point xi ∈

Ni and write φi(u) = expxi
(π
2
u), i = 1, 2, for maps φ1 : Sx1 → N2, φ2 : Sx2 → N1.

The fundamental groups π1(N1), π1(N2) of N1, N2 are finite since their universal
coverings are the (normal) spheres Sx2 , Sx1 which are compact. Also, φ−1

1 (x2) and
φ−1
2 (x1) are in one-to-one correspondence with π1(N2) and π1(N1) respectively.
Define Φ1 : φ−1

1 (x2) → Sx2; Φ1(u) = − d
dt

∣∣
π
2

expx1
(tu) ∈ Sx2 and similarly Φ2 :

φ−1
2 (x1) → Sx1 ; Φ2(u) = − d

dt

∣∣
π
2

expx2
(tu) ∈ Sx1. Clearly, for u ∈ φ−1

1 (x2),

φ2(Φ1(u)) = expx2

(
−
π

2

d

dt

∣∣
π
2

expx1
(tu)

)
= expx1

((π
2
− t)u)|t=π

2
= x1,

i.e., Φ1 maps φ−1
1 (x2) → φ−1

2 (x1). Similarly Φ2 maps φ−1
2 (x1) → φ−1

1 (x2). Finally,
Φ1 and Φ2 are inverse maps to each other since for u ∈ φ−1

1 (x2),

Φ2(Φ1(u)) = −
d

dt

∣∣
π
2

expx2

(
− t

d

ds

∣∣
π
2

expx1
(su)

)
= −

d

dt

∣∣
π
2

expx1
((π

2
− t)u) = u,

and similarly Φ1(Φ2(u)) = u for u ∈ φ−1
2 (x1).
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For the sake of simplicity, we will finish the proof of Theorem 6.14 under the
assumption that N2 is simply connected and indicate in Remark 6.25 following the
proof how to handle the general case.

The fact that N2 is simply connected is clearly equivalent to saying that

Sx → N2; u 7→ expx(
π

2
u),

defined in Lemma 6.22 is an isometry for some (and hence every) x ∈ N1. It then
follows from Lemma 6.22 that N1 is (simply connected and) isometric to a sphere
as well.

We next get the following.

Lemma 6.23 Fix xi ∈ Nj , j = 1, 2 and let

Sx1 = {u ∈ (T |x1N1)
⊥ | ‖u‖g = 1}, Sx2 = {u ∈ (T |x2N2)

⊥ | ‖u‖g = 1},

the unit normal spheres to N1, N2 at x1, x2 respectively. Consider first the maps

f1 : Sx1 → N2 f2 : Sx2 → N1 (82)

f1(u) = expx1
(
π

2
u) f2(v) = expx2

(
π

2
v),

and the map w which associates to (u, v) ∈ Sx1 ×Sx2 the unique element of Sf2(v) such
that expf2(v)(

π
2
w(u, v)) = f1(u). Finally let

Ψ :]0,
π

2
[× Sx1 × Sx2 → M (83)

Ψ(t, u, v) = expf2(v)(tw(u, v)).

Suppose that S̃ :=]0, π
2
[×Sx1 × Sx2 is endowed with the metric g̃ such that

g̃|(t,u,v) = dt2 + sin2(t)g|T |uSx1
+ cos2(t)g|T |vSx2

.

Then Ψ is a local isometry.

Proof. We use G to denote the geodesic vector field on TM i.e., for u ∈ TM we
have

G|u := γ̈u(0) =
d2

dt2
∣∣
0
expπTM (u)(tu).

Then the projections on M by πTM of its integral curves are geodesics. Indeed, first
we notice that

G|γ̇u(t) =
d2

ds2

∣∣
0
expγu(t)(sγ̇u(t)) =

d2

ds2

∣∣
0
γu(t + s) = γ̈u(t),

and hence, if Γ be a curve on TM defined by Γ(t) = γ̇u(t), then

Γ̇(t) = γ̈u(t) = G|γ̇u(t) = G|Γ(t),

and Γ(0) = u. Hence Γ satisfies the same initial value problem as t 7→ ΦG(t, u),
which implies that

ΦG(t, u) = γ̇u(t), ∀t ∈ R, u ∈ TM,
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and in particular,

(πTM ◦ ΦG)(t, u) = γu(t), ∀t ∈ R, u ∈ TM.

For every u ∈ TM there is a direct sum decomposition Hu⊕Vu of T |uTM where
Vu = V |u(πTM) is the πTM -vertical fiber over u and Hu is defined as

Hu = {
d

dt

∣∣
0
P t
0(γX)u | X ∈ T |πTM (u)M}.

We write the elements of T |uTM w.r.t. this direct sum decomposition as (A,B)
where A ∈ Hu, B ∈ Vu. It can now be shown that (see [25] Lemma 4.3, Chapter II)

((ΦG)t)∗|u(A,B) = (Z(A,B)(t),∇γ̇u(t)Z(A,B)), (A,B) ∈ T |uTM, u ∈ TM,

where Z(A,B) is the unique Jacobi field along geodesic γu such that Z(A,B)(0) = A,
∇γ̇u(0)Z(A,B) = B.

We are now ready to prove the claim. First observe that

Ψ(t, u, v) = (πTM ◦ ΦG)(t, w(u, v))

and hence, for ( ∂
∂t
, X1, X2) ∈ T S̃,

Ψ∗(
∂

∂t
,X1, X2) =(πTM)∗

( ∂
∂t

ΦG(t, w(u, v)) + ((ΦG)t)∗|w(u,v)w∗(X1, X2)
)

=(πTM)∗

(
G|ΦG(t,w(u,v)) +

(
Zw∗(X1,X2)(t),∇ ∂

∂t
(πTM◦ΦG)(t,w(u,v))Zw∗(X1,X2)

))

=γ̇w(u,v)(t) + Zw∗(X1,X2)(t).

On the other hand,

(πTM ◦ ΦG)
(π
2
, w(u, v)

)
= f1(u),

from where

(f1)∗|u(X1) = Zw∗(X1,X2)

(π
2

)
.

Similarly, since

(πTM ◦ ΦG)
(
0, w(u, v)

)
= πTM (w(u, v)) = f2(v),

we get

(f2)∗|v(X2) = Zw∗(X1,X2)(0).

As in the proof of Lemma 6.20, we see that the Jacobi equation that Zw∗(X1,X2)

satisfies is ∇γ̇w(u,v)(t)∇γ̇w(u,v)
Zw∗(X1,X2) = −Zw∗(X1,X2)(t). It is clear that this implies

that Zw∗(X1,X2) has the form

Zw∗(X1,X2)(t) = sin(t)P t
0(γw(u,v))V1 + cos(t)P t

0(γw(u,v))V2,
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for some V1, V2 ∈ T |f2(u)M . Now, taking into account the boundary values of
Zw∗(X1,X2)(t) at t = 0 and t = π

2
as derived above, we get

V1 =P
0
π
2
(γw(u,v))((f1)∗|u(X1)),

V2 =(f2)∗|v(X2).

Define

Y1(t) = sin(t)P t
0(γw(u,v))V1 = sin(t)P t

π
2
(γw(u,v))((f1)∗|u(X1)),

Y2(t) = cos(t)P t
0(γw(u,v))V2 = cos(t)P t

0(γw(u,v))((f2)∗|v(X2)),

which means that

Z = Y1 + Y2.

Notice that Y1 and Y2 are Jacobi fields along γw(u,v).
Since w(u, v) ∈ (T |f2(v)N1)

⊥ and γ̇w(u,v)(
π
2
) ∈ (T |f1(u)N2)

⊥ and

Y1(
π
2
) = (f1)∗|u(X1) ∈ T |f1(u)N2, Y2(0) = (f2)∗|v(X2) ∈ T |f2(v)N1,

it follows that

Y1, Y2 ⊥ γw(u,v).

We claim that moreover

Y1 ⊥ Y2.

Indeed, since (f2)∗|v(X2) ∈ T |f2(v)N1 and (0, 1) ∈ D1|f2(v) (by definition of N1), we
have ((f2)∗|v(X2), 0) ∈ D1|f2(v) and hence, for all t,

(Z1(t), r1(t)) := (P∇Rol

)t0(γw(u,v))((f2)∗|v(X2), 0) ∈ D1.

On the other hand, r1 satisfies r̈1 + r1 = 0 with initial conditions r1(0) = 0 and
ṙ1(0) = g(γ̇w(u,v)(0), Z1(0)) = g(w(u, v), (f2)∗|v(X2)) = 0 so r1(t) = 0 for all t. Thus
Z1(t) satisfies ∇γ̇w(u,v)(t)Z1 = 0 i.e., Z1(t) = P t

0(γw(u,v))((f2)∗|v(X2)). Similarly, if

w′(u, v) := − d
dt

∣∣
π
2

expf2(v)(tw(u, v)) = −γ̇w(u,v)(
π
2
),

(Z2(
π
2
− t), r2(

π
2
− t)) := (P∇Rol

)t0(γw′(u,v))((f1)∗|u(X1), 0) ∈ D2,

and we have r2(
π
2
− t) = 0 and Z2(

π
2
− t) = P t

0(γw′(u,v))((f1)∗|v(X1)) i.e., Z2(t) =
P t

π
2
(γw(u,v))((f1)∗|v(X1)). But since D1 ⊥ D2 w.r.t. h, we have that (Z1, r1) ⊥ (Z2, r2)

w.r.t. h i.e., g(Z1(t), Z2(t)) = 0 for all t (since r1(t) = r2(t) = 0). Thus,

g(Y1(t), Y2(t)) = sin(t) cos(t)g
(
P t

π
2
(γw(u,v))((f1)∗|u(X1)), P

t
0(γw(u,v))((f2)∗|v(X1))

)

= sin(t) cos(t)g(Z2(t), Z1(t)) = 0

This proves the claim, i.e., Y1 ⊥ Y2.
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Since ‖w(u, v)‖g = 1, one has

∥∥∥∥Ψ∗(
∂

∂t
,X1, X2)

∥∥∥∥
2

g

=
∥∥γ̇w(u,v)(t) + Y1(t) + Y2(t)

∥∥2

g

=
∥∥γ̇w(u,v)(t)

∥∥2

g
+ ‖Y1(t)‖

2
g + ‖Y2(t)‖

2
g

=1 + sin2(t)2g ‖(f1)∗|u(X1)‖
2
g + cos2(t) ‖(f2)∗|v(X2)‖ .

Finally, since

(f1)∗|u(X1) = (expx1
)∗|π

2
u(
π

2
X1) and (f2)∗|v(X2) = (expx2

)∗|π
2
v(
π

2
X2),

Eq. (80) implies that

‖(f1)∗|u(X1)‖g = | sin(
π

2
)| ‖X1‖g = ‖X1‖g ,

‖(f2)∗|v(X2)‖g = | sin(
π

2
)| ‖X2‖g = ‖X2‖g ,

and therefore
∥∥∥∥Ψ∗

( ∂
∂t
,X1, X2

)∥∥∥∥
2

g

=1 + sin2(t) ‖X2‖
2
g + cos2(t) ‖X1‖

2
g

=g̃|(t,u,v)
( ∂
∂t
,X1, X2

)
,

i.e., Ψ is a local isometry S̃ → M .

We next need one extra lemma.

Lemma 6.24 The manifold M has constant constant curvature equal to 1.

Proof. By Lemma 6.23, we know that Ψ : S̃ → M is a local isometry. Now (S̃, g̃)
has constant curvature = 1 since it is isometric to an open subset of the unit sphere
(cf. [24] Chapter 1, Section 4.2). The image Ψ(S̃) of Ψ is clearly a dense subset of
M (indeed, Ψ(S̃) = M\(N1 ∪ N2)), which implies that M has constant curvature
= 1.

This completes the proof the theorem in the case 1 ≤ m ≤ n − 2, since a
complete Riemannian manifold (M, g) with constant curvature = 1 is covered, in a
Riemannian sense, by the unit sphere i.e., M̂1. The cases m = 0 and m = n − 1
i.e., dimD1 = 1 and dimD2 = 1, respectively, are treated exactly in the same way
as above, but in this case N1 is a discrete set which might not be connected.

Remark 6.25 The argument can easily be modified to deal with the case where N2

(nor N1) is not simply-connected. The simplifying assumption of simply connectedness
of N1 and N2 made previously just serves to render the map w(·, ·) globally defined on
Sx1 ×Sx2 . Otherwise we must define w only locally and, in its definition, make a choice
corresponding to different sheets (of which there is a finite number).
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Remark 6.26 As mentioned in the introduction, the following issue to address is that
of an irreducible holonomy group of the rolling connection ∇Rol i.e., for a given x ∈M ,
the only non-trivial subspace of T |xM ⊕R left invariant by parallel transport w.r.t ∇Rol

along loops based at x ∈M is T |xM ⊕ R.

7 Rolling of Spaces of Different Dimensions

7.1 Definitions of the State Space and the Rolling Distribu-

tions

Definition 7.1 Let (M, g), (M̂, ĝ) be Riemannian manifolds of dimensions n =
dim(M) ≥ 2 and n̂ = dim(M̂) ≥ 2, not necessarily equal. Then one defines:

(i) if n ≤ n̂,

Q(M, M̂) := {A ∈ T ∗M ⊗ TM̂ | ĝ(AX,AY ) = g(X, Y ), X, Y ∈ T |xM, x ∈M},

the set of isometric infinitesimal immersions. This defines a smooth manifold of
T ∗M ⊗ TM̂ of dimension

dim(Q) := n+ n̂ + n(n̂− n) +
n(n− 1)

2
= n + n̂+ nn̂−

n(n + 1)

2
.

(ii) If n ≥ n̂,

Q(M, M̂ ) = {A ∈ T ∗M ⊗ TM̂ | ĝ(AX,AY ) = g(X, Y ), X, Y ∈ (kerA)⊥,

x ∈M, A is onto a tangent space of M̂},

where L⊥ is the orthogonal subspace of L ⊂ T |xM w.r.t. g. This defines a
smooth submanifold of T ∗M ⊗ TM̂ of dimension

dim(Q) = n + n̂+ n̂(n− n̂) +
n̂(n̂− 1)

2
= n+ n̂+ nn̂−

n̂(n̂+ 1)

2
.

If n = n̂ and M, M̂ are oriented we also demand in (i) and (ii) that the elements of
Q to preserve the orientations. Hence we recover the definition used before.

One defines distributions DNS, DR on Q and the lifts LNS, LR as before. In
both cases the dimension of DNS is n + n̂ and that of DR is n. Notice that by the
above definition the dimension of Q(M, M̂) is the same as that of Q(M̂,M). These
manifolds are actually diffeomorphic as the next proposition shows.

Before proceeding, we introduce some notations. Given (M, g) and (M̂, ĝ) as
before, we write Q = Q(M, M̂) and Q̂ = Q(M̂,M). We write DNS, DR, LNS and

LR on Q as before but on Q̂ we write the corresponding objects as D̂NS, D̂R, L̂NS

and L̂R. Thus dimDR = n but dim D̂R = n̂. As before, for q = (x, x̂;A) ∈ Q we

write AT : T |x̂M̂ → T |xM the (g, ĝ)-transpose of A i.e., g(X,AT Ŷ ) = ĝ(AX, Ŷ ) for
all X ∈ T |xM , Ŷ ∈ T |x̂M̂ .
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Proposition 7.2 For every (x, x̂;A) ∈ Q, one has (x̂, x;AT ) ∈ Q̂ and the application

T : Q→ Q̂; T (x, x̂;A) = (x̂, x;AT ),

is a diffeomorphism. Moreover, this diffeomorphism T is an isometry of fiber bundles
πQ → πQ̂ that preserves the no-spinning distributions on these manifolds i.e.,

T ∗DNS = D̂NS.

Proof. Suppose w.l.o.g. that n ≤ n̂. It is clear that ATA = idT |xM for every

(x, x̂;A) ∈ Q and ker(AT ) = im(A)⊥ and thus if X̂, Ŷ ∈ ker(AT )⊥ = im(A), one
gets

g(AT X̂, AT Ŷ ) = g(ATAX,ATAY ) = g(X, Y ) = ĝ(AX,AY ) = ĝ(X̂, Ŷ ),

where X, Y ∈ T |xM were such that AX = X̂ , AY = Ŷ . This proves that T (x, x̂;A)
is actually an element of Q̂.

Let then q̂ = (x̂, x;B) ∈ Q̂ and define

S(q̂) = (x, x̂;BT ) ∈ T ∗M ⊗ TM̂.

Since im(BT ) = ker(B)⊥, we have for X, Y ∈ T |xM ,

g(BTX,BTY ) = ĝ(BBTX,BBTY ) = ĝ(X, Y ),

directly from the definition of Q̂ and since BBT = idT |xM (since n ≤ n̂). This shows

that S : Q̂→ Q.
Moreover, one clearly has that T and S are maps inverse to each other. They are

obviously smooth, hence Q and Q̂ are diffeomorphic. Also, T is actually a bundle
isomorphism πQ → πQ̂ whose inverse as a bundle isomorphism is S.

Finally, observe that if γ, γ̂ are smooth paths inM , M̂ starting at x0, x̂0, respec-
tively, at t = 0, and if q0 = (x0, x̂0;A0) ∈ Q(M, M̂) then

(P t
0(γ̂) ◦ A0 ◦ P

0
t (γ))

T = P t
0(γ) ◦ A

T
0 ◦ P 0

t (γ̂),

so

T
(
γ(t), γ̂(t);P t

0(γ̂) ◦A0 ◦ P
t
0(γ)

)
=

(
γ̂(t), γ(t);P t

0(γ) ◦ T (x0, x̂0;A0) ◦ P
0
t (γ̂)

)
,

which immediately shows, by differentiating d
dt

∣∣
0
and using the definition of LNS,

that

T ∗|q0LNS(X, X̂)
∣∣∣
q0
= L̂NS(X̂,X)

∣∣∣
T (q0)

where X = γ̇(0), X̂ = ˙̂γ(0). This proves in particular that T ∗ maps DNS isomorphi-

cally onto D̂NS. This completes the proof.
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Corollary 7.3 In the case n ≤ n̂, one has for q0 = (x0, x̂0;A0) ∈ Q(M, M̂) and
X ∈ T |xM ,

T ∗|q0LR(X)|q0 = L̂R(A0X)|Φ(q0).

In particular, T ∗DR ⊂ D̂R.

Proof. Indeed, for X ∈ T |x0M and q0 = (x0, x̂0;A0) one has

T ∗|q0LR(X)|q0 = T ∗|q0LNS(X,A0X)
∣∣∣
q0
= L̂NS(A0X,X)

∣∣∣
T (q0)

= L̂R(A0X)|T (q0)
,

since X = (AT
0 )(A0X) = T (q0)(A0X). Hence T maps DR of Q(M, M̂) into D̂R of

Q(M̂,M).

Remark 7.4 Recall that the distribution DR on Q(M, M̂) has dimension n and D̂R

on Q(M̂,M) has dimension n̂. Hence the inclusion T ∗DR ⊂ D̂R is strict whenever
n < n̂. This shows that the model of rolling of manifolds of different dimensions against
each other is not symmetric with respect to the order of the manifolds M and M̂ .

We can now provide a description of the vertical fiber V |q(πQ) for a point q =
(x, x̂;A) ∈ Q.

Proposition 7.5 If q = (x, x̂;A) ∈ Q, then the vertical fiber V |q(πQ) is given by

V |q(πQ) =

{
ν
({
B ∈ T ∗|xM ⊗ T |x̂M̂ | ATB ∈ so(T |xM)

})∣∣
q
, if n ≤ n̂,

ν
({
B ∈ T ∗|xM ⊗ T |x̂M̂ | BAT ∈ so(T |x̂M̂)

})∣∣
q
, if n ≥ n̂.

.

Proof. Let q = (x, x̂;A) ∈ Q and B ∈ T ∗|xM ⊗ T |x̂M̂ . Proving the proposition
amounts to show that ν(B)|q (which is a priori only an element of V |q(πT ∗M⊗TM̂))
belongs to V |q(πQ) if and only if

(i) ATB ∈ so(n), if n ≤ n̂,

(ii) BAT ∈ so(n̂), if n ≥ n̂.

Choose first a πQ-vertical curve q(t) = (x, x̂;A(t)) inside Q such that A(0) = A

i.e., q(t) ∈ π−1
Q (x, x̂) ⊂ T ∗|xM ⊗ T |x̂M̂ .

In the case (i), we have ĝ(A(t)X,A(t)Y ) = g(X, Y ) for all X, Y ∈ T |xM so by
differentiating, at t = 0, g(AX,BY ) + g(BX,AY ) = 0 for all X, Y ∈ T |xM , where
B ∈ T ∗|xM ⊗ T |x̂M̂ is such that A′(0) = ν(B)|q. This condition can be written

as g(BTAX, Y ) + g(ATBX, Y ) = 0 for all X, Y and hence BTA + ATB = 0. The
result follows, since for a given (x, x̂;A) ∈ Q, the set of B ∈ T ∗|xM ⊗ T |x̂M̂ s.t.

ATB ∈ so(T |xM) has dimension equal to dim π−1
Q (x, x̂).

In the case (ii), we have g(A(t)X,A(t)Y ) = g(X, Y ) for all X, Y ∈ (kerA(t))⊥ =

im(A(t)T ). Choose X̂, Ŷ ∈ T |x̂M . Then g(A(t)T X̂, A(t)T Ŷ ) = ĝ(X̂, Ŷ ), since

A(t)A(t)T = idT |x̂M̂ , and so by differentiating at t = 0, we get g(AT X̂, BT Ŷ ) +

g(BT X̂, AT Ŷ ) = 0, where B ∈ T ∗|xM ⊗ T |x̂M̂ is such that A′(0) = ν(B)|q. This

clearly means that BAT + ABT = idT |x̂M̂ and the result follows.
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Remark 7.6 The case (ii) considered above could be handled by using the diffeo-
morphism T : Q → Q̂ introduced in Proposition 7.2. Indeed, if n ≥ n̂, we may
apply (i) on Q̂ to obtain that for q′ = (x̂, x;A′) ∈ Q̂, we have that V |q′(πQ̂) consists

of B′ ∈ T ∗|x̂M̂ ⊗ T |xM such that A′TB ∈ so(T |x̂M̂). But taking q = (x, x̂;A),

q′ = T (q), B ∈ T ∗|xM ⊗ T |x̂M̂ and B′ = BT , this means ABT ∈ so(T |x̂M̂) i.e.,

BAT ∈ so(T |x̂M̂).

7.2 Controllability Results

7.2.1 Rolling Problem (NS)

Since Theorem 4.9 and Corollary 4.11 evidently hold as such in the case of non-equal
dimensions (i.e., n 6= n̂), we will be more interested to see how Theorem 4.16 could
be formulated. We first need a definition.

Definition 7.7 For n, n̂ ≥ 2, we define

SO(n; n̂) :=





{A ∈ (Rn)∗ ⊗ R
n̂ | ATA = idRn}, if n < n̂,

{A ∈ (Rn)∗ ⊗ R
n̂ | AAT = idRn̂}, if n > n̂,

SO(n), if n = n̂,

where (Rn)∗ ⊗R
n̂ is the set of n× n̂ real matrices and AT denotes the usual transpose

of matrices.

Theorem 7.8 Fix some orthonormal frames F , F̂ of M , M̂ at x ∈ M , x̂ ∈ M̂ and
let h = h|F ⊂ so(n), ĥ = ĥ|F̂ ⊂ so(n̂) be the holonomy Lie-algebras of M , M̂ w.r.t to
these frames. Then the control system (Σ)NS is completely controllable if and only if
for every A ∈ SO(n; n̂),

Ah− ĥA =

{{
B ∈ (Rn)∗ ⊗ R

n | ATB ∈ so(n)
}
, if n ≤ n̂,{

B ∈ (Rn)∗ ⊗ R
n | BAT ∈ so(n̂)

}
, if n ≥ n̂.

7.2.2 Rolling Problem (R)

Notice that Proposition 5.17 still holds when n = dimM is not equal to n̂ = dim M̂ .
The rolling curvature of DR on Q is denoted as before but that of D̂R on Q̂ is written
as R̂ol i.e.,

R̂ol(X̂, Ŷ )(B) = BR̂(X̂, Ŷ )−R(BX̂,BŶ )B,

for (x̂, x;B) ∈ Q̂ and X̂, Ŷ ∈ T |x̂M̂ .
As a consequence, we have a generalization of Corollary 5.28.

Corollary 7.9 Use the notations introduced previously and assume that n ≤ n̂. Then
the following two cases are equivalent:

(i) DR is involutive,

(ii) (M, g) and (M̂, ĝ) have constant and equal curvature.
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Also, if n < n̂, then there is an equivalence between the two cases below:

(1) D̂R is involutive,

(2) (M, g) and (M̂, ĝ) are both flat.

Proof. For some of the notations, see the proof of Corollary 5.28.
(i) =⇒ (ii): Assume that DR is involutive. This is equivalent to the vanishing of

Rol i.e.,

A(R(X, Y )Z) = R̂(AX,AY )(AZ), ∀(x, x̂;A) ∈ Q, X, Y, Z ∈ T |xM,

which implies

σ(X,Y ) =g(R(X, Y )Y,X) = ĝ(A(R(X, Y )Y ), AX)

=ĝ(R̂(AX,AY )(AY ), AX) = σ̂(AX,AY ),

for every X, Y orthonormal in T |xM and (x, x̂;A) ∈ Q.
Let x ∈ M , x̂ ∈ M̂ be arbitrary points and X, X̂ ∈ T |xM and X̂, Ŷ ∈ T |x̂M̂ be

arbitrary pairs of orthonormal vectors.
Choose any vectors X3, . . . , Xn ∈ T |xM and X̂3, . . . , X̂n̂ ∈ T |x̂M̂ such that

X, Y,X3, . . . , Xn and X̂, Ŷ , X̂3, . . . , X̂n̂ are positively oriented orthonormal frames.
Since n ≤ n̂, we may define q = (x, x̂;A) ∈ Q by

AX = X̂, AY = Ŷ , AXi = X̂i, i = 3, . . . , n,

to obtain that σ(X,Y ) = σ̂(X̂,Ŷ ). Thus (M, g) and (M̂, ĝ) have equal and constant

curvature, since the orthonormal pairs X, Y and X̂, Ŷ were arbitrary and chosen
independently from one another.

(ii) =⇒ (i): Since (M, g), (M̂, ĝ) both have equal constant curvature, say k ∈ R,
we have

R(X, Y )Z = k
(
g(Y, Z)X − g(X,Z)Y

)
, X, Y, Z ∈ T |xM, x ∈M,

R̂(X̂, Ŷ )Ẑ = k
(
ĝ(Ŷ , Ẑ)X̂ − ĝ(X̂, Ẑ)Ŷ

)
, X̂, Ŷ , Ẑ ∈ T |x̂M̂, x̂ ∈ M̂.

On the other hand, if (x, x̂;A) ∈ Q, X, Y, Z ∈ T |xM we get

R̂(AX,AY )(AZ) = k(ĝ(AY,AZ)(AX)− ĝ(AX,AZ)(AY ))

=A(k(g(Y, Z)X − g(X,Z)Y ) = A(R(X, Y )Z).

This implies that Rol(X, Y )(A) = 0 since Z was arbitrary. Hence DR is involutive.

(2) =⇒ (1): In this case R = 0 and R̂ = 0 so that clearly R̂ol(X̂, Ŷ )(B)Ẑ =
B(R̂(X̂, Ŷ )Ẑ) − R(BX̂,BŶ )(BẐ) = 0 for all X̂, Ŷ , Ẑ ∈ T |x̂M̂ and (x̂, x;B) ∈ Q̂.

This proves that D̂R is involutive.
(1) =⇒ (2): Assume that D̂R is involutive i.e.,

B(R̂(X̂, Ŷ )Ẑ) = R(BX̂,BŶ )(BẐ), ∀(x̂, x;B) ∈ Q̂, X̂, Ŷ , Ẑ ∈ T |x̂M̂.

Then

σ(BX̂,BŶ ) = g(B(R̂(X̂, Ŷ )Ŷ ), BX̂),
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or

σ(X,Y ) = g(B(R̂(BTX,BTY )(BTY ), X) = σ̂(BTX,BT Y ).

Given any x ∈ M , x̂ ∈ M̂ , X, Y ∈ T |xM and X̂, Ŷ ∈ T |x̂M , choose some
X3, . . . , Xn ∈ T |xM , X̂3, . . . , X̂n̂ ∈ T |x̂M̂ such that

X, Y,X3, . . . , Xn and X̂, Ŷ , X̂3, . . . , X̂n̂,

are positively oriented orthonormal frames. We define

BX̂ = X, BŶ = Y, BX̂i = Xi, i = 3, . . . , n,

BX̂i = 0, i = n+ 1, . . . , n̂

so that q = (x̂, x;B) ∈ Q̂, BTX = X̂ , BTY = Ŷ and hence σ(X,Y ) = σ̂(X̂,Ŷ ). Thus

(M, g), (M̂, ĝ) have constant and equal curvature.
Suppose that the common constant curvature of (M, g), (M̂, ĝ) is k ∈ R. We

need to show that k = 0. Choose any (x̂, x;B) ∈ Q̂. Since n < n̂, we may choose
non-zero vectors X̂ ∈ kerB and Ŷ ∈ (kerB)⊥. Then

0 =R̂ol(X̂, Ŷ )(B)X̂ = k
(
ĝ(Ŷ , X̂)BX̂ − ĝ(X̂, X̂)BŶ

)
− R(BX̂,BŶ )(BX̂)

=k(0−
∥∥∥X̂

∥∥∥
2

ĝ
BŶ )− 0 = −k

∥∥∥X̂
∥∥∥
2

ĝ
BŶ

and since
∥∥∥X̂

∥∥∥
ĝ
6= 0 and BŶ 6= 0 (since 0 6= Ŷ ∈ (kerB)⊥), it follows that k = 0.

This completes the proof.

We may also easily generalize Corollary 5.29. The use will be made of Gauss-
formula, which relates the curvature of a submanifold to that of the ambient Rie-
mannian manifold and O’Neill-formulas, which relate the various curvatures related
to Riemannian submersions (see [25], Propositions 3.8, 6.1, 6.2 and Corollary 6.3,
Chapter II). Since the proof is slightly less trivial, we state this as a proposition.

Proposition 7.10 Suppose that (M, g) and (M̂, ĝ) are complete with dimM = n,
dim M̂ = n̂. The following cases are equivalent:

(i) There exists a q0 = (x0, x̂0;A0) ∈ Q such that ODR
(q0) is an integral manifold of

DR.

(ii) There exists a q0 = (x0, x̂0;A0) ∈ Q such that

Rol(X, Y )(A) = 0, ∀(x, x̂;A) ∈ ODR
(q0), X, Y ∈ T |xM.

(iii) There is a complete Riemannian manifold (N, h), a Riemannian covering map
F : N →M and a smooth map G : N → M̂ such that:

(1) If n ≤ n̂, G is a Riemannian immersion that maps h-geodesics to ĝ-geodesics.

(2) If n ≥ n̂, G is a Riemannian submersion such that the co-kernel distribution
(kerG∗)

⊥ ⊂ TN is involutive and the fibers G−1(x̂), x̂ ∈ M̂ , are totally
geodesic submanifolds of (N, h).
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Moreover, in the case (iii)-(2), we may choose N to be simply connected and then
(N, h) is a Riemannian product of (N1, h1), (N2, h2), where dimN1 = n̂, dimN2 =
n− n̂, the space (N1, g1) is the universal Riemannian covering of (M̂, ĝ) and G is given
by

G : N = N1 ×N2 → M̂ ; G(y1, y2) = π̂(y1)

where π̂ : N1 → M̂ is a Riemannian covering map.

Proof. (i) ⇐⇒ (ii): This is proved with exactly the same argument that was used
in the proof of Corollary 5.29.

(i) ⇒ (iii): Let N := ODR
(q0) and h := (πQ,M |N)

∗(g) i.e., for q = (x, x̂;A) ∈ N
and X, Y ∈ T |xM , define

h(LR(X)|q,LR(Y )|q) = g(X, Y ).

If F := πQ,M |N and G := πQ,M̂ |N , we immediately see that F is a local isometry
(note that dim(N) = n). The completeness of (N, h) follows from the completeness
of M and M̂ using Proposition 5.6 which holds in verbatim also in the case where
n 6= n̂. Hence by Proposition II.1.1 in [25], F is a (surjective) Riemannian covering.

Suppose then that n ≤ n̂. Then for q = (x, x̂;A) ∈ N , X, Y ∈ T |xM , one has

ĝ(G∗(LR(X)|q), G∗(LR(Y )|q)) = ĝ(AX,AY ) = g(X, Y ) = h(LR(X)|q,LR(Y )|q),

i.e., G is a Riemannian immersion. Moreover, if Γ : [0, 1] → N is an h-geodesic,
it is tangent to DR and since it projects by F to a g-geodesic γ, it follows that
Γ = qDR

(γ,Γ(0)) and Proposition 5.6 shows that G◦Γ = γ̂DR
(γ,Γ(0)) is a ĝ-geodesic.

This proves (iii)-(1).
On the other hand, if n ≥ n̂, then for q = (x, x̂;A) ∈ N , any X ∈ T |xM

s.t. LR(X)|q ∈ (kerG∗|q)
⊥ and Z ∈ kerA, we have G∗(LR(Z)|q) = AZ = 0 i.e.,

LR(Z)|q ∈ ker(G∗|q) from which g(X,Z) = h(LR(X)|q,LR(Z)|q) = 0. This shows
thatX ∈ (kerA)⊥ and therefore, for allX, Y ∈ T |xM such that LR(X)|q,LR(Y )|q ∈
(kerG∗|q)

⊥, we get ĝ(G∗(LR(X)|q), G∗(LR(Y )|q)) = h(LR(X)|q,LR(Y )|q) as above.

This proves that G : N → M̂ is a Riemannian submersion.
For any X, Y ∈ VF(N) orthonormal and tangent to (kerG∗)

⊥ around a point
q ∈ N , we have σh

(X,Y )
= σ̂(G∗X,G∗Y ) (σh is the sectional curvature on N) in that

neighbourhood because F is a Riemannian covering map and because

σ̂(G∗X,G∗Y ) = ĝ(R̂(G∗X,G∗Y )(G∗Y ), G∗X)) = ĝ(R̂(AF∗X,AF∗Y )(AF∗Y ), AF∗X))

=ĝ(AR(F∗X,F∗Y )F∗Y ,AF∗X)) = g(R(F∗X,F∗Y )F∗Y ,A
TAF∗X))

=g(R(F∗X,F∗Y )F∗Y , F∗X) = σ(F∗X,F∗Y ),

since Rol = 0, F∗X ∈ (kerA)⊥ on N and where we wrote A = G∗ ◦ (F∗|q)
−1 for

q = (x, x̂;A) in the chosen neighbourhood. By Corollary 6.3, Chapter II in [25], it
follows that for any X, Y ∈ VF(N) tangent to (kerG∗)

⊥ in an open set, [X, Y ] is
tangent to (kerG∗)

⊥ in that open set. Thus (kerG∗)
⊥ is involutive.

We still need to prove that the G-fibers are totally geodesic. Let q = (x, x̂;A) ∈
Q, V ∈ kerG∗|q = T |q(G

−1(x̂)). Then V = LR(u)|q for some u ∈ T |xM and if γ
is the g-geodesic starting from x with the initial velocity u, then Γ := qDR

(γ, q) is
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the h-geodesic with initial velocity V (since F is a Riemannian covering) and also
γ̂ := γ̂DR

(γ, q) is a ĝ-geodesic by Proposition 5.6 with initial velocity ˙̂γ(0) = Aγ̇(0) =
Au = G∗V = 0, by the choice of V . But this means that γ̂ is a constant curve,
γ̂(·) ≡ x̂ for all t, which implies that G(Γ(t)) = γ̂(t) = x̂ for all t i.e., Γ(t) ∈ G−1(x̂).
This proves that every fiber G−1(x̂), x̂ ∈ M̂ , is a totally geodesic submanifold of
(N, h) and so we have finally proved (iii)-(2).

(iii) ⇒ (ii): Let x0 ∈ M and choose z0 ∈ N such that F (z0) = x0. Define
x̂0 = G(z0) ∈ M̂ and A0 := G∗|z0 ◦ (F∗|z0)

−1 : T |x0M → T |x̂0M̂ .
The fact that q0 = (x0, x̂0;A0) belongs to Q can be seen as follows: if (iii)-(1)

holds, we have

ĝ(A0X,A0Y ) = ĝ
(
G∗|z0((F∗|z0)

−1X), G∗|z0((F∗|z0)
−1Y )

)

=h((F∗|z0)
−1X), (F∗|z0)

−1Y ) = g(X, Y ),

where we used that G is a Riemannian immersion and that F is a Riemannian
covering map. On the other hand, if (iii)-(2) holds and if X, Y ∈ (kerA0)

⊥, clearly
(F∗|z0)

−1X, (F∗|z0)
−1Y ∈ (kerG∗|z0)

⊥ and hence also ĝ(A0X,A0Y ) = g(X, Y ) since
G is a Riemannian submersion.

Let γ : [0, 1] → M be a smooth curve with γ(0) = x0. Since F is a smooth
covering map, there is a unique smooth curve Γ : [0, 1] → N with γ = F ◦Γ. Define
γ̂ = G ◦ Γ and A(t) = G∗|Γ(t) ◦ (F∗|Γ(t))

−1, t ∈ [0, 1]. As before, it follows that
A(t) ∈ Q for all t ∈ [0, 1] and

˙̂γ(t) = G∗|Γ(t)Γ̇(t) = A(t)γ̇(t). (84)

We claim that, for all t ∈ [0, 1],

∇(γ̇(t), ˙̂γ(t))A(·) = 0, (85)

and

Rol(·, ·)(A(t)) = 0. (86)

Indeed, suppose now that (iii)-(1) holds. This means that, for every z ∈ N , there
is a neighbourhood U of z in N such that G(U) is a totally geodesic submanifold
of (M̂, ĝ) and G : U → M̂ is an isometric embedding. Now if X is a vector field
parallel along γ in M , then since F is a Riemannian covering, there is a unique
vector field X parallel along Γ in (N, h) such that F∗X = X . For any t0 ∈ [0, 1],
choose U as above around Γ(t0). Then near t0 we have that G∗X is parallel to γ̂ in
(M̂, ĝ). This proves that

0 = ∇̂ ˙̂γ(t)(G∗X(t)) = ∇̂ ˙̂γ(t)(A(·)X(·)) =
(
∇(γ̇(t), ˙̂γ(t))A(·)

)
X(t),

and since X(t) was an arbitrary field parallel along γ, we have ∇(γ̇(t), ˙̂γ(t))A(·) = 0
i.e., (85).

Since, locally, the shape operator of G(N) w.r.t (M̂, ĝ) vanishes and G(N) is lo-
cally Riemannian embedded submanifold of (M̂, ĝ), we also have G∗(R

h(X, Y )Z) =
R̂(G∗X,G∗Y )(G∗Z) for all X, Y , Z ∈ T |zN , z ∈ N (see [25], Proposition 3.8, Chap-
ter II) and hence for all X, Y, Z ∈ T |γ(t)M ,

A(t)(R(X, Y )Z) = G∗(F∗|Γ(t))
−1(R(X, Y )Z) = G∗(R

h(X, Y )Z)

=R̂(G∗X,G∗Y )(G∗Z) = R̂(A(t)X,A(t)Y )(A(t)Z),
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where X = (F∗|Γ(t))
−1X etc. This proves (86).

On the other hand, suppose (iii)-(2) holds. First we see that Eq. (86) follows
from [25], Proposition 6.2, Chapter II (the operators A and T there vanish, by
assumptions on N and G) and the fact that F is a Riemannian covering.

To prove (85) we proceed as follows. Taking the simply connected covering of N ,
lifting the metric h and composing G and F with the projection from this covering
to N , we see that the conditions (iii)-(2) still hold and thus we may assume that N
was simply connected in the first place. Take any piecewise C1 curve ω on N and
let V0 ∈ kerG∗|ω(0), X0 ∈ (kerG∗)

⊥|ω(0). If Z(t) is the parallel translate of X0 + V0
along ω, we get from [25], Proposition 6.1, Chapter II (again, the operators A and
T there vanish by assumptions) that

0 =∇h
ω̇(t)Z(t) = (∇h

ω̇(t)Z(t)
⊥)⊥ + (∇h

ω̇(t)Z(t)
T )T ,

where for Y ∈ TN we wrote Y T and Y ⊥ for the components of Y in the distributions
(kerG∗)

⊥ and kerG∗, respectively (this notation is in accordance with the notation
in the referred result of [25] and is not completely compatible with ours). This proves
that Z(t)T and Z(t)⊥ are fields parallel to ω and since Z(0)T = X0, Z(0)

⊥ = V0,
we have that Z(t)T and Z(t)⊥ are the parallel translates of X0 and V0, respectively.
But this implies that

(P∇h

)t0(ω)(kerG∗|ω(0)) = kerG∗|ω(t), (P∇h

)t0(ω)
(
(kerG∗|ω(0))

⊥) = (kerG∗|ω(t))
⊥,

i.e., TN = kerG∗ ⊕ (kerG∗)
⊥ is a splitting to TN into two subbundles that are

invariant under ∇h-parallel transport.
Since N is simply connected and complete, it follows from de Rham’s Theorem

(see [25], Theorem 6.11, Chapter II) that (N, h) = (N1, h1)×(N2, h2), a Riemannian
product, where (N1, h1) and (N2, h2) are both complete and simply connected and
TN1 = (kerG∗)

⊥, TN2 = kerG∗.
To see now that Eq. (85) holds, let X be a vector field parallel along γ in M ,

write Γ = (Γ1,Γ2), take X = (X1, X2) (w.r.t TN = TN1 ⊕ TN2) to be the unique
lift of X onto a vector field along Γ in N and compute

0 =A(t)∇γ̇(t)X(·) = G∗∇
h
(Γ̇1(t),Γ̇2(t))

X(·) = G∗∇
h
Γ̇1(t)

X1 +G∗∇
h
Γ̇2(t)

X2 = G∗∇
h
Γ̇1(t)

X1,

since ∇h
Γ̇2(t)

X2 ∈ TN2 = kerG∗. On the other hand, Gy2 : N1 → M̂ ; y1 7→ G(y1, y2)

is a local isometry for any y2 ∈ N2 and hence

0 =G∗∇
h
Γ̇1(t)

X1 = (GΓ2(t))∗∇
h
Γ̇1(t)

X1 = ∇̂(GΓ2(t))∗Γ̇1(t)
((GΓ2(t))∗X1)

=∇̂ ˙̂γ(t)(G∗X) = ∇̂ ˙̂γ(t)(A(·)X(·)),

since ˙̂γ(t) = G∗Γ̇(t) = G∗Γ̇1(t) = (GΓ2(t))∗Γ̇1(t) and G∗X = G∗X1 = (GΓ2(t))∗X1.
Thus (85) holds and this finishes the proof of (85)-(86) in the case that (iii)-(2)
holds.

Thus we have shown, because of (84) and (85), that t 7→ (γ(t), γ̂(t);A(t)) is the
unique rolling curve along γ starting at q0 = (x0, x̂0;A0) and defined on [0, 1] and
therefore curves of Q formed in this fashion fill up the orbit ODR

(q0). Therefore,
Eq. (86) implies that Rol vanishes on ODR

(q0) which means that we are in case (ii).
To prove the last claim in the statement of the proposition, we continue the

deduction done above in the case that condition (iii)-(2) holds. Since for any y2 ∈ N2,
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Gy2 : N1 → M̂ is a local Riemannian isometry and N1 is simply connected and
complete, it follows that Gy2 is a universal Riemannian covering of M̂ . We show that
the map Gy2 is independent of the choice of y2 ∈ N2 i.e., that G(y1, y2) = G(y1, y

′
2)

for all y1 ∈ N1 and y2, y
′
2 ∈ N2. Indeed, take any smooth path Γ2 in N2 from

Γ2(0) = y2 to Γ2(1) = y′2. Then, d
dt
(Gy1 ◦ Γ2(t)) = G∗Γ̇2(t) = 0 for all t since

Γ̇2(t) ∈ TN2 = kerG∗. This shows that Gy1 ◦ Γ2 is a constant curve in M̂ and thus
G(y1, y2) = Gy1(Γ2(0)) = Gy1(Γ2(1)) = G(y1, y

′
2).

We fix y′2 ∈ N2 and define π̂ := Gy′2 : N1 → M̂ which is a universal Riemannian
covering. By what we just proved, it holds that G(y1, y2) = G(y1, y

′
2) = π̂(y1) which

establishes the claim.

A Fiber and Local Coordinates Point of View

Let F = (Xi), F̂ = (X̂i) be (not necessarily orthonormal) local frames of M and
M̂ defined on the open subsets U, Û , respectively. We have local frames of 1-forms
F ∗ = ((θi), U), F̂ ∗ = ((θ̂j), Û) dual to these frames i.e., defined by θj(Xi) = δji ,

θ̂j(X̂i) = δji . The Christoffel symbols Γk
ij = (ΓF )

k
ij , Γ̂

k
ij = (Γ̂F̂ )

k
ij of ∇, ∇̂ w.r.t

the frames F , F̂ are defined by (see [28], p. 266) ∇Xi
Xj =

∑
k Γ

k
ijXk, ∇̂X̂i

X̂j =∑
k Γ̂

k
ijX̂k. Any (x, x̂;A) ∈ T ∗|x(M) ⊗ T |x̂(M̂) with (x, x̂) ∈ U × Û can be written

in the form

A =
∑

i,j

Ai
jθ

j|x ⊗ X̂i|x̂,

i.e., (pr2 ◦ τF,F̂ )(A) = [Ai
j] (see section 3.2). Moreover, if F, F̂ are orthonormal

frames, then A ∈ Q if and only if [Ai
j ] ∈ SO(n).

Let t 7→ γ(t), t 7→ γ̂(t), t ∈ I, be smooth curves in U , Û , respectively, such
that γ(0) = x0, γ̂(0) = x̂0, where I is a compact interval containing 0. Moreover,
take q0 = (x0, x̂0;A0) ∈ T ∗M ⊗ TM̂ . The no-spinning condition (12) (i.e., the
parallel translation equation) for the curve t 7→ q(t) = (γ(t), γ̂(t);A(t)) (i.e., A(t) =
P t
0(γ, γ̂)A) starting at q can be written as

dAi
j

dt
(t)−

∑

k,m

Γk
m,j(γ(t))A

i
k(t)v

m(t) +
∑

k,m

Γ̂i
m,k(γ̂(t))A

k
j (t)v̂

m(t) = 0, (87)

where t ∈ I and

γ̇(t) =
∑

i

vi(t)Xi|γ(t), ˙̂γ(t) =
∑

i

v̂i(t)X̂i|γ̂(t).

This shows immediately that the equation for no-spinning is a linear ODE in Ai
j and

thus the solution with the initial condition A(0) = A0 exists for the whole interval
I where γ, γ̂ are defined. The control system (Σ)NS can now be written locally in
the form




γ̇(t) =
∑

i

vi(t)Xi|γ(t),

˙̂γ(t) =
∑

i

v̂i(t)X̂i|γ̂(t),

dAi
j

dt
(t) =

∑

k,m

Γk
m,j(γ(t))A

i
k(t)v

m(t)−
∑

k,m

Γ̂i
m,k(γ̂(t))A

k
j (t)v̂

m(t)

, t ∈ I,
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or 



γ̇(t) =
∑

i

vi(t)Xi|γ(t),

˙̂γ(t) =
∑

i

v̂i(t)X̂i|γ̂(t),

Ȧ(t) =
∑

i

viLNS(Xi, 0)|A(t) +
∑

i

v̂iLNS(0, X̂i)|A(t),

t ∈ I,

where the controls v = (v1, . . . , vn), v̂ = (v̂1, . . . , v̂n) are elements of L1
loc(I,R

n)
(actually an open subset of it since the images of γ, γ̂ should belong to U, Û , re-
spectively). From this local form, we see that (Σ)NS is a driftless control affine
system.

The curve t 7→ q(t) = (γ(t), γ̂(t);A(t)) is a rolling curve i.e., satisfies conditions
(11) and (13) if and only if

v̂i(t) =
∑

k

Ai
k(t)v

k(t), (88)

dAi
j

dt
(t)−

∑

m

(∑

k

Γk
m,j(γ(t))A

i
k(t)−

∑

k,l

Γ̂i
l,k(γ̂(t))A

k
j (t)A

l
m(t)

)
vm(t) = 0, (89)

where γ̇(t) =
∑

i v
i(t)Xi|γ(t), ˙̂γ(t) =

∑
i v̂

i(t)X̂i|γ̂(t). Supposing that Û is a domain of

a coordinate chart φ̂ = (x̂1, . . . , x̂n) of M̂ and taking as the frame F̂ the coordinate
fields X̂i =

∂
∂x̂i , the previous equation can be written as

dγ̂i

dt
(t) =

∑

k

Ai
k(t)v

k(t), (90)

dAi
j

dt
(t) =

∑

m

(∑

k

Γk
m,j(γ(t))A

i
k(t)−

∑

k,l

Γ̂i
l,k(γ̂(t))A

k
j (t)A

l
m(t)

)
vm(t), (91)

where γ̂i = x̂i◦ γ̂ and t ∈ I. This system is nonlinear in γ̂i, Ai
j and thus the existence

of solutions, for a given initial condition γ̂(0) = x̂0, A(0) = A0 cannot be guaranteed
on a given compact interval I ∋ 0 where γ is defined (even in a case where one is
able to get Û = M̂).

Moving back to a general frame F̂ (i.e., we are not assuming that it consists of
coordinate vector fields), the local form of the control system (Σ)R can be written
as



γ̇(t) =
∑

i

vi(t)Xi|γ(t),

˙̂γ(t) =
∑

i

vi(t)A(t)Xi|γ(t),

dAi
j

dt
(t) =

∑

m

(∑

k

Γk
m,j(γ(t))A

i
k(t)−

∑

k,l

Γ̂i
l,k(γ̂(t))A

k
j (t)A

l
m(t)

)
vm(t),

t ∈ I,

or 



γ̇(t) =
∑

i

vi(t)Xi|γ(t),

˙̂γ(t) =
∑

i

vi(t)A(t)Xi|γ(t),

Ȧ(t) =
∑

i

vi(t)LR(Xi)|A(t),

t ∈ I,

108



where the controls v = (v1, . . . , vn) are elements of L1
loc(I,R

n) as above. From this
local form, we see that (Σ)R is a driftless control affine system.

B Sasaki-metric on T ∗M ⊗ TM̂ and Q

The no-spinning distribution DNS can be given a natural sub-Riemannian struc-
ture (see e.g. [19]) with the sub-Riemannian metric hNSD := (π∗

Q(g))|DNS
since

(πQ)∗|DNS|(x,x̂;A)
is a linear isomorphism T |(x,x̂;A)Q → T |(x,x̂)(M × M̂) at each point

q = (x, x̂;A) ∈ Q and (πQ)∗(LNS(X, X̂)|q) = (X, X̂), for every q = (x, x̂;A) ∈ Q

and X ∈ T |xM , X̂ ∈ T |x̂M̂ .
Actually, we have more since there is a Sasaki-metric g11 on the whole tensor

space T ∗(M)⊗ T (M̂) given in the following.

Definition B.1 The Sasaki-metric g11 on T ∗(M)⊗ T (M̂) is defined by

g11(ξ, η) =g
(
LNS|

−1
q (pr1(ξ)),LNS|

−1
q (pr1(η))

)

+ ((g∗ ⊗ ĝ) ◦ τ)
(
ν|−1

q (pr2(ξ)), ν|
−1
q (pr2(η))

)
, (92)

where
q = (x, x̂;A) ∈ T ∗(M)⊗ T (M̂), ξ, η ∈ T |q(T

∗(M)⊗ T (M̂)),

pr1, pr2 are projections of the decomposition

T (T ∗(M)⊗ T (M̂)) = DNS ⊕ V (πT ∗(M)⊗T (M̂ )),

(see (20)) onto the first and second factors, LNS|
−1
q , ν|−1

q are the inverse maps of

T |(x,x̂)(M × M̂) → T |q(T
∗(M)⊗ T (M̂))

X 7→ LNS(X)|q, (93)

and

(T ∗(M)⊗ T (M̂))|(x,x̂) → V |q(πT ∗(M)⊗T (M̂ ))

B 7→ ν(B)|q. (94)

Note that g∗ : T ∗(M) ⊗ T ∗(M) → R is the dual metric induced by g and finally τ is
the R-linear isomorphism

(T ∗M ⊗ TM̂)⊗ (T ∗M ⊗ TM̂) → (T ∗M ⊗ T ∗M)⊗ (TM̂ ⊗ TM̂)

uniquely determined by

τ
(
(ω ⊗ X̂)⊗ (θ ⊗ Ŷ )

)
= (ω ⊗ θ)⊗ (X̂ ⊗ Ŷ ).

Denote by gQ the restriction (i.e., the pull-back) of the metric g11 onto Q.
Let us now use the local frames and notation as in Appendix A. Writing ξ, η ∈

T |q(T
∗M ⊗ TM̂), q = (x, x̂;A), as

ξ =
∑

i

(
ξiXi|x + ξ̂iX̂i|x̂

)
+
∑

i,j

ξν
i
jθ

j |x ⊗ X̂i|x̂,

η =
∑

i

(
ηiXi|x + ηξiX̂i|x̂

)
+
∑

i,j

ην
i
jθ

j |x ⊗ X̂i|x̂,
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one gets

pr2(ξ) = ξ − LNS

∑

i

(
ξiXi|x + ξ̂iX̂i|x̂

)∣∣
q

=
∑

i,j

(
ξν

i
j −

∑

k,m

Γk
m,jA

i
kξ

m + Γ̂i
m,kA

k
j ξ̂

m
)
θi|x ⊗ X̂j|x̂,

the similar formula holding for pr2(η) and hence

g11 =
∑

i,j

ξiηjg(Xi|x, Xj|x) +
∑

i,j

ξ̂iη̂jg(X̂i|x̂, X̂j|x̂)

+
∑

i,j,α,β

(
ξν

i
j −

∑

k,m

Γk
m,jA

i
kξ

m + Γ̂i
m,kA

k
j ξ̂

m
)

·
(
ην

α
β −

∑

k,m

Γk
m,βA

α
k ξ

m + Γ̂α
m,kA

k
β ξ̂

m
)
g∗(θi, θα)ĝ(X̂j , X̂β).

Moreover, with this choice of the Riemannian metric on T ∗M ⊗ TM̂ and Q we
have the following result.

Proposition B.2 Let U, V ∈ C∞(πT ∗M⊗TM̂ , πT ∗M⊗TM̂), X ∈ T |(x0,x̂0)(M×M̂) and
q0 = (x0, x̂0;A0). Then the Sasaki-metric g11 has the following properties:

(i) Letting tr = trT |∗x0M⊗T |x0M denote the trace of linear maps T |x0M → T |x0M and

T the (g, ĝ)-transpose of the linear maps T |x0M → T |x̂0M̂ , one has

g11|q0
(
ν(U(A0))|q0, ν(V (A0))|q0

)
= tr

(
U(A0)

TV (A0)
)

(95)

(ii) Choosing a smooth local πT ∗M⊗TM̂ -section Ã s.t. Ã|(x0,x̂0) = A0 and ∇Y Ã = 0

for all Y ∈ T |(x0,x̂0)(M × M̂),

LNS(X)|q0
(
g11
(
ν(U(·)), ν(V (·))

))
(96)

=g11(ν(∇XU(Ã))|q0, ν(V (A0))|q0) + g11(ν(U(A0))|q0, ν(∇XV (Ã))|q0).

The same result holds if we throughout replace T ∗M ⊗ TM̂ by Q and g11 by gQ with
the exception that U, V ∈ C∞(πQ, πT ∗M⊗TM̂) s.t. U(A), V (A) ∈ Aso(T |xM) for all
(x, x̂;A) ∈ Q.

Proof. Let (Xi), (X̂i) be smooth g,ĝ-orthonormal frames of vector fields M , M̂
defined on the neighborhoods U , Û of x0, x̂0. Denote by (θi), (θ̂i) the corresponding
dual frames. Then there are unique functions aij, b

i
j ∈ C∞(π−1

T ∗M⊗TM̂
(U × Û)) s.t.

U(A) =
∑

i,j

aij(x, x̂;A)θ
j|x ⊗ X̂i|x̂, V (A) =

∑

i,j

bij(x, x̂;A)θ
j |x ⊗ X̂i|x̂,
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and thus (below we will denote aij(x0, x̂0;A0), b
i
j(x0, x̂0;A0) simply by aij , b

i
j)

g11|q0
(
ν(U(A0))|q0, ν(V (A0))|q0

)

=((g∗ ⊗ ĝ) ◦ τ)
( ∑

i,j,k,l

aijb
k
l (θ

j |x0 ⊗ X̂i|x̂0)⊗ (θl|x0 ⊗ X̂k|x̂0)
)

=
∑

i,j,k,l

aijb
k
l g

∗(θj |x0 ⊗ θl|x0)⊗ ĝ(X̂j|x̂0 ⊗ X̂k|x̂0) =
∑

i,j,k,l

aijb
k
l δ

jlδjk

=
∑

i,j

aijb
i
j =

∑

i

ĝ(U(A0)Xi, V (A0)Xi) = tr(U(A0)
TV (A0)).

This proves (i).
Next, by the definition of LNS and the choice of Ã, we have

LNS(X)|q0
(
g11
(
ν(U(·)), ν(V (·))

))
= Xg11

(
ν(U(Ã))|Ã, ν(V (Ã)|Ã)

)

=X
(∑

i,j

aij(Ã)b
i
j(Ã)

)
=

∑

i,j

X(aij(Ã))b
i
j(q0) +

∑

i,j

aij(q0)X(bij(Ã)).

Assuming for simplicity that (Xi), (X̂i) were chosen so that ∇YXi = 0, ∇̂Ŷ X̂i = 0

for all i and Y ∈ T |x0M , Ŷ ∈ T |x̂0M̂ (and hence ∇Y θ
i = 0 for all i and Y ∈ T |x0M),

we get

∇X(U(Ã)) = LNS(X)|q0(a
i
j)θ

j|x0 ⊗ X̂i|x̂0 , ∇X(V (Ã)) = LNS(X)|q0(b
i
j)θ

j|x0 ⊗ X̂i|x̂0.

This shows that

∑

i,j

LNS(X)|q0(a
i
j)b

i
j(q0) +

∑

i,j

aij(q0)LNS(X)|q0(b
i
j)

=tr
(
(∇X(U(Ã)))

TV (A0)
)
+ tr

(
U(A0)

T (∇X(V (Ã))
)

=g11(ν(∇XU(Ã))|q0, ν(V (A0))|q0) + g11(ν(U(A0))|q0, ν(∇XV (Ã))|q0).

Proposition B.3 The maps πT ∗(M)⊗T (M̂ ) and πQ are surjective Riemannian submer-

sions onto M × M̂ . Hence the restrictions of the Levi-Civita connection ∇g11 and the
Riemannian curvature Rg11 on the DNS-horizontal fields are respectively given by

∇
g11
LNS(X)

LNS(Y )|q = LNS(∇XY )|q +
1

2
ν(AR(X, Y )− R̂(X̂, Ŷ )A)|q,

and

g11
(
Rg11(LNS(X),LNS(Y ))LNS(X),LNS(Y )

)

=g(R(X, Y )X, Y ) +
3

4

∥∥∥ν(AR(X, Y )− R̂(X̂, Ŷ )A)|q

∥∥∥
g11

,

with q = (x, x̂;A) ∈ T ∗M ⊗ TM̂ , X = (X, X̂) where X ∈ VF(M), X̂ ∈ VF(M̂) and
similarly for Y . The same formulas hold if one replaces g11 with gQ.
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Proof. The first statement is obvious by construction. For the statement about the
connection, we use Koszul’s formula (cf. [15]), to notice that

∇
g11
LNS(X)

LNS(Y ) = LNS(∇XY ) +
1

2
[LNS(X),LNS(Y )]

v,

where for Z ∈ T (T ∗M ⊗ TM̂) we denote Z = Zh + Zv with Zh ∈ DNS and Zv ∈
V (πT ∗M⊗TM̂). The fact about the Riemannian curvature is deduced similarly (see
[15]).

Theorem B.4 Suppose t 7→ q(t) = (x(t), x̂(t);A(t)) is a smooth curve on T ∗(M)⊗
T (M̂) that is DNS-horizontal i.e., q̇(t) ∈ DNS for all t. Then the following are equivalent:

(i) t 7→ q(t) = (x(t), x̂(t);A(t)) is a geodesic of (T ∗(M)⊗ T (M̂), g11)

(ii) t 7→ x(t) and t 7→ x̂(t) are geodesics of (M, g) and (M̂, ĝ) respectively.

Moreover, in this case t 7→ A(t) is given by parallel transport as follows:

A(t) = P t
0(x̂) ◦ A(0) ◦ P

0
t (x) = P t

0(x, x̂)A(0). (97)

The same facts hold if (T ∗M ⊗ TM̂, g11) is replaced by (Q, gQ).

Notice that the claim of the theorem can also be written more compactly as
follows: For any q = (x, x̂;A) ∈ T ∗M ⊗ TM̂ ,

πT ∗M⊗TM̂ ◦ expg11
q ◦LNS|q = exp(x,x̂), (98)

with a similar formula holding when T ∗M ⊗ TM̂ is replaced by Q.

Proof. This follows from the fact that πT ∗M⊗TM̂ (resp. πQ) is a Riemannian sub-
mersion. Nevertheless, for the sake of convenience we outline the easy proof here.

The fact that t 7→ q(t) = (x(t), x̂(t);A(t)) is DNS-horizontal implies that q̇(t) =
LNS(ẋ(t), ˙̂x(t))|q(t) for all t. Thus, by Proposition B.3, we get

∇
g11
q̇(t)q̇ = LNS

(
∇ẋ(t)ẋ, ∇̂ ˙̂x(t)

˙̂x
)∣∣

q(t)
,

since R(ẋ(t), ẋ(t)) = 0, R̂( ˙̂x(t), ˙̂x(t)) = 0. The claim follows from this since LNS(·)|q(t)
is a linear isomorphism for each t. Also, Eq. (97) follows easily from the definition
of DNS and Eq. (15).

Corollary B.5 The DNS-horizontal curve on Q is a geodesic of (Q, gQ) if and only

if it is a geodesic of (T ∗(M)⊗ T (M̂), g11).

Theorem B.6 The Riemannian manifolds (M, g), (M̂, ĝ) are complete Riemannian
manifolds if and only if (T ∗(M)⊗ T (M̂), g11) or (Q, gQ) is complete.

Proof. The completeness of (T ∗(M) ⊗ T (M̂), g11) (resp. (Q, gQ)) implies the com-

pleteness of (M, g), (M̂, ĝ) since πT ∗(M)⊗T (M̂) (resp. πQ) is a Riemannian submersion

onto (M×M̂, g) and pr1, pr2 are Riemannian submersions fromM×M̂ ontoM and
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M̂ , respectively (recall that Riemannian submersions map geodesics to geodesics).
This proves the direction “⇐”.

Thus assume that (M, g), (M̂, ĝ) are complete, which is equivalent to the com-
pleteness of (M × M̂, g). Let (xn, x̂n;An) ∈ T ∗(M)⊗ T (M̂) be a Cauchy-sequence.
Then (xn, x̂n) is a Cauchy sequence in M × M̂ and hence converges to a point
(y, ŷ) ∈ M × M̂ since M × M̂ is a complete (metric) space. Choose a local triv-
ialization τ : π−1

T ∗(M)×T (M̂ )
(U × Û) → (U × Û) × gl(n) of T ∗(M) × T (M̂) induced

by some coordinate charts ((xi), U), ((x̂i), Û) (see Appendix A) of M , M̂ around
y, ŷ respectively. By Proposition II.1.1 in [25], the metric dg11 induced by g11 on

T ∗(M)⊗T (M̂ ), and hence on (U× Û)×gl(n) through τ , gives the original manifold

topology. Choose an open neighbourhood V×V̂ of (y, ŷ) such that V×V̂ is a compact

subset of U × Û . Then (V × V̂ )× gl(n) is a complete space that contains a Cauchy-
sequence ((xn, x̂n), an) = τ(xn, x̂n;An) for n large enough. Hence it converges to

(y, ŷ, a) ∈ (V × V̂ )×gl(n) and thus (xn, x̂n;An) converges to τ
−1(y, ŷ, a) = (y, ŷ;A).

This proves the completeness of T ∗(M) ⊗ T (M). We thus get the completeness of
Q since Q is a closed submanifold of T ∗(M)⊗ T (M).

Remark B.7 More generally, suppose π : E → N is a smooth bundle, (E,G), (N, g)
are Riemannian manifolds, π is a Riemannian submersion and the typical fiber of π is
complete (i.e., all the fibers π−1(x) are complete subsets of E). Then the argument of
the previous proof applies and shows that E is a complete Riemannian manifold if and
only if M is a complete Riemannian manifold.

We record the following result.

Proposition B.8 Let N be an integral manifold of DR and equip it with the Rieman-
nian metric gN := g11|N . Then (N, gN ) is a totally geodesic submanifold of (T ∗(M) ⊗
T (M̂), g11).

The same claim holds if one replaces (T ∗M ⊗TM̂, g11) by (Q, gQ) and assumes that
N ⊂ Q.

Proof. The assumptions immediately imply that the projection

πN := pr1 ◦ πT ∗(M)⊗T (M̂ )|N ,

is a local isometric diffeomorphism from (N, gN) into (M, g) since pr1 ◦ πT ∗(M)⊗T (M̂)

maps DR isometrically onto TM by the definition of g11 and DR.
Now if t 7→ (x(t), x̂(t);A(t)), t ∈]a, b[, is a geodesic of N then (since it is tangent

to DR) we have ˙̂x(t) = A(t)ẋ(t) and t 7→ x(t) = πN (x(t), x̂(t);A(t)), t ∈]a, b[, is a
geodesic of (M, g). We have

∇̂ ˙̂x(t)
˙̂x(t) = ∇̂ ˙̂x(t)(A(·)ẋ) = (∇(ẋ(t), ˙̂x(t))A)ẋ(t) + A(t)∇ẋ(t)ẋ,

and once we use the facts that ∇ẋ(t)ẋ = 0 (since x is a geodesic on M) and

∇(ẋ(t), ˙̂x(t))A = 0 (by the definition of DNS) to conclude that ∇̂ ˙̂x(t)
˙̂x(t) = 0 i.e.,

t 7→ x̂(t), t ∈]a, b[, is a geodesic of M̂ . Thus Theorem B.4 implies that t 7→
(x(t), x̂(t);A(t)) is a (DR-horizontal) geodesic of (T ∗(M)⊗ T (M̂), g11). The proof is
complete.
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C The Rolling Problem Embedded in R
N

In this section, we compare the rolling model defined by the state space Q =
Q(M, M̂), whose dynamics is governed by the conditions (12)-(13) (or, equivalently,
by DR), with the rolling model of two n-dimensional manifolds embedded in R

N as
given in [27] (Appendix B). See also [8], [10].

Let us first fix N ∈ N and introduce some notations. The special Euclidean
group of RN is the set SE(N) := SO(N)×R

N equipped with the group operation ⋆
given by

(p, A) ⋆ (q, B) = (Aq + p, AB), (p, A), (q, B) ∈ SE(N).

We identify SO(N) with the subgroup {0}×SO(N) of SE(N), while RN is identified
with the normal subgroup R

N × {idRN} of SE(N). With these identifications, the
action ⋆ of the subgroup SO(N) on the normal subgroup R

N is given by

(p, A) ⋆ q = Aq + p, (p, A) ∈ SE(N), p ∈ R
N .

Let M and M̂ ⊂ R
N be two (embedded) submanifolds of dimension n. For

every z ∈ M, we identify T |zM with a subspace of RN (the same holding in the
case of M̂) i.e., elements of T |zM are derivatives σ̇(0) of curves σ : I → M with
σ(0) = z (I ∋ 0 a nontrivial real interval).

The rolling of M against M̂ without slipping or twisting in the sense of [27] is
realized by a smooth curves G : I → SE(N); G(t) = (p(t), U(t)) (I a nontrivial real
interval) called the rolling map and σ : I → M called the development curve such
that the following conditions (1)-(3) hold for every t ∈ I:

(1) (a) σ̂(t) := G(t) ⋆ σ(t) ∈ M̂ and
(b) T |σ̂(t)(G(t) ⋆M) = T |σ̂(t)M̂.

(2) No-slip: Ġ(t) ⋆ σ(t) = 0.

(3) No-twist: (a) U̇(t)U(t)−1T |σ̂(t)M̂ ⊂ (T |σ̂(t)M̂)⊥ (tangential no-twist),

(b) U̇(t)U(t)−1(T |σ̂(t)M̂)⊥ ⊂ T |σ̂(t)M̂ (normal no-twist).

The orthogonal complements are taken w.r.t. the Euclidean inner product of RN .
In condition (2) we define the action ’⋆’ of Ġ(t) = (U̇(t), ṗ(t)) on R

N by the same
formula as for the action ’⋆’ of SE(N) on R

N .
The two manifolds M and M̂ are embedded inside R

N by embeddings ι : M →
R

N and ι̂ : M̂ → R
N and their metrics g and ĝ are induced from the Euclidean

metric sN of RN i.e., g = ι∗sN and ĝ = ι̂∗sN . In the above setting, we take now
M = ι(M), M̂ = ι̂(M̂).

For z ∈ M and ẑ ∈ M̂, consider the linear orthogonal projections

P T : T |zR
N → T |zM and P⊥ : T |zR

N → T |zM
⊥,

and
P̂ T : T |ẑR

N → T |ẑM̂ and P̂⊥ : T |ẑR
N → T |ẑM̂

⊥,

respectively.
For X ∈ T |zR

N and Y ∈ Γ(πTRN |M) (here πTRN |M is the pull-back bundle
of TRN over M), we use ∇⊥

XY to denote P⊥(∇sN
X Y ) and one proceeds similarly
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∇̂⊥
X̂
Ŷ = P̂⊥(∇sN

X̂
Ŷ ) for X̂ ∈ T |ẑR

N and Y ∈ Γ(πTRN |M̂). We notice that, for any
z ∈ M, X ∈ T |zM and Y ∈ VF(M), we have

∇sN
X Y = ι∗(∇ι−1

∗ (X)ι
−1
∗ (Y )) +∇⊥

XY,

and similarly on M̂.
Notice that ∇⊥ and ∇̂⊥ determine (by restriction) connections of vector bundles

πTM⊥ : TM⊥ → M and πTM̂⊥ : TM̂⊥ → M̂. These connections can then be used

in an obvious way to determine a connection ∇
⊥
on the vector bundle

π(TM⊥)∗⊗TM⊥ : (TM⊥)∗ ⊗ TM⊥ → M×M̂.

Let us take any rolling map G : I → SE(N), G(t) = (p(t), U(t)) and development
curve σ : I → M and define x = ι−1 ◦ σ. We will go throught the meaning of each
of the above conditions (1)-(3).

(1) (a) Since σ̂(t) ∈ M̂, we may define a smooth curve x̂ := ι̂−1 ◦ σ̂.
(b) One easily sees that

U(t)T |σ̂(t)M = T |σ̂(t)(G(t) ⋆M) = T |σ̂(t)M̂.

Thus A(t) := ι̂−1
∗ ◦ U(t) ◦ ι∗|T |x(t)M defines a map T |x(t)M → T |x̂(t)M̂ , which

is also orthogonal i.e., A(t) ∈ Q|(x(t),x̂(t)) for all t. Moreover, if B(t) :=

U(t)|T |σ(t)M⊥, then B(t) is a map T |σ(t)M
⊥ → T |σ̂(t)M̂

⊥ and, by a slight

abuse of notation, we can write U(t) = A(t)⊕B(t).

Thus Condition (1) just determines a smooth curve t 7→ (x(t), x̂(t);A(t)) inside
the state space Q = Q(M, M̂).

(2) We compute

0 =Ġ(t) ⋆ σ(t) = U̇(t)σ(t) + ṗ(t)

=
d

dt
(G(t) ⋆ σ(t))− U(t)σ̇(t) = ˙̂σ(t)− U(t) ◦ ι∗ ◦ ι

−1
∗ ◦ σ̇(t),

which, once composed with ι̂−1
∗ from the left, gives 0 = ˙̂x(t) − A(t)ẋ(t). This

is exactly the no-slip condition, Eq. (13).

(3) Notice that, on R
N×R

N = R
2N , the sum metric sN⊕sN is just s2N . Moreover,

if γ : I → R
N is a smooth curve, then smooth vector fields X : I → T (RN)

along γ can be identified with smooth maps X : I → R
N and with this

observation one has: Ẋ(t) = ∇sN
γ̇(t)X .

(a) Since U(t) = A(t)⊕B(t), we get, for t 7→ X̂(t) ∈ T |σ̂(t)M̂, that

U̇(t)U(t)−1X̂(t) = ∇s2N
(σ̇, ˙̂σ)(t)

X̂(·)− U(t)∇s2N
(σ̇, ˙̂σ)(t)

(U(·)−1X̂(·))

=P T
(
∇̂sN

˙̂σ(t)
X̂(·)

)
+ ∇̂⊥

˙̂σ(t)
X̂(·)

− U(t)
(
P T

(
∇sN

σ̇(t)(A(·)
−1X̂(·))

)
+∇⊥

σ̇(t)(A(·)
−1X̂(·))

)

=
(
∇(ẋ, ˙̂x)(t)A(·)

)
A(t)−1(ι̂−1

∗ X̂(t)) +
(
∇̂⊥

˙̂σ(t)
X̂(·)−B(t)∇⊥

σ̇(t)(A(·)
−1X̂(·))

)
,
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from which it is clear that the tangential no-twist condition corresponds to the
condition that∇(ẋ(t), ˙̂x(t))A(·) = 0. This means exactly that t 7→ (x(t), x̂(t);A(t))
is tangent to DNS for all t ∈ I. Thus, the tangential no-twist condition (3)-(a)
is equivalent to the no-spinning condition, Eq. (11).

(b) Choose t 7→ X̂⊥(t) ∈ T |σ̂(t)M̂
⊥ and calculate as above

U̇(t)U(t)−1X̂⊥(t) = P T (∇sN
˙̂σ(t)
X̂⊥(·)) + ∇̂⊥ ˙̂σ(t)

− U(t)
(
P T

(
∇sN

σ̇(t)(B(·)−1X̂(·))
)
+∇⊥

σ̇(t)(B(·)−1X̂(·))
)

=
(
P T (∇sN

˙̂σ(t)
X̂⊥(·)− A(t)P T

(
∇sN

σ̇(t)(B(·)−1X̂(·))
))

+
(
∇

⊥
(σ̇(t), ˙̂σ(t))B(·)

)
B(t)−1X̂(t),

and hence we see that the normal no-twist condition (3)-(b) corresponds to
the condition that

∇
⊥
(σ(t),σ̂(t))B(·) = 0, ∀t.

In a similar spirit to how Definition 3.13 was given, one easily sees that this
condition just amounts to say that B maps parallel translated normal vectors
to M to parallel translated normal vectors to M̂. More precisely, if X0 ∈
TM⊥ and X(t) = (P∇⊥

)t0(σ)X0 is a parallel translate of X0 along σ w.r.t. to
the connection ∇⊥ (notice that X(t) ∈ T |σ(t)M

⊥ for all t), then the normal
no-twist condition (3)-(b) requires that t 7→ B(t)X(t) (which is the same as
U(t)X(t)) is parallel to t 7→ σ̂(t) w.r.t the connection ∇̂⊥ i.e., for all t,

B(t)((P∇⊥

)t0(σ)X0) = (P ∇̂⊥

)t0(σ̂)(B(0)X0).

We formulate the preceding remarks to a proposition.

Proposition C.1 Let ι : M → R
N and ι̂ : M̂ → R

N be smooth embeddings
and let g = ι∗(sN) and ĝ = ι̂∗(sN). Fix points x0 ∈ M , x̂0 ∈ M̂ and an element
B0 ∈ SO(T |ι(x0)M

⊥, T |ι̂(x̂0)M̂
⊥). Then, there is a bijective correspondence between

the smooth curves t 7→ (x(t), x̂(t);A(t)) of Q tangent to DNS (resp. DR), satisfying
(x(0), x̂(0)) = (x0, x̂0) and the pairs of smooth curves t 7→ G(t) = (p(t), U(t)) of
SE(N) and t 7→ σ(t) of M which satisfy the conditions (1), (3) (resp. (1),(2),(3) i.e.,
rolling maps) and U(0)|T |σ(0)M⊥ = B0.

Proof. Let t 7→ q(t) = (x(t), x̂(t);A(t)) to be a smooth curve in Q such that

(x(0), x̂(0)) = (x0, x̂0). Denote σ = ι ◦ x, σ̂ = ι̂ ◦ x̂ and let B(t) = (P∇⊥

)t0((σ, σ̂))B0

be the parallel translate of B0 along t 7→ (σ(t), σ̂(t)) w.r.t the connection ∇
⊥
. We

define
U(t) := (ι̂∗ ◦ A(t) ◦ ι

−1
∗ )⊕ B(t) : T |σ(t)M → T |σ̂(t)M̂,

and p(t) = σ̂(t) − U(t)σ(t). Then, by the above remarks, the smooth curve t 7→
G(t) = (p(t), U(t)) satisfies Conditions (1),(3) (resp. (1),(2),(3)) if t 7→ q(t) is
tangent to DNS (resp. DR). This clearly gives the claimed bijective correspondence.
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