
HAL Id: hal-00535686
https://hal.science/hal-00535686v2

Submitted on 14 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the domination number and the 2-packing number of
Fibonacci cubes and Lucas cubes

Aline Castro Trejo Castro Trejo, Sandi Klavzar, Michel Mollard, Yoomi Rho

To cite this version:
Aline Castro Trejo Castro Trejo, Sandi Klavzar, Michel Mollard, Yoomi Rho. On the domination
number and the 2-packing number of Fibonacci cubes and Lucas cubes. Computers & Mathematics
with Applications, 2011, pp.2655-2660. �hal-00535686v2�

https://hal.science/hal-00535686v2
https://hal.archives-ouvertes.fr


On the domination number and the 2-packing number of

Fibonacci cubes and Lucas cubes

Aline Castro
Institut Fourier, UJF - CNRS, 100, rue des Maths

BP 74, 38402 St Martin d’Hères Cedex, France
e-mail: kleinealine@gmail.com

Sandi Klavžar
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Abstract

Let Γn and Λn be the n-dimensional Fibonacci cube and Lucas cube, respectively.
The domination number γ of Fibonacci cubes and Lucas cubes is studied. In particular
it is proved that γ(Λn) is bounded below by

⌈
Ln−2n

n−3

⌉
, where Ln is the n-th Lucas

number. The 2-packing number ρ of these cubes is also studied. It is proved that

ρ(Γn) is bounded below by 22
blg nc

2 −1
and the exact values of ρ(Γn) and ρ(Λn) are

obtained for n ≤ 10. It is also shown that Aut(Γn) ' Z2.
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1 Introduction

Fibonacci cubes form a class of graphs introduced because of their properties applicable
for interconnection networks [5]. Lucas cubes [10] are subgraphs of Fibonacci cubes in
which certain “non-symmetric” vertices are removed. In this way we get graphs with
more symmetries, a fact that will be further justified in this paper. Both classes of cubes
have been considered from various points of view, see [1, 2, 3, 8, 11, 13].

In this paper we study Fibonacci cubes and Lucas cubes from the viewpoint of domi-
nation and packing. While searching for (vertex) subsets of a graph (like dominating sets)
it is useful to know symmetries of the graph, hence we first describe automorphism groups
of these graphs in Section 2.

In Section 3 we study the domination number of Fibonacci cubes as initiated in [12],
and also investigate that of Lucas cubes. We first give some connections between the
domination number of Fibonacci cubes and Lucas cubes and construct dominating sets
for 9-dimensional cubes. Then we obtain a lower bound on the domination number of
Lucas cubes.

A graph invariant closely related to the domination number is the 2-packing number,
which is the topic of Section 4. We first obtain an exponential (in terms of the dimension)
lower bound on the 2-packing number of the Lucas cubes which is a natural lower bound
for the Fibonacci cubes. Combining computer search with some arguments the exact
values for the 2-packing number of both classes of cubes up to and including dimension
10 are obtained.

In the rest of this section we define the concepts needed in this paper. For a connected
graph G, the distance dG(u, v) (or d(u, v) for short) between vertices u and v is the usual
shortest path distance.

Let n ≥ 1 and Qn be the n-dimensional hypercube. A Fibonacci string of length n is a
binary string b1b2 . . . bn with bi · bi+1 = 0 for 1 ≤ i < n. In other words, Fibonacci strings
are binary strings that contain no consecutive 1’s. The Fibonacci cube Γn, for n ≥ 1 is the
subgraph of Qn induced by the Fibonacci strings of length n. A Fibonacci string b1b2 . . . bn

is a Lucas string if b1 ·bn = 0. The Lucas cube Λn, for n ≥ 1 is the subgraph of Qn induced
by the Lucas strings of length n.

It is well-known (cf. [5]) that |V (Γn)| = Fn+2, where Fn are the Fibonacci numbers:
F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2. Similarly, |V (Λn)| = Ln for n ≥ 1, see [10],
where Ln are the Lucas numbers: L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 for n ≥ 2.

For n ≥ 1 and 0 ≤ k ≤ n, let Γn,k be the set of vertices of Γn that contain k 1’s.
Hence Γn,k is the set of vertices of Γn at distance k from 0n. Λn,k is defined analogously.
In particular, Γn,0 = Λn,0 = {0n} and Γn,1 = Λn,1 = {10n−1, 010n−2, . . . , 0n−11}. If
uv ∈ E(Γn), where u ∈ Γn,k and v ∈ Γn,k−1 (k ≥ 1), then we say that v is a down-neighbor
of u and that u is an up-neighbor of v. The same terminology again applies to Lucas cubes.

For a binary string b = b1b2 . . . bn, let b be the binary complement of b and let bR =
bnbn−1 . . . b1 be the reverse of b. For binary strings b and c of equal length, let b + c
denote their sum computed bitwise modulo 2. For 1 ≤ i ≤ n, let ei be the binary string
of length n with 1 in the i-th position and 0 elsewhere. According to this notation,
Γn,1 = Λn,1 = {e1, e2, . . . , en}.

Let G be a graph. Then D ⊆ V (G) is a dominating set if every vertex from V (G)\D is

2



adjacent to some vertex from D. The domination number γ(G) is the minimum cardinality
of a dominating set of G. A set X ⊆ V (G) is called a 2-packing if d(u, v) > 2 for any
different vertices u and v of X. The 2-packing number ρ(G) is the maximum cardinality
of a 2-packing of G. It is well known that for any graph G, γ(G) ≥ ρ(G), cf. [6].

Finally, the automorphism group of a graph G is denoted by Aut(G). For instance,
Aut(Cn) = D2n, where Cn is the n-cycle and D2n is the dihedral group on n elements.
Recall that D2n can be represented as 〈x, y | x2 = 1, yn = 1, (xy)2 = 1〉.

2 Automorphism groups

In this section we determine the automorphism groups of Fibonacci cubes and Lucas cubes.

Let n ≥ 1 and define the reverse map r : Γn → Γn with:

r(b1b2 . . . bn) = bR = bnbn−1 . . . b1 . (1)

It is easy to observe that r is an automorphism of Γn. We are going to prove that r is the
only nontrivial automorphism of Γn. For this sake, the following lemma is useful.

Lemma 2.1 Let n ≥ 3 and k ≥ 2. Then any different u, v ∈ Γn,k have different sets of
down-neighbors.

Proof. Since u, v ∈ Γn,k, d(u, v) ≥ 2. We distinguish two cases.
Suppose first d(u, v) = 2 and let u and v differ in positions i and j. Since u, v ∈ Γn,k,

we may assume without loss of generality that ui = vj = 1 and uj = vi = 0. Moreover, u
and v agree in all the other positions. Since k ≥ 2, there exists an index ` 6= i, j such that
u` = v` = 1. Then u + e` is a down-neighbor of u but not a down-neighbor of v.

Assume now d(u, v) ≥ 3. Let i be an arbitrary index such that ui 6= vi. We may
assume that ui = 1. Then u + ei is a down-neighbor of u but not of v. �

Theorem 2.2 For any n ≥ 1, Aut(Γn) ' Z2.

Proof. The assertion is clear for n ≤ 2, hence assume in the rest that n ≥ 3. Let
α ∈ Aut(Γn). Since 0n is the only vertex of degree n, α(0n) = 0n. Therefore, α maps Γn,1

onto Γn,1. Let Γ′n,1 = {10n−1, 0n−11} and Γ
′′
n,1 = Γn,1 \ Γ′n,1. Since 10n−1 and 0n−11 are

the only vertices of degree n − 1, α maps Γ′n,1 and Γ
′′
n,1 onto Γ′n,1 and Γ

′′
n,1, respectively.

We distinguish two cases.

Case 1: α(10n−1) = 10n−1.
Then, because α maps Γ′n,1 onto Γ′n,1, we have α(0n−11) = 0n−11. Among the vertices
of Γ

′′
n,1, only 010n−2 has no common up-neighbor with 10n−1. Therefore, α(010n−2) =

010n−2. In turn, among the remaining vertices of Γ
′′
n,1, only 0010n−3 has no common

up-neighbor with 010n−2. Therefore α(0010n−3) = 0010n−3. By proceeding with the same
argument, α fixes Γ

′′
n,1 pointwise and hence fixes Γn,1 pointwise. Now apply Lemma 2.1
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and induction on k to conclude that α fixes Γn,k pointwise for all k. Therefore α = id in
this case.

Case 2: α(10n−1) = 0n−11.
Now α(0n−11) = 10n−1. Among the vertices of Γ

′′
n,1, only 010n−2 has no common up-

neighbor with 10n−1. Thus α(010n−2) = 0n−210, which is the only element of Γ
′′
n,1 with

no common up-neighbor together with α(10n−1) = 0n−11. By proceeding with the same
argument, α reverses all the elements of Γ

′′
n,1, that is, α = r on Γ

′′
n,1 and consecutively

α = r on Γn,1. By Lemma 2.1 and induction on k, the same holds for any Γn,k, k ≥ 2.
Therefore α = r in this case. �

Let n ≥ 1. An equivalent way to define Λn is that it is the subgraph of Qn induced
on all the binary strings of length n that have no two consecutive 1’s in circular manner.
This definition is more symmetric than the definition of the Fibonacci strings, so it is
reasonable to expect that Aut(Λn) is richer than Aut(Γn). This is indeed the case. Define
ϕ : Λn → Λn by

ϕ(b1b2 . . . bn) = bnb1 . . . bn−1 . (2)

By the above remark it is clear that ϕ ∈ Aut(Λn). Zagaglia Salvi [14] proved that the
automorphism groups of the Lucas semilattices are the dihedral groups. The arguments
that determine the automorphism group of the Lucas cubes are in a way parallel to the
arguments from [14], hence we next give just a sketch of them.

Note first that Lemma 2.1 (with the same proof) applies to Lucas cubes as well. Let
α ∈ Aut(Λn). Suppose that for some a, b ∈ {0, 1, . . . , n − 1}, α(10n−1) = 0a10n−a−1 and
α(0n−11) = 0b10n−b−1, where computations are mod n. Then either b = a− 1 or b = a+1
because α(10n−1) and α(0n−11) cannot have a common up-neighbor. When b = a− 1 we
get α = ϕa and in the other case α = ϕa+1 ◦ r. We conclude that Aut(Λn) is generated
by r and ϕa for 0 ≤ a ≤ n− 1, and hence:

Theorem 2.3 For any n ≥ 3, Aut(Λn) ' D2n.

3 The domination number

In this section we consider the domination number of Fibonaci and Lucas cubes. We first
interrelate their domination numbers. Then we discuss exact domination numbers for
small dimensions. The section is conluded by establishing a general lower bound on the
domination number of Lucas cubes.

Proposition 3.1 Let n ≥ 4, then

(i) γ(Λn) ≤ γ(Γn−1) + γ(Γn−3) ,
(ii) γ(Λn) ≤ γ(Γn) ≤ γ(Λn) + γ(Γn−4) .

Proof. (i) V (Λn) can be partitioned into vertices that start with 0 and vertices that
start with 1. The latter vertices are of the form 10 . . . 0 and hence can be dominated
by {10b0 | b ∈ U} where U is a minimum dominating set of Γn−3 with γ(Γn−3) vertices.

4



While the former vertices can be dominated by γ(Γn−1) vertices. (ii) Let D be a minimum
dominating set of Γn and set

D′ = {u | u is a Lucas string from D} ∪ {0b2 . . . bn−10 | 1b2 . . . bn−11 ∈ D} .

A vertex 1b2 . . . bn−11 dominates two Lucas vertices, namely 0b2 . . . bn−11 and 1b2 . . . bn−10.
Since these two vertices are dominated by 0b2 . . . bn−10, we infer that D′ is a dominating
set of Λn. It follows that γ(Λn) ≤ γ(Γn).

A dominating set of Λn dominates all vertices of Γn but the vertices of the form
10b3 . . . bn−201. These vertices can be dominated by γ(Γn−4) vertices. �

Pike and Zou [12] obtained exact values of γ(Γn) for n ≤ 8, see Table 2. By computer
search they found 509 minimum dominating sets of Γ8. Following their approach we have
computed the domination numbers of Λn, n ≤ 8, see Table 2 again.

Hence the smallest Fibonacci cube and Lucas cube for which the domination numbers
are not known are Γ9 and Λ9. Since γ(Γn) ≤ γ(Γn−1)+γ(Γn−2), it follows that γ(Γ9) ≤ 20,
cf. [12, Lemma 3.1]. In order to find a smaller dominating set we have used a local search
procedure, that is, to get a new dominating set we have replaced one or more vertices with
another vertex. In this way we were able to construct a dominating set of Γ9 of size 17
given on the left-hand side of Table 1. Similarly we have found a dominating set of Λ9 of
order 16 given on the right-hand side of Table 1. Hence:

Proposition 3.2 γ(Γ9) ≤ 17 and γ(Λ9) ≤ 16.

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 1 0
1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0
1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1
1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0
1 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 0 1 1 0 1 0 1 0 1 0 0
0 0 0 1 0 1 0 0 1 1 0 1 0 0 1 0 1 0
0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1
0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1
1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 1
0 1 0 0 1 0 1 0 1

Table 1: A dominating set of Γ9 and a dominating set of Λ9
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We conjecture that γ(Γ9) = 17 and γ(Λ9) = 16 hold.

Pike and Zou [12] also proved that for any n ≥ 4,

γ(Γn) ≥
⌈

Fn+2 − 3
n− 2

⌉
.

We next prove a parallel lower bound for the domination number of Lucas cubes. For this
sake we first consider degrees of some specific vertices in Lucas cubes.

Let n ≥ 1. Recall that Λn,1 is the set of all the vertices with exactly one 1. In addition,
set

Λ′
n,2 = {0a1010n−a−3 | 0 ≤ a ≤ n− 1} ,

where we again compute by modulo n. Hence Λ′
n,2 is the subset of Λn,2 consisting of the

Lucas strings containing (in circular manner) 101 as a substring.

Lemma 3.3 Let n ≥ 7. Then for the Lucas cube Λn the followings hold.

(i) The vertex 0n is the only vertex of the maximum degree n.
(ii) The vertices of Λn,1 have degree n− 2.
(iii) Among the vertices with at least two 1’s, only the vertices of Λ′

n,2 have degree
n− 3 and all the other vertices have degree at most n− 4.

Proof. (i) and (ii) are clear.
(iii) Let u ∈ Λn,k for some k ≥ 2. Then u has k down-neighbors. The up-neighbors

of u are obtained by switching a bit 0 into 1. Let i1 < i2 < · · · < ik be the positions in
which u contains 1. Throughout the proof, the indices of i’s will be considered by modulo
k and ij by modulo n. As no consecutive bits of 1’s are allowed, ij+1 − ij ≥ 2 for all
1 ≤ j ≤ k. Let Ij = {ij − 1, ij + 1} be the set of the positions which are adjacent to ij for
each 1 ≤ j ≤ k and let I =

⋃
1≤j≤k Ij . Then any bit which is not in I can be switched to

1 and hence the number of up-neighbors of u is n − k − |I|. Therefore, deg(u) = n − |I|.
Note that Ij ∩ Ij′ = ∅ if |j − j′| ≥ 2, therefore by pigeon-hole principle, |I| ≥ k. The
equality holds if and only if Ij

⋂
Ij+1 6= ∅ for all 1 ≤ j ≤ k, which occurs if and only if

ij+1 = ij + 2 for all 1 ≤ j ≤ k, which is in turn if and only if n is even and k = n
2 . But

in this case, deg(u) = n
2 ≤ n − 4 as n ≥ 8. In the other cases, |I| ≥ k + 1 and hence

deg(u) ≤ n− k − 1. If k ≥ 3, then deg(u) ≤ n− 4. Assume k = 2. Then deg(u) ≤ n− 3,
where the equality holds exactly when |I| = 3 and I1

⋂
I2 6= ∅ which means that u ∈ Λ′

n,2.
�

Lemma 3.4 Let n ≥ 1. Then any ` vertices from Λ′
n,2 has at least ` down-neighbors, that

is, at least ` neighbors in Λn,1.

Proof. For 1 ≤ i ≤ `, let Ai be the set of down-neighbors of some vi ∈ Λ′
n,2. Then

|Ai| = 2 for each i. Considering bits by modulo n, each vertex 0a10n−a−1 in Λn,1 can be
a down-neighbor of at most two vertices 0a1010n−a−3 and 0a−21010n−a−1, and hence at
most two of v1, . . . , vl. By pigeon-hole principle, the assertion is true. �
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To establish the announced lower bound, we will apply the natural concept of over-
domination, just as it is done in [12]. It is defined as follows. Let D be a dominating set
of a graph G. Then the over-domination of G with respect to D is:

ODG(D) =
∑
v∈D

(degG(v) + 1)− |V (G)| . (3)

Note that ODG(D) = 0 if and only if D is a perfect dominating set [9, 4], that is, a
dominating set such that each vertex is dominated exactly once.

Theorem 3.5 For any n ≥ 7, γ(Λn) ≥
⌈

Ln − 2n

n− 3

⌉
.

Proof. Let D be a minimum dominating set of Λn. Set D1 = D∩Λn,1 and D2 = D∩Λ′
n,2,

and let k = |D1| and l = |D2|. Then clearly 0 ≤ k, l ≤ n. Note that the over-domination
of G with respect to D can be rewritten as

OD(G) =
∑

u∈V (Λn)

(|{v ∈ D | d(u, v) ≤ 1}| − 1) . (4)

For a vertex u of Λn, set t(u) = |{v ∈ D | d(u, v) ≤ 1}| − 1. As D is a dominating set,
t(u) ≥ 0 for all u ∈ V (Λn). We now distinguish two cases.

Case 1: 0n ∈ D.
Combining Lemma 3.3 with Equation (3) we get

OD(D) ≤ (n + 1) + k(n− 1) + l(n− 2) + (γ(Λn)− k − l − 1)(n− 3)− Ln

= γ(Λn)(n− 3) + 2k + l + 4− Ln .

Also as t(u) ≥ 0 for all u ∈ V , Equation (4) implies

OD(D) ≥ t(0n) +
∑

v∈D1

t(v) ≥ 2k .

Therefore γ(Λn) ≥
⌈

Ln−l−4
n−3

⌉
≥

⌈
Ln−n−4

n−3

⌉
.

Case 2: 0n /∈ D.
Again, combining Lemma 3.3 with Equation (3) we infer

OD(D) ≤ k(n− 1) + l(n− 2) + (γ(Λn)− k − l)(n− 3)− Ln

= γ(Λn)(n− 3) + 2k + l − Ln .

Let A be the set of down-neighbors of D2. Then for u ∈ D1 ∩A, t(u) ≥ 1. By Lemma 3.4,
|A| ≥ l and hence |D1

⋂
A| ≥ k + l − n. Therefore by Equation (4),

OD(D) ≥
∑

v∈D1
⋂

A

t(v) ≥ k + l − n .

Thus γ(Λn) ≥
⌈

Ln−k−n
n−3

⌉
≥

⌈
Ln−2n

n−3

⌉
.

By Case 1 and Case 2, γ(Λn) ≥
⌈

Ln−2n
n−3

⌉
. �
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4 The 2-packing number

We now turn to the 2-packing number and first prove the following asymptotical lower
bound.

Theorem 4.1 For any n ≥ 8, ρ(Γn) ≥ ρ(Λn) ≥ 22
blg nc

2 −1

.

Proof. Since for any n ≥ 1, Λn is an isometric subgraph of Γn, cf. [7], a 2-packing of Λn

is also a 2-packing of Γn. Therefore ρ(Γn) ≥ ρ(Λn).
Let r, s ≥ 1 and let X and Y be maximum 2-packings of Λr and Λs, respectively. Then

{x0y | x ∈ X, y ∈ Y } is a 2-packing of Λr+s+1 of size ρ(Λs)ρ(Λs). It follows that

ρ(Λr+s+1) ≥ ρ(Λr)ρ(Λs) .

Set now k = blg nc. Then ρ(Λ2k) ≥ ρ(Λ2k−1+1) ≥ ρ(Λ2k−2)2. By repeatedly applying this
argument we get

ρ(Λn) ≥ ρ(Λ2k) ≥ ρ(Λ2k−2l)2
l

.

When k is even, take l = k−2
2 to get ρ(Λn) ≥ ρ(Λ4)

2
k−2
2 = 22

k−2
2 . When k is odd, take

l = k−3
2 to get ρ(Λn) ≥ ρ(Λ8)

2
k−3
2 ≥ 82

k−3
2 = 23×2

k−3
2 ≥ 22

k−2
2 . �

Using computer we obtained the 2-packing numbers of Γn and Λn for n ≤ 10 given in
Table 2.

n 1 2 3 4 5 6 7 8 9 10
γ(Γn) 1 1 2 3 4 5 8 12 ≤17 -
ρ(Γn) 1 1 2 2 3 5 6 9 14 20
γ(Λn) 1 1 1 3 4 5 7 11 ≤16 -
ρ(Λn) 1 1 1 2 3 5 6 8 13 18

Table 2: Domination numbers and 2-packing numbers of small cubes

Table 2 needs several comments.

• The computer search found exactly ten 2-packings of size 20 in Γ10. This already
implies that ρ(Γ10) = 20. Indeed, if Γ10 would contain a 2-packing of size 21, then
it would contain at least twenty-one 2-packings of size 20.

• By exhaustive search with computer no 2-packing of size 19 but eighty 2-packing of
size 18 in Λ10 were found, hence ρ(Λ10) = 18.

• There is only one (up to isomorphisms of the graphs considered) maximum 2-packing
of Λ5, Λ6, Λ7, Λ9, as well as Γ6. There are two non-isomorphic 2-packings of maxi-
mum cardinality of Γ9, which are presented in Table 3.
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Since the reverse map given in (1) is an automorphism of Fibonacci cubes, the reverse
of a 2-packing is also a 2-packing. Interestingly, the maximum 2-packing of Γ9 shown on
the left-hand side of Table 3, denoted X, is also invariant under the reverse map. That is,
r(X) = X.

Similarly, the shifts ϕi, where ϕ is given in (2) and are automorphisms of Lucas cubes,
hence they map 2-packings into 2-packings. Now consider the 2-packing of Λ9 shown
in Table 4, denote it Y . Then it can be checked that ϕ3(Y ) = Y . As a consequence,
ϕ6(Y ) = Y .

0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0
1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1
0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1
0 1 0 0 1 0 1 0 1 1 0 0 0 1 0 0 1 0
1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1
0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 0 1
0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0
1 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0
1 0 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1

Table 3: Maximum 2-packings of Γ9

1 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 0 1
0 0 0 1 0 1 0 0 1
0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 1 0 1
0 1 0 0 0 1 0 0 0
0 1 0 0 1 0 1 0 0
0 1 0 1 0 0 0 1 0
0 1 0 1 0 0 1 0 1
1 0 0 0 1 0 0 1 0
1 0 0 1 0 1 0 1 0
1 0 1 0 0 1 0 0 0
1 0 1 0 1 0 1 0 0

Table 4: Maximum 2-packing of Λ9
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5 Concluding remarks

Based on the date from Table 2 we ask whether some of the followings are true.

Problem 5.1 Is it true that

(i) γ(Γn)− ρ(Γn) ≥ γ(Λn)− ρ(Λn) for n ≥ 1?
(ii) γ(Λn) ≥ ρ(Γn) for n ≥ 4?
(iii) γ(Λn) ≤ γ(Γn−1) + γ(Γn−3)− 1 for n ≥ 6?

Note that the last question, if it has an affirmative answer, reduces the bound of
γ(Λn) in Proposition 3.1 (i) by 1. Moreover, if (iii) is true, then one can also ask whether
γ(Λn) ≤ γ(Γn−1) + γ(Γn−4) holds for n ≥ 6.
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