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Abstract. We investigate a special kind of contraction of symmetric spaces (respectively, of Lie triple systems), called
homotopy. In this first part of a series of two papers we construct such contractions for classical symmetric spaces
in an elementary way by using associative algebras with several involutions. This construction shows a remarkable
duality between the underlying “space” and the “deformation parameter”.
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Introduction

A glance at the classification of simple symmetric spaces ([Berger57]) shows that most of the classical
symmetric spaces can be directly defined in terms of the classical matrix algebras A = M(n, n;F), F =
R,C,H, together with one, two or at most three involutions. In this paper we revisit these constructions
from an algebraic viewpoint, working with Lie triple systems (which are infinitesimal versions of symmetric
spaces), and we show that they define not only the discrete families of simple spaces, but more generally
“continuous families” of symmetric spaces, including a great variety of non-reductive spaces; these continuous
families can be considered as a special kind contractions, called homotopes of symmetric spaces (introduced
in [Be08]). We intend to use such contractions in further work to generalize quantization procedures from
[BDS09].

The basic idea of the construction is quite simple: in the setting of an associative algebra A, “homotopy”
amounts to the observation that, for any A ∈ A, the product (X,Y ) 7→ XAY on A is again associative,
hence [X,Y ]A := XAY − Y AX is a Lie bracket, and

[X,Y, Z]A := [[X,Y ]A, Z]A = (XAY AZ + ZAY AX)− (Y AXAZ + ZAXAY ) (1)

is a Lie triple product on A. For A = 1 (unit element), this is the “standard” or “general linear” Lie triple
product, and for A = 0 it is the “flat” Lie triple product on A; thus we may say that the family of Lie triple
products indexed by A ∈ A is a contraction of the “general linear” Lie triple product. Now assume that the
associative algebra A carries several commuting involutions τ1, . . . , τk; for most of the constructions k = 1
or 2 will be sufficient. Let m be any of the 2k joint eigenspaces of these involutions. The key observation is
now: if A belongs to some joint eigenspace, then m is stable under [X,Y, Z]A, hence is a Lie triple system
(Lemma 3.3). This means that we have 4k families of Lie triple systems, which can be organized in a table
forming a “2k × 2k-matrix”, with rows containing homotopes living on the same underlying space m and
columns containing homotopes parametrized by the same parameter space. Such kind of “duality” between
space and deformation parameter is a special feature of the classical spaces governed by associative algebras
considered here; it is not present in the general (Jordan theoretic) formulation to be discussed in Part II of
this work.
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We give several examples of such “matrix-tables” (Theorems 3.7, 3.8, 3.9, 3.10); all of them reflect
interesting features of families of classical symmetric spaces, among them, e.g., the Siegel upper half plane
Spn(R)/U(n) (Theorem 3.8) and its compact dual Sp(n)/U(n) (Theorem 3.9). The duality between lines
and columns of these tables makes it now easy to calculate an algebra imbedding of the Lie triple system
m, that is, a Lie algebra g such that g = h ⊕ m is a symmetric Lie algebra decomposition: if m belongs to
the antidiagonal of the table, then m is already a Lie algebra; else we may choose for h the space from the
antidiagonal that belongs to the same column as m (see Theorem 3.4 and its proof).

For a fixed joint eigenspace m, the Lie triple systems m with Lie triple product [X,Y, Z]A can be inter-
preted as curvature tensors of symmetric spaces M = G/H depending on A and all having the same tangent
space at the origin. In Section 4, we focus on the real, finite-dimensional case and give a list of all families
of symmetric spaces obtained that way, organized according to the point of view of “deformations” and
“contractions”: for each underlying space m we give a list of Lie triple products on m that are homotopes of
each other (Theorem 4.2).

This work is organized as follows: basic facts on Lie triple systems and classical Lie algebras are recalled
in Chapters 1 and 2; in Chapter 3 the “two-involution-construction” is explained, and the most important
examples are woked out. Chapter 4 contains the systematic list of contractions of symmetric spaces thus
obtained. In Part II of this work ([BeBi]) we explain a more general construction of homotopes, which uses
basic ideas of Jordan theory (as we hope to convince the reader, the concept of homotopy is useful in the
associative theory, but its rôle in the non-associative theory is certainly even more important): we define
the structure variety, which is the natural parameter space for contractions, and we show that the list given
here in Chapter 4 is, essentially, a complete description of the corresponding structure varieties. While
proving this, we will also obtain results describing in more detail the structure of the contracted spaces: a
non-reductive homotope has a bundle structure, with flat fibers and a reductive base, and we will analyze
some interesting low-dimensional examples of such fibered symmetric spaces.

Acknowledgements. W.B. thanks Université Catholique de Louvain for hospitality in 2010 when part
of this work was carried out. P.B. thanks Université Henri Poincaré-Nancy I for hospitality and the Belgian
Scientific Policy (BELSPO) for its support through the IAP ‘NOSY’ to which he is affiliated at the Université
Catholique de Louvain.

Notation. Throughout this paper K is a commutative base ring in which 2 is invertible.

1 Lie triple systems

A Lie triple system (LTS) is a K-module q together with a trilinear map

q3 → q, (X,Y, Z) 7→ [X,Y, Z] =: R(X,Y )Z

satisfying, for all X,Y, Z, U, V ∈ q,

(LT1) [X,Y, Z] = −[Y,X,Z]

(LT2) [X,Y, Z] + [Y, Z,X ] + [Z,X, Y ] = 0

(LT3) the endomorphism D := R(U, V ) is a derivation of the trilinear product [X,Y, Z].

Every Lie algebra g with [X,Y, Z] := [[X,Y ], Z] is a LTS, and if σ is an automorphism of g of order 2, then
the −1-eigenspace q of σ is stable under this trilinear product and hence is a LTS. Every LTS q is obtained
in this way: we may take for g the standard imbedding q ⊕ [q, q] ⊂ q ⊕Der(q) (see [Lo69]). The pair (g, σ)
is called a symmetric pair. If h = gσ is the fixed point algebra of σ, we will sometimes, with some abuse of
notation, denote the symmetric pair also by (g, h). This notation is motivated (in the real finite dimensional
case) by the usual description of the associated symmetric space as a homogeneous space M = G/H , where
G is a Lie group with involution σ and H an open subgroup of the fixed point group Gσ. The case of a Lie
group H considered as symmetric space H ×H/diag(H ×H) will be called a group case; it corresponds to
the case of a Lie algebra, considered as a LTS.
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c-duality. It is clear that, if (q, R) is a LTS, then all multiples (q, λR) for λ ∈ K are again LTS. In
particular, (q,−R) is again a LTS, called the c-dual Lie triple system, where the letter c refers to “compact”
or “Cartan”: indeed, in the real finite dimensional case, R is of compact type if and only if −R is of non-
compact type. Note that, if λ is a square in K×, then λidq is an isomorphism between R and λ2R. In
particular, for K = C, the LTS R and −R are always isomorphic to each other. For K = R, if g = h ⊕ q is
the standard imbedding of R, then h ⊕ iq (subalgebra of gC) is the standard imbedding of −R. Using this,
it is seen, for example, that the c-dual of a group case H is a symmetric space of the form HC/H , where HC

is a complexification of H .

2 Classical Lie algebras

We call “classical” Lie algebras that are defined by means of an associative unital K-algebra A with some
involution τ (antiautomorphism of order 2); we often use the notation a∗ for τ(a) and denote the eigenspace
decomposition of ∗ by A = Aτ⊕A−τ = Herm(A, ∗)⊕Aherm(A, ∗). We are going to define families of classical
Lie algebras associated to these data, parametrized by certain elements A ∈ A. The three main types of
classical Lie algebras are given by

Lemma 2.1 The following data define Lie algebras:

(1) general linear: gA := gA,A := A with [X,Y ]A := XAY − Y AX, for any A ∈ A,

(2) unitary / orthogonal: uA := uA,A,τ := Aherm(A, ∗) with [X,Y ]A, for any A ∈ Herm(A, ∗),

(3) (half) symplectic: spA := spA,A,τ := Herm(A, ∗) with [X,Y ]A, for any A ∈ Aherm(A, ∗).

Proof. (1) follows from the fact that (X,Y ) 7→ XAY is an associative product, and (2) and (3) from the
fact that ∗ is an antiautomorphism (resp. automorphism) of the bracket [X,Y ]A.

The “classical Lie algebras” are obtained by taking A = M(n, n;F), the matrix algebra over F = R,C or
H, with involution X∗ = δ(X)t (transposed matrix of δ(X), where δ : F → F is an involution of the base
field F; the various choices for δ will be specified below). For the moment, (F, δ) may be any unital ring with
involution. We fix notation and terminology as follows (cf. [BeKi09]):

family name label and space parameter space Lie bracket
general linear (square) gln(A;F) := M(n, n;F) A ∈ M(n, n;F) [X,Y ]A
(F, δ)-unitary un(A;F, δ) := Aherm(n;F, δ) A ∈ Herm(n;F, δ) [X,Y ]A
(F, δ)-symplectic spn/2(A;F, δ) := Herm(n;F, δ) A ∈ Aherm(n;F, δ) [X,Y ]A

Remark. The general linear type can be defined, more generally, for associative pairs (see [BeKi09]);
in the table below this type appears as rectangular matrices (second line). For p 6= q these algebras are
never reductive. Similarly, for odd n, the symplectic type is never reductive, and we then prefer to call it
half-symplectic.

Now we specify the involution of the base field or ring F. In the following table, F is one of the skew-fields
R, C, H, and K one of the fields R, C. Concerning involutions: for F = C, we always use usual complex
conjugation, and for K = H, if nothing else is specified, we use “usual” conjugation λ 7→ λ (minus one
in the imaginary part ImH and one on the center R ⊂ H). If we consider H with its “split” involution

λ 7→ λ̃ := jλj−1, then we write H̃. For instance, Herm(n; H̃) is the space of quaternionic matrices such that

X̃ = Xt, hence un(1; H̃) is the Lie algebra in the literature often denoted by so∗2n.

family name label and space parameter space Lie bracket
general linear (square) gln(A;F) := M(n, n;F) A ∈ M(n, n;F) [X,Y ]A
general linear (rectan.) glp,q(A;F) := M(p, q;F) A ∈ M(q, p;F) [X,Y ]A
orthogonal on(A;K) := Asym(n;K) A ∈ Sym(n;K) [X,Y ]A
[half-] symplectic spn/2(A;K) := Sym(n;K) A ∈ Asym(n;K) [X,Y ]A
C-unitary un(A;C) := Aherm(n;C) A ∈ Herm(n;C) [X,Y ]A
H-unitary un(A;H) := Aherm(n;H) A ∈ Herm(n;H) [X,Y ]A
H-unitary split un(A; H̃) := Aherm(n; H̃) A ∈ Herm(n; H̃) [X,Y ]A
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Classification up to isomorphy of algebras from the preceding table is easy, by using the following general

Lemma 2.2 Let A, T, S be arbitrary elements of the associative algebra A. Then

gTAS → gA, X 7→ SXT

is a Lie algebra homomorphism. In particular, if g, h ∈ A×, the Lie algebras ggAh and gA are isomorphic,
and so are ugAg∗ and uA (resp. spgAg∗ and spA).

Proof. [SXT, SY T ]A = SXTASY T − SY TASXT = S[X,Y ]TAST

In the case of matrix algebras over a field, any A is conjugate to a matrix which is idempotent, and clas-
sification of algebras is reduced the well-known classification of (Hermitian or skew-Hermitian) idempotents.
Moreover, if A is idempotent, or more generally if A3 = A, we may apply the lemma with T = S = A to
get an algebra endomorphism of gA, which leads to the fibered structure of homotopes to be studied in more
detail in Part II.

3 Classical Lie triple systems

Next we are going to construct families of “classical Lie triple systems” in a similar way as above. The
construction will be based on associative algebras with several commuting involutions. However, first of all
let us review the preceding situation (no, or just one, involution) from the point of view of Lie triple systems.

3.1 Associative algebras with one involution

In an associative algebra, we will use the notation

T (X,Y, Z) := XY Z + ZY X . (2)

Lemma 3.1 Let A be an associative algebra, A ∈ A and α(X) := AXA. Then A with ternary bracket

[X,Y, Z]A := (XAYAZ + ZAY AX)− (Y AXAZ + ZAXAY ) = T (X,αY, Z)− T (Y, αX,Z)

is the Lie triple system belonging to the Lie algebra (A, [X,Y ]A).

Proof. [[X,Y ]A, Z]A = (XAY − Y AX)AZ − ZA(XAY − Y AX) = T (X,αY, Z)− T (Y, αX,Z).

One may note that [X,Y, Z]rA = r2[X,Y, Z]A for r ∈ K, whence [X,Y, Z]A = [X,Y, Z]−A, and, if K = C,
the c-dual LTS is obtained in the form [X,Y, Z]iA = −[X,Y, Z]A.

Lemma 3.2 Assume τ(X) := X∗ is an involution of the associative algebra A. If A belongs to one of
the eigenspaces, then both eigenspaces are stable under [X,Y, Z]A. This gives four possibilities to combine
choices, leading to the following four families of Lie triple systems:

(1) Assume A ∈ Aτ . Then A−τ is the LTS belonging to the unitary Lie algebra uA, and the space Aτ with
[X,Y, Z]A is the LTS belongs to the symmetric pair (gA, uA).

(2) Assume A ∈ A−τ . Then Aτ is the LTS belonging to the (half-)symplectic Lie algebra spA, and the space
A−τ with [X,Y, Z]A is the LTS belongs to the symmetric pair (gA, spA).

We summarize these statements by the following table:

A ∈ Aτ A ∈ A−τ

LTS Aτ (gA,A, uA,A,τ) spA,τ

LTS A−τ uA,A,τ (gA,A, spA,A,τ )

Proof. If τ(A) = ∓A, then τ is either a Lie algebra automorphism or antiautomorphism of gA, and hence
in both cases it is a LTS-automorphism, and hence both eigenspaces are sub-LTS. Now both claims are
immediate consequences of the definition of spA and uA.

Note that the LTS of group cases are found on the antidiagonal of the table; this reflects the fact that τ
is an antiautomorphism of A. If one is interested in isomorphism classes of the LTS from the lemma, one
may observe that the group A× acts on both eigenspaces by (a, x) 7→ axτ(a), and if A and A′ are conjugate
under this action, then the LTS indexed by A and A′ are isomorphic.
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3.2 Associative algebras with two commuting involutions

Now assume that A carries two commuting involutions τ and τ̃ , and let φ := τ ◦ τ̃ . This is an automorphism
of order 2, and conversely, given an automorphism of order 2 commuting with τ , we recover τ̃ = φ ◦ τ . For
a given pair (τ1, τ2) = (τ, τ̃ ), will denote joint eigenspaces by a double superscript, for instance

A(1,−1) := A(τ,−τ̃) := Aτ ∩ A−τ̃ = {X ∈ A | τ(X) = X, τ̃ (X) = −X},

and so on. We thus have a decomposition

A = A(1,1) ⊕ A(1,−1) ⊕ A(−1,1) ⊕ A(−1,−1),

and Aφ = A(1,1) ⊕A(−1,−1) is an associative algebra, whereas the other spaces are in general not associative
algebras. Nevertheless, the space A−φ = A(1,−1)⊕A(−1,1) is an associative triple system, i.e., closed under the
ternary associative product XY Z. In particular, for A ∈ A−φ, the space A−φ is stable under the associative
product (X,Y ) 7→ XAY , and hence under the Lie bracket [X,Y ]A. We denote this Lie algebra by gA−φ,A.

Lemma 3.3 If A belongs to any one of the joint eigenspaces, then all four joint eigenspaces are stable under
the triple bracket [X,Y, Z]A.

Proof. This follows immediately from Lemma 3.2 applied to τ and to τ̃ .

Obviously, the lemma generalizes to the case of k commuting involutions: we then have 2k choices for
joint eigenspaces and 2k choices for parameter spaces, leading to 4k families of Lie triple systems. The
following theorem shows that in our case (k = 2), since the roles of τ and τ̃ are symmetric, the effective
number reduces from 16 to about 10:

Theorem 3.4 The following holds with respect to the Lie triple bracket [X,Y, Z]A.

(1) Assume A ∈ A(−τ,−τ̃). Then the Lie algebras spA,τ and spA,τ̃ are defined, and their intersection h :=
spA,τ ∩ spA,τ̃ is the symplectic Lie algebra spAφ,A,τ belonging to the involution τ restricted to the
associative algebra Aφ. With this notation, we have:

(i) A(τ,τ̃) = h is the LTS belonging to the Lie algebra h;

(ii) A(−τ,−τ̃) is the LTS belonging to the symmetric pair (gAφ,A, h);

(iii) A(τ,−τ̃) is the LTS belonging to the symmetric pair (spA,τ , h);

(iv) A(−τ,τ̃) is the LTS belonging to the symmetric pair (spA,τ̃ , h).

(2) Assume A ∈ A(τ,τ̃). Then the Lie algebras uA,τ and uA,τ̃ are defined, and their intersection h :=
uA,τ ∩ uA,τ̃ is the unitary Lie algebra uAφ,A,τ belonging to the involution τ restricted to the associative
algebra Aφ. With this notation, we have:

(i) A(−τ,−τ̃) = h is the LTS belonging to the Lie algebra h;

(ii) A(τ,τ̃) is the LTS belonging to the symmetric pair (gAφ,A, h);

(iii) A(−τ,τ̃) is the LTS belonging to the symmetric pair (uA,τ , h);

(iv) A(τ,−τ̃) is the LTS belonging to the symmetric pair (uA,τ̃ , h).

(3) Assume A ∈ A(τ,−τ̃). Then h := uA,τ ∩ spA,τ̃ = A(−τ,τ̃) is a Lie algebra, and

(i) A(−τ,τ̃) is the LTS belonging to the Lie algebra h;

(ii) A(τ,−τ̃) is the LTS belonging to the symmetric pair (gA−φ,A, h);

(iii) A(−τ,−τ̃) is the LTS belonging to the symmetric pair (uA,τ , h);

(iv) A(τ,τ̃) is the LTS belonging to the symmetric pair (spA,τ̃ , h).
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We summarize these statements by the following table:

A ∈ A(1,1) A ∈ A(−1,1) A ∈ A(1,−1) A ∈ A(−1,−1)

LTS A(1,1) (gAφ,A, uAφ,A,τ ) (spA,τ , spA,τ ∩ uA,τ̃ ) (spA,τ̃ , uA,τ ∩ spA,τ̃ ) spAφ,A,τ

LTS A(−1,1) (uA,A,τ , uAφ,A,τ) (gA−φ,A, spA,τ ∩ uA,τ̃ ) uA,τ ∩ spA,τ̃ (spA,A,τ , spAφ,A,τ )
LTS A(1,−1) (uA,A,τ̃ , uAφ,A,τ) spA,τ ∩ uA,τ̃ (gA−φ,A, uA,τ ∩ spA,τ̃ ) (spA,A,τ̃ , spAφ,A,τ )

LTS A(−1,−1) uAφ,A,τ (uA,τ̃ , spA,τ ∩ uA,τ̃ ) (uA,τ , uA,τ ∩ spA,τ̃ ) (gAφ,A, spAφ,A,τ )

Proof. Let us explain the general pattern for k commuting involutions τ1, . . . , τk. Given a vector of eigenvalues
s ∈ {±1}k, let As = ∩k

i=1A
siτi be the corresponding joint eigenspace. Fix a vector of eigenvalues t and assume

that A ∈ At. Then the joint eigenspace A−t is a Lie algebra with respect to the bracket [X,Y ]A (each A−tiτi

is a Lie algebra for this bracket, according to Lemma 3.2, and A−t is the intersection of these algebras), and
hence h = A−t with [X,Y, Z]A is the LTS belonging to this Lie algebra. This explains item (i) in each case
(the antidiagonal of the table). The other three items correspond to the symmetric pair given by the direct
sum of h with one of the three joint eigenspaces other than the one from (i): if s is different from −t, then
As is not a Lie algebra with respect to [X,Y ]A, but A

s ⊕ A−t is (this follows since [Asiτi ,Asiτi ]A ⊂ A−siτi

if si = ti and [Asiτi ,Asiτi ]A ⊂ Asiτi if si = −ti). Moreover, for all i with si = ti, the restriction of τi to the
Lie algebra As ⊕ A−t leads to the same Lie algebra automorphism with fixed algebra h = A−t, and hence
the LTS As belongs to the symmetric Lie algebra (As ⊕ A−t, h).

For k = 2, the Lie algebras As ⊕ A−t have explicit descriptions as follows: let s = t, that is, A belongs
to the underlying space of the LTS in question; then for t = (−1,−1) we get As ⊕ A−t = A(−1,−1) ⊕ A(1,1),
the fixed point space of φ which is an associative algebra (case (1), (ii)); similarly for t = (1, 1), whereas for
t = (1,−1) we have As ⊕ A−t = A(−1,1) ⊕ A(1,−1), the antifixed space of the associative automorphism φ
(case (3), (ii)) (which corresponds to the associative triple system A−φ).

If neither s = t nor s = −t, then As ⊕ A−t is equal to one of the spaces Aτ , A−τ , Aτ̃ or A−τ̃ with Lie
bracket [X,Y ]A, leading to the eight remaining cases of the table.

The presentation in form of a table reveals a remarkable duality between “space” (lines) and “deformation
parameter” (columns), which is not predicted by the general theory to be developed in Part II (it reminds
Howe’s duality of dual pairs in some respects). Note that the diagonal terms in the table are all of type
“(general linear, half-symplectic)” or “(general linear, unitary)”, whereas the antidiagonal terms are algebra
cases.

Lemma 3.5 If τ and τ̃ are two commuting involutions and φ = τ ◦ τ̃ , then the group Γ := (Aφ)× acts
on all four joint eigenspaces by (g, x) 7→ gxτ(g). If A and A′ are conjugate under this action, then the
corresponding homotope LTS are isomorphic to each other.

Proof. Straightforward calculation (note that τ(g) = τ̃ (g) for g ∈ Γ).

In all of the following examples, the group Γ turns out to be the “natural” group acting on the given
data, so that the description of its orbits amounts in all cases to more or less standard results in linear
algebra. This will make classification up to isomorphy quite easy (in most cases, A will be conjugate to
an idempotent element under this action). However, if we go beyond the standard examples (for instance,
looking at infinite dimensional algebras), then such a classification is generally completely out of reach.

Theorem 3.4 contains a great variety of interesting special cases: indeed, the situation of an associative
algebra with two commuting involutions is very common. We are going to work out explicitly some of these
special cases.

Remark 3.6 (c-duality.) In all of the following examples, one may write “c-dual tables” in the following
way: consider a real involutive algebra (B, ∗) and complexify it: A = BC, let τ the C-linear extension of ∗
and τ̃ (X) := τ(X) its C-antilinear extension. Then the small squares from the preceding table obtained by
taking the middle entries, resp. by the “corner entries”, will reproduce the tables for (B, ∗) from Lemma 3.2,
whereas the other eight entries will contain the c-dual symmetric pairs of those. Similarly, if we complexify
a real algebra with two commuting involutions, we get a complex algebra with three commuting involutions,
and the corresponding table of size 8 × 8 will contain together with each LTS also their c-duals. Replacing
R by K and C by K[X ]/(X2 + 1), this construction also applies over general base rings K. However, for
reasons of space we will not write out such big tables.
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3.3 Case of a matrix algebra with an idempotent

Let A = M(n, n;K), τ(X) = Xt (transposed matrix) and Ip,q =

(
1p 0
0 −1q

)
. These data are paradigmatic

for the following, slightly more general, situation: assume given an involutive algebra (A, τ) with an idem-
potent e such that τ(e) = e; then c := 1 − 2e is an element such that c2 = 1, and τ̃(x) := cτ(x)c is an
involution commuting with τ .

Theorem 3.7 (Homotopes of projective and of polarized spaces) Let A = M(n, n;K), fix a decomposition
n = p+ q and the pair of involutions (τ, τ̃ ) with τ(X) = Xt, τ̃ (X) = Ip,qX

tIp,q, so that φ(X) = Ip,qXIp,q is
conjugation by Ip,q. Then the eigenspaces are

A(1,1) =
{(

B 0
0 C

)
| B ∈ Sym(p,K), C ∈ Sym(q,K)

}
∼= Sym(p,K)⊕ Sym(q,K)

A(1,−1) =
{(

0 A
At 0

)
| A ∈ M(p, q;K)

}
∼= M(p, q;K),

A(−1,1) ∼= M(q, p;K), A(−1,−1) ∼= Asym(n,K)⊕Asym(n,K)

and Aφ ∼= M(p;K)⊕M(q;K), A−φ = M(p, q;K)⊕M(q, p;K). The Lie triple systems from Theorem 3.4 are
explicitly given by the following table (where, for the purpose of space economy, we write symmetric pairs in
the form of a quotient):

A =

(
B 0
0 C

)
∈ A(1,1) A ∈ A(−1,1) A ∈ A(1,−1) A =

(
B 0
0 C

)
∈ A(−1,−1)

A(1,1) gln(B,K)×gln(B,K)
on(B,K)×on(C,K)

spn
2
(





0 A
−At 0



,K)

glp,q(A,K)

spn
2
(





0 A
−At 0



,K)

glp,q(A,K) spn
2
(B;K)× spn

2
(C;K)

A(−1,1)

on(





B 0
0 C



,K)

on(B;K)×on(C;K) glp,q(A,K) glp,q(A,K)

spn
2
(





B 0
0 C



,K)

spn
2
(B;K)×spn

2
(C;K)

A(1,−1)

on(





B 0
0 −C



,K)

on(B;K)×on(C;K) glp,q(A,K) glp,q(A,K)

spn
2
(





B 0
0 −C



,K)

spn
2
(B;K)×spn

2
(C;K)

A(−1,−1) op(B,K)× oq(C,K)

on(





0 A
At 0



,R)

glp,q(A,K)

on(





0 A
At 0



,R)

glp,q(A,K)
gln(B,K)×gln(B,K)
sp p

2
(B,K)×sp q

2
(C,K)

Proof. The determination of the eigenspaces is given by straightforward calculations. Most descriptions
of the Lie algebras appearing in the table are also fairly straightforward from definitions, except perhaps
the special form of the “middle square”: here, the special feature is that there are two diagonal terms
glp,q(A,K) of algebra type. This is due to the fact that the Lie algebra gA−φ,A is, in our case, a direct

product glp,q(A,K)× glp,q(A,K) (indeed, for A as in the table, A−φ with (X,Z) 7→ XAZ is a direct product
of associative algebras), and hence we get a LTS of group type. (All this holds, more generally, for associative
algebras with idempotent e, as mentioned above, and using the Peirce-decomposition with respect to e.)

Comments. For K = R, on the level of symmetric spaces, the second and third line of the table describe
homotopes of the Grassmannians Grasp(R

n) = O(p + q)/O(p) × O(q) (which arise for B,C being identity
matrices). The first and last line describe homotopes of certain “polarized symmetric spaces” (see Section
4.3 below): notice first that A(1,1) and A(−1,−1) have, as vector spaces, a natural direct product structure;
the corresponding symmetric spaces inherit this product structure, but whereas for the first and last spaces
(in the first and last line) this product structure is global, for the middle two spaces it is only local: globally,
they are not direct products; for p = q they are homotopes of Sp(p,R)/Gl(p,R) resp. of O(p, p)/Gl(p,R)
(which are instances of “Cayley type symmetric spaces”); for p 6= q these families never contain reductive
symmetric spaces (and so far seem not to have appeared in the literature).
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3.4 Case of the algebra A = M(2, 2;B) for an involutive algebra B

An another important case of application of Theorem 3.4 is the algebra of 2 × 2-matrices A := M(2, 2;B)
with coefficients in B, where B is an associative algebra with involution ∗. Then A is again involutive: let us
call τ1(X) := (X∗)t (“transposed conjugate matrix”) the standard involution of A. Besides τ1, there are at
least three other fairly canonical involutions on A. They are defined using the matrices

J :=

(
0 1
−1 0

)
, F :=

(
0 1
1 0

)
, I := JF =

(
1 0
0 −1

)
. (3)

For an invertible matrix B let B∗(X) = BXB−1 be conjugation by B; if τ(B) = ±B−1, then τ ◦B∗ = B∗ ◦ τ
is again an involution. Hence we have the following involutions

τJ := J∗ ◦ τ1, τF := F∗ ◦ τ1, τI := I∗ ◦ τ1 .

These involutions commute among each other, and τ1 ◦ τJ = J∗, τI ◦ τF = J∗, etc. We have the following
explicit formulae:

τ1

(
a b
c d

)
=

(
a∗ c∗

b∗ d∗

)
, τJ

(
a b
c d

)
=

(
d∗ −b∗

−c∗ a∗

)
,

τF

(
a b
c d

)
=

(
d∗ b∗

c∗ a∗

)
, τI

(
a b
c d

)
=

(
a∗ −c∗

−b∗ d∗

)
.

We call τJ the symplectic involution and τF the artinian involution of A. In the following, we will mainly
be interested in the case B = M(n, n;K) with X∗ = Xt (transposed matrix); then A = M(2, 2;B) =
M(2n, 2n;K), and the standard involution τ1 on A is precisely the usual transposed of 2n × 2n-matrices.
Therefore the eigenspaces of τ1 are Sym(2n,K) and Asym(2n,K). For the eigenspaces of τF , note that
Xt = X is equivalent to F (FX)tF = FX , and hence

AτF = FAτ1 = FSym(2n,K), A−τF = FA−τ1 = FAsym(2n,K) (4)

Similarly, AτI = ISym(2n,K) and A−τI = IAsym(2n,K), but

AτJ = JA−τ1 = JAsym(2n,K), A−τJ = JAτ1 = JSym(2n,K) (5)

In the following, we assume that K = R. Then τI ◦τF = J∗ is conjugation by the standard complex structure
on R2n, and hence its fixed point algebra is M(n, n;C).

Theorem 3.8 (Homotopes of the Siegel half plane) With notation as above, let B = M(n, n;R), whence
A = M(2n, 2n;R), and fix the pair of involutions (τ, τ̃ ) := (τI , τF ), so that φ = J∗ is conjugation by J . Then
the eigenspaces are

A(1,1) = Sym(n,C), A(−1,1) = IHerm(n,C), A(1,−1) = FHerm(n,C), A(−1,−1) = Asym(n,C)

and Aφ = M(n, n;C), and the Lie triple systems from Theorem 3.4 are explicitly given by the following table:

A ∈ A(1,1) A ∈ A(−1,1) A ∈ A(1,−1) A ∈ A(−1,−1)

A(1,1) (gln(A,C), on(A,C)) (spn(IA,R), un(IA,C)) (spn(FA,R), un(FA,C)) spn
2
(A,C)

A(−1,1) (o2n(IA,R), on(A,C) (gln(IA,C), un(IA,C)) un(FA,C) (spn(FA,R), spn
2
(A,C))

A(1,−1) (o2n(FA,R), on(A,C) un(IA,C) (gln(FA,C), un(FA,C)) (spn(IA,R), spn
2
(A,C))

A(−1,−1) on(A,C) (o2n(FA,R), un(IA,C)) (o2n(IA,R), un(FA,C)) (gln(A,C), spn
2
(A,C))

Proof. First of all, we describe the eigenspaces: as noticed above, Aφ = M(n, n;C), that is, a complex matrix

a+ ib will be identified with X =

(
a b
−b a

)
∈ A. Similarly,

A−φ =
{(

a b
b −a

)
| a, b ∈ M(n, n;R)

}
= I M(n, n;C) (6)
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is the space of C-antilinear operators (whose base point I is complex conjugation). As an associative triple
system, it is isomorphic to M(n, n;C). Now note that the complex matrix a+ ib is symmetric iff a and b are
real symmetric matrices, which means that X is fixed under the involution τI (and not under the standard
involution!). Summing up,

Sym(n,C) = AJ∗ ∩ AτI = AτF ∩ AτI = A(1,1) . (7)

Similarly

A(−1,−1) = AJ∗ ∩ A−τI =
{( a b

−b a

)
| at = −a, bt = −b

}
= Asym(n,C).

Next, a+ ib is Hermitian iff a = at and b = −bt, whence τ1(A) = A and thus

AτJ ∩ Aτ1 = AJ∗ ∩ Aτ1 = M(n, n;C) ∩ Sym(2n;R) = Herm(n,C)

A(τ,−τ̃) = A−J∗ ∩ AτI =
{(a b

b −a

)
| at = −a, bt = b

}
= I Herm(n,C)

A(−τ,τ̃) = A−J∗ ∩ A−τI =
{(a b

b −a

)
| at = a, bt = −b

}
= I Aherm(n,C) = F Herm(n,C) . (8)

Now, for A belonging to a joint eigenspace, let us determine the Lie triple systems. The Lie triple structure
for the four “corners” of the table is simply the one of Lemma 3.2, applied to the algebra Aφ = M(n, n;C)
with involution being usual transposed. Similarly, the four “inner entries” of the table correspond to the

associative pair A−φ = IM(n, n;C) with involution corresponding to X 7→ X
t
on M(n, n;C). For the

remaining eight Lie triple systems (g, h), the stabilizer algebra h is given by the algebra on the intersection
of the same column with the diagonal. The Lie algebra g is then one of the algebras Aτ = ISym(2n,R),
Aτ̃ = FSym(2n,R) (symplectic) or A−τ = IAsym(2n,R), A−τ̃ = FAsym(2n,R) (orthogonal). One just has
to pay attention that all objects are well-defined; for instance, if A ∈ IHerm(n,C), then IA ∈ Herm(n,C) is
a real symmetric matrix (hence o2n(IA;R) is well-defined), and JIA ∈ JHerm(n,C) = Aherm(n,C) is skew-
Hermitian (hence un(FA;C) is well-defined) and also skew-symmetric (hence spn(FA,R) is well-defined),
and so on.

Comments. In the preceding theorem, A(1,1) and A(−1,−1) have a natural underlying structure of complex
vector space, hence on the level of symmetric spaces we obtain homotopes of (pseudo-) Hermitian symmetric
spaces. In particular, the first line describes homotopes of the Siegel half plane Spn(R)/U(n). Indeed, the

third family of symmetric pairs in this line can be written in the form (spn
(( a b

−b a

)
,R

)
, un(a + ib,C))

with a ∈ Asym(n,R) and b ∈ Sym(n,R), so that the Siegel half plane corresponds to the choice a = 0, b = 1.

3.5 Algebras of quaternionic matrices

The next two theorems deal with quaternionic matrices. There are two different viewpoints: we may consider
M(n, n;H) as a real form of the complex algebra A = M(2n, 2n;C), thus thinking of quaternionic matrices as
a special kind of complex matrices; or we may work intrinsically with matrices having coefficients in H. We
start with the latter viewpoint: recall the two involutions of H from Chapter 2, and let A = M(n, n;H) and

consider the two involutions τ(X) := X
t
and τ̃ (X) = X̃t. They commute, and φ = τ ◦ τ̃ is the automorphism

acting on each coefficient by conjugation with the quationion j. The field fixed under conjugation by j in H

is R⊕ jR ∼= C, and hence Aφ ∼= M(n, n;C). Note that (̃jaij) = −ãijj = −jaij , which implies

jHerm(n,H) = Aherm(n, H̃), jAherm(n,H) = Herm(n, H̃) . (9)

Theorem 3.9 (Homotopes of quaternionic type. I) With notation as above, let A = M(n, n;H) and fix the
pair of involutions (τ, τ̃ ). Then the eigenspaces are

A(1,1) = Herm(n,C), A(−1,1) = iSym(n,C), A(1,−1) = iAsym(n,C), A(−1,−1) = Aherm(n,C)

and Aφ ∼= M(n, n;C), and the Lie triple systems from Theorem 3.4 are explicitly given by the following table
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A ∈ A(1,1) A ∈ A(−1,1) A ∈ A(1,−1) A ∈ A(−1,−1)

A(1,1) (gln(A,C), un(A,C)) (un(A, H̃), spn
2
(A,C)) (un(A,H), on(A,C)) un(A,C)

A(−1,1) (un(A, H̃), un(A,C)) (gln(A,C), spn
2
(A,C)) on(A,C) (un(A, H̃), un(A,C))

A(1,−1) (un(A,H), un(A,C)) spn
2
(A,C) (gln(A,C), spn

2
(A,C)) (un(A,H), un(A,C))

A(−1,−1) un(A,C) (un(A, H̃), spn
2
(A,C)) (un(A,H), on(A,C)) (gln(A,C), un(A,C))

Proof. For the eigenspaces, let A = (aij) ∈ M(n, n;H). Then A ∈ A(1,1) iff A ∈ Aφ and A
t
= A, iff

aij ∈ R ⊕ jR = C and aij = aji in C, that is, iff A ∈ Herm(n,C). Similarly, A ∈ A(1,−1) iff aij ∈ iR ⊕ kR
and aij = −aji, that is, iff iA is a complex symmetric matrix. The remaining computations are similar as
above, so we omit details.

Comments. Notice that here the second and third line correspond to homotopes of (pseudo-) Hermitian
symmetric spaces. Indeed, by direct inspection we see that the diagram contains precisely the c-dual sym-
metric pairs from those given in Theorem 3.8. In particular, the third line contains homotopes of the Siegel
half plane (or, equivalently, of its compact dual Sp(n)/U(n)).

Theorem 3.10 (Homotopes of quaternionic type. II) Let A = M(2n, 2n;C) and fix the pair of involutions

(τ, τ̃ ) with τ(X) = IXtI and τ̃ (X) = FX
t
F . Then the eigenspaces are

A(1,1) ∼= Aherm(n,H), A(−1,1) ∼= Herm(n,H), A(1,−1) ∼= Aherm(n,H), A(−1,−1) = Herm(n,H)

and Aφ ∼= M(n, n;H), and the Lie triple systems from Theorem 3.4 are explicitly given by the following table

A ∈ A(1,1) A ∈ A(−1,1) A ∈ A(1,−1) A ∈ A(−1,−1)

A(1,1) (gln(A,H), un(A, H̃)) (u2n(A,C), un(A,H)) (spn(A,C), un(A, H̃)) un(A,H)

A(−1,1) (u2n(A,C), un(A, H̃)) (gln(A,H), un(A,H)) un(A, H̃) (o2n(A,C), un(A,H))

A(1,−1) (o2n(A,C), un(A, H̃)) un(A,H) (gln(A,H), un(A, H̃)) (u2n(A,C), un(A,H))

A(−1,−1) un(A, H̃) (spn(A,C), un(A,H)) (u2n(A,C), un(A, H̃)) (gln(A,H), un(A,H))

Proof. Since φ(X) = IFXFI = JXJ−1, the algebra Aφ is the real form M(n, n;H) of M(2n, 2n;C), and
A−φ = iM(n, n;H) is, as associative triple system, again isomorphic to M(n, n;H). The restriction of τ
to Aφ = M(n, n;H) has the same effect as the involution X 7→ X̃t there, thus A(1,1) = Herm(n, H̃) ∼=
Aherm(n,H) (mind the isomorphism (9)), and similarly for the other joint eigenspaces. This gives the
inner 2 × 2-square and the square formed by the corner entries. For the remaining eight spaces, observe
that A−τ ∼= o2n(A,C) and A−τ̃ ∼= u2n(A,C); combining with the known diagonal entries, this permets to
complete the table.

4 Homotopes of classical real symmetric spaces

4.1 Classical Groups

The following lemma leads to a definition of Lie groups and algebraic groups corresponding to the algebras
defined in Section 2:

Lemma 4.1 Let A be an associative algebra with involution ∗ and fix A ∈ A.

(1) The product X ·A Y = X + Y −XAY defines a group structure on the set

GA := {X ∈ A | 1−XA ∈ A×}.

The neutral element is 0, and the inverse is jA(X) = −(1 − XA)−1X. More generally, for any
associative pair (A+,A−) the same formulae define a group structure on A+, for each A ∈ A−.

(2) If A∗ = A, then the following is a subgroup of GA:

UA := {X ∈ GA | jA(X) = X∗} = {X ∈ GA | X∗ +X = X∗AX}
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(3) If A∗ = −A, then the following is a subgroup of GA:

SA := {X ∈ GA | jA(X) = −X∗} = {X ∈ GA | X∗ −X = X∗AX}

(4) If A is finite dimensional over K = R, then these groups are Lie groups having as Lie algebra the
corresponding algebra from Lemma 2.1.

Proof. (1) Associativity is checked by direct computation; for inversion check first that X 7→ 1 − AX is a
homomorphism from ·A to the usual product. For the case of an associative pair, see [BeKi09].

(2) If A∗ = A, then ∗ is an antiautomorphism of GA. Note that the condition jA(X) = X∗ is equivalent
to −X = (1−XA)X∗, hence to X∗ +X = XAX∗. This proves (2), and (3) is shown similarly.

(4) This follows easily by differentiating (see [BeKi09] for a more algebraic argument).

If F is a base ring with involution δ and A = M(n, n;F) we write also

label underlying set parameter space product
Un(A;F, δ) := {X ∈ Gln(A;F)|X + δ(X)t = δ(X)tAX} A ∈ Herm(n;F, δ) X ·A Y
Spn(A;F, δ) := {X ∈ Gln(A;F)|X − δ(X)t = δ(X)tAX} A ∈ Aherm(n;F, δ) X ·A Y

and using the standard involutions of R,C,H leads to the following table of classical groups

label underlying set parameter space product
Gln(A;F) := {X ∈ M(n, n;F)|1−AX invertible} A ∈ M(n, n;F) X ·A Y
Glp,q(A;F) := {X ∈ M(n, n;F)|1−AX invertible} A ∈ M(q, p;F) X ·A Y
On(A;K) := {X ∈ Gln(A,K)|X +Xt = XtAX} A ∈ Sym(n;K) X ·A Y
Spn/2(A;K) := {X ∈ Gln(A,K)|X −Xt = XtAX} A ∈ Asym(n;K) X ·A Y

Un(A;C) := {X ∈ Gln(A,K)|X +X
t
= X

t
AX} A ∈ Herm(n;C) X ·A Y

Un(A;H) := {X ∈ Gln(A,H)|X +X
t
= X

t
AX} A ∈ Herm(n;H) X ·A Y

Un(A; H̃) := {X ∈ Gln(A,H)|X + X̃t = X̃tAX} A ∈ Herm(n; H̃) X ·A Y

Concerning classification up to isomorphy, the same remarks as in Section 2 hold: for all g, h ∈ Gl(n,K), the
groups Gln(gAh;K) and Gln(A;K) are isomorphic, via the map X 7→ gXh. In particular, Gln(A;K) and
Gln(−A;K) are isomorphic. Similarly, unitary or (half-)symplectic groups labelled with A and A′ = gAτ(g)
for g ∈ Gl(n,F) are isomorphic.

4.2 Classical Symmetric Spaces

Now we are ready to give a list of classical symmetric spaces G/H and their homotopes. The labelling given
below corresponds to the classification of Jordan triple systems (see Part II; at this point the labelling may
look rather inconsequent – in fact, it follows the one from [Be00], Chapter XII; in particular, 1.1, 1.2, 1.3
are real forms of the complex type 1, and so on). The term “classical symmetric space” is used here for
symmetric spaces corresponding to the matrix families of Jordan triple systems. Exceptional spaces and the
“semi-exceptional” family of spin factors are not considered here.

Theorem 4.2 The following tables contain symmetric spaces Mα = Gα/Hα that are homotopes of each
other in the following sense: fix an underlying real vector space V +; in case V + is a space M(p, q;F) of
rectangular matrices, we let V − := M(q, p;F), and in all other cases (spaces of symmetric, Hermitian or
skew-Hermitian matrices) we let V − := V +. For each such pair (V +, V −) of vector spaces, define families
of linear maps α : V + → V − as in the tables; then V + with triple bracket

[X,Y, Z]α := T (X,αY, Z)− T (Y, αX,Z),

where T (X,Y, Z) = XY Z+ZYX (with XY Z and ZY X being usual matrix products), is a Lie triple system,
and it is the LTS belonging to the symmetric space Gα/Hα in the corresponding line of the following tables:

Spaces of rectangular matrices

1. V + = M(p, q;K), V − = M(q, p;K), K = R,C:
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label symmetric space Gα/Hα α : V + → V − parameter set
1.a group case Glp,q(A,K) α(X) = AXA A ∈ M(q, p;K)
1.a’ Glp,q(A,K[i])/Glp,q(A,K) α(X) = −AXA A ∈ M(q, p;K)

1.b Op+q(

(
A 0
0 B

)
;K)/Op(A;K)×Oq(B;K) α(X) = AXtB A ∈ Sym(p,K), B ∈ Sym(q,K)

1.c Sp p+q

2

(

(
A 0
0 B

)
;K)/Spp

2
(A;K)× Sp q

2
(B;K) α(X) = AXtB A ∈ Asym(p,K), B ∈ Asym(q,K)

1. cases of C-antilinear α: V + = M(p, q;C), V − = M(q, p;C):

label symmetric space Gα/Hα α : V + → V − parameter set

1.A Glp,q(A;M(2, 2;R))/Glp,q(A;C) α(X) = AXA A ∈ M(q, p;C)
1.A’ Glp,q(A;H)/Glp,q(A;C) α(X) = −AXA A ∈ M(q, p;C)

1.B Up+q(

(
A 0
0 B

)
;C)/Up(A;C)×Uq(B;C) α(X) = AX

t
B A ∈ Herm(p,C), B ∈ Herm(q,C)

1.3 V + = M(p, q;H), V − = M(q, p;H)

label symmetric space Gα/Hα α : V + → V − parameter set
1.3.a group case Glp,q(A,H) α(X) = AXA A ∈ M(q, p;H)
1.3.a’ Glp,q(A,M(2, 2;C))/Glp,q(A,H) α(X) = −AXA A ∈ M(q, p;H)

1.3.b Up+q(

(
A 0
0 B

)
;H)/Up(A;H)×Uq(B;H) α(X) = AX

t
B A ∈ Herm(p,H), B ∈ Herm(q,H)

1.3.c Up+q(

(
A 0
0 B

)
; H̃)/Up(A; H̃)×Uq(B; H̃) α(X) = AX̃tB A ∈ Herm(p, H̃), B ∈ Herm(q, H̃)

Spaces of symmetric matrices

2. V := V + = V − = Sym(n,K), K = R,C:

label symmetric space Gα/Hα α : V → V parameter set
2.a Gln(A;K)/On(A;K) α(X) = AXA A ∈ Sym(n,K)
2.a’ Un(A;K[i])/On(A;K) α(X) = −AXA A ∈ Sym(n,K)
2.b group space Spn

2
(A;K) α(X) = AXA A ∈ Asym(n,K)

2.b’ Spn
2
(A;K[i])/Spn

2
(A;K) α(X) = −AXA A ∈ Asym(n,K)

2. case of antilinear α: V = V + = V − = Sym(n,C):

label symmetric space Gα/Hα α : V → V parameter set

2.A Un(A;H)/Un(A;C) α(X) = AXA A ∈ Herm(n,C)

2.A’ Spn

(( b a
−a b

))
/Un(b + ia,C) α(X) = −AXA A = a+ ib ∈ Herm(n,C)

Spaces of skewsymmetric matrices

3. V = V + = V − = Asym(n,K), K = R,C:

label symmetric space Gα/Hα α : V → V parameter set
3.a Gln(A;K)/Spn/2(A;K) α(X) = AXA A ∈ Asym(n,K)

3.a’ Un(A;K[i])/Spn/2(A;K) α(X) = −AXA A ∈ Asym(n,K)

3.b group case On(A;K) α(X) = AXA A ∈ Sym(n,K)
3.b’ On(A;K[i])/On(A;K) α(X) = −AXA A ∈ Sym(n,K)

3. Case of antilinear α: V = V + = V − = Asym(n,C)

label symmetric space Gα/Hα α : V → V parameter set

3.A Un(A, H̃)/Un(A,C) α(X) = AXA A ∈ iHerm(n,C)

3.A’ O2n

(( a b
−b a

)
,R

)
/Un(b + ia,C) α(X) = −AXA A = a+ ib ∈ Herm(n,C)

Spaces of Hermitian matrices
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1.1 V = V + = V − = Herm(n,C)

label symmetric space Gα/Hα α : V → V parameter set
1.1.a Gln(A,C)/Un(A,C) α(X) = AXA A ∈ Herm(n,C)
1.1.a’ group case Un(A,C) α(X) = −AXA A ∈ Herm(n,C)

1.1.b Un(A, H̃)/On(A,C) α(X) = AXA
t

A ∈ Sym(n,C)

1.1.b’ O2n(

(
a b
b −a

)
;R)/On(a+ ib;C) α(X) = −AXA

t
A = a+ ib ∈ Sym(n,C)

1.1.c Spn(

(
a b
b −a

)
;R)/Spn/2(a+ ib;C) α(X) = AXA

t
A = a+ ib ∈ Asym(n,C)

1.1.c’ Un(A,H)/Spn/2(A,C) α(X) = −AXA
t

A ∈ Asym(n,C)

3.1 V + = V − = Herm(n,H):

label symmetric space Gα/Hα α : V → V parameter set
3.1.a Gln(A,H)/Un(A,H) α(X) = AXA A ∈ Herm(n,H)
3.1.a’ U2n(IA,C)/Un(A,H) α(X) = −AXA A ∈ Herm(n,H)

3.1.b group case Un(A, H̃) α(X) = AXA A ∈ Herm(n,H)

3.1.b’ O2n(IA,C)/Un(A, H̃) α(X) = −AXA A ∈ Herm(n,H)

2.2 V + = V − = Herm(n, H̃):

label symmetric space Gα/Hα α : V → V parameter set

2.2.a Gln(A,H)/Un(A, H̃) α(X) = AXA A ∈ Herm(n, H̃)

2.2.a’ U2n(IA,C)/Un(A, H̃) α(X) = −AXA A ∈ Herm(n, H̃)

2.2.b group case Un(A,H) α(X) = AX̃A A ∈ Herm(n, H̃)

2.2.b’ Sp2n(IA,C)/Un(A,H) α(X) = −AX̃A A ∈ Herm(n, H̃)

Proof of the theorem. All descriptions arise from Theorem 3.4 by identifying a joint eigenspace A(i,j) with a
matrix space V +. Technical complications arise by the fact that a given matrix space V + may be realized
in several different ways as a joint eigenspace by using different algebras; this then leads to the various
formulas for the endomorphisms α, involving, besides the expression AXA occuring already in Lemma 3.1,
transposition and complex or quaternionic conjugation of matrices. When carrying out the computations,
one may mind the following general rules:

1. A minus sign always switches from a LTS to its c-dual LTS (indicated by adding a “prime” to the
label; if a line contains together with a space its c-dual, then the c-dual line is omitted).

2. For K = C, a C-linear map α leads to a symmetric space which is defined over C, whereas a C-antilinear
map leads to homotopes of (pseudo-)Hermitian symmetric spaces.

3. Every table contains exactly one line which is of “groupe type”. For these cases, the LTS can be
directly deduced from the definitions (table in Section 2).

4. In all square matrix cases, there is one symmetric space of the form “general linear/unitary (resp.
symplectic)”, arising from the simpler situation of an algebra with a single involution (Lemma 3.2).

For reasons of place, we will not spell out computations for all cases. Let us just look at some examples:
in case 1.b of rectangular matrices we calculate the LTS corresponding to Line 2 of Theorem 3.7: the
symmetric space O(A, A, τ)/O(A, A, τ) ∩ O(A, A; τ̃) where A is the diagonal matrix with blocks B and C,
has LTS A(−1,1) with triple product [X,Y, Z]A. Now

[(
0 X
Xt 0

)
,

(
0 Y
Y t 0

)
,

(
0 Z
Zt 0

)]

A
=

(
0 U
U t 0

)
,

with U = XBY tCZ + ZBY tCX − (Y BXtCZ + ZBXtCY ), leading to the claimed formula for the LTS.
The computation for the other rectangular case are similar, it suffices to replace τ by the adjoint matrix
w.r.t a Hermitian form on the (skew-)fields C and H.
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For the case of the Siegel-space (label 2.A’), the complex conjugation appearing in the formula for α
stems from the imbedding Sym(n,C) ⊂ M(2n, 2n;R) used in Theorem 3.8; the similar case 3.A’ arises from
the same theorem. On the other hand, the imbedding Sym(n,C) ⊂ M(n, n;H) from Theorem 3.9 leads to
the c-duals of these two cases (labels 2.A and 3.A).

Under the duality of columns and lines mentioned in the preceding chapter, the Siegel-space and its
analog correspond to the two families 1.1.b’ and 1.1.c having V = Herm(n,C) as underlying space (Theorem
3.8); similarly for the two families 1.1.b and 1.1.c’ using Theorem 3.9.

Finally, tables 3.1 and 2.2 are covered by Theorem 3.10; mind again the isomorphism (9) Herm(n, H̃) =
jAherm(n,H) (in the complex case we have, of course, Aherm(n,C) = iHerm(n,C), which explains why
table 1.1 corresponding to this case is longer than the others).

4.3 Polarized spaces

For the following result, recall that a twisted polarized symmetric space is a symmetric space having a local,
but not global direct product structure. Formally, such spaces have properties very similar to (pseudo-)
Hermitian symmetric spaces, with complex structures (J2 = −1) replaced by polarizations (J2 = 1), see
[Be00]. If both eigenspaces of J have equal dimension, one speaks of para-complex structures and para-
Hermitian symmetric spaces. Among the latter are the so-called Cayley type symmetric spaces (which
correspond precisely to the case when V + = V − = V is a Euclidean Jordan algebra). Such spaces always
have homotopes that are global direct products; we will not list them here, and focus only on homotopes
that are again twisted polarized.

Theorem 4.3 (Homotopes of para-Hermitian symmetric spaces) The following table contains homotopes of
classical para-Hermitian symmetric spaces that are not globally direct products. The underlying space is in
all cases q := V + × V −, with Lie triple product

[(X,X ′), (Y, Y ′), (Z,Z ′)]α = T ((X,X ′), α(Y, Y ′), (Z,Z ′))− T ((Y, Y ′), α(X,X ′), (Z,Z ′))

with α : V + × V − → V + × V − as below and

T ((X,X ′), (Y, Y ′), (Z,Z ′)) := (XY ′Z + ZY ′X,X ′Y Z ′ + Z ′Y X ′).

label symmetric space Gα/Hα α : V → V parameter set

1.a Gl2p,2q(

(
A 0
0 B

)
;K)/Glp,q(A;K)×Glp,q(B;K) α(X,Y ) = (AXtB,AtY tBt) A,B ∈ M(p, q;K)

1.b Glp+q(

(
A 0
0 B

)
;K)/Glp(A;K)×Glq(B;K) α(X,Y ) = (AXA,BY B)

A ∈ M(p, p;K),
B ∈ M(q, q;K)

2. Spn(

(
0 A

−At 0

)
;K)/Gln(A;K) α(X,Y ) = (AXA,AY A) A ∈ M(n, n;K)

3. O2n(

(
0 A
At 0

)
;K)/Gln(A;K) α(X,Y ) = (AXA,AY A) A ∈ M(n, n;K)

1.1. U2n(

(
0 A

A
t

0

)
;C)/Gln(A;C) α(X,Y ) = (AXA,AY A) A ∈ M(n, n;C)

3.1. U2n(

(
0 A

A
t

0

)
;H)/Gln(A;H) α(X,Y ) = (AXA,AY A) A ∈ M(n, n;H)

2.2. U2n(

(
0 A

Ãt 0

)
; H̃)/Gln(A;H) α(X,Y ) = (AXA,AY A) A ∈ M(n, n;H)

Proof. The proof is a special case of the following more general result:

Theorem 4.4 (Homotopes of twisted polarized symmetric spaces) The following table contains homotopes
of classical twisted polarized symmetric spaces that are not globally direct products. Using notation as above,
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label symmetric space Gα/Hα (V +, V −) parameter set

1. Glr+s,r′+s′(

(
A 0
0 B

)
;K)/Glr,r′(A;K)×Gls,s′(B;K) (M(r, s′),M(r′, s))

A ∈ M(r′, r;K),
B ∈ M(s′, s;K)

2. Spn(

(
0 A

−At 0

)
;K)/Glp,q(A;K) (Sym(p,K), Sym(q,K)) A ∈ M(q, p);K)

3. Op+q(

(
0 A
At 0

)
;K)/Glp,q(A;K) (Asym(p;K),Asym(q;K)) A ∈ M(q, p;K)

1.1. Up+q(

(
0 A

A
t

0

)
;C)/Glp,q(A;C) (Herm(p,C),Herm(q,C)) A ∈ M(p, q;C)

3.1. Up+q(

(
0 A

A
t

0

)
;H)/Glp,q(A;H) (Herm(p,H),Herm(q,H)) A ∈ M(q, p;H)

2.2. Up+q(

(
0 A

Ãt 0

)
; H̃)/Glp,q(A;H) (Herm(p, H̃),Herm(q, H̃)) A ∈ M(q, p;H)

Proof. Cases 2 and 3 arise from Theorem 3.7, and 1.1, 3.1 and 2.2 are treated similarly. Proof for case 1:
Let τ : M(p, q;K) → M(p, q;K), X 7→ Ir,r′XIs,s′ . Clearly τ2 = id, and hence, if τ(A) = A or τ(A) = −A,
τ is an automorphism of the Lie triple product [X,Y, Z]A, and hence both eigenspaces are sub-LTS. Now,
both eigenspaces are (as vector spaces) direct products of two spaces of rectangular matrices having LTS as
given in the claim.

Remark 4.5 From a Jordan theoretic point of view the latter spaces are all polarized spaces associated to
Jordan pairs of the form (V +, V −) = (I, J) where (I, J) is a pair of inner ideals in a (simple) Jordan pair
(W+,W−) (cf. Part II). If I and J are not isomorphic as vector spaces, then the corresponding spaces
are polarized but not para-complex, and they are never semi-simple. Nevertheless, they have deformations
to semi-simple spaces (namely to direct products of the simple spaces associated to each factor, i.e., to the
Jordan pair (I, I)× (J, J)).

4.4 Isomorphism classes

As pointed out in Lemma 3.5 and the following remark, it is not difficult to deduce from the preceding
results a classification up to isomorphism. Generally speaking, isomorphism classes will be parametrized by
singling out, for the matrices A,B,C appearing in the parameter spaces, certain matrices in normal form:
matrices with coefficients aii ∈ {0, 1}, aij = 0 else, if A is assumed to be rectangular; diagonal matrices with
coefficients 0, 1,−1 if A,B,C are supposed to be symmetric or Hermitian; standard skew matrices if A,B,C
are assumed to be skew. Note that the non-degenerate choices are exactly those corresponding to the tables
from [Be00], Chapter XII; since these lists are already quite long, we will not go into details.

Note also that in low dimensional cases several isomorphisms of spaces occur: in Section 3.7 of Part II
we give an overview over such isomorphisms.

4.5 Global geometric description: “intrinsic” versus “extrinsic”

The theory explained so far is purely infinitesimal (level of Lie triple systems); the coset spaces Gα/Hα

written above are, for the moment, just abstract homogeneous spaces. However, even in the general setting
(general base ring K), there are global geometric realizations such that one can “follow the contractions” on
the space level. If K is a topological ring (and in particular for K = R), the spaces carry manifold structures,
and contractions will depend smoothly (in a suitable sense) on the deformation parameter α. We will not go
here into details. It is, however, worth mentioning that there are two different kinds of geometric realization,
called intrinsic and extrinsic, respectively (see introduction of [Be00] for an overview). Both of them are
well compatible with homotopy.

4.5.1 Intrinsic realization

A simple example is the “general linear group” GA which, for all A, is realized in Part (1) of Lemma 4.1 as
Zariski-dense part of the same underlying space A. In the general case, there is a similar realization, but
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one has to add “points at infinity” to the underlying affine space of the LTS: for a fixed pair (V +, V −), all
spaces Gα/Hα can be realized inside a common underlying “generalized projective space” (which can be
considered as a “projective completion” of V + and is a compact symmetric R-space for the classical real
spaces considered here). This can be proved in different ways, where the following strategies 1 and 3 work in
the general framework, and strategy 2 works only for K = R,C and suitable topological assumptions (such
as finiteness of dimension, or a Banach space context):

1. using Jordan theory, following the general (and abstract) presentation from [Be08];

2. using Lie theory: one notices that qα := {v+αv| v ∈ g1} is a “defining plane” in the language of [Ma73],
i.e., a sub-LTS of the “conformal” Lie algebra g1 ⊕ g0 ⊕ g−1 such that the subgroup generated by its
exponential image has an open orbit in the projective completion, which then is an open symmetric
orbit (this is the original approach by Makarevic, [Ma73], [Ma79], developed further in [Be00]);

3. in the more specific framework of associative algebras with involution from [BeKi09]: as shown there,
to an associative algebra corresponds an associative geometry X , and involutions τi lift to involutions
of this geometry. The statements of Lemma 3.1 and Theorem 3.4 then essentially lift to the space level
and can thus be used to define symmetric spaces globally.

Conal spaces. For each V + there is exactly one family that admits a particularly simple intrinsic description
in the underlying vector space V + (i.e., like in the example GA mentioned above, these spaces have “no points
at infinity”): these are the spaces of the form GA/UA, resp. GA/SA associated to an algebra A with single
involution τ . Since the product X ·A Y = X + Y −XAY in A is associative, the formula

GA ×Herm(A) → Herm(A), (g,X) 7→ g ·A X ·A τ(g)

for A ∈ Herm(A) defines an action. The stabilizer of 0 is, by its definition, the τ -unitary group UA, whence

GA/UA = {g ·A gt | g ∈ GA} = {g + gt − gAgt | g ∈ GA}

which is open in Herm(A) if A is real finite-dimensional. As special cases we have global descriptions of the
symmetric spaces

Gln(A,K)/On(A;K), Gln(A,F)/Un(A;F), Gln(A,K)/Spn/2(A;K) ,

which are contractions of the classical symmetric cones (see [FK94]) M = Gl(n,R)/O(n), Gl(n,C)/U(n),
Gl(n,H)/Sp(n) , and of their non-convex analogs.

4.5.2 Extrinsic realization

The realization of the unitary group UA from Part (2) of Lemma 4.1 is good example of an extrinsic symmetric
space: by its definition, inversion jA in UA is obtained by restricting the affine map X 7→ X∗ to UA, and
from this it follows easily that the symmetry (inversion) with respect to Y in UA is induced by the affine
map

sY : A → A, X 7→ Y ·A X∗ ·A Y = 2Y +X∗ − Y AX∗ − Y AY −X∗AY + Y AX∗AY.

An extrinsic symmetric space is a submanifold M in an affine space, together with a family (sY )Y ∈M of
affine maps of order 2 and preserving M , called symmetries, such that sY (Y ) = Y and sXsY sX = ssXY , and
such that the tangent space TY M is exactly the −1-eigenspace of the linear part of sY (the +1-eigenspace
then gives rise to a family of normal spaces; usually, one demands also the existence of a compatible pseudo-
Riemannian structure, see, e.g., [Ka08]). These properties are satisfied in the above example of UA, and
similarly for SA. Note that, as A varies, the submanifold UA ⊂ A also varies, but the family (UA)A∈A

obviously depends “nicely” on A. In particular, if A tends to zero, this submanifold tends to the affine
subspace Aherm(A) of A. By intersection, all of this generalizes to symmetric spaces defined by two or
more involutions of A. The general linear group GA is not defined by an involution, so it seems not to fit
into this picture. But we may realize it in the bigger algebra Â := A ⊕ Aop with its exchange involution
τ((a, b)) = (b, a): if A = (a, a), then UA(Â) is nothing but GA, realized as extrinsic symmetric space. All of
these facts generalize to the general Jordan theoretic context to be given in Part II: the symmetric spaces
Gα/Hα can be realized as families of extrinsic symmetric spaces, such that for α → 0 these submanifolds
tend to a flat affine subspace.
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4.5.3 Invariant generalized conformal structures

The global intrinsic realization reveals also that all symmetric spaces belonging to the same pair (V +, V −) are
locally modelled on V + and hence have the same underlying invariant “generalized conformal (or projective)
structure”. This means, for instance:

• if V + is a Euclidean Jordan algebra (Sym(n,R), Herm(n,C), Herm(n,H)), then all homotopes have an
invariant causal structure (see [HO96]), modelled on the symmetric cone of the Jordan algebra,

• if V + is any Jordan algebra (Euclidean or not, such as M(n, n;F) or Asym(2n,K)), then the conal
space belonging to A = 1 (unit element of the algebra) is invariant under the structure group, and
hence gives rise to an invariant conal structure (non-convex in general), which is called a generalized
conformal structure by Gindikin and Kaneyuki (see [Be00] for more details and references),

• if V + is a complex vector space, the homotopes carry an invariant complex structure (“straight” if α
is C-linear, and “twisted” in the sense of [Be00] if α is antilinear),

• an invariant polarization if V + is as in Section 4.3.

The Jordan theoretic formulation to be given in Part II is well-adapted to describe such structures (and
gives, moreover, exceptional examples and the “semi-exceptional” family of projective quadrics).
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