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Maximal regularity for the Lamé system

in certain classes of non-smooth domains

Marius Mitrea∗ and Sylvie Monniaux

November 14, 2010

Abstract

The aim of this article is twofold. On the one hand, we study the
analyticity of the semigroup generated by the Lamé system −µ∆−µ′

∇div
in Lq(Ω), where Ω is an open subset of R

n satisfying mild regularity
assumptions and the Lamé moduli µ, µ′ are such that µ > 0 and µ+µ′ > 0.
On the other hand, we use the aforementioned result to prove a maximal
regularity property for the time-dependent Lamé system equipped with a
homogeneous Dirichlet boundary condition.

1 Introduction

Let Ω ⊂ Rn be a bounded open set and fix µ, µ′ ∈ R. Under mild regularity
conditions on Ω (of geometric measure theoretic type, to be imposed later)
and certain algebraic conditions on the Lame moduli µ, µ′, here we propose to
prove a maximal regularity result for the Lamé system equipped with Dirichlet
boundary conditions

∂tu− µ∆u − µ′∇div u = f, (t, x) ∈ (0,+∞)× Ω,

u(0) = 0, x ∈ Ω,

u(t, x) = 0, (t, x) ∈ [0,+∞)× ∂Ω.

(1.1)

More specifically, the goal is to show that whenever f ∈ Lp(0,∞;Lq(Ω;Rn)),
the solution u of the system (1.1) belongs to W 1,p(0,∞;Lq(Ω;Rn)), for certain
values of q depending of the nature of the domain Ω, and for all p > 1. This
question was suggested by Raphaël Danchin in connection with the study of the
compressible Navier-Stokes system, see [6].
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This work has been carried out at Université Aix-Marseille 3, France, and the first-named

author gratefully acknowledges the hospitality and support offered by this institution.

2000 Mathematics Subject Classification. Primary: 47D06, 35J50; Secondary: 47D03,

35J55, 49Q15
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1.1 The L
2 setup

Explaining the initial setup, which is based on classical variational methods,
requires that we first define an appropriate version of the three-dimensional
curl operator in Rn.

Definition 1.1. Denote by D ′(Ω) the space of distributions in an open set
Ω ⊆ Rn, and let D ′(Ω;Rm) := D ′(Ω) ⊗ Rm stand for the collection of Rm-
valued distributions in Ω. For a distribution u ∈ D ′(Ω;Rn), then define

curlu :=
(

1√
2
(∂ℓuα − ∂αuℓ)

)
1≤ℓ,α≤n

= 1√
2
(∇u − (∇u)⊤), (1.2)

where ∇u is the Jacobian matrix of first-order partial derivatives (considered
in the sense of distributions) of the components of u, and the superscript ⊤
denotes (here) the transposition of matrices.

In the context of the above definition, it is then straightforward to check that
curl⊤, the formal transpose of the curl operator (1.2), acts on a matrix-valued
distribution w = (wℓ,α)1≤ℓ,α≤n ∈ D ′(Ω;Rn×n) according to

(curl⊤w)1≤ℓ≤n = 1√
2
∂α(wℓα − wαℓ) ∈ D ′(Ω;Rn), (1.3)

where the repeated index summation convention is used (here, it is understood
that the right-hand side is summed over α). For any vector-valued distribution
u ∈ D ′(Ω;Rn) we then have

(
curl⊤(curlu)

)
ℓ

= 1√
2
∂α

(
(curlu)ℓα − (curlu)αℓ

)
=

√
2 ∂α(curlu)ℓα

= ∂ℓ∂αuα − ∂α∂αuℓ = (∇div u−∆u)ℓ, (1.4)

for every ℓ ∈ {1, ..., n}. Therefore, we obtain the higher-dimensional version of
a well-known formula in R3, to the effect that

curl⊤curlu = ∇div u−∆u ∀u ∈ D
′(Ω;Rn). (1.5)

To proceed, consider next the following sesqui-linear form

aD(u, v) := µ

∫

Ω

curlu · curl v dx+ (µ+ µ′)

∫

Ω

div u div v dx, (1.6)

for u, v ∈ H1
0 (Ω;R

n) (defined as the closure of C∞
c (Ω;Rn) in the vector-valued

L2-based Sobolev space of order one H1(Ω;Rn)). This sesqui-linear form is
closed, continuous, as well as coercive if

µ > 0 and µ+ µ′ > 0. (1.7)

Indeed, based on the identity (1.5) and successive integrations by parts one
readily obtains

aD(u, u) ≥ min{µ, µ+ µ′}
∫

Ω

(|curlu|2 + |div u|2) dx

= min{µ, µ+ µ′}
∫

Ω

|∇u|2 dx, (1.8)
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for all u ∈ H1
0 (Ω;R

n). Therefore, if H−1(Ω;Rn) :=
(
H1

0 (Ω;R
n)
)∗
, then the

form aD generates a self-adjoint bounded invertible operator

LD,0 : H1
0 (Ω;R

n) −→ H−1(Ω;Rn) (1.9)

It is not difficult to see that LD,0 is given by

LD,0u = −µ∆u− µ′∇div u, ∀u ∈ H1
0 (Ω;R

n). (1.10)

Indeed, with X∗〈·, ·〉X denoting the duality pairing between functionals in the
dual X∗ (of a Banach space X) and vectors in X , for every u, v ∈ H1

0 (Ω;R
n)

we may compute

H−1 〈LD,0u, v〉H1
0

= aD(u, v)

= L2〈µ∇u,∇v〉L2 + L2〈µ′div u, div v〉L2

= H−1 〈−µ∆u, v〉H1
0
+ H−1〈−µ′∇div u, v〉H1

0

= H−1 〈(−µ∆u− µ′∇div u), v〉H1
0
. (1.11)

We denote by LD the part of LD,0 in L2(Ω;Rn). Concretely, LD is the un-
bounded linear operator on L2(Ω;Rn) defined by

D(LD) := {u ∈ H1
0 (Ω;R

n) : µ∆u+ µ′∇div u ∈ L2(Ω;Rn)}
LDu := −µ∆u− µ′∇div u, ∀u ∈ D(LD).

(1.12)

By standard arguments, −LD generates an analytic semigroup in L2(Ω;Rn).

1.2 Statements of main results

We begin by specifying one of the basic geometric measure theoretic assumptions
on the domain Ω ⊂ Rn.

Definition 1.2. An open set Ω ⊂ Rn is said to satisfy an interior ball condition
(henceforth abbreviated I.B.C.) if there exists a positive constant c such that
for all x ∈ Ω and all 0 < r < 1

2 diamΩ,

|BΩ(x, r)| ≥ crn, where BΩ(x, r) := {y ∈ Ω : |x− y| < r}. (1.13)

The notation |E| for a Lebesgue measurable subset E of Rn stands for the
n-dimensional Lebesgue measure of the set E.

The I.B.C. is closely related to the concept of d-sets with d = n (in the termi-
nology of [11], p. 28). Also, the I.B.C. holds in the class of Lipschitz domains or,
more generally, for domains satisfying an interior corkscrew condition (cf. [9],
Section 3, p. 93). The role of I.B.C. is to ensure that Ω, when equipped with
the n-dimensional Lebesgue measure λn (induced by R

n) and the standard Eu-
clidean distance, becomes a space of homogeneous type (in the sense of [4]).
Indeed, I.B.C. implies that the measure λn is doubling, i.e. there exists a pos-
itive constant c such that λn(BΩ(x, 2r)) ≤ c λn(BΩ(x, r)) whenever x ∈ Ω and
0 < r < 1

2 diamΩ. In particular, the version of the Hardy-Littlewood maximal
operator adapted to Ω, acting on f ∈ L1

loc(Ω) according to

MΩ(f)(x) := sup
0<r<diamΩ

1

|BΩ(x, r)|

∫

BΩ(x,r)

|f(y)| dy, ∀x ∈ Ω, (1.14)
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is bounded in Lp(Ω) for all p ∈ (1,∞) (cf. [4], p. 637).
In preparation for stating the main results of this paper, we review sev-

eral other definitions and notational conventions. First, given p ∈ (1,∞), we let
W 1,p

0 (Ω;Rn) be the closure of C∞
c (Ω;Rn) in W 1,p(Ω;Rn), the vector-valued ver-

sion of the standard Lp-based Sobolev space of order one, and W−1,p(Ω;Rn) :=
{f = f0 + ∂jfj : f0, fj ∈ Lp(Ω;Rn)}, equipped with the usual infimum-type
norm (over all representations f = f0 + ∂jfj). Also, for q ∈ (1,∞), we consider
the following Poisson problem for the Lamé system

{
µ∆u+ µ′∇div u = f ∈ W−1,q(Ω;Rn) in Ω,

u ∈ W 1,q
0 (Ω;Rn).

(1.15)

Next, if p ∈ (1,∞), then p′ denotes the Hölder conjugate exponent of p, i.e.,
p′ ∈ (1,∞) satisfies 1

p + 1
p′ = 1. We will often abbreviate ‖ · ‖Lp(Ω;Rn) and

‖ · ‖Lp(Ω) simply by ‖ · ‖p. Going further, given p ∈ (1, n) we set p∗ := np
n−p

so that W 1,p(Ω) →֒ Lp
∗

(Ω) and Lp(Ω) →֒ W−1,p∗(Ω) whenever Ω ⊂ Rn is a
bounded open set satisfying an I.B.C. (see [7]). If p ≥ n, we make the convention
that p∗ := +∞. Finally, for p > n

n−1 , we denote by p∗ the exponent p∗ := np
n+p ,

so that Lp∗(Ω) →֒ W−1,p(Ω) if Ω ⊂ Rn bounded open set satisfying an I.B.C.
We are now in a position to state the following results dealing, respectively,

with the analyticity of the semigroup generated by the Lamé operator and the
maximal regularity property for the Lamé system equipped with (homogeneous)
Dirichlet boundary condition.

Theorem 1.3 (Analytic semigroup). Let Ω be a bounded open subset of Rn

satisfying the interior ball condition (1.13). Suppose that (1.7) holds and assume
that q0 ≥ 2 is such that the Poisson problem for the Lamé system (1.15) is well-
posed for q = q0 (for more on this see Theorem 4.1 below).
Then the unbounded operator LD in L2(Ω;Rn) given in (1.12) extends to an
unbounded operator LqD in Lq(Ω;Rn) for all q ∈ [(q∗0)

′, q∗0 ], and −LqD generates
an analytic semigroup in Lq(Ω;Rn).

Theorem 1.4 (Maximal regularity). Let Ω be a bounded open subset of R
n

satisfying the interior ball condition (1.13). Suppose that (1.7) holds and assume
that q0 ≥ 2 is such that the Poisson problem for the Lamé system (1.15) is well-
posed for q = q0 (for more on this see Theorem 4.1 below).
Then the Lamé system (1.1) has the maximal Lp-regularity property in Lq(Ω;Rn)
for all p ∈ (1,∞) and all q ∈ ((q∗0)

′, q∗0) =: I0. In other words, for all p ∈ (1,∞)
and all q ∈ I0, the following holds: for every function f ∈ Lp(0,∞;Lq(Ω;Rn)),
the system (1.1) has a unique solution u satisfying

∥∥∥∂u
∂t

∥∥∥
Lp(0,∞;Lq(Ω;Rn))

+ ‖µ∆u+ µ′∇div u‖Lp(0,∞;Lq(Ω;Rn))

≤ Cp,q‖f‖Lp(0,∞;Lq(Ω;Rn)). (1.16)

Remark 1.5. For any open set Ω in Rn, the problem (1.15) is always well-posed
for q = 2. As a result, the interval I0 in Proposition 1.3 and Theorem 1.4 always
contains ( 2n

n+2 ,
2n
n−2 ), which gives the maximal interval (1,∞) in dimension 2.

Remark 1.6. We wish to single out two particular cases, of independent interest,
covered by Theorem 4.1.
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(i) If n = 3 and Ω is a bounded Lipschitz domain, then the interval I0 can be
taken to be (1,∞).

(ii) If n ≥ 4 and Ω is a bounded C 1 domain, then the interval I0 can be taken
to be (1,∞).

There is a large volume of work devoted to the study of the two main themes
of the current paper, i.e., analytic semigroup and maximal regularity properties
for a variety of partial differential equations. Here we only wish to mention the
excellent surveys [1], [14], where the interested reader can also find a pedantic
exposition of recent work related to maximal regularity as well as a wealth of
pertinent references to this subject. In this vein, see also the very recent expos-
itory article [22]. Our approach here, which is based on off-diagonal estimates
and elliptic regularity results, is an adaptation of our work in [19].

The plan of the remainder of the paper is as follows. In Section 2 we carry out
the proofs of Theorem 1.3 and Theorem 1.4. Section 3 contains a discussion of
the methods employed in § 2 from the perspective of general second-order elliptic
systems. Finally, Section 4 is devoted to presenting a collection of regularity
results for the Poisson problem for the Lamé system in the context of Sobolev
spaces in non-smooth domains.

2 Proofs of main results

This section is devoted to presenting the proofs of Proposition 1.3 and Theo-
rem 1.4. For an arbitrary, fixed angle θ ∈ (0, π), consider the sector

Σθ := {z ∈ C \ {0} : | arg z| < π − θ} ⊂ C, (2.1)

and note that, generally speaking, |za+ b| ≈ |z|a+ b, uniformly for z ∈ Σθ and
a, b ≥ 0. We will work under the following hypotheses.

Hypotheses. Let Ω ⊂ Rn be a bounded open set with I.B.C. Consider an
arbitrary z ∈ Σθ and set

t :=
1√
|z|

= |z|− 1
2 . (2.2)

We begin in earnest with the proof of Theorem 1.3. Consider an arbitrary,
fixed function f ∈ C∞

c (Ω;Rn) →֒ L2(Ω;Rn) and, with I denoting the identity
operator, define

u := (zI + LD)
−1f ∈ D(LD) →֒ L2(Ω;Rn). (2.3)

Next, fix an arbitrary point x ∈ Ω along with a partition of unity {ηj}j∈N of Rn

such that

η0 ∈ C
∞
c (B(x, 2t);R), ηj ∈ C

∞
c

(
B(x, 2j+1t) \B(x, 2j−1t);R

)
, (2.4)

0 ≤ ηj ≤ 1, |∇ηj | ≤
1

2j−1t
,

∞∑

j=0

ηj = 1 in R
n, (2.5)
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where B(x, r) is the ball in Rn with center at x ∈ Rn and radius r > 0. To
proceed, decompose

f =

∞∑

j=0

fj , fj := ηjf, u =

∞∑

j=0

uj , (2.6)

where uj := (zI + LD)
−1fj ∈ D(LD) for j ∈ N. (2.7)

The off-diagonal estimates contained in Proposition 2.1 below constitute the key
technical ingredient in the proof of Theorem 1.3.

Proposition 2.1. Granted the above conventions and assumptions, for all q ∈
[2, q0], where q0 is such that the elliptic Lamé system (1.15) is well-posed for
q = q0, there exist two constants C, c > 0 with the property that

|z|
[ ∫

BΩ(x,t)

|uj|q dy
] 1

q ≤ Ce−c2
j

tn(
1
q
− 1

2
)
[ ∫

Ω

|fj |2 dy
] 1

2 ∀ j ∈ N, (2.8)

and

√
|z|
(∫

BΩ(x,t)

|∇uj |q dy
) 1

q ≤ Ce−c2
j

tn(
1
q
− 1

2
)
(∫

Ω

|fj |2 dy
) 1

2

, ∀ j ∈ N. (2.9)

In order to facilitate the proof of this proposition, we will first deal with the
following iteration lemma.

Lemma 2.2. Retain the same hypotheses and conventions as before, and let
q ∈ [2, q0] be such that (2.8) and (2.9) hold. Then also (2.8) holds with q∗ = nq

n−q
in place of q. Furthermore, if q∗ ≤ q0 then (2.9) also holds with q∗ in lieu of q.

Proof. We first prove that (2.8) and (2.9) for q imply (2.8) for q∗. To this end,
recall that Sobolev’s embedding in a reasonable domain D ⊂ Rn of diameter
R > 0, for a function ϕ ∈ W 1,q(Rn), after rescaling, reads as follows

Rn(
1
q
− 1

q∗
)
(∫

D

|ϕ|q∗ dy
) 1

q∗ ≤ C
[(∫

D

|ϕ|q dy
) 1

q

+R
(∫

D

|∇ϕ|q dy
) 1

q
]
. (2.10)

By Theorem 4.1 and assumptions, we have uj ∈ W 1,q
0 (Ω;Rn). Let ũj be the

extension of uj to Rn by 0 outside Ω. It is not difficult to see that ũj ∈
W 1,q(Rn;Rn) and ∇ũj = ∇̃uj . Using (2.10) with D := B(x, t) (so that R = 2t)

and ϕ := ũj gives (recall that t = |z|− 1
2 )

tn(
1
q
− 1

q∗
)
( ∫

BΩ(x,t)

|uj |q
∗

dy
) 1

q∗

= tn(
1
q
− 1

q∗
)
( ∫

B(x,t)

|ũj |q
∗

dy
) 1

q∗

≤ C
[( ∫

B(x,t)

|ũj |q dy
) 1

q

+ t
( ∫

B(x,t)

|∇ũj |q dy
) 1

q
]

= C
[( ∫

BΩ(x,t)

|uj |q dy
) 1

q

+ t
( ∫

BΩ(x,t)

|∇uj |q dy
) 1

q
]

≤ Ce−c2
j

tn(
1
q
− 1

2
)t2
(∫

Ω

|fj|2 dy
) 1

2

. (2.11)
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Therefore, (2.8) holds with q∗ instead of q. Let us now assume that q∗ ≤ q0. It
remains to prove (2.9) with q∗ instead of q. To this end, pick ζ ∈ C∞

c (B(x, t);R)
such that 0 ≤ ζ ≤ 1, ζ ≡ 1 on B(x, t/2), ‖∇ζ‖∞ ≤ c

t and ‖∇2ζ‖∞ ≤ c
t2 . For

each j ≥ 1 we then have ζuj ∈ W 1,q(Ω;Rn) ∩H1
0 (Ω;R

n) and

LD,0(ζuj) = ζLDuj − µ
(
2(∇ζ · ∇)uj + (∆ζ)uj

)
(2.12)

−µ′
(
(∇ζ)div uj + (∇ζ · ∂kuj + uj · ∇∂kζ)1≤k≤n

)
.

In particular, this proves that ζuj ∈ D(LD). Hence, since ζfj = 0, we have that

zζuj + LD(ζuj) = O
(
|∇ζ||∇uj |+ |∇2ζ||uj |

)
, j ≥ 1. (2.13)

In addition,

zζu0 + LD(ζu0) = ζf0 +O
(
|∇ζ||∇u0|+ |∇2ζ||u0|

)
. (2.14)

As far as LD(ζuj) is concerned, we have the following estimates

‖LD(ζuj)‖q ≤ C|z|‖ζ‖∞‖uj‖Lq(BΩ(x,t);Rn)

+C‖∇ζ‖∞‖∇uj‖Lq(BΩ(x,t);Rn) (2.15)

+C‖∇2ζ‖∞‖uj‖Lq(BΩ(x,t);Rn),

if j ≥ 1, and

‖LD(ζu0)‖q ≤ C‖ζ‖∞(|z|‖u0‖Lq(BΩ(x,t);Rn) + ‖f0‖2)

+C‖∇ζ‖∞‖∇u0‖Lq(BΩ(x,t);Rn) (2.16)

+C‖∇2ζ‖∞‖u0‖Lq(BΩ(x,t);Rn).

Moreover, by the mapping properties of the Lamé operator (see Theorem 4.1
below), since 2 < q∗ ≤ q0 and W−1,q∗(Ω) →֒ Lq(Ω), we have

‖∇(ζuj)‖q∗ ≤ C ‖LD(ζuj)‖q (2.17)

and, consequently,

‖ζ∇uj‖q∗ ≤ C‖LD(ζuj)‖q + ‖|∇ζ||uj|‖q. (2.18)

Using (2.18) together with (2.15) or (2.16), and keeping in mind that t = |z|− 1
2 ,

we obtain

√
|z|
( ∫

BΩ(x, t
2
)

|∇uj |q
∗

dy
) 1

q∗ ≤ C tn(
1
q∗

− 1
2
)e−c2

j‖fj‖2 ∀ j ∈ N. (2.19)

This is the version of (2.9) for q∗ instead of q, hence the proof of the lemma is
complete.

After this preamble, we are ready to present the
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Proof of Proposition 2.1. The strategy is to first show that (2.8) and (2.9) hold
for q = 2 and then apply the iteration lemma (at most n

2 + 1 times), and
interpolation. Turning to specifics, pick a family of functions (ξj)j≥1 such that
ξj ∈ C∞

c (B(x, 2j−1t);R). Taking the (complex) L2-pairing of ξ2juj with both
sides of the equality z uj + LDuj = fj yields

〈zuj + LDuj , ξ
2
juj〉 = 〈fj , ξ2juj〉 = 0, (2.20)

since fj and ξj have disjoint supports for all j ≥ 1. Denote by m the minimum
between µ and µ+µ′, so that m > 0 by the assumption (1.7). Based on repeated
integration by parts we may then write

z

∫

Ω

ξ2j |uj|2 dy +m

∫

Ω

ξ2j [|curluj |2 + |div uj |2] dy

=

∫

Ω

O
(
|∇ξj ||uj ||ξj |

[
|curluj |+ |div uj |

])
dy. (2.21)

From this, via Cauchy-Schwarz inequality used in the right hand-side of (2.21)
for the functions |∇ξj ||uj| and ξj [|curluj |+ |div uj |], we obtain

z

∫

Ω

ξ2j |uj |2 dy +m

∫

Ω

ξ2j [|curluj |2 + |div uj|2] dy

≤ C0

(∫

Ω

|∇ξj |2|uj|2 dy
) 1

2
( ∫

Ω

ξ2j [|curluj |+ |div uj |]2 dy
) 1

2

. (2.22)

Recall the elementary inequalities

|ab| ≤ a2

2ε
+

εb2

2
, (2.23)

a2 + b2 ≤ (a+ b)2 ≤ 2(a2 + b2), (2.24)

valid for any numbers a, b ∈ R, and ε > 0. Applying first (2.23) to (2.22),
then (2.24), with a = |curluj| and b = |div uj|, and choosing ε = m

C0
, allows us

to absorb the second term of the sum on the left-hand side of (2.21). In this
fashion we obtain

|z|
∫

Ω

ξ2j |uj |2 dy ≤ C

∫

Ω

|∇ξj |2|uj|2 dy, (2.25)

with C =
C2

0

2m . The same type of procedure (changing the role of uj and
|curluj|+ |div uj| in the previous step), allows us to estimate

∫

Ω

ξ2j [|curluj|2 + |div uj |2] dy (2.26)

in terms of
∫

Ω

|∇ξj |2[|curluj |2 + |div uj|2] dy. (2.27)

We therefore arrive at
∫

Ω

ξ2j [|curluj|2 + |div uj |2] dy ≤ C

|z|

∫

Ω

|∇ξj |2[|curluj|2 + |div uj|2] dy, (2.28)
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for a finite constant C > 0. To continue, let us now abbreviate

wj := |curluj|+ |div uj|. (2.29)

Taking (2.24) into account, (2.28) becomes

|z|
∫

Ω

ξ2j |wj |2 dy ≤ C

∫

Ω

|∇ξj |2|wj |2 dy. (2.30)

Much as in [2], we now replace the cutoff function ξj by eαjξj − 1 (which has

the same properties as ξj), where αj :=

√
|z|

2
√
C‖∇ξj‖∞

, j ≥ 2. In a first stage, this

yields
∫

Ω

|uj |2|eαjξj − 1|2 dy ≤ 1

4

∫

Ω

|uj |2|eαjξj |2 dy (2.31)

and
∫

Ω

|wj |2|eαjξj − 1|2 dy ≤ 1

4

∫

Ω

|wj |2|eαjξj |2 dy, (2.32)

then further
∫

Ω

|uj|2|eαjξj |2 dy ≤ 4

∫

Ω

|uj |2 dy (2.33)

and
∫

Ω

|wj |2|eαjξj |2 dy ≤ 4

∫

Ω

|wj |2 dy, (2.34)

in view of the generic, elementary implication

‖f − g‖ ≤ 1
2‖f‖ =⇒ ‖f‖ ≤ 2‖g‖. (2.35)

If we now assume that the original cutoff functions (ξj)j≥2 also satisfy 0 ≤ ξj ≤
1, ξj ≡ 1 on B(x, t) and ‖∇ξj‖∞ ≤ κ

2jt , it follows from the definition of αj that
αj ≥ c2j. Moreover, based on (2.33) and (2.34) we conclude that

|z||eαj |2
∫

BΩ(x,t)

|uj|2 dy ≤ 4

∫

Ω

|uj |2 dy ≤ C

∫

Ω

|fj |2 dy (2.36)

and

|eαj |2
∫

BΩ(x,t)

|wj |2 dy ≤ 4

∫

Ω

|wj |2 dy ≤ C

|z|

∫

Ω

|fj|2 dy, (2.37)

the second inequalities being a consequence of the L2-theory. This gives (2.8)
for q = 2 and also

|z|
∫

BΩ(x,t)

[|curluj |+ |div uj |]2 dy ≤ Ce−c2
j

∫

Ω

|fj|2 dy. (2.38)

These two estimates are also valid if j = 0 by the L2-theory (if j = 0, no decay
is required in the estimates). We now claim that estimate (2.38) implies (2.9)
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for q = 2. To justify this, let ζ ∈ C∞
c (B(x, t);R) be such that 0 ≤ ζ ≤ 1, ζ ≡ 1

on B(x, t2 ) and ‖∇ζ‖∞ ≤ c
t . In concert, the estimate (2.8) for q = 2 and (2.38)

imply that

|z|
∫

Ω

[|curl (ζuj)|2 + |div (ζuj)|2] dy ≤ Ce−c2
j‖fj‖22. (2.39)

In addition, we also have ζuj = 0 on ∂Ω. The inequality

‖∆ϕ‖H−1(Ω;Rn) ≤ C (‖curlϕ‖2 + ‖divϕ‖2), ϕ ∈ H1
0 (Ω;R

n), (2.40)

implies in particular that ∆(ζuj) ∈ H−1(Ω;Rn). Therefore, by the Lax–Mil-
gram’s theorem, we may conclude that ζuj ∈ H1

0 (Ω;R
n) with norm bounded

by a fixed multiple of e−c2
j‖fj‖2. This gives (2.9) for q = 2. To obtain the

estimates for q > 2, we apply the iteration lemma (Lemma 2.2) which works as
long as (...((2∗)∗)...)∗ ≤ q0. We then obtain (2.8) and (2.9) for all q ∈ [2, q0] by
interpolation (between Lebesgue spaces), as well as (2.8) for all q ∈ [q0, q

∗
0 ] by

Sobolev’s embedding (2.10) (using (2.8) and (2.9) for q∗ ∈ [(q0)∗, q0]).

Having disposed of Proposition 2.1, we are now prepared to deal with the

Proof of Theorem 1.3. We proceed as in [19], Theorem 6.1. Consider first the
case when q ∈ (2, q∗0 ]. In this scenario, for an arbitrary z ∈ Σθ, the fact that the
operator zI+LqD is one-to-one follows trivially from the corresponding statement
for q = 2. To see that this operator is also onto, let f ∈ Lq(Ω;Rn) ⊂ L2(Ω;Rn)
and consider u := (zI+LD)

−1f ∈ D(LD). Then, as shown below, u ∈ Lq(Ω;Rn)
and then, since LDu = f − zu ∈ Lq(Ω;Rn), this proves that u ∈ D(LpD) and
zu + LqDu = f , which proves that LqD is indeed onto. Let us now prove that
u ∈ Lq(Ω;Rn). To do that, consider first smooth vector fields f ∈ C∞

c (Ω;Rn).

Applying the same procedure as before, we may write f =
∞∑
j=0

fj , u =
∞∑
j=0

uj

such that (2.8) holds.
To proceed, given a measurable subset E of Rn with |E| > 0 and an inte-

grable function g : E → C we set

∫
−
E

g dx :=
1

|E|

∫

E

g dx. (2.41)

Recall that t = |z|− 1
2 and that MΩ denotes the Hardy-Littlewood maximal
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operator in Ω. Fubini’s theorem then allows us to write

|z|
[ ∫

Ω

|u|q dx
] 1

q ≤ C|z|
[ ∫

Ω

(∫
−
BΩ(x,t)

|u|q dy
)

dx
] 1

q

= C|z|
{∫

Ω

[(∫
−
BΩ(x,t)

|u|q dy
) 1

q
]q

dx

} 1
q

≤ C|z|





∫

Ω

[( ∞∑

j=0

∫
−
BΩ(x,t)

|uj|q dy
) 1

q
]q

dx





1
q

≤ C





∫

Ω

[ ∞∑

j=0

Ce−c2
j

2j
n
2

(∫
−
BΩ(x,2j+1t)

|f |2 dy
) 1

2
]q

dx





1
q

≤ C
( ∞∑

j=0

Ce−c2
j

2j
n
2

)( ∫

Ω

MΩ(|f |2)
q

2 dx
) 1

q

≤ C‖MΩ(|f |2)‖
1
2
q

2

≤ C‖f‖q. (2.42)

The third inequality is obtained by writing u =
∞∑
j=0

uj. The fourth inequality

is a consequence of (2.8) for j ∈ N. The fifth inequality is implied by (1.14),
which also yields the last inequality. Since C

∞
c (Ω;Rn) is dense in Lq(Ω;Rn),

this proves that for all q ∈ (2, q∗0 ] and all θ ∈ (0, π) there exists a constant C > 0
such that for all functions f ∈ Lq(Ω;Rn) and all numbers z ∈ Σθ, the solution
u of zu+ LDu = f satisfies

|z|‖u‖q ≤ C‖f‖q. (2.43)

This implies that −LqD generates an analytic semigroup in Lq(Ω;Rn) for all
q ∈ [2, q∗0 ] (the case q = 2 is covered by the discussion in last part of § 1.1).
Moreover, since LD is self-adjoint, by duality this gives that −LqD generates an
analytic semigroup in Lq(Ω;Rn) for all q ∈ [(q∗0)

′, 2] as well.

Finally, we now turn to the

Proof of Theorem 1.4. This is a direct consequence of estimate (2.8) by applying
Theorem 2.2 and Remark 7.2 of [13]. Indeed, as already mentioned at the
beginning of this section, Ω equipped with the standard Euclidean distance and
the Lebesgue measure induced by Rn is a space of homogeneous type, in which
scenario the results of [13] (see also [3]) apply.

3 A discussion from the perspective of general

second-order elliptic systems

In this section we elaborate on the nature of the approach pursued in § 2. We
start from the observation that there are infinitely many ways of writing the
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Lamé system in the form of a general elliptic second order partial differential
operator. More specifically, for a fixed, arbitrary parameter r ∈ R, set (using
the standard δ-Kronecker formalism)

aαβℓk (r) := µδℓkδαβ + (µ′ − r) δℓαδkβ + r δℓβδkα. (3.1)

Then for any vector field u = (uα)1≤α≤n and any α = 1, ..., n we have (using
the repeated index summation convention)

− ∂ℓ

(
aαβℓk (r)∂kuβ

)
= −µ∆uα − µ′∂α(div u), (3.2)

i.e., the α-component of the Lamé operator −µ∆− µ′∇ div acting on u.
The bilinear form associated with the representation of the Lamé operator

as in (3.1)-(3.2) in an open subset Ω of Rn is

Qr(u, v) :=

∫

Ω

aαβℓk (r) ∂kuβ ∂ℓvα dx, u, v ∈ H1
0 (Ω;R

n). (3.3)

To be more pedantic, we should write Qµ,µ′,r but we will only do so whenever

the circumstances dictate it. In general, let A = (aαβℓk ) 1≤ℓ,k≤n
1≤α,β≤m

be a coefficient

tensor to which we associate the second order constant coefficients operator L
in Rn as follows

Lu := −
(
aαβℓk ∂ℓ∂kuβ

)
1≤α≤m

. (3.4)

Two different coefficient tensors A may have the same associated operator L, as
is apparent by writing the Lamé operator in the form (3.1)-(3.2) (if necessary,
we may use the symbol LA to indicate what tensor coefficient A has been used
in the writing of the operator L).

For an operator as in (3.4), the Legendre-Hadamard elliptic condition reads

ℜe
(
aαβℓk ξℓξkηαηβ

)
≥ κ|ξ|2|η|2, ∀ ξ ∈ R

n, ∀ η ∈ C
m, (3.5)

for a positive constant κ. To a coefficient tensor A = (aαβℓk ) 1≤ℓ,k≤n
1≤α,β≤m

we associate

the quadratic form

QA(u, v) :=

∫

Ω

aαβℓk ∂ℓuα ∂kvβ dx u, v ∈ H1
0 (Ω;C

m). (3.6)

Note that if A satisfies (3.5), then QA is coercive on H1
0 (Ω;C

m). Indeed an ap-
plication of Plancherel theorem along with the observation that u ∈ H1

0 (Ω;C
m)

entails ũ ∈ H1
0 (R

n;Cm) and ∇ũ = ∇̃u (where ũ denotes the extension of u by
0 outside Ω) allow us to estimate

QA(u, u) =

∫

Rn

aαβℓk ∂ℓũα ∂kũβ dx =

∫

Rn

aαβℓk (iξℓ̂̃uα) (iξk̂̃uβ) dξ

=

∫

Rn

aαβℓk ξℓξk ̂̃uα̂̃uβ dξ ≥ κ

∫

Rn

|ξ|2|̂̃u|2 dξ

≥ κ

∫

Rn

|∇ũ|2 dx = κ

∫

Ω

|∇u|2 dx, (3.7)

where ϕ̂ denotes the Fourier transform of a square-integrable function ϕ defined
on Rn.
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Lemma 3.1. In the case of the Lamé operator, the coefficient tensor Ar =
(aαβℓk (r))1≤ℓ,k≤n

1≤α,β≤n
as defined in (3.1) satisfies the Legendre-Hadamard ellipticity

condition (3.5) if and only if µ > 0 and µ+ µ′ > 0.

Proof. It is easy to see that the condition (3.5) for Ar = (aαβℓk (r)) 1≤ℓ,k≤n
1≤α,β≤m

is

equivalent to the existence of a constant c > 0 such that

µ|ξ|2|η|2 + µ′〈ξ, η〉2 ≥ c|ξ|2|η|2, ξ, η ∈ R
n, (3.8)

where 〈·, ·〉 denotes the standard Euclidean scalar product of vectors in Rn. If
ξ = 0 or η = 0, (3.8) is clearly verified. If ξ 6= 0 and η 6= 0, we may renormalize
the vectors involved and assume that |ξ| = |η| = 1. With t := 〈ξ, η〉2, the
condition (3.8) reads then

µ+ µ′t ≥ c, for all t ∈ [0, 1]. (3.9)

Therefore, (3.8) is equivalent to

min{µ, µ+ µ′} = inf
t∈[0,1]

(µ+ µ′t) > 0, (3.10)

which proves the claim. Incidentally, the above reasoning also shows that the
best constant c in (3.8) is min{µ, µ+ µ′}.

Hence, the form Qr = Qr,µ,µ′ introduced in (3.3) is coercive for all r ∈ R

provided µ > 0 and µ+ µ′ > 0.

Proposition 3.2. The sesquilinear form aD defined in (1.6) used in Section 2
corresponds to Qr,µ,µ′ with r = −µ. In other words, aD = Q−µ.

Proof. By the definition (1.2) of the curl in Rn, we have (using the repeated
index summation convention)

curlu · curl v = 1
2 ∂ℓuα ∂kvβ

(
(δmℓδγα − δγℓδmα)(δmkδγβ − δγkδmβ)

)

= 1
2 ∂ℓuα ∂kvβ

(
δkmδmℓδαγδγβ − δℓmδmβδαγδγk

−δℓγδγβδαmδmk + δℓγδγkδαmδmβ

)

= ∂ℓuα ∂kvβ

(
δℓkδαβ − δℓβδkα

)
. (3.11)

Moreover, we have (with the same convention)

div u div v = δℓαδkβ ∂ℓuα ∂kvβ . (3.12)

Therefore, by the definition (1.6) of aD, we have

aD(u, v) =

∫

Ω

∂ℓuα ∂kvβ

(
µ(δℓkδαβ − δℓβδkα) + (µ+ µ′)δℓαδkβ

)
dx (3.13)

and the coefficient µ δℓkδαβ − µ δℓβδkα + (µ + µ′) δℓαδkβ is of the form aαβℓk (r)
(defined in (3.1)) with r = −µ. Therefore, aD = Q−µ, as claimed.
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For certain applications it is important to know whether the coefficient tensor
of a general operator L (defined in (3.4)) satisfies a stronger ellipticity condition
to the effect that

ℜe
(
aαβℓk ζ

α
ℓ ζ

β
k

)
≥ κ|ζ|2, ∀ ζ = (ζαℓ ) 1≤ℓ≤n

1≤α≤m
∈ C

n×m, (3.14)

for some κ > 0. Note that (3.5) is implied by (3.14) (take ζαℓ = ξℓηα).

Proposition 3.3. In the case of the Lamé operator, (3.14) is satisfied for some
r ∈ R if and only if µ > 0 and µ+ µ′ > 0. In this case, |r| < µ.

Proof. The proof of this proposition follows from Lemma 3.4 below, which ap-
pears in [20, Lemma 4.1]. Indeed,

ℜe
(
aαβℓk (r)ζ

α
ℓ ζ

β
k

)
= Qa,b,c(ζ) ∀ ζ = (ζαℓ ) 1≤ℓ≤n

1≤α≤m
∈ C

n×n. (3.15)

where Qa,b,c is as in (3.16) with a = µ − r, b = 2r and c = µ′ − r. From
(3.17) it follows that (3.14) holds for Ar if and only if a > 0, a + b > 0 and
a+ b + cn > 0. Collectively, the conditions a > 0 and a+ b > 0 are equivalent
to the fact that µ > 0 and −µ < r < µ. The condition a + b + cn > 0 is

equivalent to r > −µ+nµ′

n−1 . There remains to observe that the intervals (−µ, µ)

and (−µ+nµ′

n−1 ,+∞) have a nonempty intersection if and only if µ > −µ+nµ′

n−1 , i.e.
if µ+ µ′ > 0.

Here is the algebraic result invoked above.

Lemma 3.4. For ζ = (ζαj )α,j an n× n matrix, n ≥ 2, and a, b, c ∈ R, let

Q(ζ) = Qa,b,c(ζ) := a |ζ|2 + b | 12 (ζ + ζ⊤)|2 + c |Tr(ζ)|2, (3.16)

where Tr stands for the usual matrix-trace operator, ⊤ denotes transposition of
matrices, and we have set |ζ| := [Tr (ζ ζ⊤)]1/2. Then

∃κ > 0 with Q(ζ) ≥ κ |ζ|2 ∀ ζ ⇐⇒





a > 0,

a+ b > 0,

a+ b+ cn > 0.

(3.17)

and

there exists κ > 0 such that for every matrix ζ one has

Q(ζ) ≥ κ
(
| 12 (ζ − ζ⊤)|2 + |Tr ζ|2

)
⇐⇒





a > 0,

a+ b ≥ 0,

a+ b+ cn > 0.

(3.18)

We would now like to comment on the significance of Proposition 3.3 in the
context of the estimates carried out in Section 2. Specifically, granted (3.14)
and the symmetry condition

aαβℓk = aβαkℓ , whenever 1 ≤ α, β ≤ m, 1 ≤ ℓ, k ≤ n, (3.19)
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it follows that there exists a coefficient tensor S = (bαβℓk ) 1≤ℓ,k≤n
1≤α,β≤m

with complex

entries which is symmetric (i.e. the coefficients bαβℓk satisfy (3.19)), and such
that

〈Aζ, ζ′〉 = 〈Sζ, Sζ′〉, ∀ ζ, ζ′ ∈ C
n×m. (3.20)

Furthermore, S is bounded from below by κ
1
2 , i.e. in operator theoretic sense,

S ≥ κ
1
2 ICn×m . (3.21)

Having S as in (3.20) and (3.21) allows one to carry out the program developed
in Section 2 for any operator LA with A as in (3.14) and (3.19). Indeed, the
analogue of (2.21) is

z

∫

Ω

ξ2j |uj|2 dx+

∫

Ω

ξ2j |S∇uj|2 dx =

∫

Ω

O
(
|∇ξj ||ξj ||uj ||S∇uj|

)
dx. (3.22)

We stress that this structure is crucial for the ability to estimate
∫

Ω

ξ2j |S∇uj |2 dx ≤ C

|z|

∫

Ω

|∇ξj |2|S∇uj|2 dx (3.23)

in place of (2.28) (the proof of (2.25) is similar as before, as this part is not
sensitive to the underlying algebraic structure). With this in hand, the proof
then proceeds as before, this time setting wj := S∇uj in place of (2.29). As a
result, we arrive at

|z|
∫

BΩ(x,t)

|S∇uj|2 dx ≤ Ce−c2
j‖fj‖22 (3.24)

in place of (2.38). At this stage it is no longer necessary to use the cutoff
function ζ as done in (2.38), the reason being the fact that S is coercive. Hence,
we can directly estimate

∫

BΩ(x,t)

|∇uj|2 dx ≤ C

∫

BΩ(x,t)

|S∇uj|2 dx (3.25)

and eventually obtain (2.9) for q = 2.
In conjunction with the above discussion, two relevant points are as follows.

First, it is possible to prove Lp−maximal regularity in Lq(Ω;Rn) for a general
system LA as in (3.4) satisfying (3.14) and (3.19), at least for q ∈ ((2∗)′, 2∗).
Further regularity results can, when available, be used to extend this to a larger
interval. Second, the Lamé system is amenable to this type of treatment. In-
deed, by Proposition 3.3, there exists r ∈ R such that Ar = (aαβℓk (r))1≤ℓ,k≤n

1≤α,β≤n
is

strongly elliptic in the sense of (3.14), provided µ > 0 and µ+ µ′ > 0.
Intriguingly enough, our treatment of Lamé from Section 2 did not proceed

according to the scheme outlined above, even though the quadratic form that
we use was of type Qr (with r = −µ, cf. Proposition 3.2). Indeed, the choice
r = −µ yields a coefficient tensor Ar which is not strongly elliptic (cf. Propo-
sition 3.3). However, by Lemma 3.4, (3.18), Qr with r = −µ does satisfy the
weaker coercivity condition

Qr(u, u) ≥ κ
(
‖ 1
2 (∇u − (∇u)⊤‖22 + ‖Tr∇u‖22

)
, ∀u, v ∈ H1

0 (Ω;R
n). (3.26)
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Indeed, for a = µ − r, b = r and c = µ′ − r, (3.18) gives the estimate (3.26),
granted that µ > 0, µ + µ′ > 0 and |r| ≤ µ. Accordingly, by (3.18), the
coefficient tensor A−µ has a square root S in the sense of (3.20) which this time
only satisfies

|Sζ| ≥ c
(
|ζ − ζ⊤|+ |Tr ζ|

)
, ∀ ζ ∈ C

n×n (3.27)

for a positive constant c. As a result, since Tr∇u = div u and |curlu| ≈ |∇u −
(∇u)⊤| (cf. (1.2)), instead of estimating |S∇u| with |∇u| from below, this time
we only have (compare with (2.38))

|S∇u| ≥ c(|curlu|+ |div u|) ∀u ∈ H1
0 (Ω;R

n). (3.28)

Nevertheless, it is the fortunate fact that the div-curl system is elliptic which
eventually allows us (via PDE methods, and not just abstract functional analysis
results) to conclude that, even in this special critical case, we still have

∫

BΩ(x,t)

|S∇u|2 dy ≥ c

∫

BΩ(x, t
2
)

|∇u|2 dy, ∀u ∈ H1
0 (Ω;R

n). (3.29)

In particular, this explains the necessity of invoking the elliptic estimate (2.40).

4 Regularity results

Given a reasonable domain Ω ⊂ Rn, denote by VMO(∂Ω) the Sarason space of
functions of vanishing mean oscillations on ∂Ω (defined, e.g., as the closure of
the space of Lipschitz functions on ∂Ω in the John-Nirenberg space BMO(∂Ω)
of functions of bounded mean oscillations). Recall that the family of (ε, δ)-
domains, introduced by P. Jones in [10], is the largest class of Sobolev extension
domains currently known (in fact, in the two dimensional setting this class is
optimal; see [10] for definitions and other pertinent comments). The regularity
result used in the previous sections of the paper reads as follows.

Theorem 4.1. Let Ω ⊂ Rn be a bounded open set and, for q ∈ (1,∞), consider
the following Poisson problem for the Lamé system

u ∈ W 1,q
0 (Ω;Rn), µ∆u+ µ′∇div u = f ∈ W−1,q(Ω;Rn) in Ω. (4.1)

The following situations describe contexts in which the problem (4.1) is well-
posed:

(i) µ > 0, µ+ µ′ > 0, q ∈ (1,∞) and Ω is bounded an (ε, δ)-domain with an
Ahlfors-David regular boundary and whose outward unit normal ν has the
property that (with the distance taken in BMO(∂Ω))

dist (ν,VMO(∂Ω)) < η, (4.2)

where η > 0 is a small number which depends exclusively on q and the
aforementioned geometrical characteristics of Ω.

(ii) µ > 0, µ+ µ′ > 0, q ∈ (1,∞) and Ω is bounded an (ε, δ)-domain with an
Ahlfors-David regular boundary and such that

ν ∈ VMO(∂Ω). (4.3)
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(iii) µ > 0, µ+ µ′ > 0, Ω is an arbitrary bounded Lipschitz domain, and

q ∈ ((qΩ)
′, qΩ), where qΩ :=

2n

n− 1− ε(n− 1)
, (4.4)

where ε ∈ (0, 1] depends only on the Lipschitz character of Ω.

(iv) µ > 0, µ+µ′ > 0, q ∈ (1,∞) arbitrary and Ω is a bounded C 1 domain (or,
more generally, a bounded Lipschitz domain with the property that (4.3)
holds).

This is a collection of results proved elsewhere (items (i)-(ii) are implied by
more general results proved in [18], item (iii) is proved in [23] and [21] (cf. also
[17] for the lower dimensional case), while item (iv) is a particular case of (i)),
and here we only wish to elaborate on the terminology and outline the strategy
used in [18] to prove (ii).

We begin by recording a theorem, itself a particular case of a more general
result from [8], whose relevance for the current discussion will become apparent
shortly. To state it, denote by L(X ) the Banach space of bounded linear opera-
tors from the Banach space X into itself, and by Comp (X ) the closed two-sided
ideal consisting of compact mappings of X into itself.

Theorem 4.2. Let Ω be an open set in Rn satisfying a two-sided local John
condition and whose boundary is Ahlfors-David regular and compact. Denote by
σ the surface measure on ∂Ω and by ν the outward unit normal to Ω. Also, fix
a function k ∈ C∞(Rn \ {0}) which is even and homogeneous of degree −n, and
set

Tf(x) := lim
ε→0

∫

y∈∂Ω
|x−y|>ε

〈x− y, ν(y)〉k(x − y)f(y) dσ(y), x ∈ ∂Ω. (4.5)

Then for every q ∈ (1,∞) the following implication is valid:

ν ∈ VMO(∂Ω) =⇒ T : Lq(∂Ω) −→ Lq(∂Ω) is a compact operator. (4.6)

For precise definitions, the interested reader is referred to [8] and the refer-
ences therein. Here it suffices to say that the surface measure σ is the restriction
of the (n−1)-dimensional Hausdorff measure to ∂Ω, and the unit normal is taken
in the sense of De Georgi-Federer (given that Ω is a set of locally finite perime-
ter). Also, the Ahlfors-David regularity condition refers to the fact that ∂Ω
behaves, from the point of view of measure theory, like a (n − 1)-dimensional
surface (in fact, this is not a regularity statement per se, but rather a demand
that the measure of any surface ball of radius r behaves like rn−1 at all scales
and locations). Finally, the two-sided local John condition is a quantitative,
scale invariant weak form of non-tangential accessibility of boundary points,
both from inside and outside of Ω.

The conormal derivative associated with the above choice of coefficients in
the writing of the Lamé operator as in (3.1)-(3.2), is given by

∂rνu :=
(
νja

αβ
jk (r)∂kuβ

)
α
= [µ(∇u)⊤ + r(∇u)]

∣∣∣
∂Ω

ν + (µ′ − r)(div u)
∣∣∣
∂Ω

ν, (4.7)

17



where the superscript ⊤ denotes transposition. The approach to solving the
Dirichlet problem

µ∆u+ µ′∇div u = 0 in Ω, u = g on ∂Ω, (4.8)

via the method of boundary integral operators proceeds as follows. Let ωn−1 de-
note the surface measure of the unit sphere inRn, and let E(x) = (Ejk(x))1≤j,k≤n
be the standard fundamental solution for the Lamé system, defined at each
x = (xj)j ∈ Rn \ {0} by

Ejk(x) :=





−1

2µ(µ+ µ′)ωn−1

[
2µ+ µ′

n− 2

δjk
|x|n−2

+ µ′xjxk
|x|n

]
, if n ≥ 3,

1

2πµ(µ+ µ′)

[
(2µ+ µ′)δjklog |x| − µ′xjxk

|x|2
]
, if n = 2.

(4.9)

See, e.g., [16] and (9.2) in Chapter 9 of [15]. For each r ∈ R, we then define the
elastic double layer potential operator Dr acting on a vector field h on ∂Ω by
setting

Drh(x) :=
∫

∂Ω

[∂rν(y)E(y − x)]⊤h(y) dσ(y), x ∈ Ω. (4.10)

For a reasonable domain Ω ⊂ Rn we seek a solution to (4.8) in the form u := Drh
for a suitable vector field h on ∂Ω, in which case it is useful to know that

Drh
∣∣∣
∂Ω

= (12I +Kr)h, (4.11)

where I denotes the identity operator, the restriction to the boundary is taken
in a pointwise non-tangential sense, and

Krh(x) := lim
ε→0+

∫

y∈∂Ω
|x−y|>ε

[∂rν(y)E(y − x)]⊤h(y) dσ(y), x ∈ ∂Ω. (4.12)

Explicitly, the integral kernel of the operator (4.12) is a n × n matrix whose
(j, k) entry is given by

−L1(r)
δjk
ωn−1

〈x − y, ν(y)〉
|x− y|n − (1− L1(r))

n

ωn−1

〈x− y, ν(y)〉(xj − yj)(xk − yk)

|x− y|n+2

−L2(r)
1

ωn−1

(xj − yj)νk(y)− (xk − yk)νj(y)

|x− y|n , (4.13)

where

L1(r) :=
µ(2µ+ µ′)− rµ′

2µ(µ+ µ′)
, L2(r) :=

µµ′ − r(2µ+ µ′)

2µ(µ+ µ′)
. (4.14)

It is here that the usefulness of making a judicious choice for the parameter r
is most apparent. Specifically, for

r :=
µµ′

2µ+ µ′ (4.15)
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we have L2(r) = 0 and, hence, the last term in (4.13) drops out. Consequently,
the operator (4.13) corresponding to the choice (4.15), referred to in the liter-
ature as the pseudo-stress elastic double layer (cf., e.g., [15]), takes the form
(4.5). We shall denote this operator by Kψ.

In summary, for the choice of the parameter r as in (4.15), the operator
(4.12) becomes of the type (4.5). Hence,

ν ∈ VMO(∂Ω) =⇒ Kψ : Lq(∂Ω;Rn) → Lq(∂Ω;Rn)

is a compact operator for every index q ∈ (1,∞).
(4.16)

Extending this compactness property to the scale of boundary Besov spaces is
done using the following remarkable one-sided compactness property for the real
method of interpolation for (compatible) Banach couples proved by M.Cwikel
in [5]:

Theorem 4.3. Assume that Xj, Yj, j = 0, 1, are two compatible Banach cou-
ples and suppose that the linear operator T : Xj → Yj is bounded for j = 0 and
compact for j = 1. Then the operator T : (X0, X1)θ,p → (Y0, Y1)θ,p is compact
for all θ ∈ (0, 1) and p ∈ [1,∞].

Granted (4.16), this theorem (used in the current context withX0 := Lq(∂Ω;Rn)
and X1 := W 1,q(∂Ω;Rn), the vector-valued version of the Lq-based Sobolev
space of order one on ∂Ω) shows that

Kψ is compact on Bq,p
s (∂Ω;Rn) for all 1 < p, q < ∞

and 0 < s < 1, granted that ν ∈ VMO(∂Ω).
(4.17)

Moving on, we may conclude that the problem (4.1) is well-posedness as
soon as we show that the operator

A : W 1,q(Ω;Rn) → W−1,q(Ω;Rn)⊕Bq,q

1− 1
q

(∂Ω;Rn),

Au := (−µ∆u− µ′∇div u , Tr u), ∀u ∈ W 1,q(Ω;Rn),
(4.18)

is an isomorphism, where Tr : W 1,q(Ω;Rn) → Bq,q

1− 1
q

(∂Ω;Rn) denotes the bound-

ary trace operator. In this vein, the hardest part is proving that the operator in
question has closed range, of finite co-dimension. To address this issue, denote
by Π the volume potential given by

Πw(x) :=

∫

Ω

E(x − y)w(y) dy, x ∈ Ω. (4.19)

This is smoothing of order two, hence maps W−1,q(Ω;Rn) boundedly into
W 1,q(Ω;Rn). Given that for every g we have (−µ∆−µ′∇div)Drg = 0 in Ω, and
that for every q ∈ (1,∞) and every r ∈ Rn the operator Dr maps Bq,q

1− 1
q

(∂Ω;Rn)

boundedly into W 1,q(Ω;Rn) (cf. [18] for much more general results of this fla-
vor), it follows that the range of A from (4.18) contains the subspace

{
(−µ∆u− µ′∇div u , Tru) : u = Π f +Drg,

f ∈ W−1,q(Ω;Rn), g ∈ Bq,q

1− 1
q

(∂Ω;Rn)
}

(4.20)

=
{
f , Tr (Πf) + (12I +Kψ)g : f ∈ W−1,q(Ω;Rn), g ∈ Bq,q

1− 1
q

(∂Ω;Rn)
}
.
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However, thanks to (4.17), it is not difficult to check that the assignment

(f, g) 7→
(
f, Tr (Πf) + (12I +Kψ)g

)
(4.21)

from W−1,q(Ω;Rn)⊕Bq,q

1− 1
q

(∂Ω;Rn) into itself is Fredholm (with index zero, in

fact). In particular, it has a closed range, of finite co-dimension, and we conclude
from this and the fact that the range of A contains the subspace described in
the last line of (4.20) that the operator (4.18) also has a closed range, of finite
co-dimension. With this in hand, the reminder of the proof of the invertibility of
A is routine, so we omit it. Ultimately, the conclusion is that, if ν ∈ VMO(∂Ω)
then the Poisson problem





µ∆u+ µ′∇div u = f ∈ W−1,q(Ω;Rn),

Tru = g ∈ Bq,q

1− 1
q

(∂Ω;Rn),

u ∈ W 1,q(Ω;Rn),

(4.22)

is well-posed for every q ∈ (1,∞). Finally, taking g = 0 then yields the conclu-
sion in item (ii) of Theorem 4.1.

In closing, we wish to note that the (infinitesimal, mean) oscillation of the
unit normal, quantified as

{ν}Osc(∂Ω) := lim
ε→0

(
sup
Bε

∫
−
Bε∩∂Ω

∫
−
Bε∩∂Ω

∣∣∣ ν(x) − ν(y)
∣∣∣ dσ(x)dσ(y)

)
(4.23)

where the supremum is taken over the collection {Bε} of disks with centers on
∂Ω and of radius ≤ ε, is actually equivalent to the distance of ν to VMO (∂Ω).
That is,

{ν}Osc(∂Ω) ≈ dist (ν VMO(∂Ω)). (4.24)

This observation allows for a more intuitive interpretation of the condition (4.2).
As an example, consider the case when Ω is a curvilinear polygon with precisely
one angular point located at the origin 0 ∈ R2. Furthermore, assume that, in
a neighborhood of 0, ∂Ω agrees with a sector of aperture θ ∈ (0, π) with vertex
at 0. In particular, the outward unit normal ν to Ω is smooth on ∂Ω \ {0} and
is piecewise constant near 0, where it assumes two values, say, ν+ and ν−. As a
result,

{ν}Osc(∂Ω) ≈ ‖ν+ − ν−‖ ≈
√
1 + cos θ, (4.25)

which shows that the condition (4.2) amounts, in this case, to the requirement
that the angle θ is sufficiently close to π.
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