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THE NONLINEAR HODGE-NAVIER-STOKES EQUATIONS

IN LIPSCHITZ DOMAINS

MARIUS MITREA AND SYLVIE MONNIAUX

Abstract. We investigate the Navier-Stokes equations in a suitable functional
setting, in a three-dimensional bounded Lipschitz domain Ω, equipped with “free
boundary” conditions. In this context, we employ the Fujita-Kato method and
prove the existence of a local mild solution. Our approach makes essential use of
the properties of the Hodge-Laplacian in Lipschitz domains.

1. Introduction

Let Ω ⊂ R
3 be a bounded Lipschitz domain. That is, ∂Ω can be locally described

by means of graphs of real-valued Lipschitz functions in R
2, suitably rotated and

translated. The Navier-Stokes system with Dirichlet boundary conditions for an in-
compressible fluid occupying the domain Ω reads (in the absence of body forces) as
follows

(1.1)

∂u
∂t −∆u+∇p+ (u · ∇)u = 0 in ]0, T [×Ω

div u = 0 in ]0, T [×Ω

u = 0 on ]0, T [×∂Ω

u(0, ·) = u0 in Ω,

where u denotes the velocity of the fluid, p stands for its pressure, and u0 is the
initial velocity (assumed to be divergence-free and with vanishing normal component
on ∂Ω). We denote by A the Stokes operator (see Definition 2.4 in [23]).

The space D(A
1
4 ) is critical for the problem (1.1) in the Hilbert space setting. For

the initial value u0 ∈ D(A
1
4 ), it has been shown in [23] (see also [22]) that (1.1)

admits a solution u ∈ C (0, T ;D(A
1
4 )) (T depending on the size of u0) in the case

where Ω ⊂ R
3 is any domain bounded or unbounded, smooth or non smooth. In

the Lp−space setting, the critical space D(A
1
4 ) corresponds to L3(Ω;R3) by Sobolev

embeddings. This case is more subtle since nothing is known about the behavior of
the Stokes operator in Lp−spaces if the domain Ω is not smooth enough. Taylor
conjectured in [28] that the Stokes operator generates an analytic semi-group in Lp

for certain values of p, which is a key tool to prove existence of mild solutions, but
this remains unproved.

Besides Dirichlet, another natural set of boundary conditions which have received a
substantial amount of attention in the literature (cf. [1], [2], [3], [4], [5], [6], [11], [12],
[16], [17], [25], [27], [30], [31], and the references therein) is provided by the following
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“free boundary” conditions (in the terminology employed on p. 503 of [30]):

(1.2)

{

ν · u = 0 on ]0, T [×∂Ω

ν × curlu = 0 on ]0, T [×∂Ω,

where ν denotes the outward unit normal to Ω. The first equation above is a “no-
penetration” condition, whereas the second one indicates that the vorticity is normal
to the boundary. It is of interest to compare (1.2) with the more traditionally used
Navier’s slip boundary conditions to the effect that

(1.3)

{

ν · u = 0 on ]0, T [×∂Ω

[(∇u +∇u⊤)ν]tan = 0 on ]0, T [×∂Ω.

We do so in Section 2 where we show that, if ∂Ω ∈ C2, then (1.2) differ from (1.3) only
by a zero-order term (which actually vanishes on the flat portions of ∂Ω). Incidentally,
this clarifies a somewhat obscure point in the literature (cf. p. 341 in [29] where
apparently the incorrect claim is made that (1.2) and (1.3) are identical).
Granted that u is a sufficiently smooth vector field, we may write

(u · ∇)u = 1
2∇ |u|2 + u× curlu.

Therefore, substituting p in (1.1) by the so-called dynamical pressure (cf., e.g., [16])

π := 1
2 |u|

2 + p

and adopting (1.2) as boundary conditions, we arrive at the following initial boundary-
value problem

(1.4)

∂u
∂t −∆u+∇π + u× curlu = 0 in ]0, T [×Ω

div u = 0 in ]0, T [×Ω

ν · u = 0 on ]0, T [×∂Ω

ν × curlu = 0 on ]0, T [×∂Ω

u(0, ·) = u0 in Ω.

The boundary conditions (1.2) are natural for the Hodge-Laplacian (i.e., the Laplacian
acting on vector fields), in which context are known as relative boundary conditions
(cf. [27]). For this reason, we shall refer to (1.4) as the Hodge-Navier-Stokes system.

The existence of mild solutions for (1.1) with initial data u0 ∈ L3(Ω;R3) has been
studied in [14] in the case where Ω = R

3, and in [15] in the case when Ω is a bounded
domain with a (C∞) smooth boundary. In both instances, the major tool in the proof
of the existence of a mild solution was the fact that

the Stokes semi-group is analytic in Lp(1.5)

for every 1 < p < ∞. Of course, for arbitrary bounded Lipschitz domains, simple
functional analysis gives that (1.5) is always valid when p = 2. On the other hand,
Deuring has proved in [8] that there exist three-dimensional, bounded, cone-like do-
mains (hence, in particular, Lipschitz) such that (1.5) fails for certain values of p. This
spectrum of results raises the issue of determining the optimal range of p’s for which
(1.5) holds. In [28], Taylor has conjectured that, for bounded Lipschitz domains in
R

3, (1.5) holds for all p’s in an open interval containing [ 32 , 3].

While in its original formulation, this question remains open at the present time,
progress in a related direction has recently been registered in [21], where the authors
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have proved that the Hodge-Stokes operator (more on this below) generates an ana-
lyticity semi-group in Lp for all p’s in a certain open interval containing [ 32 , 3]. This is
the natural analogue of Taylor’s conjecture for the system (1.1). In turn, this result
suggests the consideration of the nonlinear problem (1.4), a close relative of (1.1),
from the perspective of the classical Fujita-Kato approach.

Concerning the linear part of (1.4), we summarize the results of [21] in Theorem 1.1
below. Let A be the operator associated with the linear part of (1.4), which we shall
refer to as the Hodge-Stokes operator. In the context of Lp−spaces (1 < p < ∞),
A = Ap is defined as follows

(1.6)

D(Ap) := {u ∈ Lp(Ω;R3) : div u = 0 in Ω, curlu ∈ Lp(Ω;R3)

∆u ∈ Lp(Ω;R3) and ν · u = 0, ν × curlu = 0 on ∂Ω}
Apu := −∆u = curl curlu, ∀u ∈ D(Ap).

The operator Ap acts as an unbounded operator in

Xp := {u ∈ Lp(Ω;R3) : div u = 0 in Ω and ν · u = 0 on ∂Ω}.
The orthogonal projection P : L2(Ω;R3) → X2, known as the Helmholtz projection
extends to a bounded operator Pp : Lp(Ω;R3) → Xp whenever p belongs to an interval
]pΩ, qΩ[ whose endpoints satisfy 1 ≤ pΩ < 3

2 < 3 < qΩ ≤ ∞ and 1/pΩ + 1/qΩ = 1;

in particular, ]pΩ, qΩ[ contains [ 32 , 3]. See Theorem 11.1 of [13] where it has also

been pointed out that if Ω is of class C
1 then one can take pΩ = 1 and qΩ = ∞.

This implies, in particular, that Xp is a closed subspace of Lp(Ω;R3) for p ∈]pΩ, qΩ[
and, when equipped with the Lp norm, a Banach space. The following result is a
combination of Lemma 3.9, Theorem 6.1 and Theorem 7.3 of [21].

Theorem 1.1. For each p ∈]pΩ, qΩ[, the operator −Ap generates an analytic semi-
group (e−tAp)t≥0 in Xp, referred to in the sequel as the Hodge-Stokes semi-group,
satisfying

sup
t≥0

(

‖e−tAp‖Xp→Xp
+ ‖

√
t curl e−tAp‖Xp→Lp + ‖t curl curl e−tAp‖Xp→Lp

)

< ∞.

The nonlinear problem (1.4) can be now rewritten in the following form

(1.7)

u(t) ∈ D(Ap), t ∈]0, T ]

u′(t) +Apu(t) + Pp

(

u(t)× curlu(t)
)

= 0, t ∈]0, T ]
u(0) = u0 ∈ Xp,

by formally applying the projection Pp to the first equation listed in (1.4). Our goal
is to show the existence of a solution for the problem (1.7) with small initial data
u0 ∈ X3, when Ω is a bounded Lipschitz domain. See Theorem 5.4 for a precise
formulation.

2. The relationship between free-surface and slip boundary conditions

In the three-dimensional context, one has the readily verified identity

(

ν × curlu
)

j
= ν · ∂ju− ∂νuj , 1 ≤ j ≤ 3.(2.1)

Consider now the case when Ω is a domain in R
n (where n ≥ 2) and u = (u1, ..., un)

is a vector field (as before, playing the role of the velocity field of a fluid). In this
context, the analogue of our boundary conditions (1.2) is
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(2.2) ν · u = 0 and ν · ∂ju− ∂νuj = 0 on ]0, T [×∂Ω, for every j ∈ {1, .., n}.
We wish to contrast these so-called free-boundary conditions with Navier’s slip bound-
ary conditions, which we now proceed to recall. To get started, introduce the defor-
mation tensor of u as

Def (u) := 1
2

(

∂juk + ∂kuj

)

1≤j,k≤n
= 1

2 (∇u +∇u⊤),(2.3)

and, with In×n denoting the n× n identity matrix, recall Cauchy’s stress tensor

T (u, π) := 2Def (u)− πIn×n.(2.4)

Also, set

B(u) := [T (u, π)ν]tan = T (u, π)ν −
〈

T (u, π)ν, ν
〉

ν

= (∇u +∇u⊤)ν − 2
〈

(∇u)ν, ν
〉

ν.(2.5)

Then Navier’s slip boundary conditions read

(2.6) ν · u = 0 and B(u) = 0 on ]0, T [×∂Ω.

To compare the two sets of boundary conditions (2.2) and (2.6), we wish to compare
B(u) with the vector

(

ν ·∂ju−∂νuj

)

1≤j≤n
. We shall do so under the assumption that

the boundary the underlying domain Ω ⊂ R
n is of class C 2. The reader is referred to

the Appendix (Section 6) of this paper for definitions and properties of a number of
geometrical entities associated with the C2 surface S := ∂Ω. Then, if U , ν are as in
Proposition 6.1, for a reasonably well-behaved vector field u in U we may write

B(u)
(1)
= (∇u+∇u⊤)ν − 2

〈

(∇u)ν, ν
〉

ν

(2)
=

(

ν · ∂ju+ ∂νuj − 2(ν · ∂νu)νj
)

1≤j≤n

(3)
= −

(

ν · ∂ju− ∂νuj

)

1≤j≤n
+ 2
(

ν · ∂ju− (ν · ∂νu)νj
)

1≤j≤n
.

Above, the first equality is just the definition of B(u), the second is equality obtained
by expanding (∇u+∇u⊤)ν, while the third equality one is a matter of trivial algebra.
Let now j ∈ {1, ..., n} be fixed. By decomposing the vector ej into its tangential part
(ej)tan and its normal part (ej · ν)ν = νjν, the quantity ν · ∂ju becomes

ν · ∂ju
(1)
= ν ·

(

(ej · ∇)u
)

(2)
= ν ·

(

([(ej)tan + νjν] · ∇)u
)

(3)
= ν ·

(

∇(ej)tan
u+ νj∂νu

)

(4)
= ∇(ej)tan

(ν · u)− [∇(ej)tan
ν] · u+ (ν · ∂νu)νj .

The first equality is a consequence of ∂j = ej · ∇, the second equality is due to
the decomposition of ej into its tangential and its normal parts, while the the third
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equality is based on the fact that ν · ∇ = ∂ν and (ej)tan · ∇ = ∇(ej)tan
. It is relevant

to note that ∇(ej)tan
is a tangential derivation operator along ∂Ω. Pugging this back

into the expression of B(u) we obtain

B(u) = −
(

ν · ∂ju− ∂νuj

)

1≤j≤n
+ 2
(

ν · ∂ju− (ν · ∂νu)νj
)

1≤j≤n

= −
(

ν · ∂ju− ∂νuj

)

1≤j≤n
+ 2
(

∇(ej)tan
(ν · u)− [∇(ej)tan

ν] · u
)

1≤j≤n
.

The last step is now to identify the quantity ∇(ej)tan
ν. One has

∇(ej)tan
ν =

(

∇ejνk −∇(νjν)νk

)

1≤k≤n

=
(

∂jνk − νj∂ννk

)

1≤k≤n
,

which shows that, in the neighborhood U of ∂Ω, we have

B(u) = −
(

ν · ∂ju− ∂νuj

)

1≤j≤n
+ 2
(

∇(ej)tan
(ν · u)

)

1≤j≤n
− 2Ru+ 2[(∂νν) · u]ν,

where R is the matrix defined by (6.7). Restricting both sides to ∂Ω yields, thanks
to Proposition 6.1(iii) and (6.8),

(2.7) B(u) = −
(

ν · ∂ju− ∂νuj

)

1≤j≤n
− 2Ru+ 2

(

∇(ej)tan
(ν · u)

)

1≤j≤n
.

Since ∇(ej)tan
is a tangential derivation operator along ∂Ω, the extra assumption that

ν · u = 0 on ∂Ω guarantees both that the last term in (2.7) vanishes, and that u|∂Ω
is a tangential field. Consequently, Ru = −Wu on ∂Ω, where W is the Weingarten
map on ∂Ω (cf. Section 6). In summary, the above shows that an equivalent way of
expressing the boundary conditions (2.6) is

(2.8) ν · u = 0 and −
(

ν · ∂ju− ∂νuj

)

1≤j≤n
+ 2Wu = 0 on ]0, T [×∂Ω.

In particular, if n = 3, then the above Navier’s slip boundary conditions become

(2.9) ν · u = 0 and − ν × curlu+ 2Wu = 0 on ]0, T [×∂Ω.

A few comments are in order here. The quantity Wu appearing in (2.8) and (2.9)
is a zero-order term. It has a clear geometrical significance vis-a-vis to the surface
∂Ω (cf. Section 6 for a discussion) and it depends linearly on the velocity field u.
Furthermore, on the flat portions of ∂Ω we have that W = 0 (since ν is constant)
Hence, there is genuine agreement between the boundary conditions (2.6) and (2.2)
on the flat patches of ∂Ω. Finally, we wish to point out that using the language
of differential forms on R

n (so that d denotes the exterior derivative operator, ∗
stands for the Hodge-star operator, and ∧, ∨ are the exterior and interior product,
respectively) and canonically identifying vector fields with 1-forms, we have

− ν × curlu = ν ∨ du,(2.10)

in the three-dimensional setting. Indeed, for any 1-form u in R
n we have
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ν ∨ du =
n
∑

i=1

νi





n
∑

j,k=1

∂juk[dxi ∨ (dxj ∧ dxk)]





=
∑

1≤j<k≤n

νj(∂juk − ∂kuj)dxk −
∑

1≤j<k≤n

νk(∂juk − ∂kuj)dxj

=

n
∑

j=1

(

n
∑

k=1

νk(∂kuj − ∂juk)

)

dxj

=

n
∑

j=1

(∂νuj − ν · ∂ju)dxj ,

so (2.10) follows from (2.1). Hence, the correct substitute for ν × curlu = 0 in the n
dimensional setting is ν∨du = 0. In particular, when n = 2 this takes the simpler form
du = 0, or ∂2u1−∂1u2 = 0. Indeed, in general we have du = ν∧ (ν∨du)+ν∨ (ν∧du)
and, in the two-dimensional setting, the 3-form ν ∧ du necessarily vanishes.

3. An inverse of the curl, modulo gradient vectors

Let Ω be a bounded Lipschitz domain in R
3. The Bessel potential scale Lp

s(Ω) is then
defined, for s ∈ R and 1 < p < ∞, by

Lp
s(Ω) := {f |Ω : f ∈ (I −∆)−s/2Lp(R3)},(3.1)

equipped with the natural infimum norm, which we shall denote by ‖ · ‖s,p. As is well
known, if k is a nonnegative integer, then

Lp
k(Ω) = {f ∈ Lp(Ω) :

∑

|α|≤k‖∂αf‖Lp(Ω) < ∞},(3.2)

the classical Lp-based Sobolev space of order k in Ω.

Assume next that Ω ⊂ R
3 be a bounded domain, star-shaped with respect to a ball

B ⊂ Ω. In particular, from the lemma on page 20 in [19], it follows that Ω is a
Lipschitz domain. In this setting, we proceed to review an assortment of results from
Section 4 of [20], phrased in the context and terminology of the current paper. To
set the stage, fix a function θ ∈ C ∞

c (B) with the property that
∫

θ = 1. Then there
exist three linear operators K1, K2 and K3 such that

Kℓ :
(

C
∞
c (Ω; Λℓ)

)′

−→
(

C
∞
c (Ω; Λℓ−1)

)′

, 1 ≤ ℓ ≤ 3,

where we have set Λ0 := R, Λ1 := R
3, Λ2 := R

3 and Λ3 := R. The operators Kℓ are
regularizing of order one in the sense that

(3.3) Kℓ : L
p(Ω; Λℓ) −→ Lp

1(Ω; Λ
ℓ−1), p ∈]1,∞[,

and

(3.4) Kℓ : L
p
−1(Ω; Λ

ℓ) −→ Lp(Ω; Λℓ−1), p ∈]1,∞[.

Moreover, for u : Ω → Λℓ sufficiently smooth, the following formulas are valid:
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(3.5)

u = K1(∇u) +
∫

Ω(θu) for ℓ = 0,

u = K2(curlu) +∇(K1u) for ℓ = 1,

u = K3(div u) + curl (K2u) for ℓ = 2,

u = div (K3u) for ℓ = 3.

When acting on a sufficiently smooth function u : Ω → Λℓ, the operators Kℓ take the
following form

(3.6) Kℓu(x) =

∫

B

∫ 1

0

tℓ−1θ(y)(x − y)×ℓ u(tx+ (1− t)y) dtdy, x ∈ Ω, 1 ≤ ℓ ≤ 3,

where ×ℓ denotes, respectively, the scalar product between two vectors if ℓ = 1, the
cross product between two vectors if ℓ = 2, and multiplication of a scalar and a vector
if ℓ = 3. Assume now that p ∈]pΩ, qΩ[. By the second equality in (3.5), for u ∈ Xp

such that curlu ∈ Lp(Ω;R3), we have

(3.7) u = Ppu = Pp(K2 curlu).

At this stage, (3.7) and Theorem 1.1 suggest the following.

Theorem 3.1. Let Ω ⊂ R
3 be a bounded domain which is star-shaped with respect

to a ball, and let p ∈]pΩ, qΩ[. Fix q ∈]p, qΩ[ and assume that α ∈]0, 1[ is such that
1
p − α

3 = 1
q . Then the Hodge-Stokes semi-group (e−tAp)t≥0, considered in Xp, satisfies

the estimate

(3.8) sup
t≥0

‖tα
2 e−tAp‖Xp→Lq + sup

t≥0
‖t 1+α

2 curl e−tAp‖Xp→Lq < ∞.

Proof. For each u ∈ Xp ∩Xq(= Xq), which is a dense subspace of Xp, Theorem 1.1
gives that

(3.9) ‖e−tApu‖p ≤ c ‖u‖p, for t > 0

and

(3.10) ‖
√
t curl e−tApu‖p ≤ c ‖u‖p, for t > 0.

From (3.4) and (3.9) we then obtain

‖K2 curl e
−tApu‖p ≤ c ‖curl e−tApu‖−1,p

≤ c ‖e−tApu‖p ≤ c ‖u‖p, for t > 0.(3.11)

Going further, from (3.10) and (3.3), we also have

‖
√
tK2 curl e

−tApu‖1,p ≤ c ‖
√
t curl e−tApu‖p

≤ c ‖u‖p, for t > 0.(3.12)

If α is as in the statement of the theorem, (3.11), (3.12) plus standard interpolation
and embedding estimates give that
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‖tα
2 K2 curl e

−tApu‖q ≤ c ‖tα
2 K2 curl e

−tApu‖α,p

≤ c ‖K2 curl e
−tApu‖1−α

p ‖
√
tK2 curl e

−tApu‖α1,p
≤ c ‖u‖p, for t > 0.(3.13)

The fact that u ∈ Xq guarantees that e−tAu ∈ Xq. Also,, as already discussed, the
projection Pq is known to be bounded on Lq(Ω;R3). Using (3.7) (with p replaced by
q and u replaced by e−tAu) and (3.13) we may write

‖tα
2 e−tApu‖q = ‖Pq(t

α
2 e−tApu)‖q = ‖Pq(t

α
2 K2 curl e

−tApu)‖q

≤ c ‖tα
2 K2 curl e

−tApu‖q ≤ c ‖u‖p, for t > 0.(3.14)

This accounts for the first part of (3.8). As for the second part of (3.8), we use the
semi-group property, Theorem 1.1 as well as (3.14) in order to write

‖curl e−tApu‖q ≤ ‖curl e− t
2Aq‖Xq→Lq‖e− t

2Apu‖q

≤ c
( t

2

)− 1
2
( t

2

)−α
2 ‖u‖p, for t > 0,(3.15)

This completes the proof of the theorem. �

4. The case of arbitrary Lipschitz domains

Let Ω ⊂ R
3 be an arbitrary bounded Lipschitz domain (not necessarily star-shaped

with respect to a ball, as assumed in most of §2). By Lemmas 1-2 on page 22 and
Lemma on page 25 of [19], there exist a finite, open cover of Ω̄ by domains star-shaped
with respect to a ball and a smooth partition of unity subordinate to this cover. More
specifically, there exist a family of open sets Oj such that

Ω̄ ⊂
N
⋃

j=1

Oj(4.1)

and, for j = 1, ..., N , the domain Ωj := Ω ∩ Oj is star-shaped with respect to a ball
Bj , along with a family of functions φj ∈ C ∞

c (Ωj), 1 ≤ j ≤ N , such that

N
∑

j=1

φ2
j(x) = 1, for all x ∈ Ω̄.(4.2)

For each j = 1, ..., N , select θj ∈ C∞(Ωj) with supp θj ⊂ Bj and
∫

Bj
θj = 1, and then

define Kj
ℓ as in (3.6), relative to the domain Ωj . These operators satisfy properties

similar to (3.5), in each domain Ωj . Finally, for ℓ = 1, 2, 3, we introduce

Kℓ : (C
∞
c (Ω,Λℓ))′ −→ (C∞

c (Ω,Λℓ−1))′

Kℓu :=
∑N

j=1 φjK
j
ℓ (φju),

(4.3)

and note that the mapping properties (3.3)-(3.4) remain valid for Kℓ defined above,
even if the bounded Lipschitz domain Ω is not necessarily star-shaped with respect
to a ball.
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Moreover, by (3.5), for each u ∈ (C∞
c (Ω,R3))′ we may write

∇(K1u)
(1)
=

N
∑

j=1

(∇φj)K
j
1(φju) +

N
∑

j=1

φj∇(Kj
1(φju))

(2)
=

N
∑

j=1

(∇φj)K
j
1(φju) +

N
∑

j=1

φj

(

φju−Kj
2(curl (φju))

)

(3)
=

N
∑

j=1

(∇φj)K
j
1(φju) + u−K2 curlu−

N
∑

j=1

φjK
j
2(∇φj × u).

Equality (1) is routine algebra. Equality (2) is a consequence of (3.5) applied to Kj
ℓ .

Finally, equality (3) follows from (4.1) and the identity curl (φju) = φjcurlu+∇φj×u.
Introducing

R : (C ∞
c (Ω,R3))′ −→ (C ∞

c (Ω,R3))′

Ru :=
∑N

j=1

(

φjK
j
2(∇φj × u)− (∇φj)K

j
1(φju)

)

,
(4.4)

allows us to rephrase the identity just derived in the form

u = ∇(K1u) +K2 curlu+Ru, ∀u ∈
(

C
∞
c (Ω,R3)

)′

.(4.5)

The following is an extension of Theorem 3.1 to arbitrary Lipschitz domains.

Theorem 4.1. Assume that Ω ⊂ R
3 is an arbitrary bounded Lipschitz domain. Fix

p ∈]pΩ, qΩ[ and q ∈]p, qΩ[ such that 1
p − α

3 = 1
q for some α ∈]0, 1[. Then the Hodge-

Stokes semi-group (e−tAp)t≥0, considered in Xp, satisfies the estimate

(4.6) sup
t≥0

‖tα
2 e−tAp‖Xp→Lq + sup

t≥0
‖t 1+α

2 curl e−tAp‖Xp→Lq < ∞.

Proof. Up to (and including) (3.13), we follow the same arguments as in the proof
of Theorem 3.1, with K2 defined as in (4.3). It is in (3.14) that the operator R
intervenes for the first time, when (4.5) is employed in place of (3.7). To estimate its
contribution, we first note that, from (4.4) and the discussion in the first part of §2,
we have

R : Lp(Ω,R3) −→ Lp
1(Ω,R

3) boundedly, whenever 1 < p < ∞.(4.7)

Thus, based on (4.7) and well-known properties of analytic semi-groups (cf., e.g.,
Theorem 6.13 on p. 74 in [24]), we may estimate

‖tα
2 R(e−tApu)‖q ≤ c ‖tα

2 R(e−tApu)‖α,p

≤ c ‖R(e−tApu)‖1−α
p ‖

√
t R(e−tApu)‖α1,p

≤ c ‖tα
2 e−tApu‖p = c ‖A−α

2 (t
α
2 A

α
2 e−tApu)‖p

≤ c ‖A−α
2 ‖Xp→Xp

‖tα
2 A

α
2 e−tAp‖Xp→Xp

‖u‖p
= c ‖u‖p, for t > 0,(4.8)

which is of the right order. With this in hand, we may then conclude much as in the
endgame of the proof of Theorem 3.1. �
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5. Mild solution to the Hodge-Navier-Stokes system

Throughout this section, Ω denotes a bounded Lipschitz domain in R
3. Let T > 0

be fixed and assume that ε > 0 is such that 3(1 + ε) < qΩ, where qΩ was defined in
Theorem 1.1. Introduce the following Banach space

ET :=
{

u ∈ C ([0, T ];X3) ∩ C (]0, T ];L3(1+ε)(Ω;R3) : curlu ∈ C (]0, T ];L3(Ω;R3)

with sup
0<s<T

(

‖u(s)‖3 + ‖s ε
2(1+ε) u(s)‖3(1+ε) + ‖

√
s curlu(s)‖3

)

< ∞
}

endowed with the norm

‖u‖ET
:= sup

0<s<T
‖u(s)‖3 + sup

0<s<T
‖s ε

2(1+ε) u(s)‖3(1+ε) + sup
0<s<T

‖
√
s curlu(s)‖3.

Proposition 5.1. Let u0 ∈ X3 be arbitrary and set a(t) := e−tAu0, for all t ≥ 0.
Then a ∈ ET and ‖a‖ET

≤ c ‖u‖X3 .

Proof. That a ∈ C ([0, T ];X3) is a consequence of the fact that (e−tA)t≥0 is a C0

semi-group in X3. Thanks to Theorem 1.1, we have curla ∈ C (]0, T ];L3(Ω;R3)) with
sup

0<s<T
‖
√
s curla(s)‖3 ≤ ‖u0‖3. By (3.8) with p = 3, we also get that a ∈ Lq(Ω;R3)

for all q ∈]3, qΩ[ and
sup

0<s<T
‖sα

2 a(s)‖q ≤ ‖u0‖3

provided 1
q = 1

3− α
3 . In particular, the choice q = 3(1+ε) entails α = ε

1+ε ∈ (0, 1). �

Lemma 5.2. Let u, v ∈ ET be arbitrary. Then u × curl v ∈ C (]0, T ];L
3(1+ε)
2+ε (Ω;R3))

and

(5.1) sup
0<s<T

‖s
1+2ε

2(1+ε) u(s)× curl v(s)‖ 3(1+ε)
2+ε

≤ ‖u‖ET
‖v‖ET

.

Proof. For u, v ∈ ET , it is clear that u× curl v ∈ C (]0, T ];Lq(Ω,R3)) provided

1

q
=

1

3
+

1

3(1 + ε)
=

2 + ε

3(1 + ε)
.

For later use, let us point out here that

(5.2) q :=
3(1 + ε)

2 + ε
∈]pΩ, qΩ[,

since pΩ < (3(1 + ε))′ = 3(1+ε)
2+3ε < q < 3. Moreover, since ‖s ε

1+ε u(s)‖3(1+ε) ≤ ‖u‖ET

for all s ∈]0, T [ and ‖√s curlu(s)‖3 ≤ ‖v‖ET
for all s ∈]0, T [, we get

‖sβ u(s)× curl v(s)‖ 3(1+ε)
2+ε

≤ ‖u‖ET
‖v‖ET

for all s ∈]0, T [,

where β := 1
2 + ε

2(1+ε) =
1+2ε
2(1+ε) . This proves (5.1). �

Consider next the mapping Φ defined on ET × ET by

[0, T ] ∋ t 7→ Φ(u, v)(t) =

∫ t

0

e−(t−s)A(− 1
2P 3(1+ε)

2+ε

)
(

u(s)×curl v(s)+v(s)×curlu(s)
)

ds.

Proposition 5.3. The application Φ is bilinear, symmetric, and continuous from
ET × ET into ET .
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Proof. The fact that Φ is linear and symmetric is clear from its definition. We shall
focus on proving that Φ(u, v) belongs to ET whenever u, v ∈ ET . The continuity of Φ
follows a posteriori from the estimates implicit in the justification of this membership.
To get started, we note that from (5.1)-(5.2) we have
∥

∥

∥(− 1
2P 3(1+ε)

2+ε

)
(

u(s)× curl v(s) + v(s)× curlu(s)
)∥

∥

∥

3(1+ε)
2+ε

≤ s−
1+2ε

2(1+ε) ‖u‖ET
‖v‖ET

,

for all s ∈]0, T ]. Specializing (3.8) to the case when p = 3(1+ε)
2+ε , q = 3 and α = 1

1+ε ,
yields

∥

∥

∥e−(t−s)A(− 1
2P 3(1+ε)

2+ε

)
(

u(s)× curl v(s) + v(s)× curlu(s)
)∥

∥

∥

3

≤ c s−
1+2ε

2(1+ε) (t− s)−
1

2(1+ε) ‖u‖ET
‖v‖ET

,(5.3)

and

∥

∥

∥curl e−(t−s)A(− 1
2P 3(1+ε)

2+ε

)
(

u(s)× curl v(s) + v(s)× curlu(s)
)∥

∥

∥

3

≤ c s−
1+2ε

2(1+ε) (t− s)−
2+ε

2(1+ε) ‖u‖ET
‖v‖ET

,(5.4)

for all 0 < s ≤ t ≤ T . Applying now (3.8) with p = 3(1+ε)
2+ε , q = 3(1 + ε) and α = 1,

we obtain

∥

∥

∥e−(t−s)A(− 1
2P 3(1+ε)

2+ε

)
(

u(s)× curl v(s) + v(s)× curlu(s)
)∥

∥

∥

3(1+ε)

≤ c s−
1+2ε

2(1+ε) (t− s)−
1
2 ‖u‖ET

‖v‖ET
.(5.5)

From the estimate (5.3) it follows that, for each t ∈]0, T ],

(5.6)

‖Φ(u, v)(t)‖3
(1)

≤ c

(∫ t

0

s−
1+2ε

2(1+ε) (t− s)−
1

2(1+ε) ds

)

‖u‖ET
‖v‖ET

(2)

≤ c

(∫ 1

0

σ− 1+2ε
2(1+ε) (1 − σ)−

1
2(1+ε) dσ

)

‖u‖ET
‖v‖ET

.

The inequality (1) above is obtained by integrating (5.3) between 0 and t. Passing
from (1) to (2) is done by making the change of variables s = tσ in the integral just
alluded to.

By the same method, and relying on the estimate (5.4), we obtain that for each
t ∈]0, T ]

(5.7)

‖curlΦ(u, v)(t)‖3 ≤ c

(∫ t

0

s−
1+2ε

2(1+ε) (t− s)−
2+ε

2(1+ε) ds

)

‖u‖ET
‖v‖ET

≤ c t−
1
2

(∫ 1

0

σ− 1+2ε
2(1+ε) (1− σ)−

2+ε

2(1+ε) dσ

)

‖u‖ET
‖v‖ET

.

Using now the estimate (5.5) and employing the same method, we see that for all
t ∈]0, T ]
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(5.8)

‖Φ(u, v)(t)‖3(1+ε) ≤ c

(∫ t

0

s−
1+2ε

2(1+ε) (t− s)−
1
2 ds

)

‖u‖ET
‖v‖ET

≤ c t−
ε

2(1+ε)

(∫ 1

0

σ− 1+2ε
2(1+ε) (1− σ)−

1
2 dσ

)

‖u‖ET
‖v‖ET

.

In concert, the estimates (5.6), (5.7) and (5.8) then imply that Φ(u, v) ∈ ET . �

We are now ready to prove the existence of solutions for the functional analytic
equation

u = a+Φ(u, u).(5.9)

We shall refer to these as mild solutions of the Hodge-Navier-Stokes system (1.4).

Theorem 5.4. Let Ω ⊂ R
3 be a bounded Lipschitz domain and fix T > 0. Then

there exists δ > 0 with the property that for each u0 ∈ X3 with ‖u0‖3 < δ there exists
a unique mild solution u of the Hodge-Navier-Stokes system (1.4) (i.e., a function
u ∈ ET satisfying (5.9) on [0, T ]).

Proof. Since Φ : ET × ET → ET is bilinear and continuous, the idea is to implement
Picard’s Fixed Point Theorem. As in [14], the sequence (vn)n∈N of functions in ET
defined by v0 := a, as the first term, and then, iteratively,

vn+1 := a+Φ(vn, vn), n ∈ N

converges to the unique solution u ∈ ET of (5.9) provided ‖u0‖X3 is small enough
so that, say, ‖a‖ET

< 1
4‖Φ‖L (ET ×ET ;ET )

. That this can be ensured is guaranteed by

Proposition 5.1. �

6. Appendix

Let M be a C 2 manifold, possibly with boundary, of (real) dimension n. As usual,
by TM and T ∗M we denote, respectively, the tangent and cotangent bundle on M .
We shall also denote by TM global (C1) sections in TM (i.e., TM ≡ C1(M,TM)).
Similarly, we identify T ∗M ≡ C1(M,T ∗M). We shall assume that M is equipped
with a C1 Riemannian metric tensor g =

∑

j,k gjkdxj ⊗ dxk and denote by ∇ the
associated Levi-Civita connection. Among other things, the metric property

(6.1) Z〈X,Y 〉 = ∇Z 〈X,Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉, ∀X,Y, Z ∈ TM,

holds. Consider next S →֒ M , a C 2, orientable sub-manifold of codimension one in
M , and fix some ν ∈ TM such that ν|S becomes the outward unit normal to S. If
∇S is the induced Levi-Civita connection on S (from the metric inherited from M)
it is then well-known that

(6.2) ∇S
XY = π(∇XY ), ∀X,Y ∈ TS,

where π : TM −→ TS is the canonical orthogonal projection onto TS, the tangent
bundle to S. In particular, the second fundamental form of S becomes

(6.3) II(X,Y ) := ∇XY −∇S
XY = π(∇XY ), ∀X,Y ∈ TS.

In this setting, the Weingarten map
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(6.4) W : TS −→ TS,
originally defined uniquely by the requirement that

(6.5) 〈WX,Y 〉 = 〈ν, II(X,Y )〉, ∀X,Y ∈ TS,
reduces to

(6.6) WX = −∇Xν on S, ∀X ∈ TS,
known as Weingarten formula. An excellent reference for the material in this section
is [27]. The following propositions, proved in [10], describes an extension of the unit
normal to a hypersurface enjoying a number of useful properties.

Proposition 6.1. For C 2 surface S ⊆ R
n there exist a neighborhood U of S along

with a vector field ν ∈ C1(U) with the following properties:

(i) ‖ν‖ = 1 in U ;
(ii) ν|S coincides with the unit normal to S;
(iii) ∇νν = 0 on S, i.e., ∂ννj = 0 on S for j = 1, 2, ..., n;
(iv) dν = 0 on S, i.e., ∂kνj − ∂jνk = 0 on S, for k, j = 1, 2, . . . , n;

(v) div
∣

∣

∣

S
= (n− 1)H, where H stands for the mean curvature of S;

Moreover, for the n× n matrix valued function

(6.7) R(x) := ∇ν(x) = (∂kνj(x))j,k, x ∈ U ,
the following are true:

(vi) Rν = 0 in U ;
(vii) Tr (R) = (n− 1)H in U .

In addition, when restricted to the hypersurface S, R has the following additional
properties:

(viii) R depends only on S and not on the choice of the extended unit ν.
(ix) R⊤ = R on S;
(x) (Ru)|S is tangential to S for any vector field u : S → R

n. In fact,

(6.8) R
∣

∣

∣

TS
= −W

the opposite of the Weingarten map of S. In particular, the eigenvalues
{κj}1≤j≤n−1 of −R (at points on S) as an operator on TS are the principal
curvatures of S, and its determinant is Gauss’s total curvature of S.
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