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The Poisson Problem for the Exterior Derivative Operator

with Dirichlet Boundary Condition on Nonsmooth Domains

Dorina Mitrea, Marius Mitrea and Sylvie Monniaux∗

1 Introduction

In this paper we study the boundary value problem

du = f in Ω, Tru = g on ∂Ω, (1.1)

where Ω is a given Lipschitz subdomain of a manifold M , d is the exterior derivative
operator, and f , g are given differential forms in Ω and on ∂Ω, respectively. The goal is to
find a natural functional analytic framework where (1.1) has a solution u whose regularity
is consistent with that of the data f , g, and which satisfies a natural estimate. As such,
two scales inherently lend themselves for the task at hand, namely, Bp,q

s , the scale of Besov
spaces, and F p,q

s , the scale of Triebel-Lizorkin spaces (cf. §2.2 for definitions). Since most
of the time we shall work with both these scales, we shall often write Ap,q

s , A ∈ {B,F},
(with the obvious interpretation) as a way of referring to them simultaneously.

There are two types of issues associated with the problem (1.1), i.e., of analytical nature
(such as those stemming from the low regularity assumptions on the domain and the com-
patibility conditions the data must satisfy), and of topological nature (since the fact that
every closed form is exact entails that certain Betti numbers vanish). Our main results with
regard to the solvability of (1.1) fall under two categories. In the case when the smoothness
of the datum f is low, we have the following (precise definitions are given in §2; here we
only want to point out that ν stands for the outward unit conormal to ∂Ω):

Theorem 1.1 Let Ω be a Lipschitz subdomain of the smooth, compact, boundaryless man-
ifold M , and fix 1 < p, q < ∞, −1 + 1/p < s < 1/p. Then for each 0 ≤ ℓ ≤ n − 1 the
following two statements are equivalent.

(i) The (n− ℓ)-th Betti number of Ω vanishes, i.e. bn−ℓ(Ω) = 0.

(ii) There exists a finite constant C > 0 with the following significance. For any differ-
ential form f ∈ Ap,q

s (Ω,Λℓ) and any
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g ∈





Bp,q

s+1− 1

p

(∂Ω,Λℓ−1) if A = B,

Bp,p

s+1− 1

p

(∂Ω,Λℓ−1) if A = F,
(1.2)

subject to the (necessary) compatibility conditions

{
df = 0 in Ω,

ν ∧ f = −d∂(ν ∧ g) on ∂Ω,
(1.3)

there exists u ∈ Ap,q
s+1(Ω,Λ

ℓ−1) such that

{
du = f in Ω,

Tru = g on ∂Ω,
(1.4)

and for which

‖u‖Ap,q
s+1

(Ω,Λℓ−1) ≤ C‖f‖Ap,q
s (Ω,Λℓ) +





C‖g‖Bp,q

s+1− 1
p
(∂Ω,Λℓ−1) if A = B,

C‖g‖Bp,p

s+1− 1
p
(∂Ω,Λℓ−1) if A = F.

(1.5)

Finally, corresponding to ℓ = n, we have the following conclusion. There exists a finite
constant C > 0 such that for any f ∈ Ap,q

s (Ω,Λn) and any g as in (1.2) with ℓ = n, subject
to the compatibility conditions

〈f, χΩjVM 〉 = 〈ν ∧ g, χ∂Ωj
VM 〉, for each 1 ≤ j ≤ b0(Ω), (1.6)

where χE is the characteristic function of a set E, VM stands for the volume element on
M and {Ωj}1≤j≤b0(Ω) are the connected components of Ω, there exists u ∈ Ap,q

s+1(Ω,Λ
n−1)

satisfying (1.4) and (1.5) with ℓ = n.

When the smoothness of the datum f (and, hence, that of the solution u) is larger than
what has been considered so far, the ordinary trace operator alone is no longer adequate
in describing the nature of u on ∂Ω. Hence, the very formulation of the problem has to be
changed in order to reflect this novel aspect. Specifically, we have the following result (for
simplicity, stated here for Euclidean Lipschitz domains):

Theorem 1.2 Let Ω be an arbitrary bounded Lipschitz domain in Rn and assume that
1 < p, q <∞, k ∈ N and −1 + 1/p < s− k < 1/p. Furthermore, suppose that either A = B
and p = q or A = F and q = 2. Then, for each ℓ ∈ {0, 1, ..., n − 1}, the following two
statements are equivalent.

(i) The (n− ℓ)-th Betti number of Ω vanishes, i.e. bn−ℓ(Ω) = 0.

(ii) There exists a finite constant C > 0 with the following significance. The boundary
value problem
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du = f ∈ Ap,q
s (Ω,Λℓ) in Ω,

u ∈ Ap,q
s+1(Ω,Λ

ℓ−1),

Tr [∂αu] = gα ∈ Bp,p
s+1−k−1/p(∂Ω,Λ

ℓ−1) on ∂Ω, ∀α : |α| ≤ k,

(1.7)

is solvable if and only if the following compatibility conditions are satisfied (below, {ej}1≤j≤n

is the standard orthonormal basis in Rn):





df = 0 in Ω,

(νj∂k − νk∂j)gα = νjgα+ek − νkgα+ej

∀α : |α| ≤ k − 1, ∀ j, k ∈ {1, ..., n},

and

Tr [∂αf ] =
∑n

j=1 gα+ej ∧ dxj , ∀α : |α| ≤ k − 1.

(1.8)

Furthermore, granted (1.8), the solution u can be chosen to satisfy

‖u‖Ap,q
s+1

(Ω,Λℓ−1) ≤ C
(
‖f‖Ap,q

s (Ω,Λℓ) +
∑

|α|≤k

‖gα‖Bp,p
s+1−k−1/p

(∂Ω,Λℓ−1)

)
. (1.9)

Finally, in the case ℓ = n, the boundary problem (1.7) has a solution which, in addition,
satisfies (1.9) if and only if





(νj∂k − νk∂j)gα = νjgα+ek − νkgα+ej , ∀α : |α| ≤ k − 1, ∀ j, k ∈ {1, ..., n},
∫
Ωj
〈f, dx1 ∧ · · · ∧ dxn〉 dx =

∫
∂Ωj

〈ν ∧ g(0,...,0), dx1 ∧ · · · ∧ dxn〉 dσ, 1 ≤ j ≤ b0(Ω).

(1.10)

Of course, whenM is equipped with a (smooth) metric tensor and with δ and ∨ denoting
the adjoint of d and the interior product of forms, respectively, there are natural dual
versions of the above theorems corresponding to a formal application of the Hodge star
isomorphism. In the case of Theorem 1.1, the dual statement reads as follows.

Corollary 1.3 Let Ω be a Lipschitz domain and fix 1 < p, q < ∞, −1 + 1/p < s < 1/p,
2 ≤ ℓ ≤ n. Then the following two statements are equivalent.

(i) The (ℓ− 1)-th Betti number of Ω vanishes, i.e. bℓ−1(Ω) = 0.

(ii) For any differential form f ∈ Ap,q
s (Ω,Λℓ−1) and any g belonging to Bp,q

s+1− 1

p

(∂Ω,Λℓ) if

A = B, and to Bp,p

s+1− 1

p

(∂Ω,Λℓ) if A = F , subject to the (necessary) compatibility conditions

{
δf = 0 in Ω,

ν ∨ f = −δ∂(ν ∨ g) on ∂Ω,
(1.11)

there exists u ∈ Ap,q
s+1(Ω,Λ

ℓ) such that
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{
δu = f in Ω,

Tru = g on ∂Ω,
(1.12)

and such that the estimate naturally associated with (1.12) holds.
Finally, corresponding to the case ℓ = 1, the following conclusion is valid. There exists a

finite constant C > 0 such that for any f ∈ Ap,q
s (Ω) and any g belonging to Bp,q

s+1− 1

p

(∂Ω,Λ1)

if A = B, and to Bp,p

s+1− 1

p

(∂Ω,Λ1) if A = F , with

〈f, χΩj〉 = 〈g, χ∂Ωj
ν〉, for each 1 ≤ j ≤ b0(Ω), (1.13)

there exists u ∈ Ap,q
s+1(Ω,Λ

1) which solves (1.12) and which satisfies the estimate naturally
associated with this problem.

As for the Hodge dual version of Theorem 1.2, below we restrict ourselves to the case
of vector fields (leaving the formulation of the full statement to the interested reader).

Corollary 1.4 Let Ω be a bounded Lipschitz domain in Rn and assume that 1 < p, q <∞,
k ∈ N and −1 + 1/p < s− k < 1/p. Also, suppose that either A = B and p = q or A = F
and q = 2. Then the boundary value problem





div u = f ∈ Ap,q
s (Ω) in Ω,

u ∈ Ap,q
s+1(Ω,R

n),

Tr [∂αu] = gα ∈ Bp,p
s+1−k−1/p(∂Ω,R

n) on ∂Ω, ∀α : |α| ≤ k,

(1.14)

is solvable (in which case the solution obeys natural estimates) if and only if





(νj∂k − νk∂j)gα = νjgα+ek − νkgα+ej

∀α : |α| ≤ k − 1, ∀ j, k ∈ {1, ..., n},

and
∫
Ωj
f dx =

∫
∂Ωj

〈ν, g(0,...,0)〉 dσ, 1 ≤ j ≤ b0(Ω).

(1.15)

The above results provide a fairly complete picture of the solvability of the Poisson
problem, equipped with a Dirichlet boundary condition, for the exterior derivative operator
(and its adjoint) in Lipschitz domains, when the smoothness of the solution, as well as data,
is measured on Besov and Triebel-Lizorkin spaces. As regards the latter scale, of particular
interest is the case when q = 2, corresponding to Sobolev (potential) spaces.

In the case when Ω has a smooth boundary, (1.1) can eventually be reduced to an elliptic
problem for which standard techniques apply; this approach is carried out by G. Schwarz
in §3.3 of his monograph [43]; cf. also [44]. Nonetheless, for a number of applications, it is
important to allow ∂Ω to only be minimally smooth, in the sense of E. Stein (cf. [46]).

The particular case of Corollary 1.3 when ℓ = 1 and Ω is a connected, bounded, Lipschitz
domain in Rn, has received a lot of attention in the literature. This is due, in part, to the
fact that the Poisson boundary value problem for the divergence equation, i.e.,
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div u = f in Ω, Tru = g on ∂Ω, (1.16)

arises quite often in applications of physical interest. In this setting, u typically models the
displacement field in the equations of elasticity, or the velocity field in the hydrodynamics.
In fact, it was precisely its usefulness in the context of the Navier-Stokes equations that
gave us the impetus to undertake a systematic study of the problem (1.16) and carry out a
thorough study of the regularity properties of solution on scales of Besov-Triebel-Lizorkin
spaces in Lipschitz domains; cf. [38].

One of the earliest references in which (1.16) is treated in non-smooth domains is
J.Nečas’ book [39]. In Lemma 7.1 of Chapter 3 of that monograph, the case when Ω
is Lipschitz, p = 2 and s = 0 is treated via an approach which relies on duality (i.e., by
studying the mapping properties of the gradient operator).

A different approach, which makes extensive use of the mapping properties of singular
integral operators of Calderón-Zygmund type, was developed by M.E. Bogovski in the 80’s.
In [3], for a bounded, connected Lipschitz domain in Rn, the author constructs an integral
operator J , mapping scalar functions to vector fields, and with the following additional
properties:

div (J f) = f if f ∈ C∞
c (Ω) satisfies

∫

Ω
f dx = 0, (1.17)

J : Lp(Ω) −→W 1,p(Ω) boundedly, whenever 1 < p <∞, (1.18)

and J [C∞
c (Ω)] ⊂ C∞

c (Ω,Rn). (1.19)

Of these, property (1.19) is particularly surprising since J belongs to the class of integral
operators which, generally speaking, fail to have a local character.

The point of view we adopt in this paper is akin to that of Bogovski. More specifi-
cally, given a Lipschitz domain Ω (with trivial topology), we construct a family of integral
operators Jℓ, 1 ≤ ℓ ≤ n, mapping ℓ-forms to (ℓ− 1)-forms, and such that

Jℓ

[
C∞
c (Ω,Λℓ)

]
⊆ C∞

c (Ω,Λℓ−1), (1.20)

and, for each u ∈ C∞
c (Ω,Λℓ),

u =





J1(du) if ℓ = 0,

d(Jℓu) + Jℓ+1(du) if 1 ≤ ℓ ≤ n− 1,

d(Jnu) if ℓ = n, provided
∫
Ω u = 0.

(1.21)

Furthermore, we prove (in a precise sense) that each Jℓ is smoothing of order one on Besov
and Triebel-Lizorkin spaces. In this hierarchy, Bogovski’s operator corresponds precisely to
∗Jn∗, where ∗ is the Hodge star-isomorphism.

One remarkable feature of the middle equality in (1.21) is that if the (ℓ + 1)-form f
satisfies df = 0 (which, given that d2 = 0, is a necessary condition for the solvability of
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(1.1)), then u := Jℓf has du = f . This is strongly reminiscent of the classical Poincaré
lemma and, indeed, our definition of the operators Jℓ has, as starting point, an elegant
construction going back to the seminal work of E. Cartan. Cartan’s solution of Poincaré’s
lemma in an Euclidean domain Ω which is star-like with respect to the origin, involves an
explicit construction which requires integrating over rays emerging from 0 ∈ Ω. Since in
the present work we are naturally led to considering differential forms with discontinuous
coefficients, this construction is no longer suitable in its original inception, but a certain
averaged version of it will do. Remarkably, while these averaged Cartan-like operators
fail to be local in the sense of (1.20), it is their adjoints who satisfy (1.20). Conjugating
these adjoints with the Hodge star-isomorphism finally yields a family of integral operators
which are smoothing of order one and which satisfy (1.20)-(1.21). This interpretation helps
put Bogovski’s construction in the proper historical perspective while, at the same time,
de-mystifies some of its more unusual features.

The above discussion pertains to the local aspect of the work carried out in this paper.
Passing to global results is then done by invoking the powerful abstract machinery of De
Rham theory. As a result, a trade-mark feature which most of our main results inherit is
that certain topological characteristics of the underlying domain (in our case, the vanishing
of Betti numbers) can be described in purely analytical terms (i.e., well-posedness of certain
boundary value problems). It is this combination of techniques from seemingly unrelated
fields we consider to be our main contribution to the problem at hand.

Let us now survey further work in connection with the problems studied here. In [2],
D.N.Arnold, L.R. Scott and M.Vogelius proved higher-order regularity results for (1.16) in
the case when Ω is a polygonal domain in R2, and their main results are covered by our
Corollary 1.4. When Ω is a contractible, bounded, three-dimensional, Euclidean Lipschitz
domain, the problem (1.1) corresponding to f ∈ L2(Ω,R3) (i.e., a differential form of degree
one) and g = 0, has been solved by Z. Lou and A.McIntosh in [29]. The approach employed
by these authors consists of reducing this PDE to a scalar problem and, as mentioned on
page 1493 of [29], cannot be adapted to case when the data are higher-degree differential
forms. In our Theorem 1.1 we have successfully dealt with this issue.

That the problem (1.16) formulated in a bounded, Lipschitz domain Ω ⊂ Rn has a
solution u ∈ C0(Ω,Rn) ∩W 1,n(Ω,Rn) whenever g = 0 and f ∈ Ln(Ω) satisfies

∫
Ω f dx = 0,

is a fairly recent, deep result due to J.Bourgain and H.Brezis [5]. A peculiarity of the
problem considered in this context is that the solution operator cannot be chosen to be
linear. Shortly thereafter, a new approach to (1.16) for f ∈ Lp(Ω), 1 < p < ∞,

∫
Ω f = 0,

and g = 0 in bounded, Lipschitz subdomains of Rn has been developed by J.Bourgain
and H.Brezis in [6]. In the same paper, these authors also study the limiting cases p = 1
and p = ∞, for which they produce intricate counterexamples to the solvability of (1.1)
in W 1,p(Ω,Rn) even when Ω is an n-dimensional torus (in which scenario, the boundary
condition is void).

In relation to the negative result proved by J.Bourgain and H.Brezis for (1.16) with
data in L1, an interesting question is whether this problem can be solved for f ∈ h1(Ω), the
local Hardy space on Ω.

Other authors who have dealt with issues related to (1.1), (1.16), are W.Borchers and
H. Sohr [4], B. Dacorogna and J.Moser [8], B. Dacorogna [9], B.Dacorogna, N. Fusco and
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L.Tartar [10], R.Dautray and J.-L. Lions [11], L.Diening and M.Ružička [12], R.G.Durán
and M.A.Muschietti [13], G.Duvaut and J.-L. Lions [14], N.D. Filonov [15], G.P.Galdi
[17], V.Girault and P.-A. Raviart [18], T. Iwaniec and A. Lutoborski [21], L.V.Kapitanskĭı
and K.I. Piletskas [25], O.A. Ladyzhenskaya [27], O.A. Ladyzhenskaya and V.A. Solonnikov
[28], E.Magenes and G. Stampacchia [30], L. Tartar [47], R.Temam [49], W. von Wahl
[53], as well as X.M.Wang [54].

The plan of the remainder of the paper is as follows:
2. Preliminaries

2.1 Geometrical preliminaries
2.2 Review of smoothness spaces
2.3 Differential forms with Besov and Triebel-Lizorkin coefficients
2.4 Singular homology and sheaf theory

3. Mapping properties of singular integral operators
4. Local theory: distinguished homotopy operators
5. Relative cohomology
6. The proofs of the main results
7. Further applications

Acknowledgments. This work has been completed during successive visits at the Univer-
sité Aix-Marseille 3, France, and the University of Missouri-Columbia, USA. The authors
gratefully acknowledge the hospitality of these institutions.

2 Preliminaries

2.1 Geometrical preliminaries

LetM be a smooth, compact, oriented manifold of real dimension n, equipped with a smooth
metric tensor,

∑
j,k gjkdxj ⊗ dxk. Denote by TM and T ∗M the tangent and cotangent

bundles to M , respectively. Occasionally, we shall identify T ∗M ≡ Λ1 canonically, via the
metric. Set Λℓ for the ℓ-th exterior power of TM . Sections in this latter vector bundle are
ℓ-differential forms. The Hermitian structure on TM extends naturally to T ∗M := Λ1 and,
further, to Λℓ. We denote by 〈·, ·〉 the corresponding (pointwise) inner product. The volume
form on M , VM , is the unique unitary, positively oriented differential form of maximal
degree on M . In local coordinates, VM := [det (gjk)]

1/2dx1 ∧ dx2 ∧ ... ∧ dxn. In the sequel,
we denote by dλM the Borelian measure induced by the volume form VM on M , i.e.,
dλM = [det (gjk)]

1/2dx1dx2...dxn in local coordinates.
Going further, we introduce the Hodge star operator as the unique vector bundle mor-

phism ∗ : Λℓ → Λn−ℓ such that u ∧ (∗u) = |u|2 VM for each u ∈ Λℓ. In particular, VM = ∗ 1
and

u ∧ (∗v) = 〈u, v〉 VM , ∀u ∈ Λℓ, ∀ v ∈ Λℓ. (2.1)

The interior product between a 1-form ν and a ℓ-form u is then defined by
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ν ∨ u := (−1)ℓ(n+1) ∗ (ν ∧ ∗u). (2.2)

Let d stand for the (exterior) derivative operator and denote by δ its formal adjoint
(with respect to the metric introduced above). For further reference some basic properties
of these objects are summarized below.

Proposition 2.1 For arbitrary 1-form ν, ℓ-forms u, ω, (n − ℓ)-form v, and (ℓ + 1)-form
w, the following are true:

(1) 〈u, ∗v〉 = (−1)ℓ(n−ℓ)〈∗u, v〉 and 〈∗u, ∗ω〉 = 〈u, ω〉. Also, ∗ ∗ u = (−1)ℓ(n−ℓ) u;

(2) 〈ν ∧ u,w〉 = 〈u, ν ∨w〉;

(3) ∗(ν ∧ u) = (−1)ℓν ∨ (∗u) and ∗(ν ∨ u) = (−1)ℓ+1ν ∧ (∗u);

(4) ∗δ = (−1)ℓd∗, δ∗ = (−1)ℓ+1 ∗ d, and δ = (−1)n(ℓ+1)+1 ∗ d∗ on ℓ-forms.

Let Ω be a Lipschitz subdomain ofM . That is, ∂Ω can be described in appropriate local
coordinates by means of graphs of Lipschitz functions. Then the unit conormal ν ∈ T ∗M
is defined a.e., with respect to the surface measure dσ, on ∂Ω. For any two sufficiently
well-behaved differential forms (of compatible degrees) u, w we then have the integration
by parts formula

∫

Ω
〈du,w〉 dλM =

∫

Ω
〈u, δw〉 dλM +

∫

∂Ω
〈ν ∧ u,w〉 dσ

=

∫

Ω
〈u, δw〉 dλM +

∫

∂Ω
〈u, ν ∨ w〉 dσ. (2.3)

We conclude with a brief discussion of a number of notational conventions used through-
out the paper. We denote by Z the ring of integers and by N = {1, 2, ...} the subset of Z
consisting of positive numbers. Also, we set No := N ∪ {0}. By Ck(Ω), k ∈ No ∪ {∞}, we
shall denote the space of functions of class Ck in Ω, and by C∞

c (Ω) the subspace of C∞(Ω)
consisting of compactly supported functions. When viewed as a topological space, the latter
is equipped with the usual inductive limit topology and its dual, i.e. the space of distribu-

tions in Ω, is denoted by D′(Ω) :=
(
C∞
c (Ω)

)′
. Also, we set Ck(Ω,Λℓ) := Ck(Ω)⊗ Λℓ, etc.

Finally, we would like to alert the reader that, besides denoting the pointwise inner product
of forms, 〈·, ·〉 is also used as a duality bracket between a topological space and its dual (in
each case, the spaces in question should be clear from the context).

2.2 Review of smoothness spaces

We start by defining the Besov and Triebel-Lizorkin scales in Rn. The classical Littlewood-
Paley definition of Triebel-Lizorkin and Besov spaces (see, for example, [41]) has the fol-
lowing form. Consider a family of functions {ζj}

∞
j=0 in the Schwartz class with the following

additional properties:
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(i) there exist positive constants C1, C2, C3 such that

{
supp (ζ0) ⊂ {x ∈ Rn : |x| ≤ C1},

supp (ζj) ⊂ {x ∈ Rn : C2 2
j−1 ≤ |x| ≤ C3 2

j+1} if j ∈ N;
(2.4)

(ii)
∑∞

j=0 ζj ≡ 1 in Rn and for every multi-index α

sup
x∈Rn

sup
j∈N

2j|α||∂αζj(x)| < +∞. (2.5)

Then, with F denoting the Fourier transform in Rn, for s ∈ R and 0 < q ≤ ∞, 0 < p < ∞
the Triebel-Lizorkin spaces are defined as

F p,q
s (Rn) :=

{
f ∈ S′(Rn) : ‖f‖F p,q

s (Rn) :=
∥∥∥
( ∞∑

j=0

|2sjF−1(ζjFf)|
q
)1/q∥∥∥

Lp(Rn)
<∞

}
(2.6)

where S′(Rn) stands for the space of tempered distributions in Rn.
For 0 < p ≤ ∞, the Besov spaces are defined as

Bp,q
s (Rn) :=

{
f ∈ S′(Rn) : ‖f‖Bp,q

s (Rn) :=
( ∞∑

j=0

‖2sjF−1(ζjFf)‖
q
Lp(Rn)

)1/q
<∞

}
. (2.7)

As is well-known, the following embeddings hold

Ap,q1
s (Rn) →֒ Ap,q2

s (Rn) if q1 < q2 and p, s are arbitrary, (2.8)

Ap,q1
s1 (Rn) →֒ Ap,q2

s2 (Rn) if s1 > s2 and p, q1, q2 are arbitrary, (2.9)

and for each p, q, s,

f ∈ Ap,q
s (Rn) ⇐⇒ f ∈ Ap,q

s−1(R
n) and ∂jf ∈ Ap,q

s−1(R
n), 1 ≤ j ≤ n, (2.10)

with equivalence of norms.
Next, the class Ap,q

s (M), 1 < p, q <∞, s ∈ R, is obtained by lifting the Euclidean scale
Ap,q

s (Rn) to M via a C∞ partition of unity and pull-back. Given an arbitrary open subset
Ω of M , we denote by RΩf ∈ D′(Ω) the restriction of a distribution f on M to Ω. For
0 < p, q ≤ ∞ and s ∈ R we then set

Ap,q
s (Ω) := {f ∈ D′(Ω) : ∃ g ∈ Ap,q

s (M) such that RΩg = f},

‖f‖Ap,q
s (Ω) := inf {‖g‖Ap,q

s (M) : g ∈ Ap,q
s (M), RΩg = f}, f ∈ Ap,q

s (Ω).
(2.11)

The convention we make in (2.11) is that either A = F and p <∞ or A = B, corresponding
to, respectively, the definition of Triebel-Lizorkin and Besov spaces in Ω.
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Two other types of function spaces which will play an important role for us later on are
as follows. First, for 0 < p, q ≤ ∞, s ∈ R, we set

Ap,q
s,0(Ω) := {f ∈ Ap,q

s (M) : supp f ⊆ Ω},

‖f‖Ap,q
s,0(Ω) := ‖f‖Ap,q

s (M), f ∈ Ap,q
s,0(Ω),

(2.12)

where, as usual, either A = F and p < ∞ or A = B. Thus, Bp,q
s,0(Ω), F

p,q
s,0 (Ω) are closed

subspaces of Bp,q
s,0(M) and F p,q

s,0 (M), respectively. Second, for 0 < p, q ≤ ∞ and s ∈ R, we
introduce

Ap,q
s,z(Ω) := {f ∈ D′(Ω) : ∃ g ∈ Ap,q

s,0(Ω) such that RΩg = f},

‖f‖Ap,q
s,z(Ω) := inf {‖g‖Ap,q

s (M) : g ∈ Ap,q
s,0(Ω), RΩg = f}, f ∈ Ap,q

s,z(Ω),
(2.13)

(where, as before, A = F and p < ∞ or A = B). For further reference, it is worth singling
out the scale of Sobolev (potential) spaces defined for 1 < p <∞, s ∈ R, as

Lp
s(Ω) := F p,2

s (Ω), (2.14)

Lp
s,0(Ω) := {f ∈ Lp

s(M) : supp f ⊆ Ω}, (2.15)

Lp
s,z(Ω) := F p,2

s,z (Ω) = {f ∈ D′(Ω) : ∃ g ∈ Lp
s,0(Ω) such that RΩg = f}, (2.16)

equipped with natural norms. In particular, if W k,p(Ω), k ∈ No, 1 < p < ∞, stands for
classical Sobolev space of functions whose derivatives of order ≤ k lie in Lp(Ω), then

Lp
k(Ω) =W k,p(Ω) whenever k ∈ No, 1 < p <∞. (2.17)

For the remainder of this subsection we assume that Ω is a Lipschitz subdomain of M .
In this case, according to [42], there exists a universal linear extension operator. More
specifically, we have

Proposition 2.2 If Ω is a Lipschitz subdomain of M , then there exists a linear operator
E mapping C∞

c (Ω) into distributions on M , and such that for any 0 < p, q ≤ ∞ and s ∈ R,

E : Ap,q
s (Ω) −→ Ap,q

s (M) (2.18)

boundedly, and

RΩ ◦ E = I, the identity operator on Ap,q
s (Ω). (2.19)

Other properties of interest are summarized in the propositions below.

Proposition 2.3 For each 1 < p, q <∞ and s ∈ R,

Ap,q
s (Ω) = {u ∈ D′(Ω) : ∃C > 0 such that |〈u, φ〉| ≤ C‖φ̃‖

Ap′,q′

−s (M)
∀φ ∈ C∞

c (Ω)}, (2.20)

where tilde denotes extension by zero outside Ω.
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Proposition 2.4 If 1 < p, q <∞, 1/p + 1/p′ = 1, 1/q + 1/q′ = 1, then

(
Ap,q

s,z(Ω)
)∗

= Ap′,q′

−s (Ω) if s > −1 + 1
p , (2.21)

(
Ap,q

s (Ω)
)∗

= Ap′,q′

−s,z(Ω), if s < 1
p . (2.22)

In particular, if p, q ∈ (1,∞) and 1/p + 1/p′ = 1, 1/q + 1/q′ = 1, then

(Ap,q
s (Ω))∗ = Ap′,q′

−s (Ω), ∀ s ∈ (−1 + 1/p, 1/p). (2.23)

Furthermore, for each s ∈ R and 1 < p, q < ∞ the spaces Ap,q
s (Ω) and Ap,q

s,0(Ω) are
reflexive.

Proposition 2.5 Assume that 0 < pj, qj < ∞, sj ∈ R, j ∈ {1, 2}, θ ∈ (0, 1) and that
1/p = (1− θ)/p1 + θ/p2, 1/q = (1− θ)/q1 + θ/q2, s = (1− θ)s1 + θs2. Then

[Ap1,q1
s1 (Ω), Ap2,q2

s2 (Ω)]θ = Ap,q
s (Ω), (2.24)

[Ap1,q1
s1,0

(Ω), Ap2,q2
s2,0

(Ω)]θ = Ap,q
s,0(Ω), (2.25)

where [· , ·]θ stands for the complex interpolation bracket.

Proposition 2.6 If 1 < p, q <∞ and s ∈ R then RΩ, the operator of restriction to Ω maps

RΩ : Ap,q
s,0(Ω) −→ Ap,q

s,z(Ω) (2.26)

in a linear, bounded and onto fashion. Moreover, if −1 + 1/p < s then RΩ in (2.26) is
also one-to-one, hence an isomorphism. In this latter case, its inverse is the operator of
extension by zero outside Ω. In particular, this allows the identification

Ap,q
s,0(Ω) ≡ Ap,q

s,z(Ω), ∀ p, q ∈ (1,∞), ∀ s > −1 + 1/p. (2.27)

Another family of spaces which are goint to play an important role in our work is

◦

Ap,q
s (Ω) := the closure of C∞

c (Ω) in Ap,q
s (Ω), 0 < p, q ≤ ∞, s ∈ R, (2.28)

where, as usual, A = F or A = B.

Proposition 2.7 For every 1 < p, q <∞ and s ∈ R,

Ap,q
s,z(Ω) →֒

◦

Ap,q
s (Ω) →֒ Ap,q

s (Ω) (2.29)

continuously. Furthermore,
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C∞
c (Ω) →֒ Ap,q

s,z(Ω) densely, (2.30)

C∞(Ω) →֒ Ap,q
s (Ω) densely, (2.31)

C̃∞
c (Ω) →֒ Ap,q

s,0(Ω) densely, (2.32)

C∞
c (Ω) →֒

(
Ap,q

s (Ω)
)∗

densely, (2.33)

where, as before, tilde denotes the extension by zero outside Ω.

Proposition 2.8 Let 1 < p, q <∞ and s ∈ R. Then

◦

Ap,q
s (Ω) = Ap,q

s,z(Ω) if 1
p − s /∈ Z, (2.34)

◦

Ap,q
s (Ω) = Ap,q

s (Ω) if s < 1
p , (2.35)

and

◦

Ap,q
s (Ω) = Ap,q

s (Ω) = Ap,q
s,z(Ω) if s < 1

p and 1
p − s /∈ N. (2.36)

Turning to spaces defined on Lipschitz boundaries, assume 1 < p, q < ∞, 0 < s < 1,
and that Ω is the unbounded region in Rn lying above the graph of a Lipschitz function
ϕ : Rn−1 → R. We then define Bp,q

s (∂Ω) as the space of locally integrable functions g for
which the assignment Rn−1 ∋ x′ 7→ g(x′, ϕ(x′)) belongs to Bp,q

s (Rn−1). In particular, with
dσ denoting the area element on ∂Ω, it can be shown that

g ∈ Bp,p
s (∂Ω) ⇐⇒ ‖g‖Lp(∂Ω) +

(∫

∂Ω

∫

∂Ω

|g(x) − g(y)|p

|x− y|n−1+sp
dσxdσy

)1/p
<∞, (2.37)

whenever 1 < p, q <∞, 0 < s < 1.
The above definition then readily adapts to the case of a Lipschitz subdomain of the

manifold M , via a standard partition of unity argument. Having defined Besov spaces on
∂Ω with a positive, sub-unitary amount of smoothness, we then set

Bp,q
−s(∂Ω) :=

(
Bp′,q′

s (∂Ω)
)∗
, 1 < p, q <∞, 1/p+1/p′ = 1/q+1/q′ = 1, 0 < s < 1. (2.38)

Next, recall (cf. [23]) that the trace operators

Tr : F p,q
s (Ω) −→ Bp,p

s− 1

p

(∂Ω), Tr : Bp,q
s (Ω) −→ Bp,q

s− 1

p

(∂Ω), (2.39)

are well-defined, bounded and onto if 1 < p, q < ∞ and 1
p < s < 1 + 1

p . They also have a
common bounded right-inverse
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E : Bp,p

s− 1

p

(∂Ω) −→ F p,q
s (Ω), E : Bp,q

s− 1

p

(∂Ω) −→ Bp,q
s (Ω). (2.40)

The nature of some of the problems addressed in this paper requires that we work with
Besov spaces (defined on Lipschitz boundaries) which exhibit a higher order of smoothness
(than considered in (2.37)). Following [34], we now make the following definition.

Definition 2.9 Let Ω be a bounded Lipschitz domain in Rn. For p ∈ (1,∞), k ∈ N and
s ∈ (0, 1), define the (higher order) Besov space Ḃp,p

k−1+s(∂Ω) as the collection of all families
ġ = {gα}|α|≤k−1 of measurable functions defined on ∂Ω, such that if

Rα(x, y) := gα(x)−
∑

|β|≤k−1−|α|

1

β!
gα+β(y) (x − y)β , x, y ∈ ∂Ω, (2.41)

for each multi-index α of length ≤ k − 1, then

‖ġ‖Ḃp,p
k−1+s(∂Ω) :=

∑

|α|≤k−1

‖gα‖Lp(∂Ω) (2.42)

+
∑

|α|≤k−1

(∫

∂Ω

∫

∂Ω

|Rα(x, y)|
p

|x− y|p(k−1+s−|α|)+n−1
dσxdσy

)1/p
<∞.

Of course, when k = 1, condition (2.42) simply becomes (2.37). The trace theory
summarized in (2.39)-(2.40) has a natural analogue in the context of higher smoothness
spaces. More specifically, the following holds.

Proposition 2.10 Consider a bounded Lipschitz domain Ω in Rn, and let 1 < p, q < ∞,
1/p < s < 1+1/p and k ∈ N. Furthermore, suppose that either A = B and q = p or A = F
and q = 2. In this context, define the higher order trace operator

Trk−1 : A
p,q
k−1+s(Ω) −→ Ḃp,p

k−1+s−1/p(∂Ω) (2.43)

by setting

Trk−1 u :=
{
Tr [∂α u]

}
|α|≤k−1

, (2.44)

where the traces in the right-hand side are taken in the sense of (2.39). Then (2.43)-(2.44)
is a well-defined, linear, bounded operator, which is onto and whose kernel is given by

Ker
[
Trk−1

]
= Ap,q

k−1+s,z(Ω). (2.45)

That is,

Ap,q
k−1+s,z(Ω) = {u ∈ Ap,q

k−1+s(Ω) : Tr [∂
αu] = 0, for all α ∈ Nn

o with |α| ≤ k − 1}. (2.46)
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Moreover, the trace operator (2.43)-(2.44) has a bounded, linear right-inverse, i.e., there
exists a linear, continuous operator

Ex : Ḃp,p
k−1+s−1/p(∂Ω) −→ Ap,q

k−1+s(Ω) (2.47)

such that

ġ = {gα}|α|≤k−1 ∈ Ḃp,p
k−1+s−1/p(∂Ω) =⇒ Tr [∂α(Ex ġ)] = gα, ∀α : |α| ≤ k − 1. (2.48)

This is a version of a result proved in [34]. Related results have been proved by
A. Jonsson and H.Wallin in [23] (where the authors have dealt with more general sets
than Lipschitz domains). We conclude our review with one more equivalent characteriza-
tion of the space Ḃp,p

k−1+s(∂Ω), also proved in [34]. To state it, let {ej}j denote the canonical
orthonormal basis in Rn and set ν = (ν1, ..., νn) for the outward unit normal to Ω ⊂ Rn.

Proposition 2.11 Let Ω be a bounded Lipschitz domain in Rn and assume that 1 < p <∞,
0 < s < 1 and k ∈ N. Then

{gα}|α|≤k−1 ∈ Ḃp,p
k−1+s(∂Ω) ⇐⇒





gα ∈ Bp,p
s (∂Ω), ∀α : |α| ≤ k − 1

and

(νj∂k − νk∂j)gα = νjgα+ek − νkgα+ej

∀α : |α| ≤ k − 2, ∀ j, k ∈ {1, ..., n}.

(2.49)

We refer the reader to [7], [22], [32], [34], [41], [52], for a more detailed exposition of
these and other related matters. Here we only want to alert the reader that Ap,q

s (Ω,Λℓ) will
stand for Ap,q

s (Ω)⊗Λℓ, i.e. the collection of ℓ-forms with coefficients in Ap,q
s (Ω). In a similar

fashion, we set Bp,q
s (∂Ω,Λℓ) := Bp,q

s (∂Ω) ⊗ Λℓ and Ḃp,p
k−1+s(∂Ω,Λ

ℓ) := Ḃp,p
k−1+s(∂Ω) ⊗ Λℓ.

Scalar operators, such as trace, extension, etc., then have natural extensions to operators
in the differential form-valued context (and we shall continue to employ the same notation
as before).

2.3 Differential forms with Besov and Triebel-Lizorkin coefficients

In this paper we shall work with certain nonstandard smoothness spaces which are naturally
adapted to the type of differential operators we intend to study. Specifically, if Ω is an open
subset of M and if X is a space of distributions in Ω, we introduce

Dℓ(d;X) := {u ∈ X ⊗ Λℓ : du ∈ X ⊗ Λℓ+1}, (2.50)

Dℓ(δ;X) := {u ∈ X ⊗ Λℓ : δu ∈ X ⊗ Λℓ−1}, (2.51)

equipped with the natural graph norms. Throughout the paper, all derivatives are taken in
the sense of distributions.
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Let us now assume (as we shall do for the remainder of this subsection) that Ω ⊆ M
is an arbitrary Lipschitz domain with outward unit conormal ν ∈ T ∗M ≡ Λ1, and that
1 < p, q < ∞, 1/p + 1/p′ = 1, 1/q + 1/q′ = 1, and −1 + 1/p < s < 1/p. Also, let
ℓ ∈ {0, 1, ..., n}.

Next, inspired by (2.3), for each u ∈ Dℓ(d;A
p,q
s (Ω)) we can define ν ∧ u as a functional

on ∂Ω by setting

〈ν ∧ u, ψ〉 := 〈du,Ψ〉 − 〈u, δΨ〉 (2.52)

whenever TrΨ = ψ in one of the following two scenarios:

(i) A = B, the form ψ ∈ Bp′,q′

1/p−s(∂Ω,Λ
ℓ+1) is arbitrary and Ψ ∈ Bp′,q′

1−s (Ω,Λ
ℓ+1);

(ii) A = F , the form ψ ∈ Bp′,p′

1/p−s(∂Ω,Λ
ℓ+1) is arbitrary and Ψ ∈ F p′,q′

1−s (Ω,Λ
ℓ+1).

It follows (2.46) and (2.23), (2.38) that the operator

ν ∧ · : Dℓ(d;A
p,q
s (Ω)) −→





Bp,q

s− 1

p

(∂Ω,Λℓ+1) if A = B,

Bp,p

s− 1

p

(∂Ω,Λℓ+1) if A = F,
(2.53)

is well-defined and bounded.
Similarly, if u ∈ Dℓ(δ;A

p,q
s (Ω)), we can then define ν ∨ u as a functional by setting

〈ν ∨ u, ϕ〉 := −〈δu,Φ〉 + 〈u, dΦ〉 (2.54)

whenever TrΦ = ϕ in one of the following two scenarios:

(i) A = B, the form ϕ ∈ Bp′,q′

1/p−s(∂Ω,Λ
ℓ−1) is arbitrary and Φ ∈ Bp′,q′

1−s (Ω,Λ
ℓ−1);

(ii) A = F , the form ϕ ∈ Bp′,p′

1/p−s(∂Ω,Λ
ℓ−1) is arbitrary and Φ ∈ F p′,q′

1−s (Ω,Λ
ℓ−1).

Much as before, it follows that the operator

ν ∨ · : Dℓ(δ;A
p,q
s (Ω)) −→





Bp,q

s− 1

p

(∂Ω,Λℓ−1) if A = B,

Bp,p

s− 1

p

(∂Ω,Λℓ−1) if A = F,
(2.55)

is well-defined, linear and bounded.
The ranges of the operators (2.53), (2.55) are denoted by

X s,p
ℓ (∂Ω;A) →֒





Bp,q

s− 1

p

(∂Ω,Λℓ) if A = B,

Bp,p

s− 1

p

(∂Ω,Λℓ) if A = F,
(2.56)

X s,p
ℓ (∂Ω;A) =

{
f : f = ν ∧ u for some u ∈ Dℓ−1(d;A

p,q
s (Ω))

}
,

and
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Ys,p
ℓ (∂Ω;A) →֒





Bp,q

s− 1

p

(∂Ω,Λℓ) if A = B,

Bp,p

s− 1

p

(∂Ω,Λℓ) if A = F,
(2.57)

Ys,p
ℓ (∂Ω;A) =

{
g : g = ν ∨ w for some w ∈ Dℓ+1(δ;A

p,q
s (Ω))

}
,

respectively. These spaces are equipped with the natural “infimum” norms. It follows that
the operator

d∂ : X s,p
ℓ (∂Ω;A) −→ X s,p

ℓ+1(∂Ω;A), (2.58)

d∂f := −ν ∧ du, if f = ν ∧ u, u ∈ Dℓ−1(d;A
p,q
s (Ω)),

is well-defined, linear and bounded. Similarly, we define the operator

δ∂ : Ys,p
ℓ (∂Ω;A) −→ Ys,p

ℓ−1(∂Ω;A), (2.59)

δ∂g := −ν ∨ δw, if g = ν ∨ w, w ∈ Dℓ+1(δ;A
p,q
s (Ω)),

which, once again, is well-defined, linear and bounded.
We conclude by discussing a useful approximation result.

Lemma 2.12 Let Ω be a Lipschitz subdomain of M and assume that 1 < p, q <∞.

(i) If s ∈ R and u ∈ Dℓ(d;A
p,q
s (Ω)), then there exists a sequence uε ∈ C∞(Ω,Λℓ), ε > 0,

such that

uε → u in Ap,q
s (Ω,Λℓ) and duε → du in Ap,q

s (Ω,Λℓ+1) as ε→ 0+. (2.60)

(ii) If −1 + 1/p < s < 1/p and u ∈ Dℓ(d;A
p,q
s (Ω)) has ν ∧ u = 0, then there exists a

sequence uε ∈ C∞
c (Ω,Λℓ), ε > 0, such that

uε → u in Ap,q
s (Ω,Λℓ) and duε → du in Ap,q

s (Ω,Λℓ+1) as ε→ 0+. (2.61)

(iii) If s > 1/p and u ∈ Dℓ(d;A
p,q
s,z(Ω)), then there exists a sequence uε ∈ C

∞
c (Ω,Λℓ), ε > 0,

such that

uε → u in Ap,q
s,z(Ω,Λ

ℓ) and duε → du in Ap,q
s,z(Ω,Λ

ℓ+1) as ε→ 0+. (2.62)

Proof. Given a differential form u, we remark that all three approximation properties we
seek to prove are both local in nature and stable under pull-back. Hence, in all three cases,
there is no loss of generality in assuming that Ω is a bounded Lipschitz domain in Rn and
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that there exists an open, upright, truncated, circular cone Γ, centered at the origin of Rn,
such that

(∂Ω ∩ suppu)− Γ ⊆ Rn \Ω, (2.63)

(∂Ω ∩ suppu) + Γ ⊆ Ω. (2.64)

Assuming that this is the case, we pick two scalar functions ϕ± ∈ C∞
c (±Γ) with

∫
ϕ± = 1

and set ϕ±
ε := ε−nϕ±(· ε−1) for each ε > 0, sufficiently small.

After this preamble, we are ready to proceed with the proof of (i). Thus, assuming that
u is as above, we let w ∈ Ap,q

s (Rn,Λℓ) be compactly supported and such that RΩ(w) = u.
Then, so we claim, the sequence uε := RΩ(ϕ

−
ε ∗ w) ∈ C∞(Ω,Λℓ), ε > 0, does the job

advertised in (2.60). Indeed, the first convergence in (2.60) is clear, so we concentrate
on proving the second one. To this end, if v ∈ Ap,q

s (Rn,Λℓ+1) is a compactly supported
extension of du to Rn, then dw−v ∈ Ap,q

s,0(R
n\Ω,Λℓ+1). In particular, ϕ−

ε ∗(dw−v) vanishes
on Ω and, hence,

duε = RΩ(ϕ
−
ε ∗ dw) = RΩ(ϕ

−
ε ∗ v) → RΩ(v) = du in Ap,q

s (Ω,Λℓ+1) as ε→ 0+, (2.65)

concluding the proof of claim (i).
Next, if u is as in (ii), the fact that ν ∧ u = 0 on ∂Ω and Proposition 2.6 give that

ũ ∈ Dℓ(d;A
p,q
s,0(Ω)) and dũ = d̃u. Thus, in this case, the sequence of differential forms

uε := RΩ(ϕ
+
ε ∗ w) ∈ C∞

c (Ω,Λℓ), ε > 0, satisfies (2.61). Finally, if u is as in (iii), then the

same type of reasoning applies though, this time, dũ = d̃u is justified slightly differently.
More specifically, matters are readily reduced to checking that

〈u, δ(RΩη)〉 = 〈du,RΩη〉, ∀ η ∈ C∞
c (Rn,Λℓ+1), (2.66)

(here δ is the formal adjoint of d with respect to the Euclidean metric). To see this, we
may invoke (i) and select uε ∈ Ap,q

s (Ω,Λℓ) such that uε → u in Ap,q
s (Ω,Λℓ) and duε → du

in Ap,q
s (Ω,Λℓ+1) as ε→ 0+. Based on (2.3), for each η ∈ C∞

c (Rn,Λℓ+1) we may then write

〈u, δ(RΩη)〉 = lim
ε→0+

〈uε, δ(RΩη)〉 = lim
ε→0+

∫

Ω
〈uε, δη〉 dσ

= lim
ε→0+

∫

Ω
〈duε, η〉 dσ −

∫

∂Ω
〈Truε, ν ∨ η〉 dσ

= 〈du,RΩη〉,

since Truε → Tru = 0 in, say, Lp(∂Ω,Λℓ) as ε → 0+. This justifies (2.66) and finishes the
proof of the lemma. 2
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2.4 Singular homology and sheaf theory

For a topological space X , we set Hℓ
sing(X ;R) for the ℓ-th singular homology group of X over

the reals, ℓ = 0, 1, ... (cf., e.g., [31]). Then bℓ(X ), the ℓ-th Betti number of X , is defined
as the dimension of Hℓ

sing(X ;R). As is well known, bℓ(X ), ℓ = 0, 1, ..., are topological
invariants of X . In fact, b0(X ) is simply the number of connected components of X . The
most important case for us is when X is a Lipschitz subdomain Ω of the manifold M .

Next, we include a brief synopsis of some basic terminology together with some funda-
mental results from sheaf theory. Recall that a sheaf F on a topological space X is a double
collection {F(U), ρUV }V⊆U⊆X , indexed by open subsets of X , such that:

1. For each U open subset of X , F(U) is a vector space (over the reals) whose elements
are called sections of F over U ;

2. For each pair V ⊆ U of open subsets of X , we have that ρUV : F(U) → F(V ) is a vector
space homomorphism, called the restriction map, subject to the following two axioms.
Firstly, ρUU is the identity homomorphism of F(U), for any open set U . Secondly, for
any triplet W ⊆ V ⊆ U of open sets in X ,

ρUW = ρUV ◦ ρVW . (2.67)

In order to lighten notation, for each ω ∈ F(U) and any V ⊆ U open, we may write
ω|V in place of ρUV (ω). By virtue of (2.67), this is without loss of information.

3. For each U , open subset of X , any open covering {Ui}i∈I of U , and any family {ωi}i∈I ,
ωi ∈ F(Ui), satisfying the compatibility condition

ωi|Ui∩Uj = ωj|Ui∩Uj , for any i, j ∈ I (2.68)

there exists a unique section ω ∈ F(U) such that ω|Ui = ωi for any i ∈ I.

Given two sheaves F , G over X , a sheaf homomorphism ϑ : F → G is a collection of
vector space homomorphisms {ϑ(U) : F(U) → G(U)}U⊆X , indexed by open subsets of X ,
which commute (in a natural way) with the restriction mappings. We define supp (ϑ) as
the smallest closed set outside of which ϑ is the null sheaf homeomorphism.

A sheaf F over X is said to be fine if for each open, locally finite cover {Ui}i∈I of X
there exists a family of sheaf homomorphisms ϑi : F → F , i ∈ I, such that

supp (ϑi) ⊆ Ui, ∀ i ∈ I,
∑

i

ϑi = identityF . (2.69)

Next, assume that F0,F1, ... are sheaves over the topological space X and that, for
ℓ = 0, 1, ..., the mappings ϑℓ : F

ℓ → Fℓ+1 are sheaf homomorphisms. Then

0−−−→ F0
ϑ0

−−−→ F1
ϑ1

−−−→ F2
ϑ2

−−−→ · · · (2.70)

is called an exact complex provided the following two conditions are true:
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1. (the complex condition) ϑℓ+1 ◦ ϑℓ = 0 for ℓ = 0, 1, ...;

2. (the exactness condition) for each fixed index ℓ = 1, 2, ..., each point xo ∈ X , each
open neighborhood U of xo and any section ω ∈ Fℓ(U) such that ϑℓ(U)(ω) = 0,
there exist V ⊆ U , open neighborhood of xo and a section ω′ ∈ Fℓ−1(V ) for which
ϑℓ−1(V )(ω′) = ω|V .

One particular sheaf which is going to play an important role in the sequel is as follows.
Let X be as above and, for each open set O ⊆ X , consider

RO := {f : O → R : locally constant function}. (2.71)

Then the sheaf of locally constant functions on X is given by

LCFX :=
{
RO

}
O open in X

. (2.72)

Recall that for any reasonable topological space X one associates Hℓ
sing(X ;R), the clas-

sical ℓ-th singular homology group of X over the reals; see [31]. In this connection, we shall
make use of a deep theorem of DeRham which we present below in an abstract form, well
suited for our purposes.

Theorem 2.13 Let X be a Hausdorff, para-compact topological space, and let L0,L1, .. be
fine sheaves over X and, for ℓ = 0, 1, ..., let ϑℓ : L

ℓ → Lℓ+1 be sheaf homomorphisms such
that the following is an exact complex:

0−−−→ LCFX
ι
→֒ L0

ϑ0

−−−→ L1
ϑ1

−−−→ L2
ϑ2

−−−→ · · · (2.73)

(hereafter, ι denotes inclusion). Then

Hℓ
sing(X ;R) ∼=

Ker (ϑℓ : L
ℓ(X ) −→ Lℓ+1(X ))

Im (ϑℓ−1 : Lℓ−1(X ) −→ Lℓ(X ))
, ℓ = 1, 2, ... (2.74)

See [55], Theorem 5.25, p. 185 for a proof; cf. also [19].

3 Mapping properties of singular integral operators

For 0 ≤ δ, ρ ≤ 1 , m ∈ R, let Sm
ρ,δ be the class of symbols consisting of all functions

p ∈ C∞(Rn × Rn) such that for each pair of multi-indices β, γ there exists a constant Cβ,γ

such that

|∂βξ ∂
γ
xp(x, ξ)| ≤ Cβγ(1 + |ξ|)m−ρ|β|+δ|γ|, (3.1)

uniformly for (x, ξ) ∈ Rn × Rn. For p ∈ Sm
ρ,δ we define the pseudodifferential operator

p(x,D) by

p(x,D)f(x) := (2π)−n

∫

Rn

ei〈x,ξ〉p(x, ξ)Ff(ξ) dξ, f ∈ S(Rn), (3.2)
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and denote by OPSm
ρ,δ the class {p(x,D) : p ∈ Sm

ρ,δ}.
The following is a consequence of Theorem 6.2.2 on p. 258 of [50] (cf. also Remark. 3

on p. 257 of [50]).

Proposition 3.1 Let m ∈ R, 0 ≤ δ < 1 and fix s ∈ R, 1 < p, q < ∞, arbitrary. Then any
T ∈ OPSm

1,δ induces a bounded, linear operator

T : Ap,q
s (Rn) −→ Ap,q

s−m(Rn). (3.3)

An immediate consequence of the above result, which is going to be useful for us here
is recorded separately.

Corollary 3.2 Assume that m ∈ R, m > −n, and

Tf(x) := (2π)−n

∫

Rn

ei〈x,ξ〉b(ξ)Ff(ξ) dξ, f ∈ S(Rn), (3.4)

where, for each γ ∈ Nn
o ,

|(∂γb)(ξ)| ≤ Cγ |ξ|
m−|γ|, ξ ∈ Rn \ {0}. (3.5)

Fix 1 < p, q ≤ ∞, s ∈ R and φ,ψ ∈ C∞
c (Rn) (viewed below as multiplication operators).

Then

φTψ : Ap,q
s (Rn) −→ Ap,q

s−m(Rn) (3.6)

is a bounded operator.

We now turn our attention to mapping properties of operators given by singular integrals.
The result that suits our purposes reads as follows.

Theorem 3.3 Let 1 < p, q <∞ and s ∈ R be arbitrary and assume that

k(x, z) : Rn × (Rn \ {0}) → R (3.7)

is a function which satisfies:

(i) for some N = N(n, p, q, s) ∈ N sufficiently large,

sup
x∈Rn

sup
ω∈Sn−1

|(∂βz ∂
γ
xk)(x, ω)| < +∞ (3.8)

for all multi-indices β, γ ∈ Nn
o such that |β| + |γ| ≤ N (where Sn−1 denotes the unit

sphere in Rn);

(ii) there exists an integer −n ≤ m ≤ 0 such that

k(x, λz) =
1

λn+m
k(x, z), ∀λ > 0, ∀x, z ∈ Rn, z 6= 0; (3.9)
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(iii) if m = 0 in (ii), then it is also assumed that

∫

Sn−1

k(x, ω) dω = 0 for all x ∈ Rn. (3.10)

Then, if T is defined as

Tf(x) :=

∫

Rn

k(x, x− y)f(y) dy for all x ∈ Rn, (3.11)

(with the integral taken in the principal value sense when m = 0), it follows that for each
φ,ψ ∈ C∞

c (Rn) the operator

φTψ : Ap,q
s (Rn) −→ Ap,q

s−m(Rn) (3.12)

is bounded.

Prior to presenting the proof of the above theorem, we record a useful, well-known result
(cf., e.g., p. 73 in [46]).

Lemma 3.4 There exists a sequence {hj}j∈No, hj ∈ N and there exist homogeneous poly-
nomials {Yhj}j∈No, 1≤h≤hj

in Rn of degree j ∈ No which are harmonic in Rn and whose
restrictions to Sn−1 form an orthonormal basis for L2(Sn−1). In addition for each j ∈ No

there holds

∆Sn−1Yhj = −j(j + n− 2)Yhj if 1 ≤ h ≤ hj, (3.13)

where ∆Sn−1 is the Laplace-Beltrami operator on Sn−1.
Finally, fix −n ≤ m ≤ 0. Then for each j ∈ No and 1 ≤ h ≤ hj ,

Yhj(z)

|z|j+n+m
= F

(
bhj

)
(z), (3.14)

where, with Γ denoting the standard Gamma function,

bhj(z) := (−1)jγj,m
Yhj(z)

|z|j−m
and γj,m := (−1)j/2π

n
2
+m Γ( j2 −

m
2 )

Γ( j2 +
n
2 + m

2 )
, (3.15)

provided either −n < m < 0 and j ∈ No, or m ∈ {0,−n} and j ≥ 1.

Proof of Theorem 3.3. We first consider the case when −n < m < 0. With k(x, z) as in the
statement of Theorem 3.3 we may write, making use of Lemma 3.4,

k(x, z) =
1

|z|n+m
k
(
x,

z

|z|

)
=

∞∑

j=0

hj∑

h=1

ahj(x)
Yhj(z)

|z|j+n+m
, (3.16)

where
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ahj(x) :=

∫

Sn−1

Yhj(ω)k(x, ω) dω. (3.17)

In particular, it is standard to deduce from (3.13) and (3.8) that, for some sufficiently large
N ∈ N,

‖∂αahj‖L∞(Rn) ≤ CN j−N , |α| ≤ N. (3.18)

Thus,

Tf(x) =
∞∑

j=0

hj∑

h=1

ahj(x)Thjf(x), (3.19)

where, for each j ∈ No, 1 ≤ h ≤ hj ,

Thjf(x) :=

∫

Rn

F(bhj)(x− y)f(y) dy = (2π)−n

∫

Rn

ei〈x,ξ〉bhj(ξ)(Ff)(ξ) dξ. (3.20)

Thanks to (3.15), Corollary 3.2 applies and allows us to conclude that if 1 < p, q ≤ ∞
and s ∈ R are arbitrary, and if φ,ψ ∈ C∞

c (Rn), then

φThjψ : Ap,q
s (Rn) → Ap,q

s−m(Rn) is bounded, with norm ≤ CjM (3.21)

for some C and M depending only on n, p, q, s. Now, the fact that the operator (3.12) is
bounded follows from this and (3.18).

When m = 0 we proceed in a similar fashion, the sole difference being that, in this case,

ahj(x) =

∫

Sn−1

Yhj(ω)k(x, ω) dω = 0 when j = 0, (3.22)

by virtue of (3.10).
Finally, there remains to consider the case when m = −n. In this scenario, we first

notice that by (3.8), the fact that k(x, λz) = k(x, z), integrations by parts and duality,
it is relatively straightforward to show that, for each choice of the cutoff functions φ,ψ ∈
C∞
c (Rn),

φTψ : Lp
k(R

n) −→ Lp
k(R

n), boundedly, ∀ p ∈ (1,∞), (3.23)

for each k ∈ Z with |k| ≤ M . Here, M is a constant which can be as large as desired by
ensuring that N (introduced in connection with (3.8)) is sufficiently large.

By induction on θ (see below), we shall now show that, for any 1 < p, q <∞ and s ∈ R,
any operator T satisfying the current assumptions and any φ,ψ ∈ C∞

c (Rn),

φTψ : F p,q
s (Rn) −→ F p,q

s+θ(R
n) boundedly, (3.24)

for each θ ∈ {0, 1, ..., n}, provided N is large enough. To prove (3.24) when θ = 0, given
1 < p, q <∞ and s ∈ R, pick k ∈ Z such that s ∈ (k, k + 1) and such that (3.23) holds.
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Since, by (2.9), F p,q
s (Rn) →֒ Lp

k(R
n) →֒ F p,q

s−1(R
n), (3.23) allows us to conclude that

(φTψ)(f) ∈ F p,q
s−1(R

n) for each f ∈ F p,q
s (Rn). Moreover, for each j ∈ {1, ..., n}, we may

write

∂j [(φTψ)(f)] = (∂jφ)T (ψf) + (φT 1
j ψ)(f) + (φT 2

j ψ)(f). (3.25)

In the above identity, T 1
j , T

2
j are integral operators with kernel k1j (x, x−y) and k

2
j (x, x−y),

respectively, where we have set k1j (x, z) := (∂xjk)(x, z) and k2j (x, z) := (∂zjk)(x, z). Thus,

much as in the case of (φTψ)(f), it follows that (∂jφ)T (ψf), (φT
1
j ψ)(f) ∈ F p,q

s−1(R
n). Also,

by the first part of the current proof,

φT 2
j ψ : F p,q

s (Rn) −→ F p,q
s+n−1(R

n) boundedly, (3.26)

since the kernel k2j satisfies (3.8), as well as (3.9) withm := −n+1, and −n < −n+1 < 0. In
concert with (2.10), this analysis shows that (φTψ)(f) ∈ F p,q

s (Rn) plus a natural estimate,
completing the proof of (3.24) when θ = 0.

Next, assuming that (3.24) holds for some 0 ≤ θ ≤ n − 1, we shall prove a similar
conclusion with θ+1 in place of θ, essentially by running the same scheme as before. More
specifically, given f ∈ F p,q

s (Rn), (3.24) ensures that (φTψ)(f) ∈ F p,q
s+θ(R

n), whereas (3.26)
and the decomposition (3.25) can be used to show that ∂j[(φTψ)(f)] ∈ F p,q

s+θ(R
n) for each

j = 1, ..., n. Thus, invoking (2.10) once again, we may conclude that (φTψ)(f) belongs to
F p,q
s+θ+1(R

n), with appropriate control of the norm, as desired.
Having proved (3.12) (when m = −n) for the F -scale, the corresponding statement for

the B-scale can be deduced from this and real interpolation. This concludes the proof of
Theorem 3.3. 2

Our next goal is to prove similar mapping properties for a local version of the operator
(3.11). This portion of our analysis only requires knowing that, for some m ∈ R,

T : Ap,q
s (Rn) −→ Ap,q

s−m(Rn), p, q ∈ (1,∞), s ∈ R, (3.27)

is a bounded operator. We shall therefore assume that this is the case and, given a bounded
Lipschitz domain Ω in Rn, define

TΩf := RΩ(T f̃), f ∈ C∞
c (Ω), (3.28)

where ·̃ and RΩ stand, respectively, for the extension by zero outside Ω, and the restriction
to Ω of distributions in Rn. Thus, TΩ maps C∞

c (Ω) to (C∞
c (Ω))∗ and we aim at estab-

lishing mapping properties for this operator on Besov and Triebel-Lizorkin scales in Ω. A
preliminary result in this regard is as follows.

Proposition 3.5 Let p, q ∈ (1,∞). Then the operator TΩ maps Ap,q
s,z(Ω) linearly and bound-

edly into Ap,q
s−m(Ω), whenever s > 1

p − 1.

Proof. For each p, q ∈ (1,∞), s > 1
p − 1, and any f ∈ C∞

c (Ω), we may write
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‖TΩf‖Ap,q
s−m(Ω)

(1)
== ‖RΩ(T f̃)‖Ap,q

s−m(Ω)

(2)

≤ ‖T f̃‖Ap,q
s−m(Rn)

(3)

≤ C‖f̃‖Ap,q
s (Rn)

(4)
== C‖f̃‖Ap,q

s,0(Ω)

(5)

≤ C‖f‖Ap,q
s,z(Ω).

(3.29)

Indeed, equality (1) is a consequence of the way TΩ has been defined. Inequality (2) is due
to the boundedness of the restriction operator RΩ, whereas inequality (3) comes from the
assumption (3.27). Going further, equality (4) is due to the fact that the norm in Ap,q

s,0(Ω)
is inherited from the one in Ap,q

s (Rn). Finally, inequality (5) follows from Proposition 2.6,
granted that s > 1

p − 1.
Having justified (3.29), the density result (2.30) allows us then to conclude that the

operator TΩ maps Ap,q
s,z(Ω) boundedly into Ap,q

s−m(Ω) if s > 1
p − 1, as desired. 2

Proposition 3.6 The operator T ∗
Ω maps Ap,q

s,z(Ω) boundedly into Ap,q
s−m(Ω) if 1 < p, q < ∞

and s > 1
p − 1.

Proof. For f ∈ C∞
c (Ω), we claim that

T ∗
Ωf = RΩ(T

∗f̃), f ∈ C∞
c (Ω). (3.30)

In order to justify this, for any g ∈ C∞
c (Ω), we write

〈T ∗
Ωf, g〉

(1)
== 〈f, TΩg〉

(2)
== 〈f,RΩ(T g̃)〉

(3)
== 〈f̃ , T g̃〉

(4)
== 〈T ∗f̃ , g̃〉

(5)
== 〈RΩ(T

∗f̃), g〉,

(3.31)

where all pairings are to be understood in the sense of distributions. Indeed, equality (1)
is a consequence of the definition of the adjoint of TΩ, whereas equality (2) is based on the
definition of TΩ. Next, equality (3) follows from the way RΩ acts on distributions, while
equality (4) is simply the definition of the adjoint of T . Finally, equality (5) is once again
based on the definition of RΩ.

Since, by duality, T ∗ satisfies the same properties as T , Proposition 3.5 applies and the
desired conclusion follows from the representation (3.30). 2

Theorem 3.7 Let p, q ∈ (1,∞), s ∈ R, and denote by p′, q′ the conjugate exponents of p, q,
i.e. 1

p + 1
p′ = 1 and 1

q +
1
q′ = 1. Then the operator

TΩ : (Ap′,q′

−s (Ω))∗ −→ Ap,q
s−m(Ω) (3.32)

is bounded.

Proof. Dualizing the result proved for T ∗
Ω in Proposition 3.6, we see that

TΩ : (Ap,q
s (Ω))∗ −→ (Ap,q

s+m,z(Ω))
∗, s+m > 1

p − 1, (3.33)
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boundedly. In concert with Proposition 2.4, this implies, after relabeling, that

TΩ : (Ap′,q′

−s (Ω))∗ −→ Ap,q
s−m(Ω), s < 1

p +m, (3.34)

is a bounded operator. Moreover, Proposition 3.5 gives

TΩ : (Ap′,q′

−s (Ω))∗ −→ Ap,q
s−m(Ω), s > 1

p − 1 (3.35)

since, in this case, Ap,q
s,z(Ω) = (Ap′,q′

−s (Ω))∗. Now, (3.34) and (3.35) together imply the claim
in the theorem via interpolation. 2

Our last result in this section is deduced under the additional assumption that

TΩ(C
∞
c (Ω)) ⊆ C∞

c (Ω). (3.36)

Theorem 3.8 Granted (3.27) and (3.36), the operator TΩ maps (Ap′,q′

−s (Ω))∗ boundedly into
◦

Ap,q
s−m (Ω), whenever p, q ∈ (1,∞) and s ∈ R.

Proof. From Theorem 3.7 we know that TΩ maps (Ap′,q′

−s (Ω))∗ boundedly into Ap,q
s−m(Ω) for

all p, q ∈ (1,∞) and s ∈ R. Thanks to (2.33) and (3.36), we then obtain that TΩ maps

(Ap′,q′

−s (Ω))∗ into the closure of C∞
c (Ω) in Ap,q

s−m(Ω) and, by definition, the latter space is

precisely
◦

Ap,q
s−m (Ω). 2

4 Local theory: distinguished homotopy operators

In this section we shall construct a class of homotopy operators which allow us to prove
some Poincaré type results (pertaining to the fact that closed forms are locally exact) while
keeping precise track of the smoothness of the differential forms involved. Our main result
in this regard is the theorem below, whose proof occupies the bulk of this section.

Theorem 4.1 Let O ⊂ M be a coordinate patch and let Ω ⊂ O be a Lipschitz domain
which is starlike with respect to a ball (in the Euclidean geometry). Then there exist two
families of linear operators

Jℓ : C
∞
c (Ω,Λℓ) −→ C∞

c (Ω,Λℓ−1), 1 ≤ ℓ ≤ n, (4.1)

and

Kℓ :
(
C∞
c (Ω,Λℓ)

)′
−→

(
C∞
c (Ω,Λℓ−1)

)′
, 1 ≤ ℓ ≤ n, (4.2)

and which have the following additional properties.
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(1) For each 1 < p, p′ <∞, 1/p + 1/p′ = 1, s ∈ R, the operators

Jℓ :
(
Ap′,q′

−s (Ω,Λℓ)
)∗

−→
◦

Ap,q
s+1(Ω,Λ

ℓ−1), (4.3)

Kℓ :
( ◦

Ap′,q′
−s(Ω,Λ

ℓ)
)∗

−→ Ap,q
s+1(Ω,Λ

ℓ−1), (4.4)

are well-defined, linear and bounded, for each 1 ≤ ℓ ≤ n.

(2) There exists θ ∈ C∞
c (Ω) such that for any ℓ-form u with coefficients distributions in

Ω, i.e. u ∈
(
C∞
c (Ω,Λℓ)

)′
, there holds

u =





K1(du) + 〈u, θ〉 if ℓ = 0,

d(Kℓu) +Kℓ+1(du) if 1 ≤ ℓ ≤ n− 1,

d(Knu) if ℓ = n.

(4.5)

(3) There exists θ ∈ C∞
c (Ω) such that if 1 < p, q <∞ and −1 + 1/p < s, then

u =





J1(du) if ℓ = 0,

d(Jℓu) + Jℓ+1(du) if 1 ≤ ℓ ≤ n− 1,

d(Jnu) + 〈u,RΩ(VM )〉 θ VM if ℓ = n,

(4.6)

provided either

s < 1/p and u ∈ Dℓ(d;A
p,q
s (Ω)) is such that ν ∧ u = 0 on ∂Ω, (4.7)

or

s > 1/p and u ∈ Dℓ(d;A
p,q
s,z(Ω)). (4.8)

Proof. Given the local nature of the results and their invariance under pull-back, it suffices
to work under the assumption thatM = Rn (equipped with the standard Euclidean metric)
and that Ω is a bounded Lipschitz domain which is star-like with respect to some (Euclidean)
ball B ⊂ Ω. Assume that this is the case and bring in the classical Cartan homotopy
operator, which we now recall. Specifically, if ℓ ∈ {1, ..., n} and y ∈ B is fixed, define

Kℓ,yu(x) :=
∑

j1<···<jℓ

ℓ∑

k=1

(−1)k−1
(∫ 1

0
tℓ−1uj1...jℓ(y + t(x− y)) dt

)
·

·(xjk − yjk) dxj1 ∧ · · · ∧ d̂xjk ∧ · · · ∧ dxjℓ (4.9)
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for each ℓ-differential form u =
∑

j1<···<jℓ
uj1...jℓ dxj1 ∧ · · · ∧dxjℓ (where, as customary, ‘hat’

indicates that the symbol underneath is omitted). A straightforward calculation then shows
that

∀u ∈ C1(Ω,Λℓ) =⇒





u = K1,y(du) + u(y) if ℓ = 0,

u = d(Kℓ,yu) +Kℓ+1,y(du) if 1 ≤ ℓ ≤ n− 1,

u = d(Kn,yu) if ℓ = n.

(4.10)

See, e.g., Theorem 4.11 in [45], or [48] for more details.
We intend to work with differential forms whose coefficients are not necessarily continu-

ous and, hence, need to alter the definition (4.9) as to avoid integrating over thin sets. One
way to achieve this is to average the definition (4.9) with respect to y ∈ B. Concretely, for
some fixed function θ ∈ C∞

c (B) with
∫
θ = 1, we introduce for each 1 ≤ ℓ ≤ n

Kℓu(x) :=

∫

B
θ(y) [Kℓ,yu(x)] dy (4.11)

=

∫

B

∫ 1

0
tℓ−1θ(y)(x− y) ∨ u(y + t(x− y)) dtdy, x ∈ Ω,

where u ∈ C1(Ω,Λℓ). Above, x−y is identified with
∑n

j=1(xj −yj)dxj and ∨ stands for the
interior product of forms in Rn. Then the homotopy property (4.10) is further inherited by
the new family of operators. More specifically,

∀u ∈ C1(Ω,Λℓ) =⇒





u = K1(du) +
∫
Ω θu dx if ℓ = 0,

u = d(Kℓu) +Kℓ+1(du) if 1 ≤ ℓ ≤ n− 1,

u = d(Knu) if ℓ = n.

(4.12)

For reasons which will become clear in a moment, we find it convenient to consider Kt
ℓ ,

the transpose (in the sense of distributions) of (4.11), meaning

〈Kℓu, v〉 = 〈u,Kt
ℓv〉, ∀u ∈ C∞

c (Ω,Λℓ), ∀ v ∈ C∞
c (Ω,Λℓ−1). (4.13)

A straightforward calculation (based on a couple of changes of variables) shows that

Kt
ℓu(x) = −

∫

Ω

∫ ∞

1
(t− 1)ℓ−1tn−ℓθ(y + t(x− y))(x− y) ∧ u(y) dtdy, x ∈ Ω, (4.14)

whenever u ∈ C∞
c (Ω,Λℓ−1). One most notable feature of the operator (4.13) is that

supp (Kt
ℓu) is a subset of {λx + (1 − λ)y : x ∈ suppu, y ∈ B̄, 0 ≤ λ ≤ 1}. In partic-

ular, since Ω is assumed to be starlike with respect to the ball B, we may conclude that

Kt
ℓ[C

∞
c (Ω,Λℓ−1)] ⊆ C∞

c (Ω,Λℓ). (4.15)
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Going further, we note that the dual of (4.12) then becomes

∀u ∈ C1
c (Ω,Λ

ℓ) =⇒





u = δ(Kt
1u) +

(∫
Ω u dx

)
θ if ℓ = 0,

u = δ(Kt
ℓ+1u) +Kt

ℓ+1(δu) if 1 ≤ ℓ ≤ n− 1,

u = Kt
n(δu) if ℓ = n,

(4.16)

where, in the current context, δ denotes the formal transpose of d with respect to the (flat)
Euclidean metric in Rn. Let us point out that the case ℓ = 0 of (4.16) has also been derived
in [3].

With ‘star’ denoting the standard Hodge isomorphism in Rn, we now introduce another
operator of interest to us, i.e.

Jℓ := (−1)n(ℓ+1)+1 ∗Kt
n−ℓ+1 ∗ on ℓ-forms. (4.17)

Taking (4) in Proposition 2.1 into account, it easily follows from (4.17) and (4.16) that if
u ∈ C∞

c (Ω,Λℓ) then

Jℓu(x) =

∫

Ω

∫ ∞

1
(t− 1)n−ℓtℓ−1θ(y + t(x− y))(x− y) ∨ u(y) dtdy, x ∈ Ω, (4.18)

and

∀u ∈ C1
c (Ω,Λ

ℓ) =⇒





u = J1(du) if ℓ = 0,

u = d(Jℓu) + Jℓ+1(du) if 1 ≤ ℓ ≤ n− 1,

u = d(Jnu) +
(∫

Ω u
)
θ dx1 ∧ ... ∧ dxn, if ℓ = n.

(4.19)

Our next goal is to study the mapping properties of the operators Jℓ. To this end, it
clearly suffices to analyze scalar integral operators of the form

Tℓ,jf(x) :=

∫

Ω

∫ ∞

1
(t− 1)n−ℓtℓ−1(xj − yj)θ(y + t(x− y))f(y) dtdy, x ∈ Ω, (4.20)

where 1 ≤ j ≤ n, 1 ≤ ℓ ≤ n. To get started, let us first write Tℓ,jf in the form

Tℓ,jf(x) =

∫

Ω
kℓ,j(x, x− y)f(y) dy, x ∈ Ω, (4.21)

where

kℓ,j(x, z) := zj

∫ ∞

0
τn−ℓ(1 + τ)ℓ−1θ(x+ τz) dτ (4.22)
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is the integral kernel of Tℓ,j. Expanding (1+τ)
n−ℓ−1 via the Binomial Theorem and changing

variables so that z re-scales to a unit vector eventually shows that kℓ,j(x, z) can be written
as a linear combination of terms of the form

kj,i(x, z) :=
zj

|z|n−i

∫ ∞

0
τn−1−iθ(x+ τ z

|z|) dτ, 0 ≤ i ≤ ℓ− 1. (4.23)

Next, observe that each such kernel satisfies the uniform estimate

sup
x

sup
|z|=1

|∂βz ∂
γ
xkj,i(x, z)| < +∞ (4.24)

and the homogeneity condition kj,i(x, λz) = λ−n+i+1kj,i(x, z), for each λ > 0.
In particular, Theorem 3.8 guarantees that the integral operator with kernel kj,i(x, x − y)

maps (Ap′,q′

−s (Ω))∗ boundedly into
◦

Ap,q
s+i+1 (Ω) for each p, q ∈ (1,∞) and each s ∈ R. Thus,

all in all, the operator (4.3) is bounded. In fact, a similar argument yields (4.4) is bounded
as well.

Next, (4.2) is implied by (4.15), and (4.1) is a consequence of (4.15) and (4.17). Fur-
thermore, (4.5) follows directly from (4.12) and (4.2), whereas (4.6) is a corollary of (4.25),
(4.19) and Lemma 2.12. This finishes the proof of Theorem 4.1. 2

We conclude with a few remarks.

Remark I. As a corollary of (4.3)-(4.4) and Proposition 2.4, given any 1 < p, q < ∞, the
operators

Jℓ : A
p,q
s,z(Ω,Λ

ℓ) −→
◦

Ap,q
s+1(Ω,Λ

ℓ−1) if s > −1 + 1
p , (4.25)

Kℓ : A
p,q
s (Ω,Λℓ) −→ Ap,q

s+1(Ω,Λ
ℓ−1) if s < 1

p , (4.26)

are well-defined, linear and bounded for each 1 ≤ ℓ ≤ n. In fact, (4.25) self-improves to

Jℓ : A
p,q
s,z(Ω,Λ

ℓ) −→ Ap,q
s+1,z(Ω,Λ

ℓ−1) if s > −1 + 1
p , (4.27)

thanks to (2.34), (2.27), (2.24), (2.25) and interpolation.

Remark II. An inspection of the above proof shows the following. If D is an open subset of
Ω such that Ω\D is also star-like with respect to the ball B, then supp (Kℓu) ⊂ D whenever

u ∈
(
C∞
c (Ω,Λℓ)

)′
has suppu ⊂ D.

Remark III. If Ω is a bounded, open subset of Rn which is star-like with respect to a ball
B ⊂ Ω then, necessarily, Ω is a Lipschitz domain. See p. 17 in [33].
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5 Relative cohomology

In this section we compute the dimension of the so-called relative cohomology groups of
a Lipschitz domain Ω ⊂ M , for the exterior derivative operator considered in the context
of Besov-Triebel-Lizorkin spaces. Our approach consists of two steps. In a first stage, we
employ Theorem 2.13 for the complex associated with d on the scale Ap,q

s , in which scenario,
no boundary conditions are involved. In a subsequent step, boundary conditions are brought
into play in a natural fashion, by dualizing the results obtained in step one.

To set the stage, we first recall an elementary, abstract result. For any Banach space
X, we denote by X∗ its dual. Also, if V ⊆ X is a closed subspace of X, we set

V ⊥ := {Φ ∈ X∗ : Φ(v) = 0, ∀ v ∈ V } (5.1)

for the annihilator of V (relative to X).

Lemma 5.1 Let X be a Banach space and let 0 ⊆ W ⊆ V ⊆ X be closed subspaces of X.
Then

( V
W

)∗
≃
W⊥

V ⊥
. (5.2)

The proof is elementary and is left to the interested reader. The special cases V = X
and W = 0 are, in fact, well-known; cf., e.g., p. 86 in [40].

Consider next the family of unbounded operators

dℓ : A
p,q
s (Ω,Λℓ) −→ Ap,q

s (Ω,Λℓ+1), 0 ≤ ℓ ≤ n, (5.3)

with domains Dℓ(d;A
p,q
s (Ω)) and which act according to dℓ(u) := du for each differential

form u ∈ Dℓ(d;A
p,q
s (Ω)). The first order of business is to identify the dual of (5.3), assuming

that M is equipped with a (smooth) Riemannian metric.

Lemma 5.2 Let Ω be a Lipschitz domain, 1 < p < ∞, and fix s < 1
p with s 6= −1 + 1

p .

Also, let 1 < p′ < ∞ be such that 1/p + 1/p′ = 1. Then, for each 0 ≤ ℓ ≤ n, the adjoint of
the operator (5.3) is

d∗ℓ : A
p′,q′

−s,z(Ω,Λ
ℓ+1) −→ Ap′,q′

−s,z(Ω,Λ
ℓ) (5.4)

with domain

{u ∈ Dℓ+1(δ;A
p′,q′

−s (Ω)) : ν ∨ u = 0} if − 1 + 1
p < s < 1

p , (5.5)

and

Dℓ+1(δ;A
p′,q′

−s,z(Ω)) if s < −1 + 1
p , (5.6)

and which acts according to d∗ℓu = δu for each u in the domain of d∗ℓ .
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Proof. By definition, a differential form u ∈ Ap′,q′

−s,z(Ω,Λ
ℓ+1) belongs to the domain of d∗ℓ if

and only if there exists w ∈ Ap′,q′

−s,z(Ω,Λ
ℓ) such that

〈u, dη〉 = 〈w, η〉, ∀ η ∈ Dℓ(d;A
p,q
s (Ω)). (5.7)

Now, if we assume that the identity (5.7) holds, taking η ∈ C∞
c (Ω,Λℓ) yields, in view of

(2.3), that δu = w ∈ Ap′,q′

−s,z(Ω,Λ
ℓ) and, hence, u ∈ Dℓ+1(δ;A

p′,q′

−s,z(Ω)). In addition, when

−1 + 1
p < s < 1

p , (2.52) and (i) in Lemma 2.12 also give that ν ∨ u = 0.

Conversely, assume that −1 + 1
p < s < 1

p and that u ∈ Dℓ+1(δ;A
p′,q′

−s (Ω)) satisfies
ν∨u = 0. Based on (2.52) and (i) in Lemma 2.12, we may then deduce that 〈u, dη〉 = 〈δu, η〉
for each η ∈ Dℓ(d;A

p,q
s (Ω)). Thus, u belongs to the domain of d∗ℓ .

Finally, in the case when s < −1 + 1
p and u ∈ Dℓ+1(δ;A

p′,q′

−s,z(Ω)), we may once again

deduce that 〈u, dη〉 = 〈δu, η〉 for each η ∈ Dℓ(d;A
p,q
s (Ω)), this time by invoking (iii) in

Lemma 2.12 (written on the Hodge-dual side; cf. Proposition 2.1). Consequently, u belongs
to the domain of d∗ℓ , finishing the proof of the lemma. 2

In the sequel, we find it convenient to also introduce

d−1 : R
b0(Ω) −→ Ap,q

s (Ω), d−1

[
(λj)1≤j≤b0(Ω)

]
:=

b0(Ω)∑

j=1

λjχΩj . (5.8)

Here, b0(Ω) = dimH0
sing(Ω;R) is the number of connected components of Ω, denoted by Ωj,

1 ≤ j ≤ b0(Ω), and generally speaking, χE is the characteristic function of the set E. It is
then easy to check that, for 1 < p, p′ <∞, 1/p+ 1/p′ = 1, −1 + 1/p < s < 1/p, the adjoint
of (5.8) is

d∗−1 : A
p′,q′

−s (Ω) −→ Rb0(Ω), d∗−1(f) =
(
〈f, χΩj 〉

)
1≤j≤b0(Ω)

. (5.9)

Proposition 5.3 Let Ω be a Lipschitz domain and fix 1 < p, q < ∞, s < 1/p. Then, in
the context of (5.3),

Ker(dℓ)

Im(dℓ−1)
=

{u ∈ Dℓ(d;A
p,q
s (Ω)) : du = 0}

{dv : v ∈ Dℓ−1(d;A
p,q
s (Ω))}

≃ Hℓ
sing(Ω;R), (5.10)

for each 1 ≤ ℓ ≤ n. Corresponding to ℓ = 0 (cf. (5.8)), we have

Ker(d0)

Im(d−1)
= 0. (5.11)

Proof. Let us first deal with (5.10). For O open subset of M define Ap,q
s,loc(O∩Ω,Λℓ) as the

collection of distributions u in O ∩ Ω such that for each point x ∈ O ∩ Ω there exists Wx

open neighborhood of x and a differential form wx ∈ Ap,q
s (Wx,Λ

ℓ) with the property that

RO∩Ω∩Wx(u) = RO∩Ω∩Wx(wx), (5.12)
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where, as usual RO∩Ω∩Wx denotes the operator of restriction (in the sense of distributions)
to the open set O ∩ Ω ∩Wx, etc. Next, we set

Lℓ(U) := {u ∈ Ap,q
s,loc(U,Λ

ℓ) : du ∈ Ap,q
s,loc(U,Λ

ℓ+1)} (5.13)

so that Lℓ := (Lℓ(U))U , indexed by open subsets (in the relative topology) of Ω, becomes
a sheaf on the compact topological space Ω when equipped with the family of restriction
operators

ρUV (u) := ROV ∩Ω(u) ∈ Ap,q
s,loc(V,Λ

ℓ) if u ∈ Ap,q
s,loc(U,Λ

ℓ), and if

OV , OU ⊂M are open sets such that V = OV ∩ Ω ⊆ U = OU ∩ Ω.
(5.14)

Note that (5.14) is meaningful in the sense that if OV ∩Ω ⊆ OU ∩Ω for two open sets OV ,
OU ⊂M then, necessarily, OV ∩ Ω ⊆ OU ∩ Ω.

Furthermore, for each ℓ = 0, 1, ..., the exterior derivative operator induces a sheaf mor-
phism dℓ : Lℓ → Lℓ+1 in a natural fashion. More specifically, we view dℓ as the collection
of group homomorphisms {dℓU : Lℓ(U) → Lℓ+1(U)}U , indexed once again by all open sub-
sets (in the relative topology) of Ω, where we set dℓU (u) := du if 0 ≤ ℓ ≤ n − 1, and zero
otherwise.

Going further, since dℓ+1 ◦ dℓ = 0, the family {dℓ}ℓ≥0 yields the complex

0−−−→ LCFΩ̄

ι
−−−→ L0

d0

−−−→ L1
d1

−−−→ · · ·
dn−1

−−−→ Ln
dn

−−−→ 0
dn+1

−−−→ 0 · · · (5.15)

Here LCFΩ̄ stands for the sheaf of germs of locally constant functions on Ω, and ι is the
natural inclusion operator. Since each Ap,q

s,loc(U,Λ
ℓ) is stable under multiplication by smooth,

compactly supported functions, a partition of unity argument shows that (5.15) provides a
fine resolution of the sheaf LCFΩ̄.

Next, we claim that, in fact, the complex (5.15) is exact. As explained in §2.4, checking
this comes down to verifying the following property. Fix an index ℓ ∈ {1, ..., n}, a point
xo ∈ Ω, an open neighborhood O of xo in M , and set U := O∩Ω. Also, let u ∈ Ap,q

s,loc(U,Λ
ℓ)

be such that du = 0 in O ∩ Ω. What we need to show, under these hypotheses, is that
there exist W ⊆ O, open neighborhood of xo and, if V := W ∩ Ω, a differential form
v ∈ Ap,q

s,loc(V,Λ
ℓ−1) for which RW∩Ω(u) = dv.

To this end, we note that the membership of u to Ap,q
s,loc(U,Λ

ℓ) entails, by definition, the
existence of an open neighborhood W of xo with the property that W ∩ Ω ⊂ U and such
that RW∩Ω(u) ∈ Ap,q

s (W ∩ Ω,Λℓ). In addition, there is no loss of generality in assuming
that W ∩ Ω is small and, when viewed in appropriate local coordinates, it becomes a
Lipschitz domain which is starlike with respect to a ball (in the Euclidean geometry).
Assuming that this is the case, we denote by Kℓ the family of operators constructed as
in Theorem 4.1 but in connection with the Lipschitz domain W ∩ Ω. In particular, since
dRW∩Ω(u) = 0, the representation (4.5) yields RW∩Ω(u) = dv where v := Kℓ(RW∩Ω(u)).
Moreover, v ∈ Ap,q

s+1(W ∩ Ω,Λℓ−1) →֒ Ap,q
s (W ∩ Ω,Λℓ−1) by (4.26), (2.9), and since there
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exists w ∈ Ap,q
s (M,Λℓ−1) such that v = RW∩Ω(w) we may ultimately conclude that v ∈

Ap,q
s,loc(W ∩ Ω,Λℓ−1), thus finishing the proof the fact that the complex (5.15) is exact.
The analysis carried out so far shows that the De Rham theory (cf. Theorem 2.13)

applies, and it remains to identifying the cohomology groups associated with the complex
(5.15). Concretely, (5.10) follows as soon as we prove that

Lℓ(Ω) = Dℓ(d;A
p,q
s (Ω)), 0 ≤ ℓ ≤ n. (5.16)

In turn, (5.16) is an easy consequence of

Ap,q
s,loc(Ω,Λ

ℓ) = Ap,q
s (Ω,Λℓ), 0 ≤ ℓ ≤ n. (5.17)

Turning our attention to (5.17) we note that, in one direction, if u ∈ Ap,q
s,loc(Ω,Λ

ℓ) then,

from the definition of this space, there exist a finite, open cover {Wi}i∈I of Ω along with
wi ∈ Ap,q

s (Wi,Λ
ℓ) such that RWi∩Ω(u) = RWi∩Ω(wi) for each i ∈ I. Hence, if {ξi}i∈I is a

smooth partition of unity subordinate to this cover, it follows that
∑

i∈I ξ̃iwi ∈ A
p,q
s (M,Λℓ)

and u = RΩ

(∑
i∈I ξ̃iwi

)
∈ Ap,q

s (Ω,Λℓ), as desired. Conversely, if u ∈ Ap,q
s (Ω,Λℓ) then,

by definition, there exists w ∈ Ap,q
s (M,Λℓ) such that u = RΩ(w). From this, we see that

u ∈ Ap,q
s,loc(Ω,Λ

ℓ), justifying (5.17). This completes the proof of (5.10).
Finally, (5.11) is a direct consequence of definitions. 2

Returning to the unbounded operator (5.3), we can now formulate the following

Corollary 5.4 Let Ω be a Lipschitz domain and recall the unbounded operators dℓ intro-
duced in (5.3) and (5.8) for −1 ≤ ℓ ≤ n. Then, if 1 < p, q < ∞ and s < 1/p, these
operators have closed ranges, and the same is true for their adjoints. Consequently,

Ker(dℓ) = [Im(d∗ℓ )]
⊥, Im(dℓ) = [Ker(d∗ℓ )]

⊥ (5.18)

for each −1 ≤ ℓ ≤ n.

Proof. Assume 0 ≤ ℓ ≤ n. The first claim follows from (5.10), the fact the the singular
homology groups of Ω have finite dimension and a general functional analytic result to the
effect that if T : X → Y is a closed, unbounded operator between two Banach spaces, with
the property that ImT , the image of T , has finite codimension in Y , then ImT is a closed
subspace of Y .

That the adjoint of the operator (5.3) has also a closed range is a consequence of what
we have proved so far and the version of Banach’s closed range theorem corresponding to
closed, densely defined, unbounded operators. See Theorem 5.13 on p. 234 Kato’s book.
This theorem also gives (5.18). Finally, the case ℓ = −1 is elementary and the proof of the
corollary is complete. 2

Proposition 5.5 Assume that Ω is a Lipschitz domain and that 1 < p, q < ∞. Then for
each ℓ = 1, ..., n, we have that
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dim

[
{u ∈ Dℓ(δ;A

p,q
s (Ω)) : δu = 0 and ν ∨ u = 0}

{δω : ω ∈ Dℓ+1(δ;A
p,q
s (Ω)) and ν ∨ ω = 0}

]
= bℓ(Ω) (5.19)

if − 1 + 1
p < s < 1

p ,

and

dim

[
{u ∈ Dℓ(δ;A

p,q
s,z(Ω)) : δu = 0}

{δw : w ∈ Dℓ+1(δ;A
p,q
s,z(Ω))}

]
= bℓ(Ω) if s >

1
p . (5.20)

Furthermore, corresponding to the case ℓ = 0 we have

{u ∈ Ap,q
s (Ω) : 〈u, χΩj 〉 = 0 for 1 ≤ j ≤ b0(Ω)}

{δω : ω ∈ D1(δ;A
p,q
s (Ω)) and ν ∨ ω = 0}

= 0 if − 1 + 1
p < s < 1

p , (5.21)

and

{u ∈ Ap,q
s,z(Ω) : 〈u, χΩj 〉 = 0 for 1 ≤ j ≤ b0(Ω)}

{δω : ω ∈ D1(δ;A
p,q
s,z(Ω))}

= 0 if s > 1
p . (5.22)

Proof. Assume first that 1 ≤ ℓ ≤ n. Based on Lemma 5.1, Corollary 5.4 and Proposition 5.3,
we may write

[
Ker(d∗ℓ−1)

Im(d∗ℓ )

]∗
=

[Im(d∗ℓ )]
⊥

[Ker(d∗ℓ−1)]
⊥

=
Ker(dℓ)

Im(dℓ−1)
≃ Hℓ

sing(Ω;R) (5.23)

so that, in particular, all quotient spaces are finite dimensional. Hence

dim

[
Ker(d∗ℓ−1)

Im(d∗ℓ )

]
= dim

[
Ker(d∗ℓ−1)

Im(d∗ℓ )

]∗
= dim [Hℓ

sing(Ω;R)] = bℓ(Ω) (5.24)

which, by virtue of Lemma 5.2, readily amounts to (5.19).
As for (5.21) and (5.22) we proceed analogously, this time relying on (5.11). 2

Corollary 5.6 Consider a Lipschitz domain Ω and fix 1 < p, q < ∞. Then for each
ℓ = 0, ..., n − 1, we have

dim

[
{u ∈ Dℓ(d;A

p,q
s (Ω)) : du = 0 and ν ∧ u = 0}

{dw : w ∈ Dℓ−1(d;A
p,q
s (Ω)) and ν ∧ w = 0}

]
= bn−ℓ(Ω), (5.25)

if − 1 + 1
p < s < 1

p ,

and

dim

[
{u ∈ Dℓ(d;A

p,q
s,z(Ω)) : du = 0}

{dw : w ∈ Dℓ−1(d;A
p,q
s,z(Ω))}

]
= bn−ℓ(Ω) if s >

1
p . (5.26)
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Moreover, corresponding to the case ℓ = n we have

{u ∈ Ap,q
s (Ω,Λn) : 〈u, χΩjVM〉 = 0 for 1 ≤ j ≤ b0(Ω)}

{dv : v ∈ Dn−1(d;A
p,q
s (Ω)) and ν ∧ v = 0}

= 0 if − 1 + 1
p < s < 1

p , (5.27)

and

{u ∈ Ap,q
s,z(Ω,Λn) : 〈u, χΩjVM 〉 = 0 for 1 ≤ j ≤ b0(Ω)}

{dv : v ∈ Dn−1(d;A
p,q
s,z(Ω))}

= 0 if s > 1
p . (5.28)

Proof. This is an immediate consequence of Proposition 5.5 and Hodge theory; cf. Propo-
sition 2.1. 2

Parenthetically, we record a related, useful result.

Proposition 5.7 Let Ω be an arbitrary open subdomain of M . Then for each ℓ = 1, ..., n,
we have that

dim

[
{u ∈ (C∞

c (Ω,Λℓ))′ : du = 0}

{dw : w ∈ (C∞
c (Ω,Λℓ−1))′}

]
= bℓ(Ω). (5.29)

Proof. This is a consequence of results in §2.4, §3. 2

6 The proofs of the main results

We debut by stating and proving a weaker version of Theorem 1.1.

Proposition 6.1 Let Ω be a Lipschitz domain and fix 1 < p, q < ∞, −1 + 1/p < s < 1/p.
Then, for each 0 ≤ ℓ ≤ n− 1, the following are equivalent:

(i) the (n− ℓ)-th Betti number of Ω vanishes, i.e. bn−ℓ(Ω) = 0;

(ii) there exists a finite constant C > 0 such that for any f ∈ Ap,q
s (Ω,Λℓ) with df = 0

and ν ∧ f = 0, there exists u ∈ Ap,q
s (Ω,Λℓ−1) with du = f , ν ∧ u = 0, and such that

‖u‖Ap,q
s (Ω,Λℓ−1) ≤ C‖f‖Ap,q

s (Ω,Λℓ). (6.1)

Corresponding to ℓ = n, we have the following statement. There exists a finite constant
C > 0 such that for any f ∈ Ap,q

s (Ω,Λn) with 〈f, χΩjVM 〉 = 0, 1 ≤ j ≤ b0(Ω), there exists
u ∈ Ap,q

s (Ω,Λn−1) with du = f , ν ∧ u = 0, and such that

‖u‖Ap,q
s (Ω,Λn−1) ≤ C‖f‖Ap,q

s (Ω,Λn). (6.2)

Proof. That (ii) implies (i) is a direct consequence of Corollary 5.6. Conversely, assume (i)
so that, by (5.26), the linear operator
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d : {w ∈ Dℓ−1(d;A
p,q
s (Ω)) : ν ∧ w = 0}

−→ {u ∈ Dℓ(d;A
p,q
s (Ω)) : du = 0 and ν ∧ u = 0} (6.3)

is onto. When the space intervening in (6.3) are equipped with natural norms (graph norm
for the space on the left; the space on the right is simply viewed as a closed subspace of
Ap,q

s (Ω,Λℓ)), this operator becomes bounded also. Then the desired conclusion (in particu-
lar, the estimate (6.1)) follows from the Open Mapping Theorem.

The last part of the proposition is a consequence of (5.27). 2

We now turn to the

Proof of Theorem 1.1. Assume first that 0 ≤ ℓ ≤ n − 1. To get started, we note that the
set of conditions (1.3) is necessary for the solvability of (1.4). Indeed, assuming that the
conditions in (1.4) are satisfied, we compute

df = d(du) = 0 and ν ∧ f = ν ∧ du = −d∂(ν ∧ u) = −d∂(ν ∧ g), (6.4)

as wanted.
Next, suppose that (ii) in Theorem 1.1 holds. Then (ii) in Proposition 6.1 holds as well

and, consequently, bn−ℓ(Ω) = 0. Thus, (i) in Theorem 1.1 holds, as desired.
Conversely, assume that bn−ℓ(Ω) = 0. Our goal is to show that, granted (1.3), the

Poisson problem (1.4) is always solvable in such a way that (1.5) is valid. To this end, fix
two differential forms f ∈ Ap,q

s (Ω,Λℓ) and g as in (1.2) such that the conditions (1.3) hold,
and consider G := Ex(g) ∈ Ap,q

s+1(Ω,Λ
ℓ−1). Then F := f − dG ∈ Ap,q

s (Ω,Λℓ) satisfies

dF = 0 in Ω, and ν ∧ F = 0 on ∂Ω. (6.5)

Next, let C > 0 be the constant (depending exclusively on the domain Ω as well as on
p, q and s) which is described in (ii) of Proposition 6.1. Then, by virtue of this result, one
can find w ∈ Ap,q

s (Ω,Λℓ−1) such that

dw = F in Ω, ν ∧w = 0 on ∂Ω, and ‖w‖Ap,q
s (Ω,Λℓ−1) ≤ C‖F‖Ap,q

s (Ω,Λℓ). (6.6)

Consider next a finite covering {Oj}1≤j≤N of Ω with open coordinate charts onM such that,
when viewed as a subset of the Euclidean space, each Oj ∩Ω becomes a bounded Lipschitz
domain which is star-like with respect to a ball. Finally, let {ϕj}j be a C

∞ smooth partition
of unity subordinate to this cover. Letting Fj := ROj∩Ω(d(ϕjw)), we have

Fj ∈ Ap,q
s (Oj ∩ Ω,Λℓ), dFj = 0 in Oj ∩ Ω, and ν ∧ Fj = 0 on ∂(Oj ∩ Ω) (6.7)

for 1 ≤ j ≤ N .
By the local theory developed in §4, for each j there exits uj ∈ A

p,q
s+1,z(Oj ∩Ω,Λℓ) such

that
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duj = Fj in Oj ∩ Ω, and ‖uj‖Ap,q
s+1,z(Oj∩Ω,Λℓ−1) ≤ C‖Fj‖Ap,q

s (Oj∩Ω,Λℓ). (6.8)

Indeed, if the operators Jℓ are as in Theorem 4.1 (with Ω replaced by Oj ∩Ω), we may take
uj := JℓFj . Then the properties (6.8) follow from (4.6)-(4.7) and (4.25).

Going further, we recall that tilde denotes the extension by zero operator (cf. §2.2) and
note that ũj ∈ Ap,q

s+1,0(Ω,Λ
ℓ−1) satisfies

dũj = d̃uj . (6.9)

Indeed, the distribution dũj − d̃uj belongs to Ap,q
s (M,Λℓ) and is supported on ∂Ω. On the

other hand, for any Lipschitz domain Ω there holds

{h ∈ Ap,q
s (M) : supph ⊆ ∂Ω} = 0, 1 < p, q <∞, −1 + 1

p < s. (6.10)

When ∂Ω ∈ C∞ this is proved on pp. 45-46 of [51] but the proof carries over verbatim to
the Lipschitz case. Consequently,

v := RΩ

[ N∑

j=1

ũj

]
∈ Ap,q

s+1,z(Ω,Λ
ℓ−1) (6.11)

satisfies

dv = RΩ

[ N∑

j=1

F̃j

]
= F. (6.12)

Finally, u := v +G ∈ Ap,q
s+1(Ω,Λ

ℓ−1), solves (1.4) and obeys (1.5).
To deal with the last part in the theorem, we note that there is no loss of generality in

assuming that Ω is connected and g = 0 (the latter reduction is ensured by reasoning as
before). Then Proposition 6.1 yields some v ∈ Ap,q

s (Ω,Λn−1) such that dv = f , ν ∧ v = 0
and ‖v‖Ap,q

s (Ω,Λn−1) ≤ C‖f‖Ap,q
s (Ω,Λn). Let {Oj}1≤j≤N be a finite, open covering of Ω such

that each Oj ∩Ω is contained in a coordinate patch and becomes a Lipschitz domain which
is star-like with respect to a ball, when viewed as a subset of the Euclidean space. Also,
fix {ϕj}j a smooth partition of unity such that suppϕj ⊆ Oj for 1 ≤ j ≤ N . Finally, set
fj := ROj∩Ω(d(ϕjv)) ∈ Ap,q

s (Oj ∩ Ω,Λn) and notice that ν ∧ fj = −d∂(ν ∧ (ϕjv)) = 0 on
∂(Oj ∩ Ω). Next, since δVM = δ(∗1) = − ∗ d1 = 0, formula (2.3) gives that, for each j,

〈fj, ROj∩Ω(VM )〉 = 〈dROj∩Ω(ϕjv), ROj∩Ω(VM )〉 = 0 (6.13)

as ν ∧ (ϕjv) = 0 on ∂(Oj ∩ Ω). Having established (6.13), consider the operators Jℓ from
Theorem 4.1 with Ω replaced by Oj ∩ Ω. In view of (6.13), the last identity in (4.6) then
allows us to write fj = duj in Oj ∩ Ω, where uj := Jnfj ∈ Ap,q

s+1,z(Oj ∩ Ω,Λn−1) for
1 ≤ j ≤ N . Moreover, ‖uj‖Ap,q

s (Oj∩Ω,Λn−1) ≤ C‖f‖Ap,q
s (Ω,Λn) for each j. Consequently, the

differential form u := RΩ

(∑
j ũj

)
belongs to Ap,q

s+1,z(Ω,Λ
n−1) satisfies du = f , as well as

‖u‖Ap,q
s (Oj∩Ω,Λn−1) ≤ C‖f‖Ap,q

s (Ω,Λn). This finishes the proof of Theorem 1.1. 2

37



Finally, we are ready to present the

Proof of Theorem 1.2. Assume first that 0 ≤ ℓ ≤ n−1, bn−ℓ(Ω) = 0 and that the conditions
(1.8) are satisfied. In this case, thanks to Proposition 2.11, ġ := {gα}|α|≤k ∈ Ḃp,q

s+1−1/p(∂Ω)

so that if v := Ex (ġ) ∈ Ap,q
s+1(Ω,Λ

ℓ−1) then Tr [∂αv] = gα for each multi-index α of length
at most k. In particular, the differential form

F := f − dv ∈ Ap,q
s (Ω,Λℓ) (6.14)

satisfies dF = 0 in Ω and, for each multi-index α with |α| ≤ k − 1,

Tr [∂αF ] = Tr [∂αf ]− Tr
[ n∑

j=1

∂j∂
αv ∧ dxj

]

= Tr [∂αf ]−

n∑

j=1

gα+ej ∧ dxj = 0. (6.15)

Consequently, F ∈ Ap,q
s,z(Ω,Λℓ) by (2.46). Thus, (5.26) and the current assumptions imply

that there exists w ∈ Ap,q
s+1,z(Ω,Λ

ℓ) such that dw = F in Ω, plus a naturally accompanying
estimate. It follows that u := v + w solves (1.7) and, in addition, it obeys (1.9).

Conversely, assume that (ii) in the statement of the theorem holds. By taking gα = 0
for every multi-index α of length ≤ k−1, it follows that for any f ∈ Ap,q

s,z(Ω,Λℓ) with df = 0
there exists u ∈ Ap,q

s+1,z(Ω,Λ
ℓ) with du = f . Thus, by (5.26), bn−ℓ(Ω) = 0, as desired.

To treat the last part in the statement of the theorem, corresponding to the case when
ℓ = n, we note that, on the one hand, it is straightforward to check that the conditions in
(1.10) are indeed necessary for the solvability of (1.7) when ℓ = n.

On the other hand, assuming that the compatibility conditions (1.10) are verified, we
can construct ġ, v, F , as before. Then, with VRn := dx1 ∧ · · · ∧ dxn denoting the Euclidean
volume form, for each j = 1, ..., b0(Ω), we may write

∫

Ωj

〈F,VRn〉 dx =

∫

Ωj

〈f,VRn〉 dx−

∫

Ωj

〈dv,VRn〉 dx

=

∫

Ωj

〈f,VRn〉 dx−

∫

Ωj

〈v, δVRn〉 dx−

∫

Ωj

〈ν ∧Tr v,VRn〉 dσ

=

∫

Ωj

〈f,VRn〉 dx−

∫

Ωj

〈ν ∧ g(0,...0),VRn〉 dσ

= 0 (6.16)

thanks to the fact that δVRn = 0 and the second condition in (1.10). With this in hand,
(5.28) gives that there exists w ∈ Ap,q

s+1,z(Ω,Λ
n−1) satisfying dw = F in Ω and a natural

estimate. Thus, u := v + w is the desired solution. 2
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7 Further applications

We start by recording some useful particular cases of Theorems 1.1-1.2.

Proposition 7.1 Assume that Ω is a Lipschitz subdomain and fix 1 < p, q < ∞, k ∈ No,
s ∈ (k − 1 + 1/p, k + 1/p) and ℓ ∈ {1, 2, ..., n − 1}. Then the condition bn−ℓ(Ω) = 0 is
equivalent to

d
[
Ap,q

s+1,z(Ω,Λ
ℓ−1)

]
= {f ∈ Ap,q

s (Ω,Λℓ) : df = 0 in Ω, ν ∧ f = 0 on ∂Ω} (7.1)

when k = 0 and, when k ≥ 1, to

d
[
Ap,q

s+1,z(Ω,Λ
ℓ−1)

]
= {f ∈ Ap,q

s,z(Ω,Λ
ℓ) : df = 0 in Ω}. (7.2)

Similarly, for 2 ≤ ℓ ≤ n, the condition bℓ−1(Ω) = 0 is equivalent to

δ
[
Ap,q

s+1,z(Ω,Λ
ℓ)
]
= {f ∈ Ap,q

s (Ω,Λℓ−1) : δf = 0 in Ω, ν ∨ f = 0 on ∂Ω}, (7.3)

when k = 0, and to

δ
[
Ap,q

s+1,z(Ω,Λ
ℓ)
]
= {f ∈ Ap,q

s,z(Ω,Λ
ℓ−1) : δf = 0 in Ω} (7.4)

when k ≥ 1.

Proof. In the case when bn−ℓ(Ω) = 0, (7.1)-(7.2) follow directly from the fact that the
boundary value problems dealt with in Theorems 1.1-1.2 are solvable (with zero bound-
ary data). Also, the converse implication is a consequence of Corollary 5.6. Finally, the
second part of the proposition follows from the first, after an application of the Hodge
star-isomorphism. 2

Proposition 7.2 Assume that Ω is a Lipschitz subdomain and fix 1 < p, q < ∞, k ∈ No,
s ∈ (k − 1 + 1/p, k + 1/p) and ℓ ∈ {1, 2, ..., n − 1}. Then, if bn−ℓ(Ω) = 0, the closure of

d
[
C∞
c (Ω,Λℓ−1)

]
in Ap,q

s (Ω,Λℓ) is {f ∈ Ap,q
s (Ω,Λℓ) : df = 0 in Ω, ν ∧ f = 0 on ∂Ω} if

k = 0, and {f ∈ Ap,q
s,z(Ω,Λℓ) : df = 0 in Ω} if k ≥ 1.

Similarly, if 2 ≤ ℓ ≤ n and bℓ−1(Ω) = 0 then the closure of δ
[
C∞
c (Ω,Λℓ)

]
in Ap,q

s (Ω,Λℓ−1)

is the space {f ∈ Ap,q
s (Ω,Λℓ−1) : δf = 0 in Ω, ν ∨ f = 0 on ∂Ω} if k = 0, and the space

{f ∈ Ap,q
s,z(Ω,Λℓ−1) : δf = 0 in Ω} if k ≥ 1.

Proof. This follows immediately from Proposition 7.1 and (2.30). 2

Proposition 7.3 Let Ω be a Lipschitz domain of the Riemannian manifold M with the
property that bn−ℓ−1(Ω) = bn−ℓ(Ω) = 0 for some ℓ ∈ {1, ..., n − 2}. Then, for 1 < p, q < ∞
and −1 + 1/p < s < 1/p, any ℓ-differential form u satisfying
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u ∈ Ap,q
s (Ω,Λℓ) with du ∈ Ap,q

s (Ω,Λℓ+1), δu ∈ Ap,q
s (Ω,Λℓ−1) and ν ∧ u = 0 on ∂Ω (7.5)

can be written in the form

u = dv + w, where w ∈ Ap,q
s+1,z(Ω,Λ

ℓ), (7.6)

v ∈ Ap,q
s+1,z(Ω,Λ

ℓ−1), δdv ∈ Ap,q
s (Ω,Λℓ−1),

and such that, for some C > 0 depending exclusively on Ω, p, q, s,

‖v‖Ap,q
s+1

(Ω,Λℓ−1) + ‖δdv‖Ap,q
s (Ω,Λℓ−1) + ‖w‖Ap,q

s+1,z(Ω,Λℓ)

≤ C
(
‖u‖Ap,q

s (Ω,Λℓ) + ‖du‖Ap,q
s (Ω,Λℓ+1) + ‖δu‖Ap,q

s (Ω,Λℓ−1)

)
. (7.7)

Proof. Since du ∈ Ap,q
s (Ω,Λℓ+1) satisfies d(du) = 0 and ν ∧ du = −δ∂(ν ∧ u) = 0, Proposi-

tion 7.1 yields the existence of a form w ∈ Ap,q
s+1,z(Ω,Λ

ℓ) such that dw = du. In particular,

if ω := u − w ∈ Ap,q
s (Ω,Λℓ) then dω = 0 and ν ∧ ω = 0. By once again invoking Propo-

sition 7.1, we infer the existence of a form v ∈ Ap,q
s+1,z(Ω,Λ

ℓ−1) such that dv = ω. Thus,

u = dv + w and, in particular, δdv = δu − δw ∈ Ap,q
s (Ω,Λℓ−1). Finally, (7.7) is implicit in

the above construction. 2

The particular case of Proposition 7.3 corresponding to s = 0, q = 2, ℓ = 1, n = 3
and when Ω is a bounded, Euclidean Lipschitz domain, answers a question posed to us by
M.S. Birman during his visit at UMC in April of 2000. More specifically, upon recalling the
definition (2.16), we have:

Corollary 7.4 Assume that Ω is a bounded Lipschitz domain in R3 with the property that
b1(Ω) = b2(Ω) = 0. Then, for 1 < p < ∞, any vector field u ∈ Lp(Ω,R3) satisfying
curlu ∈ Lp(Ω,R3), div u ∈ Lp(Ω) and ν × u = 0 on ∂Ω can be written in the form

u = ∇ϕ+ w, where ϕ ∈ Lp
1,z(Ω), ∆ϕ ∈ Lp(Ω), and w ∈ Lp

1,z(Ω,R
3) (7.8)

and, for some C > 0 depending exclusively on Ω and p,

‖ϕ‖Lp
1
(Ω) + ‖∆ϕ‖Lp(Ω) + ‖w‖Lp

1
(Ω,R3)

≤ C
(
‖u‖Lp(Ω,R3) + ‖curlu‖Lp(Ω,R3) + ‖div u‖Lp(Ω)

)
. (7.9)

When more information about the geometry of Ω is available then the above result can
be further refined. Concretely, we have:
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Proposition 7.5 Let Ω be a bounded convex domain in R3 and assume that 1 < p ≤ 2.
Then any vector field u ∈ Lp(Ω,R3) satisfying curlu ∈ Lp(Ω,R3), div u ∈ Lp(Ω) and
ν×u = 0 on ∂Ω, belongs to Lp

1(Ω,R
3) and, for some C > 0 depending exclusively on Ω and

p,

‖u‖Lp
1
(Ω,R3) ≤ C

(
‖u‖Lp(Ω,R3) + ‖curl u‖Lp(Ω,R3) + ‖div u‖Lp(Ω)

)
. (7.10)

Proof. Start with the decomposition (7.8) and observe that, as a consequence of the fact
that Ω is convex, ϕ ∈ Lp

1,z(Ω) and ∆ϕ ∈ Lp(Ω) imply ϕ ∈ Lp
2(Ω); cf. [1], [16]. Returning

with this in (7.6) finally gives u ∈ Lp
1(Ω,R

3) plus a naturally accompanying estimate. 2

Let us point out that, as far as the estimate (7.10) is concerned, the range 1 < p ≤ 2 is
sharp, and that a similar result holds in the class of Lipschitz domains satisfying a uniform
(exterior) sphere condition.

We next discuss a lifting result on Besov and Triebel-Lizorkin spaces on (Euclidean)
Lipschitz domains.

Proposition 7.6 Let 1 < p, q < ∞, k ∈ N and s ∈ R. Then for any distribution u in the
bounded Lipschitz domain Ω ⊂ Rn, the following implication holds:

∂αu ∈ Ap,q
s−k(Ω), ∀α : |α| = k =⇒ u ∈ Ap,q

s (Ω). (7.11)

Proof. By induction, it suffices to treat only the case when k = 1, which we shall assume
from now on. Let us first consider the case when s < 1 + 1/p. Note that the problem is
local in character and, hence, there is no loss of generality assuming that Ω is starlike with
respect to some ball.

In this context, it follows from the discussion in §4 that there exist a function θ ∈ C∞
c (Ω)

and a linear, bounded operator J : (Ap,q
s (Ω))∗ →

◦

Ap′,q′
−s+1(Ω,R

n) such that Jϕ ∈ C∞
c (Ω,Rn)

for any ϕ ∈ C∞
c (Ω) and div (Jϕ) = ϕ − (

∫
ϕ)θ for any ϕ ∈ C∞

c (Ω). We now make the
claim that

J : (Ap,q
s (Ω))∗ −→ (Ap,q

s−1(Ω,R
n))∗ boundedly, whenever s < 1 + 1

p . (7.12)

To justify this, we observe that

J : (Ap,q
s (Ω))∗ −→

◦

Ap′,q′
−s+1(Ω,R

n)
(1)
== Ap′,q′

−s+1,z(Ω,R
n)

(2)
== (Ap,q

s−1(Ω,R
n))∗ (7.13)

where, thanks to (2.34), the equality (1) holds if s − 1/p /∈ Z, and (2) holds if s < 1/p by
virtue of (2.22). Hence, in a first stage, (7.12) holds under the additional assumption that
1
p − s /∈ No, which may subsequently be removed by interpolation.

Having established (7.12), for any ϕ ∈ C∞
c (Ω), our current assumptions on p and s allow

us to estimate
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|〈u, ϕ〉| ≤ |〈u,divJϕ〉|+ |〈u, θ〉| |〈ϕ, 1〉|

≤ |〈∇u,J ϕ〉|+ |〈u, θ〉| ‖ϕ‖(Ap,q
s (Ω))∗

≤ ‖∇u‖Ap,q
s−1

(Ω,Rn)‖Jϕ‖(Ap,q
s−1

(Ω,Rn))∗ + |〈u, θ〉| ‖ϕ‖(Ap,q
s (Ω))∗

≤ C
(
‖∇u‖Ap,q

s−1
(Ω,Rn) + |〈u, θ〉|

)
‖ϕ‖(Ap,q

s (Ω))∗ . (7.14)

Since C∞
c (Ω) is dense in (Ap,q

s (Ω))∗ and Ap,q
s (Ω) is reflexive, we may finally conclude that

u ∈ Ap,q
s (Ω), as desired.

Next, consider the case when s > 1 (while still assuming that k = 1); in particular,
Ap,q

s−1(Ω) →֒ Lp
−1(Ω). Then the above reasoning shows that any distribution as in the left-

hand side of (7.11) belongs to Lp(Ω). With this extra piece of information in hand, the
implication (7.11) has been proved in Proposition 2.18 of [22] when either A = B, or A = F
and q = 2. However, as observed in [24], the latter condition on q may be omitted, and
this finishes the proof of the proposition. 2

Our last application concerns the regularity of the Hodge decomposition for differential
forms in Lipschitz domains.

Proposition 7.7 Let Ω ⊂ M be a Lipschitz domain and ℓ ∈ {1, 2, ..., n − 1} such that
bℓ(Ω) = 0. Then there exist 1 ≤ pΩ < 2 < qΩ ≤ ∞ with 1/pΩ + 1/qΩ = 1 with the following
significance. Any differential form u ∈ Lp

s(Ω,Λℓ) can be decomposed as

u = dv + δw where w ∈ Lp
s+1,z(Ω,Λ

ℓ+1), (7.15)

v ∈ Lp
s(Ω,Λ

ℓ−1), dv ∈ Lp
s(Ω,Λ

ℓ),

with v, w satisfying natural estimates, provided pΩ < p < qΩ and

either n = dimM = 3 and − 1 + 1/p < s < 1/p, (7.16)

or n = dimM > 3 and s = 0. (7.17)

Proof. It has been proved in [37] and [36] that there exists pΩ, qΩ as in the statement
of the proposition such that, under the assumptions (7.16)-(7.17), any differential form
u ∈ Lp

s(Ω,Λℓ) can be decomposed as u = dv + ω where v is as in (7.15) and ω ∈ Lp
s(Ω,Λℓ)

satisfies δω = 0, ν ∨ ω = 0. Hence, thanks to (7.3), there exists w ∈ Lp
s+1,z(Ω,Λ

ℓ+1) such
that δw = ω, and this proves (7.15). 2

A few final remarks are as follows. First, when n = 3, it was shown in [37] that one
can take 1 ≤ pΩ < 3/2 < 3 < qΩ ≤ ∞. Furthermore, in the same context, one can take
pΩ = 1 and qΩ = ∞ provided the outward unit conormal ν to ∂Ω belongs to Sarason’s class
of functions with vanishing mean oscillations (as is trivially the case when, e.g., ∂Ω ∈ C1).
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Second, when ℓ = 1, the scalar function v appearing in (7.15) actually belongs to
Lp
s+1(Ω), as a simple application of Proposition 7.6 shows.
Third, when Ω is a bounded, three-dimensional, Euclidean domain with a C2 boundary

and when ℓ = 1, the above Hodge decomposition result has been proved by R.Griesinger
in [20]. On p. 245 of that paper the author asks whether the higher dimensional version of
(7.15) holds, an issue addressed by our proposition above.
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