On perfect codes in Cartesian product of graphs

Michel Mollard*
Institut Fourier
100, rue des Maths
38402 St martin d'hères Cedex FRANCE
michel.mollard@ujf-grenoble.fr

September 20, 2010

Abstract

Assuming the existence of a partition in perfect codes of the vertex set of a finite or infinite bipartite graph G we give the construction of a perfect code in the Cartesian product $G \square G \square P_{2}$. Such a partition is easily obtained in the case of perfect codes in Abelian Cayley graphs and we give some example of applications of this result and its generalizations.

Keywords: Graph, Perfect code, Cartesian product.

1 Introduction

Hamming and Golay $[9,13]$ constructed perfect binary single-error correcting codes of length n where $n=2^{p}-1$ for some integer p. Perfect codes played a central role in the fast growing of error-correcting codes theory.

Later Biggs [3] and Kratochvíl [18] proposed the study of the existence of perfect codes in graphs. From this point of view Hamming codes are perfect codes in the hypercube Q_{n}.

Infinite classes of graphs with perfect codes have been constructed by Cameron, Thas and Payne [4], Thas [22], Hammond [14] and others. The existence of perfect codes have also been proved in Towers of Hanoi graphs [6] and Sierpinski graph [16].

Dejter and Serra [7] give a construction tool to produce various infinite families of graphs with perfect codes. All graphs constructed this way are, for some chosen n, Cayley graphs of degree n on the symmetric group S_{n+1} thus are of order $(n+1)$!. These families include star graphs, for which the existence of perfect codes was already proved by Arumugam and Kala [2] and pancake graphs.

Perfect codes have also been studied in infinite graphs. For example Golomb and Welsh $[10,11]$ considered the multi dimensional rectangular grid \mathbb{Z}^{n}. More

[^0]recently Dorbec and Mollard [8] studied the existence of perfect codes in $\mathbb{Z}^{n} \square Q_{k}$ thus a common generalization of the hypercube Q_{k} and the grid \mathbb{Z}^{n}.

Recently many authors investigated also perfect codes in direct [17, 24], strong [1] and lexicographic [21] product of graphs.

We will focus on the Cartesian product.
Hamming codes are classically constructed using linear algebra. Vasiliev [23] and later many authors $[15,5]$ constructed other families of perfect codes in Q_{n}. Most of these constructions start from a more geometrical point of view, the fact that Hamming codes can also be constructed recursively in multiple ways. Assuming that there exists a perfect code in Q_{n} they deduce the existence of perfect codes in $Q_{2 n+1}$. We will generalize to regular graphs one of these constructions, the so called doubling construction independently found by Soloveva [20] and Phelps[19].

2 Notations and code-coloring

For $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ two graphs, the Cartesian product $G_{1} \square G_{2}$ is the graph with vertex set $V_{1} \times V_{2}$ and $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right) \in E\left(G_{1} \square G_{2}\right)$ if and only if $x_{1} y_{1} \in E_{1}$ and $x_{2}=y_{2}$ or $x_{2} y_{2} \in E_{2}$ and $x_{1}=y_{1}$. We will use the notation G^{n} for the graph $G \square G \square \ldots \square G$ (n times).

The hypercube of dimension n is the graph Q_{n} whose vertices are the words of length n over the alphabet $\{0,1\}$, and where two vertices are adjacent if they differ in exactly one place. Notice that Q_{1} is P_{2} the path with 2 vertices and that $Q_{n+1}=Q_{n} \square P_{2}$.

The infinite grid \mathbb{Z}^{n} is the graph whose vertices are the words of length n over the alphabet \mathbb{Z} and where two vertices are adjacent if and only if they differ by 1 in exactly one place. Notice that if we denote by P_{∞} the two way infinite path, we have also $\mathbb{Z}^{1}=P_{\infty}$ and $\mathbb{Z}^{n+1}=\mathbb{Z}^{n} \square P_{\infty}$.

For two vertices x and y, we will denote by $d(x, y)$ the classical distance on graphs.

The set of neighbors of any vertex x in G is $N_{G}(x)=\{y \in V(G) / x y \in E(G)\}$.
For an integer r and vertex u, we call ball of radius r centered on u the set of vertices v such that $d(u, v) \leq r$.

In this paper, we will only consider balls of radius 1 and thus call them simply balls.

In a graph, a single error correcting code (or code for shorter) is a subset C of the set of vertices $V(G)$ such that any two vertices of C are at distance at least 3 . This is equivalent to say that the balls centered on these vertices are disjoint sets.

We say that a vertex u dominates a vertex v if v belongs to the ball centered on u. A subset S of $V(G)$ is called a dominating set if every vertex of G is dominated by at least one vertex of S.

A code is said to be perfect if it also a dominating set. It equivalently means that the balls centered on code vertices form a partition of the vertex set.

We will call code-coloring of a regular graph of degree n a labeling c of the vertices with $\{0,1, \ldots, n\}$ such that the neighbors of any vertex u are colored with all distinct colors from $\{0,1, \ldots, n\} \backslash\{c(u)\}$.

Proposition 1 For all $i \in\{0,1, \ldots, n\}$ the set of vertices colored i in a codecoloring of a regular graph is a perfect code.

Proof : By definition vertices of the same color cannot be at distance 1 or 2 . Furthermore if a vertex is not colored i then one of its neighbors is labeled with this color. Thus for every i, the set C_{i} of vertices colored i is both a code and a dominating set.

It is clear that conversely from a partition of the vertex set of a graph in perfect codes we obtain a code-coloring of this graph.

We will call extended code-coloring of a regular graph of degree n a labeling c of the vertices with $\{0,1, \ldots, n\}$ such that:

- The neighbors of any vertex u colored 0 are colored with all distinct colors $\{1, \ldots, n\}$.
- The neighbors of any vertex u colored with a color in $\{1, \ldots, n\}$ are colored 0 .

Proposition 2 Let G be a regular graph of degree n and c be an extended codecoloring of G. Then G is bipartite and for all $i \in\{1, \ldots, n\}$ the set of vertices colored i is a code.

Proof : By definition of c the set of vertices colored 0 and the set of vertices colored with a color in $\{1, \ldots, n\}$ define a bipartition of G . Let u and v be two vertices colored with colors in $\{1, \ldots, n\}$. Then u and v cannot be adjacent or at distance 3. Assume u and v are at distance 2 and let w be a common neighbor of them. The vertex w must be colored 0 thus $c(u) \neq c(v)$. Therefore if $c(u)=c(v)$ the vertices u and v are at distance at least 4 .

Proposition 3 Assume that there exists a code-coloring in a bipartite regular graph G then there exists an extended code-coloring in $G \square P_{2}$.

Proof : It will be convenient to see the vertices of P_{2} as the elements of the set $\{0,1\}$. Let $c: V(G) \mapsto\{0, \ldots, n\}$ be a code-coloring of G and $P: V(G) \mapsto\{0,1\}$ be a proper 2-coloring of the graph G. Let $c^{\prime}: V\left(G \square P_{2}\right) \mapsto\{0, \ldots, n+1\}$ be the labeling defined by:

- If $P(x)=0$ then $c^{\prime}((x, 0))=c(x)+1$ and $c^{\prime}((x, 1))=0$.
- If $P(x)=1$ then $c^{\prime}((x, 0))=0$ and $c^{\prime}((x, 1))=c(x)+1$.

We claim that c^{\prime} is an extended code-coloring of $G \square P_{2}$.
Indeed if a vertex $(x, 0)$ is labeled 0 then we have $P(x)=1$. The neighbors of $(x, 0)$ are $(x, 1)$ (labeled $c(x)+1)$ and the $(y, 0)$ with $y \in N_{G}(x)$. For all these vertices $P(y)=0$ thus $c^{\prime}((y, 0))=c(y)+1$. Therefore the $(y, 0)$ are labeled with all distinct colors from $\{1, \ldots, n+1\} \backslash\{c(x)+1\}$.

If a vertex $(x, 0)$ is labeled with a color in $\{1, \ldots, n+1\}$ then $P(x)=0$. The neighbors of $(x, 0)$ are $(x, 1)$ (labeled 0$)$ and the $(y, 0)$ with $y \in N_{G}(x)$. For all these vertices $P(y)=1$ thus $c^{\prime}((y, 0))=0$.

The two remaining cases corresponding to vertices of type $(x, 1)$ are similar to the two first ones and left to the reader.

In error-correcting codes theory, extended perfect codes are codes of Q_{n+1} formed from a perfect code C of Q_{n} by adding to every word of C an overall parity check bit. In her doubling construction Soloveva [20] uses partitions of the vertex set of Q_{n} and Q_{n+1} by perfect codes and extended perfect codes, respectively. Our definition of extended code-coloring generalizes, in some sense, to regular graphs the notion of partition of the set of even vertices of Q_{n+1} by extended perfect codes.

However notice that there exist extended code-colorings for graphs non decomposable as some $G \square P_{2}$. For example there exists an extended code-coloring in the bipartite complete graph $K_{n, n}$. However for a bipartite graph G the existence of an extended code-coloring in $G \square P_{2}$ is equivalent to the existence of a code-coloring in G.

Proposition 4 Let G be a regular graph of degree n. Assume that there exists an extended code-coloring in $G \square P_{2}$ then G is bipartite and there exists a code-coloring in G.

Proof : Let $c: V\left(G \square P_{2}\right) \mapsto\{0, \ldots, n+1\}$ be an extended code-coloring of $G \square P_{2}$. Notice that for all $x \in V(G)$ we have $c((x, 0))=0$ if and only if $c((x, 1)) \neq 0$.

It is immediate to verify that the sets $\{x \in V(G) / c((x, 0))=0\}$ and $\{x \in$ $V(G) / c((x, 0)) \neq 0\}$ define a bipartition of G.

Let $c^{\prime}: V(G) \mapsto\{0, \ldots, n\}$ be the labeling defined by:

- $c^{\prime}(x)=c((x, 0))-1$ if $c((x, 0)) \neq 0$
- $c^{\prime}(x)=c((x, 1))-1$ if $c((x, 0))=0$
c^{\prime} is a code-coloring of G.
Indeed let $x \in V(G)$. Without loose of generality we can assume $c((x, 0)) \neq 0 ;$ we will deduce the case $c((x, 1)) \neq 0$ by symmetry.

We have then $c((x, 1))=0$ and $\left\{c\left(\left(x^{\prime}, 1\right)\right) / x^{\prime} \in N_{G}(x)\right\}=\{1, \ldots, n+1\} \backslash\{c((x, 0))\}$.
If $x^{\prime} \in N_{G}(x)$ we have $c\left(\left(x^{\prime}, 0\right)\right)=0$ thus from the definition of $c^{\prime}\left(x^{\prime}\right)$ we obtain $\left\{c^{\prime}\left(x^{\prime}\right) / x^{\prime} \in N_{G}(x)\right\}=\{0, \ldots, n\} \backslash\{c((x, 0))-1\}=\{0, \ldots, n\} \backslash\left\{c^{\prime}(x)\right\}$.

Let G be a regular graph and let c be an extended code-coloring of $G \square P_{2}$. The dual coloring \tilde{c} is defined for any vertex (x, ϵ) with $x \in V(G)$ and $\epsilon \in\{0,1\}$ by $\tilde{c}((x, \epsilon))=c((x, 1-\epsilon))$.

Proposition 5 Let G be a regular graph. The dual coloring \tilde{c} of an extended codecoloring c of $G \square P_{2}$ is also an extended code-coloring.

Proof : Consider the bijection from $V\left(G \square P_{2}\right)$ to itself defined for any vertex (x, ϵ), with $x \in V(G)$, by $\theta(x, \epsilon)=(x, 1-\epsilon)$. Then θ is the graph automorphism of $G \square P_{2}$ corresponding to the exchange of two G-layers. The proposition follows by the fact that \tilde{c} is the composition of θ and c.

3 Main results and applications

Theorem 6 Let G and H be two finite or infinite regular graphs of degree respectively n and $n+1$. If there exist a code-coloring in G and an extended code-coloring in H then there exists a perfect code in $G \square H$.

Proof : Let $c: V(G) \mapsto\{0, \ldots, n\}$ be a code-coloring of G and $c^{\prime}: V(H) \mapsto$ $\{0, \ldots, n+1\}$ be an extended code-coloring of H. Consider the set D of vertices of $G \square H$ defined by $D=\left\{(x, y) / x \in V(G), y \in V(H), c^{\prime}(y)=c(x)+1\right\}$. Notice that if $c^{\prime}(y)=0$ there is no vertex x of G such that $(x, y) \in D$.

We will prove first that for any distinct vertices (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ of D we have $d\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)>2$.

- If $x=x^{\prime}$ then $c^{\prime}(y)=c^{\prime}\left(y^{\prime}\right)=c(x)+1$. But $c^{\prime}(y)=c^{\prime}\left(y^{\prime}\right)$ is in $\{1, \ldots, n+1\}$ thus by proposition $2 d\left(y, y^{\prime}\right) \geq 3$.
- If $d\left(x, x^{\prime}\right)=1$ then $c(x) \neq c\left(x^{\prime}\right)$ thus $c^{\prime}(y) \neq c^{\prime}\left(y^{\prime}\right)$ and $y \neq y^{\prime}$. But $c^{\prime}(y)$ and $c^{\prime}\left(y^{\prime}\right)$ are in $\{1, \ldots, n+1\}$ thus $d\left(y, y^{\prime}\right) \geq 2$.
- If $d\left(x, x^{\prime}\right)=2$ then again $c(x) \neq c\left(x^{\prime}\right)$ thus $y \neq y^{\prime}$.
- If $d\left(x, x^{\prime}\right) \geq 3$ we are done.

Thus D is a code and if G and H are finite graphs, by cardinality arguments, we can prove that D is a perfect code. However we consider also infinite graphs, therefore we will prove directly that D is a dominating set. Let (x, y) be a vertex of $G \square H$ not in D.

- if $c^{\prime}(y)=0$. There exists a vertex y^{\prime} of $N_{H}(y)$ with color $c^{\prime}\left(y^{\prime}\right)=c(x)+1$. The vertex $\left(x, y^{\prime}\right)$ is in D and dominates (x, y).
- if $c^{\prime}(y) \in\{1, \ldots, n+1\}$ then $c(x) \neq c^{\prime}(y)-1$ and thus there exists a vertex x^{\prime} of $N_{G}(x)$ with color $c\left(x^{\prime}\right)=c^{\prime}(y)-1$. The vertex $\left(x^{\prime}, y\right)$ is in D and dominates (x, y).

Let G and H be two finite or infinite regular graphs of the same degree n. Assume that H is bipartite and that there exists a code-coloring in G and H then, using the previous theorem and proposition 3, there exists a perfect code in the graph $G \square H \square P_{2}$. In fact we can prove directly the following stronger result.

Theorem $\mathbf{7}$ Let G and H be two finite or infinite regular graphs of the same degree n. Assume that H is bipartite and that there exists a code-coloring in G and H then there exists a code-coloring, thus a partition in perfect codes, in the graph $G \square H \square P_{2}$.

Proof : Let $c: V(G) \mapsto\{0, \ldots, n\}$ be a code-coloring of G and $c^{\prime}: V\left(H \square P_{2}\right) \mapsto$ $\{0, \ldots, n+1\}$ be the extended code-coloring of $H \square P_{2}$ deduced from the code-coloring of H. Consider \tilde{c}^{\prime} the dual of c^{\prime}.

Let (x, y) with $x \in G, y \in H \square P_{2}$, be a vertex of $G \square H \square P_{2}$. Let us define the color $e(x, y)$ by

- If $c^{\prime}(y) \neq 0$ then $e(x, y)=c(x)-c^{\prime}(y) \bmod (n+1)$
- If $c^{\prime}(y)=0$ then $e(x, y)=\tilde{e}(x, y)+n+1$ where $\tilde{e}(x, y)=c(x)-\tilde{c}^{\prime}(y) \bmod (n+1)$.

Notice that in the first (respectively in the second) case $e(x, y)$ belongs to $\{0, \ldots, n\}$ (respectively to $\{n+1, \ldots, 2 n+1\}$). Furthermore the degree of $G \square H \square P_{2}$ is $2 n+1$. Let us verify that e is a code-coloring.

- If $e(x, y)$ belongs to $\{0, \ldots, n\}$ then $c^{\prime}(y) \neq 0$. Consider the possible neighbors of (x, y).
We have $\left\{e\left(x^{\prime}, y\right) / x^{\prime} \in N_{G}(x)\right\}=\left\{c\left(x^{\prime}\right)-c^{\prime}(y) \bmod (n+1) / x^{\prime} \in N_{G}(x)\right\}$. But $\left\{c\left(x^{\prime}\right) / x^{\prime} \in N_{G}(x)\right\}=\{0, \ldots, n\} \backslash\{c(x)\}$ thus $\left\{c\left(x^{\prime}\right)-c^{\prime}(y) \bmod (n+1) / x^{\prime} \in\right.$ $\left.N_{G}(x)\right\}=\{0, \ldots, n\} \backslash\{e(x, y)\}$.
Consider now a vertex $\left(x, y^{\prime}\right)$ such that $y^{\prime} \in N_{H \square P_{2}}(y)$. We have $c^{\prime}\left(y^{\prime}\right)=0$. But $\left\{\tilde{c}^{\prime}\left(y^{\prime}\right) / y^{\prime} \in N_{H \square P_{2}}(y)\right\}=\{1, \ldots, n+1\}$ thus $\left\{\tilde{e}\left(x, y^{\prime}\right) / y^{\prime} \in N_{H \square P_{2}}(y)\right\}=$ $\{0, \ldots, n\}$ and $\left\{e\left(x, y^{\prime}\right) / y^{\prime} \in N_{H \square P_{2}}(y)\right\}=\{n+1, \ldots, 2 n+1\}$.
- If $e(x, y)$ belongs to $\{n+1, \ldots, 2 n+1\}$ then $c^{\prime}(y)=0$. From $\left\{c\left(x^{\prime}\right) / x^{\prime} \in\right.$ $\left.N_{G}(x)\right\}=\{0, \ldots, n\} \backslash\{c(x)\}$ we deduce $\left\{c\left(x^{\prime}\right)-\tilde{c}^{\prime}(y) \bmod (n+1) / x^{\prime} \in N_{G}(x)\right\}=$ $\{0, \ldots, n\} \backslash\left\{c(x)-\tilde{c}^{\prime}(y)\right\}$ and thus $\left\{e\left(x^{\prime}, y\right) / x^{\prime} \in N_{G}(x)\right\}=\{n+1, \ldots, 2 n+$ $1\} \backslash\{e(x, y)\}$.
We have also $\left\{c^{\prime}\left(y^{\prime}\right) / y^{\prime} \in N_{H \square P_{2}}(y)\right\}=\{1, \ldots, n+1\}$ thus $\left\{e\left(x, y^{\prime}\right) / y^{\prime} \in\right.$ $\left.N_{H \square P_{2}}(y)\right\}=\{0, \ldots, n\}$.

It is easy to prove that there is no perfect code in $K_{3} \square K_{3} \square P_{2}$. Thus we cannot drop the condition that H is bipartite in theorem 7 .

We will often use this theorem in the particular case $G=H$. Using our construction recursively we obtain

Corollary 8 Let G be a bipartite graph. If there exists a code-coloring in G then for all integer k there exists a code-coloring, thus a partition in perfect codes, in the graph $G^{2^{k}} \square P_{2}^{2^{k}-1}=G^{2^{k}} \square Q_{2^{k}-1}$.

Let Γ be a group, S a finite set of elements of Γ such that $1 \notin S$ and $S^{-1}=$ $\left\{s^{-1} / s \in S\right\}=S$. The undirected Cayley graph $G=\operatorname{Cay}(\Gamma, S)$ over Γ with connection set S has vertex set $V(G)=\Gamma$ and edge set $E(G)=\left\{\{a, b\}: a^{-1} b \in S\right\}$. This graph is regular of degree $|S|$. When the group Γ is commutative $\operatorname{Cay}(\Gamma, S)$ is called an Abelian Cayley graph. Notice that the Cartesian product of two Cayley graphs is a Cayley graph over the direct product of the two groups thus is Abelian if the factors are Abelian. From a perfect code it is easy to construct a code-coloring in the particular case of Abelian Cayley graph.

Lemma 9 Let G be an Abelian Cayley graph then if there exists a perfect code in G there exists a code-coloring of G.

Proof :

Let C be a perfect code in $G=\operatorname{Cay}(\Gamma, S)$ and $s_{1}, s_{2}, \ldots, s_{n}$ be the elements of S. Consider the coloring c of $V(G)$ define by

- If $x \in C$ then $c(x)=0$.
- If $x \notin C$ then let u be the unique element of C which dominates x. Then $u^{-1} x=s_{i}$ for some unique i in $\{1, \ldots, n\}$. Let $c(x)=i$.

The coloring c is a code-coloring.

- Assume first that $c(x)=0$. Then the neighbors of x in G are the $x_{i}, i \in$ $\{1, \ldots, n\}$ and are all dominated by x thus are of color i.
- Assume now that $c(x)=j$ for some $j \neq 0$ and let u be the vertex of C which dominates x. We have thus $x=u s_{j}$. Let k be such that $s_{k}=s_{j}^{-1}$ and let $K=\{1, \ldots, n\} \backslash\{k\}$. The neighbors of x are u and the $\left\{x s_{i} / i \in K\right\}$.
Consider one of these vertices $x^{\prime}=x s_{i}$. The color of x^{\prime} cannot be 0 because x^{\prime} is not in C. It is not j because this would imply the existence of v in C with $x^{\prime}=v s_{j}$ and using $x^{\prime}=x s_{i}, x=u s_{j}$ this gives $v=u s_{i}$ thus $d(u, v)=1$.
Assume now that two neighbors of x say $x^{\prime}=x s_{i}$ and $x^{\prime \prime}=x s_{h}$ for some $i, h \in K$ are of the same color d. This would imply the existence of two distinct vertices v and w in C with $s_{d}=v^{-1} x^{\prime}=w^{-1} x^{\prime \prime}$. Then using $x^{\prime}=x s_{i}$ and $x^{\prime \prime}=x s_{h}$ this would imply $v^{-1} s_{i}=w^{-1} s_{h}$ thus the existence of a vertex at distance 1 of both v and w and this is not possible because C is a code. Thus the neighbors of x are colored with all distinct colors from $\{0,1, \ldots, n\} \backslash\{j\}$.

We will now give some examples of use of our construction.
Consider for $p \geq 3$ the p-crown graph $\tilde{K}_{p, p}$ obtained from the bipartite complete graph $K_{p, p}$ after deletion of the edges of a perfect matching. This graph is an Abelian Cayley graph $G=\operatorname{Cay}(\Gamma, S)$ with $\Gamma=\mathbb{Z}_{p} \times \mathbb{Z}_{2}$ and $S=\{(1,1),(2,1), \ldots,(p-1,1)\}$. By construction each pair of vertices of the removed matching is a perfect code.

The graph $\tilde{K}_{4,4}$ is Q_{3} and we obtain the construction of Hamming codes in hypercubes.

The graph $\tilde{K}_{3,3}$ is C_{6} and we obtain a construction of perfect codes in $C_{6}^{2^{k}} \square Q_{2^{k}-1}$. On $\mathbb{Z}^{n} \square Q_{k}$, we will say that a code is i-periodical $(i \in\{1, \ldots, n\})$ if there exists a positive integer p_{i} (called the i-period) such that for any vertex $x=x_{1} x_{2} \ldots x_{n} v$ $\left(\forall i, x_{i} \in \mathbb{Z}, v \in V\left(Q_{k}\right)\right)$, the vertex $x_{1} x_{2} \ldots x_{i-1}\left(x_{i}+p_{i}\right) x_{i+1} \ldots x_{n} v$ is in the code if and only if x is in the code. We thus obtain a perfect code on $\mathbb{Z}^{2^{k}} \square Q_{2^{k}-1}$ of i-period 6 for all $i \in\left\{1, \ldots, 2^{k}\right\}$.

Other values of $p \geq 5$ give infinite families of graphs with perfect codes.
Golomb and Welsh [10, 11] proved the existence of perfect codes in the grid \mathbb{Z}^{n}. This is again a bipartite Abelian Cayley graph. Thus for all integer k there exists a perfect code in $\mathbb{Z}^{n 2^{k}} \square Q_{2^{k}-1}$. More precisely the codes of Golomb and Welsh are of i-period $2 n+1$ thus they induce a code-coloring in the bipartite graph $C_{4 n+2}^{n}$. Therefore there exists in $\mathbb{Z}^{n 2^{k}} \square Q_{2^{k}-1}$ a perfect code of i-period $4 n+2$ for all $i \in\left\{1, \ldots, n 2^{k}\right\}$.

Our work [8] about the possible parameters values for the existence of perfect codes in $\mathbb{Z}^{n} \square Q_{k}$ can be completed by the following direct consequence of theorem 7.

Corollary 10 Let a, b, c be integers such that $b \geq 2 c$. Then if there exist perfect codes in $\mathbb{Z}^{a} \square Q_{b}$ and in $\mathbb{Z}^{a+c} \square Q_{b-2 c}$ then there exists a perfect code in $\mathbb{Z}^{2 a+c} \square Q_{2 b-2 c+1}$.

For any integer $p \geq 1$ consider the bipartite complete graph $K_{p, p}$. Label 0 the p vertices of one of the independent sets, and $\{1, \ldots, p\}$ the p other vertices. We
obtain an extended code-coloring of $K_{p, p}$. Assume that $p=2^{q}$ for some integer $q \geq 0$. Then by theorem 6 there exists a perfect code in $K_{2^{q}, 2^{q}} \square Q_{2^{q}-1}$. But this is a bipartite Abelian Cayley Graph thus by lemma 9 there exits a code-coloring of $K_{2^{q}, 2^{q}} \square Q_{2^{q}-1}$. Using again corollary 8 we obtain the following result.

Corollary 11 For any integers $q, k \geq 0$ there exists a perfect code in $K_{2^{q}, 2^{q}}^{2^{k}} \square Q_{2^{q+k}-1}$.
There exists a trivial code-coloring of the complete graph K_{n}. Thus by theorem 6 there exists a perfect code in $K_{n, n} \square K_{n}$. But this is also an Abelian Cayley Graph thus we obtain a code-coloring of $K_{n, n} \square K_{n}$. Using the same idea with $\tilde{K}_{n, n}$ and \mathbb{Z}^{n} we obtain

Corollary 12 For any integer $n \geq 1$ there exist code-colorings of $K_{n, n} \square K_{n}, K_{n, n} \square \tilde{K}_{n, n}$ and $K_{2 n+1,2 n+1} \square \mathbb{Z}^{n}$.

Acknowledgement

The author thank two anonymous referees for useful remarks .

References

[1] G.Abay-Asmerom, R.H. Hammack and D.T. Taylor, [2009]: "Perfect r-codes in strong products of graphs", Bull. Inst. Combin. Appl. 55, pp 66-72.
[2] S.Arumugam and R. Kala, [1996]: "Domination parameters of star graphs", Ars. Combin. 44, pp 93-96.
[3] N. Biggs, [1973]: "Perfect codes in graphs", J. Combin. Theory Ser. B 15, pp 289-296.
[4] P. J. Cameron, S. E. Payne and J. A. Thas, [1976]: "Polarities of generalized hexagons and perfect codes", Geometriae Dedicata 5, pp 525-528.
[5] G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, [1997]: Covering Codes, Chap. 11, Elsevier, Amsterdam.
[6] P. Cull and I. Nelson, [1999]: "Error-correcting codes on the Towers of Hanoi graphs", Discrete Math. 208/209, pp 157-175.
[7] I.J.Dejter and O. Serra, [2003]: "Efficient dominating sets in Cayley graphs", Discrete. Appl. Math. 129, pp 319-328.
[8] P. Dorbec and M. Mollard, [2005]: "Perfect codes in Cartesian products of 2paths and infinite paths", The Electronic Journal of Combinatorics 12, \#R65.
[9] M. J. E. Golay, [1949]: "Notes on digital coding", Proc. IEEE 37, p 657.
[10] S.W. Golomb and L.R. Welsh, [1968]: "Algebraic coding and the Lee metric", Proc. Sympos. Math. Res. Center, Madison, Wis., pp 175-194, John Wiley, New York.
[11] S.W. Golomb and L.R. Welsh, [1970]: "Perfect codes in the Lee metric and the packing of polyominoes", SIAM J. Appl. Math. 18, pp 302-317.
[12] S. Gravier, M. Mollard and C. Payan, [1999]: "Variations on tilings in Manhattan metric", Geometriae Dedicata 76 (3), pp 265-274.
[13] R. W. Hamming, [1950]: "Error detecting and error correcting codes", Bell Syst. Tech. J. 29, pp 147-160.
[14] P. Hammond, [1981]: "q-Coverings, Codes, and Line Graphs", J. Combin. Theory Ser. B 30, pp 32-35.
[15] O. Heden, [2008]: "A survey on perfect codes", Advances in Mathematics of Communication 2(2), pp 223-247.
[16] S. Klavžar, U. Milutinovic and C. Petr, [2002]: "1-Perfect codes in Sierpinski graphs", Bull. Austral. Math. Soc. 66, pp 369-384.
[17] S. Klavžar, S. Špacapan and J. Žerovnik, [2006]: "An almost complete description of perfect codes in direct product of cycles", Adv. in Appl. Math. 37(1), pp 2-18.
[18] J. Kratochvíl, [1986]: "Perfect codes over graphs", J. Combin.Theory Ser. B 40, pp 224-228.
[19] K.T. Phelps, [1983]: "A combinatorial construction of perfect codes", SIAM J. Algebraic Discrete Methods 4, pp 398-403.
[20] F.I.Soloveva,[1981]: "Binary nongroup codes "(in Russian), Metody Diskret. Analiz. 37, pp 65-76.
[21] D.T. Taylor, [2009]: "Perfect r-codes in lexicographic products of graphs", Ars Combin. 93, pp 215-223.
[22] J. A. Thas, [1977]: "Two infinite classes of perfect codes in metrically regular graphs", J. Combin. Theory Ser. B 23, pp 236-238.
[23] J. L. Vasile'v, [1962]: "On ungrouped, close-packed codes (in Russian)", Problemy Kibernet 8, pp 337-339.
[24] J. Žerovnik, [2008]: "Perfect codes in direct products of cycles-a complete characterization", Adv. in Appl. Math. 41(2), pp 197-205.

[^0]: *CNRS Université Joseph Fourier

