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Abstract4

When n = 2m − 1 M.Ramras proved, by a counting argument, that for any5

isometrically embedded tree T on n edges in Qn there exists a group of translations6

G such that {g(T ); g ∈ G} is a vertex partition of Qn. Considering a more general7

context we are able to give an explicit construction of G and can construct non8

group vertex partitions by isometric trees. We extend also this problem to vertex9

partition of Qn′ by translates of an isometrically embedded tree on n = 2m−1 edges10

for any n′ ≥ n.11

Keywords: Graph, Perfect code, Hypercube, Vertex Partition, Tiling.12

13

1 Introduction14

Twenty years ago M.Ramras [5] published a paper where he answered the fol-15

lowing question of D. Rogers: If n = 2m − 1 does the hypercube Qn have a vertex16

partition into antipodal paths? M.Ramras gave an explicit construction of such17

a partition. For this purpose he exhibited a set of generators of a subgroup G18

of the group of translations Σ(Qn) ⊂ Aut(Qn), such that the set of translates19

{g(P ); g ∈ G} of the vertex set of P of an antipodal path is the desired vertex20

partition.21

He extended this result, proving, via a counting argument, that for any tree22

on n = 2m − 1 edges isometrically embedded in Qn with vertex set P there exists23

a subgroup G of Σ(Qn) such that the set of translates{g(P ); g ∈ G} is a vertex24

partition. Notice that, in the general case, the author’s method does not give an25

explicit construction of G.26

This nice result generalizes the existence of perfect single-error-correcting codes27

constructed first by R.W.Hamming [3]. In this case, we take as tree the star K1,n.28

∗CNRS and Université Joseph Fourier
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Notice that J.L.Vasiliev [6] constructed, for n = 2m−1, n ≥ 15, perfect codes which29

are not equivalent to linear codes, i.e. vertex partitions by stars such that the set30

of translations G is not a subgroup, or the translate of a subgroup, of the group of31

translations Σ(Qn).32

In another series of papers M.Ramras considers edges partitions of Qn into iso-33

morphic trees. More recent work have been done of this subject but is seems that34

this is not the case for vertex partitions. Both problems arise in the context of35

parallel computing at thus it will be interesting to improve our knowledge of vertex36

partitions.37

Our goal at the beginning of this work was to prove the existence of non group38

partitions into antipodal paths. It seems also interesting, for the general case of39

trees, to give an explicit construction of a group, or more generally a set, of trans-40

lations G. It would be also nice, for the case of the path Pn to understand how the41

group proposed by M.Ramras can be derived from the Hamming code. In fact we42

found that all these problems can be easily solved, using elementary linear algebra.43

We arrive at the conclusion that looking for a vertex partition of Qn by translates44

of an isometrically embedded tree on n edges is a problem independent, in some45

sense, of the choice of the tree, thus is equivalent to looking for a perfect code.46

2 Definitions and main result47

Let Fn be the vector space of dimension n over the finite field Z2. The hypercube48

of dimension n is the graph Qn whose vertices are the vectors of Fn, and where two49

vertices are adjacent if they differ in exactly one coordinate.50

The Hamming distance between two vectors x, y ∈ Fn, d(x, y) is the number of51

coordinates in which they differ. Notice that Hamming distance is the usual graph52

distance on Qn.53

The support of a vector x is the set {i ∈ {1, 2, . . . n} ;xi 6= 0}. The parity function54

is the function from Fn to Z2 defined by π(x1, x2, . . . , xn) = x1 + x2 + . . . + xn.55

A perfect code, or more precisely a perfect single-error-correcting code of length56

n is a set C of vertices of Qn such that every vertex x ∈ V (Qn) is at distance at57

most 1 of exactly one element of C.58

Two codes C and C ′ are called equivalent if C ′ can be obtained from C by an59

automorphism of Qn thus by applying a translation from a fixed vector and a fixed60

permutation of the coordinates. Using a translation of all the perfect code vectors61

by one of them we can always assume that the zero vector 0 belongs to the code.62

Let e1, e2, . . . , en be the standard basis of Fn, thus ei denote the vector with just63

one single non zero coordinate position i. Let e0 = 0 be the zero vector and let64

1 = (11 . . . 1). Denote by Bn the set {e0, e1, e2, . . . , en}. The direction of an edge65

xy of Qn is the integer i ∈ {1, 2, . . . , n, } such that y = x + ei.66

For a subset A of vectors of Fn and a vertex x, let x+A be the set {x + a; a ∈ A}.67

By definition of a perfect code C = {c1, c2, . . . , ck} is a perfect code if and only if68

the sets c1 + Bn,c2 + Bn,. . . ,ck + Bn define a partition of Fn i.e.69

• Fn = c1 + Bn ∪ c2 + Bn ∪ . . . ∪ ck + Bn70

• ∀i, j ∈ {1, 2, . . . , k} ci + Bn ∩ cj + Bn = ∅71
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This immediately leads to a necessary condition for the existence of C, the so-called72

packing condition, 2n = |C|(n + 1) thus n = 2m − 1 for some m.73

By analogy G.Cohen, S.Litsyn, A.Vardy and G.Zémor [2] define a set S as a tile74

of Fn if there exists a set C = {c1, c2, . . . , ck} such that the sets c1+S,c2+S,. . . ,ck+S75

define a partition of Fn. Notice that the definition is symmetric, C is also a tile of76

Fn, and they call the pair(C,S) a tiling of Fn.77

R.W.Hamming [3] constructed, for any integer m, a linear subspace of Fn, where78

n = 2m− 1, which is a perfect code . It is easy to prove that all linear perfect codes79

are Hamming codes. In 1961 J.L.Vasiliev [6], and later many authors ([1, 4] for a80

survey) constructed perfect codes which are not linear codes.81

Let W = (v1, v2, . . . , vn) be a basis of Fn. We will denote by θW be the auto-82

morphism of Fn defined by θW (
∑n

i=1 λiei) = (
∑n

i=1 λivi).83

Lemma 1 Let V = {v0, v1, . . . , vn} where W = (v1, v2, . . . , vn) is a a basis of Fn
84

and v0 = 0. Then if C = {c1, c2, . . . , ck} is a perfect code θW (c1) + V, θW (c2) +85

V, . . . , θW (ck) + V is a partition of Fn.86

Proof : Notice that for any j ∈ {0, 1, . . . , n} we have θW (ej) = vj . By linearity87

for any i, j we have θW (ci) + vj = θW (ci) + θW (ej) = θW (ci + ej). Therefore88

θW (ci)+vj = θW (ci′)+vj′ implies, because θW is an automorphism, ci+ej = ci′ +ej′ .89

The θW (ci)+V are thus disjoint. Furthermore for any x of Fn we knows that there90

exist i ∈ {1, 2, . . . , k} and j ∈ {0, 1, . . . , n} such that θ−1
W (x) = ci + ej and thus91

x = θW (ci) + vj .92

293

For two graphs G and H an isometric embedding of G in H is a map α : V (G) 7→94

V (H) which preserve distance. By extension we will denote by α(G) the subgraph95

of H induced by α(V (G)). If G is injectively embedded in Qn we will say that there96

exists a vertex partition of Qn by G if there exists a tiling of V (Qn) by α(V (G)).97

It is immediate to check, as noticed by M.Ramras [5], that a tree T is isometrically98

embedded in Qn if and only if no edges of α(T ) use the same direction. If α is an99

isometric embedding in Qn then for any translation t the map α′ = α + t is also100

an isometric embedding. Therefore, if a graph G is isometrically embeddable in Qn101

then, for any vertex x of G there exists an isometric embedding such that α(x) = 0.102

Lemma 2 Let T be any tree on p ≤ n edges, and let α be an isometric embedding103

of T in Qn. Assume α(T ) = {0, v1, v2, . . . , vp} then the vectors v1, v2, . . . , vp are104

linearly independent.105

Proof : The proof is by induction on p. The result is clearly true when p = 1106

and assume it holds for any tree on p − 1 edges. Let x be a terminal vertex of107

T and let xy be the edge of T incident to x. Consider the tree T ′ obtained by108

deletion of x from T . We can always assume that α(x) 6= 0 thus α(x) = vi for some109

i ∈ {1, 2, . . . , p}. Let j ∈ {1, 2, . . . , n} such that α(x) = α(y) + ej . The restriction110

to T ′ of α is an isometric embedding thus the vectors {vk; k ∈ {1, 2, . . . , p} , k 6= i}111

are independent by induction hypothesis. Notice that ej does not not appear in the112

basis decomposition of the {vk; k ∈ {1, 2, . . . , p} , k 6= i}. But α(y) belongs to this113

set and because vi = α(y) + ej the vector vi is also linearly independent of them.114

2115
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Theorem 3 Let T be any tree on n = 2m−1 edges, and let α be an isometric embed-116

ding of T in Qn. Assume α(T ) = {0, v1, v2, . . . , vn}. Then the vectors v1, v2, . . . , vn117

form a basis W of Fn. Furthermore if C = {c1, c2, . . . , ck} is a perfect code of Qn118

then {θW (c1), θW (c2), . . . , θW (ck)} define a vertex partition of Qn by the embedded119

tree T . All vertex partitions of Qn by α(T ) can be obtained by this way.120

Proof : By lemma 2 W is a basis of Fn and the result follows by lemma 1.121

Conversely if S = {s1, s2, . . . , sk} define a vertex partition of Qn by T then122 {
θ−1
W (s1), θ−1

W (s2), . . . , θ−1
W (sk)

}
is a perfect code and thus all vertex partition of Qn123

by T are obtained by theorem 3.124

2125

Notice that the set D = {θW (c1), θW (c2), . . . , θW (ck)} is a linear subspace if and126

only if C is linear. Furthermore if b1, b2 . . . , bp is a basis of C then θW (b1), θW (b2), . . . , θW (bp)127

will be a basis of D.128

Consider now a vertex partition of Qn′ by translates of an isometrically embed-129

ded tree on n edges for some n′ ≥ n. By the packing condition, 2n′
= (n + 1)|D|,130

thus n = 2m − 1 for some m.131

Corollary 4 Let T be any tree on n = 2m − 1 edges, and let α be an isometric132

embedding of T in Qn′, n′ ≥ n. Then there exits a vertex partition of Qn′ by133

translates of the embedded tree α(T ).134

Proof : The vertices of α(T ) = {0, v1, v2, . . . , vn} define a subspace of di-135

mension n. By a permutation of coordinates we can assume that this subspace is136

V ect(e1, e2, . . . , en) thus there exist a vertex partition of Qn with set of translation137

say D. Then D ∪ {en+1, en+2 . . . en′} define a vertex partition of Qn′ by translates138

of α(T ). 2139

3 An example: antipodal paths140

The antipodal vertex of a vertex x in Qn is the unique vertex x at distance n of141

x. Notice that x=x + 1. An antipodal path is a path in Qn of n edges connecting142

some pair of antipodal vertices. We will say that an isometric embedding α(P ) of an143

antipodal path in Qn is canonical if v0 = 0 and along the path the directions used144

are 1, 2, . . . , n in this order. We have thus, for any i ∈ {0, 1, . . . , n}, vi =
∑i

j=0 ej145

and θW (
∑n

i=1 λiei) = (
∑n

i=1 λi
∑i

j=1 ej). By a translation and a permutation of the146

coordinates we can always assume that an isometric embedding of P is canonical.147

A vector u ∈ Fn is of type 01, respectively of type 10, if there exists i0 ∈148

{0, 1, . . . , n} such that u =
∑n

i=i0+1 ei , respectively u =
∑i0

i=1 ei. Notice that 1 and149

0 are the only vectors of both types.150

Lemma 5 If u and v are two distinct vectors both of type 10, or both of type 01,151

then u and v differ by a set of consecutive coordinates.152

Proof : Assume first u =
∑i0

i=1 ei and v =
∑j0

i=1 ei for some i0, j0 ∈ {0, 1, . . . , n}153

Assume w.l.o.g. that i0 < j0 we have thus v = u +
∑j0

i=i0+1 ei. For the second case154

notice that if u is a vector of type 01 then u + 1 is of type 10. 2155
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Lemma 6 Let α(P ) be an isometrically embedded antipodal path in Qn such that156

∀i ∈ {0, 1, . . . , n} vi =
∑i

j=0 ej. Then a subset C of Qn define a vertex partition by157

translates of α(P ) if and only if158

(i) 2n = |C|(n + 1) and159

(ii) No pair of elements of C differ by a set of consecutive coordinates.160

Proof : Consider two translates of the embedded path say, x+α(P ) and y +α(P ).161

If z is a common vertex of the two paths then for some i, j ∈ {0, 1, . . . , n} we have162

z = x+
∑i

k=1 ek and z = y +
∑j

k=1 ek. Thus by lemma 5 condition (ii) implies that163

the paths x+α(P ) and y +α(P ) are disjoint. By condition (i) every vertex belongs164

to some path.165

2166

If we assume that C is a linear subspace, the last condition is equivalent to the167

condition used by Ramras:168

(ii’) No element of C have as support a not empty set of consecutive integers.169

Let us recall Vasiliev construction of perfect codes.170

Theorem 7 (Vasiliev [6]) Let Cn be a perfect code of length n. Assume 0 ∈ Cn171

and let λ be a function from Cn to Z2 such that λ(0) = 0. Then the set C2n+1 =172

{(x, π(x) + λ(c), x + c);x ∈ Fn, c ∈ Cn} is a perfect code of length 2n + 1.173

Notice that if there exists u, v ∈ Cn such that λ(u + v) 6= λ(u) + λ(v) then C2n+1174

is not equivalent to any linear code. Such a function λ exists when |Cn| > 2 thus175

there exists non linear codes when n = 2m − 1, n ≥ 15. If λ(u) = 0 for any u ∈ C176

we obtain the classical inductive construction of Hamming codes.177

Theorem 8 Let α(P ) be a canonical isometric embedding of an antipodal path in178

Qn and assume that Dn defines a vertex partition by translates of α(P ). Let γ179

be a function from Dn to Z2 such that γ(0) = 0. Let Γ be the function from180

Dn to Fn defined by Γ(d) = 0 if γ(d) = 0 and Γ(d) = 1 otherwise. Then the set181

D2n+1 = {(y, γ(d), y + d + Γ(d)); y ∈ Fn, d ∈ Dn} defines a vertex partition of F2n+1
182

by isometrically embedded antipodal paths.183

Proof : Let us start by a direct proof using lemma 6. Notice first that |D2n+1|(2n+184

2) = |Dn|2n(2n +2) = |Dn|(n +1)2n+1 = 22n+1. Consider two vectors of D2n+1 say185

u = (y, γ(d), y + d + Γ(d)) and u′ = (y′, γ(d′), y′ + d′ + Γ(d′)). Assume that u an u′186

differ by a set of consecutive coordinates.187

• γ(d) = γ(d′). We have y = y′ or y + d = y′ + d′.188

– If y = y′ then u + u′ = (0, 0, d + d′). But d, d′ ∈ Dn thus by lemma 6189

d = d′ and u = u′.190

– If y +d = y′ +d′ then u+u′ = (y + y′, 0,0). But y + y′ = d+d′ and again191

by lemma 6 d = d′, y = y′and u = u′.192

• γ(d) 6= γ(d′) thus u + u′ = (y + y′, 1, d + y + d′ + y′ + 1). Therefore y + y′ is193

of type 01 and d + y + d′ + y′ + 1 must be of type 10, thus d + y + d′ + y′ of194

type 01. But d + d′ = (y + y′) + (d + y + d′ + y′) then by lemma 5 d and d′195

must differ by a set of consecutive coordinates; a contradiction with lemma 6.196
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We will know deduce theorem 8 from theorem 7 showing that this construction198

is in fact the analogous of Vasiliev construction.199

200

Alternative proof : Let W = (v1, v2, . . . , vn) and W ′ = (v1, v2, . . . , v2n+1),201

where vi =
∑i

j=1 ej . By theorem 3 Dn is obtained from a perfect code of length n202

Cn =
{
θ−1
W (d); d ∈ Dn

}
. Let λ : Cn 7→ Z2 defined by λ(c) = γ(θW (c)).203

Consider C2n+1 =
{
(θ−1

W (y), π(θ−1
W (y)) + λ(θ−1

W (d)), θ−1
W (y) + θ−1

W (d)); y ∈ Fn, d ∈ Dn

}
.204

By theorem 7 C2n+1 is a perfect code of length 2n+1 and thus by theorem 3 D2n+1205

defines a vertex partition of F2n+1 by isometrically embedded antipodal paths where206

D2n+1 = {θW ′(c); c ∈ C2n+1}.207

Notice that, for any x ∈ Fn and any a ∈ Z2 we have:208

θW ′(x, 0,0) = (θW (x), 0,0) + π(x).(0, 1,1)209

θW ′(0, 0, x) = (0, 0, θW (x))210

θW ′(0, a,0) = a.(0, 1,1).211

Therefore:212

θW ′(θ−1
W (y), 0,0) = (y, 0,0) + π(θ−1

W (y)).(0, 1,1),213

θW ′(θ−1
W (0, π(θ−1

W (y)) + λ(θ−1
W (d)),0) =

[
π(θ−1

W (y)) + γ(d)
]
.(0, 1,1)214

and θW ′(0, 0, θ−1
W (y) + θ−1

W (d)) = (0, 0, y + d).215

By linearity of θW ′ we obtain the expression of D2n+1.216

2217

Here also, if there exists u, v ∈ Dn such that γ(u + v) 6= γ(u) + γ(v) then D2n+1218

is not a linear subspace. Notice that, if we set γ(u) = 0 for any u ∈ Dn, we obtain219

a recursive construction of the linear subspace proposed by M.Ramras [5].220
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