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Abstract

Assuming the existence of a partition in perfect codes of the vertex set of a finite
or infinite bipartite graph G we give the construction of a perfect code in the Carte-
sian product G2G2P2. Such a partition is easily obtained in the case of perfect
codes in Abelian Cayley graphs and we give some example of applications of this
result and its generalizations.
Keywords: Graph, Perfect code, Cartesian product.

1 Introduction

Hamming and Golay [9, 13] constructed perfect binary single-error correcting
codes of length n where n = 2p − 1 for some integer p. Perfect codes played a
central role in the fast growing of error-correcting codes theory.

Later Biggs [3] and Kratochv́ıl [18] proposed the study of the existence of perfect
codes in graphs. From this point of view Hamming codes are perfect codes in the
hypercube Qn.

Infinite classes of graphs with perfect codes have been constructed by Cameron,
Thas and Payne [4], Thas [22], Hammond [14] and others. The existence of perfect
codes have also been proved in Towers of Hanoi graphs [6] and Sierpinski graph [16].

Dejter and Serra [7] give a construction tool to produce various infinite families
of graphs with perfect codes. All graphs constructed this way are, for some chosen n,
Cayley graphs of degree n on the symmetric group Sn+1 thus are of order (n + 1)!.
These families include star graphs, for which the existence of perfect codes was
already proved by Arumugam and Kala [2] and pancake graphs.

Perfect codes have also been studied in infinite graphs. For example Golomb
and Welsh [10, 11] considered the multi dimensional rectangular grid Zn. More
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recently Dorbec and Mollard [8] studied the existence of perfect codes in Zn2Qk

thus a common generalization of the hypercube Qk and the grid Zn.
Recently many authors investigated also perfect codes in direct [17, 24], strong

[1] and lexicographic [21] product of graphs.
We will focus on the Cartesian product.
Hamming codes are classically constructed using linear algebra. Vasiliev [23] and

later many authors [15, 5] constructed other families of perfect codes in Qn. Most
of these constructions start from a more geometrical point of view, the fact that
Hamming codes can also be constructed recursively in multiple ways. Assuming
that there exists a perfect code in Qn they deduce the existence of perfect codes in
Q2n+1. We will generalize to regular graphs one of these constructions, the so called
doubling construction independently found by Soloveva [20] and Phelps[19].

2 Notations and code-coloring

For G1 = (V1, E1) and G2 = (V2, E2) two graphs, the Cartesian product G12G2

is the graph with vertex set V1 × V2 and (x1, x2)(y1, y2) ∈ E(G12G2) if and only if
x1y1 ∈ E1 and x2 = y2 or x2y2 ∈ E2 and x1 = y1. We will use the notation Gn for
the graph G2G2 . . .2G (n times).

The hypercube of dimension n is the graph Qn whose vertices are the words
of length n over the alphabet {0, 1}, and where two vertices are adjacent if they
differ in exactly one place. Notice that Q1 is P2 the path with 2 vertices and that
Qn+1 = Qn2P2.

The infinite grid Zn is the graph whose vertices are the words of length n over
the alphabet Z and where two vertices are adjacent if and only if they differ by 1
in exactly one place. Notice that if we denote by P∞ the two way infinite path, we
have also Z1 = P∞ and Zn+1 = Zn2P∞.

For two vertices x and y, we will denote by d(x, y) the classical distance on
graphs.

The set of neighbors of any vertex x in G is NG(x) = {y ∈ V (G)/xy ∈ E(G)}.
For an integer r and vertex u, we call ball of radius r centered on u the set of

vertices v such that d(u, v) ≤ r.
In this paper, we will only consider balls of radius 1 and thus call them simply

balls.
In a graph, a single error correcting code (or code for shorter) is a subset C of

the set of vertices V (G) such that any two vertices of C are at distance at least 3.
This is equivalent to say that the balls centered on these vertices are disjoint sets.

We say that a vertex u dominates a vertex v if v belongs to the ball centered on
u. A subset S of V (G) is called a dominating set if every vertex of G is dominated
by at least one vertex of S.

A code is said to be perfect if it also a dominating set. It equivalently means
that the balls centered on code vertices form a partition of the vertex set.

We will call code-coloring of a regular graph of degree n a labeling c of the
vertices with {0, 1, . . . , n} such that the neighbors of any vertex u are colored with
all distinct colors from {0, 1, . . . , n}\{c(u)}.
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Proposition 1 For all i ∈ {0, 1, . . . , n} the set of vertices colored i in a code-
coloring of a regular graph is a perfect code.

Proof : By definition vertices of the same color cannot be at distance 1 or 2.
Furthermore if a vertex is not colored i then one of its neighbors is labeled with
this color. Thus for every i, the set Ci of vertices colored i is both a code and a
dominating set. 2

It is clear that conversely from a partition of the vertex set of a graph in perfect
codes we obtain a code-coloring of this graph.

We will call extended code-coloring of a regular graph of degree n a labeling c of
the vertices with {0, 1, . . . , n} such that:

• The neighbors of any vertex u colored 0 are colored with all distinct colors
{1, . . . , n}.

• The neighbors of any vertex u colored with a color in {1, . . . , n} are colored 0.

.

Proposition 2 Let G be a regular graph of degree n and c be an extended code-
coloring of G. Then G is bipartite and for all i ∈ {1, . . . , n} the set of vertices
colored i is a code.

Proof : By definition of c the set of vertices colored 0 and the set of vertices
colored with a color in {1, . . . , n} define a bipartition of G. Let u and v be two
vertices colored with colors in {1, . . . , n}. Then u and v cannot be adjacent or at
distance 3. Assume u and v are at distance 2 and let w be a common neighbor of
them. The vertex w must be colored 0 thus c(u) 6= c(v). Therefore if c(u) = c(v)
the vertices u and v are at distance at least 4. 2

Proposition 3 Assume that there exists a code-coloring in a bipartite regular graph
G then there exists an extended code-coloring in G2P2.

Proof : It will be convenient to see the vertices of P2 as the elements of the set
{0, 1}. Let c : V (G) 7→ {0, . . . , n} be a code-coloring of G and P : V (G) 7→ {0, 1}
be a proper 2-coloring of the graph G. Let c′ : V (G2P2) 7→ {0, . . . , n + 1} be the
labeling defined by:

• If P (x) = 0 then c′((x, 0)) = c(x) + 1 and c′((x, 1)) = 0.

• If P (x) = 1 then c′((x, 0)) = 0 and c′((x, 1)) = c(x) + 1.

We claim that c′ is an extended code-coloring of G2P2.
Indeed if a vertex (x, 0) is labeled 0 then we have P (x) = 1. The neighbors

of (x, 0) are (x, 1) (labeled c(x) + 1) and the (y, 0) with y ∈ NG(x). For all these
vertices P (y) = 0 thus c′((y, 0)) = c(y) + 1. Therefore the (y, 0) are labeled with all
distinct colors from {1, . . . , n + 1}\{c(x) + 1}.

If a vertex (x, 0) is labeled with a color in {1, . . . , n + 1} then P (x) = 0. The
neighbors of (x, 0) are (x, 1) (labeled 0) and the (y, 0) with y ∈ NG(x). For all these
vertices P (y) = 1 thus c′((y, 0)) = 0.
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The two remaining cases corresponding to vertices of type (x, 1) are similar to
the two first ones and left to the reader. 2

In error-correcting codes theory, extended perfect codes are codes of Qn+1 formed
from a perfect code C of Qn by adding to every word of C an overall parity check
bit. In her doubling construction Soloveva [20] uses partitions of the vertex set of Qn

and Qn+1 by perfect codes and extended perfect codes, respectively. Our definition
of extended code-coloring generalizes, in some sense, to regular graphs the notion
of partition of the set of even vertices of Qn+1 by extended perfect codes.

However notice that there exist extended code-colorings for graphs non decom-
posable as some G2P2. For example there exists an extended code-coloring in the
bipartite complete graph Kn,n. However for a bipartite graph G the existence of an
extended code-coloring in G2P2 is equivalent to the existence of a code-coloring in
G.

Proposition 4 Let G be a regular graph of degree n. Assume that there exists an
extended code-coloring in G2P2 then G is bipartite and there exists a code-coloring
in G.

Proof : Let c : V (G2P2) 7→ {0, . . . , n + 1} be an extended code-coloring of G2P2.
Notice that for all x ∈ V (G) we have c((x, 0)) = 0 if and only if c((x, 1)) 6= 0.

It is immediate to verify that the sets {x ∈ V (G)/c((x, 0)) = 0} and {x ∈
V (G)/c((x, 0)) 6= 0} define a bipartition of G.

Let c′ : V (G) 7→ {0, . . . , n} be the labeling defined by:

• c′(x) = c((x, 0))− 1 if c((x, 0)) 6= 0

• c′(x) = c((x, 1))− 1 if c((x, 0)) = 0

c′ is a code-coloring of G.
Indeed let x ∈ V (G). Without loose of generality we can assume c((x, 0)) 6= 0;

we will deduce the case c((x, 1)) 6= 0 by symmetry.
We have then c((x, 1)) = 0 and {c((x′, 1))/x′ ∈ NG(x)} = {1, . . . , n+1}\{c((x, 0))}.
If x′ ∈ NG(x) we have c((x′, 0)) = 0 thus from the definition of c′(x′) we obtain

{c′(x′)/x′ ∈ NG(x)} = {0, . . . , n}\{c((x, 0))− 1} = {0, . . . , n}\{c′(x)}.
2

Let G be a regular graph and let c be an extended code-coloring of G2P2. The
dual coloring c̃ is defined for any vertex (x, ε) with x ∈ V (G) and ε ∈ {0, 1} by
c̃((x, ε)) = c((x, 1− ε)).

Proposition 5 Let G be a regular graph. The dual coloring c̃ of an extended code-
coloring c of G2P2 is also an extended code-coloring .

Proof : Consider the bijection from V (G2P2) to itself defined for any vertex (x, ε),
with x ∈ V (G), by θ(x, ε) = (x, 1− ε). Then θ is the graph automorphism of G2P2

corresponding to the exchange of two G-layers. The proposition follows by the fact
that c̃ is the composition of θ and c. 2
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3 Main results and applications

Theorem 6 Let G and H be two finite or infinite regular graphs of degree respec-
tively n and n+1. If there exist a code-coloring in G and an extended code-coloring
in H then there exists a perfect code in G2H.

Proof : Let c : V (G) 7→ {0, . . . , n} be a code-coloring of G and c′ : V (H) 7→
{0, . . . , n + 1} be an extended code-coloring of H. Consider the set D of vertices of
G2H defined by D = {(x, y) /x ∈ V (G), y ∈ V (H), c′(y) = c(x) + 1}. Notice that
if c′(y) = 0 there is no vertex x of G such that (x, y) ∈ D.

We will prove first that for any distinct vertices (x, y) and (x′, y′) of D we have
d((x, y), (x′, y′)) > 2.

• If x = x′ then c′(y) = c′(y′) = c(x) + 1. But c′(y) = c′(y′) is in {1, . . . , n + 1}
thus by proposition 2 d(y, y′) ≥ 3.

• If d(x, x′) = 1 then c(x) 6= c(x′) thus c′(y) 6= c′(y′) and y 6= y′. But c′(y) and
c′(y′) are in {1, . . . , n + 1} thus d(y, y′) ≥ 2 .

• If d(x, x′) = 2 then again c(x) 6= c(x′) thus y 6= y′.

• If d(x, x′) ≥ 3 we are done.

Thus D is a code and if G and H are finite graphs, by cardinality arguments, we can
prove that D is a perfect code. However we consider also infinite graphs, therefore
we will prove directly that D is a dominating set. Let (x, y) be a vertex of G2H
not in D.

• if c′(y) = 0. There exists a vertex y′ of NH(y) with color c′(y′) = c(x) + 1.
The vertex (x, y′) is in D and dominates (x, y).

• if c′(y) ∈ {1, . . . , n + 1} then c(x) 6= c′(y)− 1 and thus there exists a vertex x′

of NG(x) with color c(x′) = c′(y)−1. The vertex (x′, y) is in D and dominates
(x, y).

2

Let G and H be two finite or infinite regular graphs of the same degree n.
Assume that H is bipartite and that there exists a code-coloring in G and H then,
using the previous theorem and proposition 3, there exists a perfect code in the
graph G2H2P2. In fact we can prove directly the following stronger result.

Theorem 7 Let G and H be two finite or infinite regular graphs of the same degree
n. Assume that H is bipartite and that there exists a code-coloring in G and H then
there exists a code-coloring, thus a partition in perfect codes, in the graph G2H2P2.

Proof : Let c : V (G) 7→ {0, . . . , n} be a code-coloring of G and c′ : V (H2P2) 7→
{0, . . . , n+1} be the extended code-coloring of H2P2 deduced from the code-coloring
of H. Consider c̃′ the dual of c′.

Let (x, y) with x ∈ G, y ∈ H2P2, be a vertex of G2H2P2. Let us define the
color e(x, y) by

• If c′(y) 6= 0 then e(x, y) = c(x)− c′(y) mod(n + 1)

• If c′(y) = 0 then e(x, y) = ẽ(x, y)+n+1 where ẽ(x, y) = c(x)−c̃′(y) mod(n+1).
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Notice that in the first (respectively in the second) case e(x, y) belongs to {0, . . . , n}
(respectively to {n+1, . . . , 2n+1} ). Furthermore the degree of G2H2P2 is 2n+1.
Let us verify that e is a code-coloring.

• If e(x, y) belongs to {0, . . . , n} then c′(y) 6= 0. Consider the possible neighbors
of (x, y).
We have {e(x′, y)/x′ ∈ NG(x)} = {c(x′)− c′(y) mod(n + 1)/x′ ∈ NG(x)}. But
{c(x′)/x′ ∈ NG(x)} = {0, . . . , n}\{c(x)} thus {c(x′) − c′(y) mod(n + 1)/x′ ∈
NG(x)} = {0, . . . , n}\{e(x, y)}.
Consider now a vertex (x, y′) such that y′ ∈ NH2P2(y). We have c′(y′) = 0.
But {c̃′(y′)/y′ ∈ NH2P2(y)} = {1, . . . , n + 1} thus {ẽ(x, y′)/y′ ∈ NH2P2(y)} =
{0, . . . , n} and {e(x, y′)/y′ ∈ NH2P2(y)} = {n + 1, . . . , 2n + 1}.

• If e(x, y) belongs to {n + 1, . . . , 2n + 1} then c′(y) = 0. From {c(x′)/x′ ∈
NG(x)} = {0, . . . , n}\{c(x)} we deduce {c(x′)−c̃′(y) mod(n+1)/x′ ∈ NG(x)} =
{0, . . . , n}\{c(x) − c̃′(y)} and thus {e(x′, y)/x′ ∈ NG(x)} = {n + 1, . . . , 2n +
1}\{e(x, y)}.
We have also {c′(y′)/y′ ∈ NH2P2(y)} = {1, . . . , n + 1} thus {e(x, y′)/y′ ∈
NH2P2(y)} = {0, . . . , n}.

2

It is easy to prove that there is no perfect code in K32K32P2. Thus we cannot
drop the condition that H is bipartite in theorem 7.

We will often use this theorem in the particular case G = H. Using our con-
struction recursively we obtain

Corollary 8 Let G be a bipartite graph. If there exists a code-coloring in G then
for all integer k there exists a code-coloring, thus a partition in perfect codes, in the
graph G2k

2P 2k−1
2 = G2k

2Q2k−1.

Let Γ be a group, S a finite set of elements of Γ such that 1 /∈ S and S−1 =
{s−1/s ∈ S} = S. The undirected Cayley graph G = Cay(Γ, S) over Γ with
connection set S has vertex set V (G) = Γ and edge set E(G) = {{a, b} : a−1b ∈ S}.
This graph is regular of degree |S|. When the group Γ is commutative Cay(Γ, S)
is called an Abelian Cayley graph. Notice that the Cartesian product of two Cayley
graphs is a Cayley graph over the direct product of the two groups thus is Abelian if
the factors are Abelian. From a perfect code it is easy to construct a code-coloring
in the particular case of Abelian Cayley graph.

Lemma 9 Let G be an Abelian Cayley graph then if there exists a perfect code in
G there exists a code-coloring of G.

Proof :
Let C be a perfect code in G = Cay(Γ, S) and s1,s2,. . . , sn be the elements of

S. Consider the coloring c of V (G) define by

• If x ∈ C then c(x) = 0.

• If x /∈ C then let u be the unique element of C which dominates x. Then
u−1x = si for some unique i in {1, . . . , n}. Let c(x) = i.
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The coloring c is a code-coloring.

• Assume first that c(x) = 0. Then the neighbors of x in G are the xsi, i ∈
{1, . . . , n} and are all dominated by x thus are of color i.

• Assume now that c(x) = j for some j 6= 0 and let u be the vertex of C which
dominates x. We have thus x =usj . Let k be such that sk = s−1

j and let
K = {1, . . . , n}\{k}. The neighbors of x are u and the {xsi / i ∈ K}.
Consider one of these vertices x′ = xsi. The color of x′ cannot be 0 because x′

is not in C. It is not j because this would imply the existence of v in C with
x′ = vsj and using x′ = xsi , x =usj this gives v = usi thus d(u, v) = 1.
Assume now that two neighbors of x say x′ = xsi and x′′ = xsh for some
i, h ∈ K are of the same color d. This would imply the existence of two
distinct vertices v and w in C with sd =v−1x′ = w−1x′′. Then using x′ = xsi

and x′′ = xsh this would imply v−1si = w−1sh thus the existence of a vertex at
distance 1 of both v and w and this is not possible because C is a code. Thus
the neighbors of x are colored with all distinct colors from {0, 1, . . . , n}\{j}.

2

We will now give some examples of use of our construction.
Consider for p ≥ 3 the p-crown graph K̃p,p obtained from the bipartite complete

graph Kp,p after deletion of the edges of a perfect matching. This graph is an Abelian
Cayley graph G = Cay(Γ, S) with Γ = Zp×Z2 and S = {(1, 1), (2, 1), . . . , (p−1, 1)}.
By construction each pair of vertices of the removed matching is a perfect code.

The graph K̃4,4 is Q3 and we obtain the construction of Hamming codes in
hypercubes.

The graph K̃3,3 is C6 and we obtain a construction of perfect codes in C2k

6 2Q2k−1.
On Zn2Qk, we will say that a code is i-periodical (i ∈ {1, . . . , n}) if there exists a
positive integer pi (called the i-period) such that for any vertex x = x1x2 . . . xnv
(∀i, xi ∈ Z,v ∈ V (Qk)), the vertex x1x2 . . . xi−1(xi + pi)xi+1 . . . xnv is in the code
if and only if x is in the code. We thus obtain a perfect code on Z2k

2Q2k−1 of
i-period 6 for all i ∈ {1, . . . , 2k}.

Other values of p ≥ 5 give infinite families of graphs with perfect codes.
Golomb and Welsh [10, 11] proved the existence of perfect codes in the grid

Zn. This is again a bipartite Abelian Cayley graph. Thus for all integer k there
exists a perfect code in Zn2k

2Q2k−1. More precisely the codes of Golomb and
Welsh are of i-period 2n+1 thus they induce a code-coloring in the bipartite graph
Cn

4n+2. Therefore there exists in Zn2k
2Q2k−1 a perfect code of i-period 4n + 2 for

all i ∈ {1, . . . , n2k}.
Our work [8] about the possible parameters values for the existence of perfect

codes in Zn2Qk can be completed by the following direct consequence of theorem
7.

Corollary 10 Let a, b, c be integers such that b ≥ 2c. Then if there exist perfect
codes in Za2Qb and in Za+c2Qb−2c then there exists a perfect code in Z2a+c2Q2b−2c+1.

For any integer p ≥ 1 consider the bipartite complete graph Kp,p. Label 0 the p
vertices of one of the independent sets, and {1, . . . , p} the p other vertices. We

7



obtain an extended code-coloring of Kp,p. Assume that p = 2q for some integer
q ≥ 0. Then by theorem 6 there exists a perfect code in K2q ,2q2Q2q−1. But this
is a bipartite Abelian Cayley Graph thus by lemma 9 there exits a code-coloring of
K2q ,2q2Q2q−1. Using again corollary 8 we obtain the following result.

Corollary 11 For any integers q, k ≥ 0 there exists a perfect code in K2k

2q ,2q2Q2q+k−1.

There exists a trivial code-coloring of the complete graph Kn. Thus by theorem
6 there exists a perfect code in Kn,n2Kn. But this is also an Abelian Cayley Graph
thus we obtain a code-coloring of Kn,n2Kn. Using the same idea with K̃n,n and Zn

we obtain

Corollary 12 For any integer n ≥ 1 there exist code-colorings of Kn,n2Kn, Kn,n2K̃n,n

and K2n+1,2n+12Zn.
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