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Assuming the existence of a partition in perfect codes of the vertex set of a finite or infinite bipartite graph G we give the construction of a perfect code in the Cartesian product G2G2P 2 . Such a partition is easily obtained in the case of perfect codes in Abelian Cayley graphs and we give some example of applications of this result and its generalizations.

Introduction

Hamming and Golay [START_REF] Golay | Notes on digital coding[END_REF][START_REF] Hamming | Error detecting and error correcting codes[END_REF] constructed perfect binary single-error correcting codes of length n where n = 2 p -1 for some integer p. Perfect codes played a central role in the fast growing of error-correcting codes theory.

Later Biggs [START_REF] Biggs | Perfect codes in graphs[END_REF] and Kratochvíl [START_REF] Kratochvíl | Perfect codes over graphs[END_REF] proposed the study of the existence of perfect codes in graphs. From this point of view Hamming codes are perfect codes in the hypercube Q n .

Infinite classes of graphs with perfect codes have been constructed by Cameron, Thas and Payne [START_REF] Cameron | Polarities of generalized hexagons and perfect codes[END_REF], Thas [START_REF] Thas | Two infinite classes of perfect codes in metrically regular graphs[END_REF], Hammond [START_REF] Hammond | q-Coverings, Codes, and Line Graphs[END_REF] and others. The existence of perfect codes have also been proved in Towers of Hanoi graphs [START_REF] Cull | Error-correcting codes on the Towers of Hanoi graphs[END_REF] and Sierpinski graph [START_REF] Klavžar | 1-Perfect codes in Sierpinski graphs[END_REF].

Dejter and Serra [START_REF] Dejter | Efficient dominating sets in Cayley graphs[END_REF] give a construction tool to produce various infinite families of graphs with perfect codes. All graphs constructed this way are, for some chosen n, Cayley graphs of degree n on the symmetric group S n+1 thus are of order (n + 1)!. These families include star graphs, for which the existence of perfect codes was already proved by Arumugam and Kala [START_REF] Arumugam | Domination parameters of star graphs[END_REF] and pancake graphs.

Perfect codes have also been studied in infinite graphs. For example Golomb and Welsh [START_REF] Golomb | Algebraic coding and the Lee metric[END_REF][START_REF] Golomb | Perfect codes in the Lee metric and the packing of polyominoes[END_REF] considered the multi dimensional rectangular grid Z n . More recently Dorbec and Mollard [START_REF] Dorbec | Perfect codes in Cartesian products of 2paths and infinite paths[END_REF] studied the existence of perfect codes in Z n 2Q k thus a common generalization of the hypercube Q k and the grid Z n .

Recently many authors investigated also perfect codes in direct [START_REF] Klavžar | An almost complete description of perfect codes in direct product of cycles[END_REF][START_REF] Žerovnik | Perfect codes in direct products of cycles-a complete characterization[END_REF], strong [START_REF] Abay-Asmerom | Perfect r-codes in strong products of graphs[END_REF] and lexicographic [START_REF] Taylor | Perfect r-codes in lexicographic products of graphs[END_REF] product of graphs.

We will focus on the Cartesian product.

Hamming codes are classically constructed using linear algebra. Vasiliev [START_REF] Vasile'v | On ungrouped, close-packed codes (in Russian)[END_REF] and later many authors [START_REF] Heden | A survey on perfect codes[END_REF][START_REF] Cohen | Covering Codes, Chap. 11[END_REF] constructed other families of perfect codes in Q n . Most of these constructions start from a more geometrical point of view, the fact that Hamming codes can also be constructed recursively in multiple ways. Assuming that there exists a perfect code in Q n they deduce the existence of perfect codes in Q 2n+1 . We will generalize to regular graphs one of these constructions, the so called doubling construction independently found by Soloveva [START_REF] Soloveva | Binary nongroup codes[END_REF] and Phelps [START_REF] Phelps | A combinatorial construction of perfect codes[END_REF].

Notations and code-coloring

For G 1 = (V 1 , E 1 ) and G 2 = (V 2 , E 2 ) two graphs, the Cartesian product G 1 2G 2 is the graph with vertex set V 1 × V 2 and (x 1 , x 2 )(y 1 , y 2 ) ∈ E(G 1 2G 2 )

if and only if

x 1 y 1 ∈ E 1 and x 2 = y 2 or x 2 y 2 ∈ E 2 and x 1 = y 1 . We will use the notation G n for the graph G2G2 . . . 2G (n times).

The hypercube of dimension n is the graph Q n whose vertices are the words of length n over the alphabet {0, 1}, and where two vertices are adjacent if they differ in exactly one place. Notice that Q 1 is P 2 the path with 2 vertices and that

Q n+1 = Q n 2P 2 .
The infinite grid Z n is the graph whose vertices are the words of length n over the alphabet Z and where two vertices are adjacent if and only if they differ by 1 in exactly one place. Notice that if we denote by P ∞ the two way infinite path, we have also Z 1 = P ∞ and Z n+1 = Z n 2P ∞ .

For two vertices x and y, we will denote by d(x, y) the classical distance on graphs.

The set of neighbors of any vertex

x in G is N G (x) = {y ∈ V (G)/xy ∈ E(G)}.
For an integer r and vertex u, we call ball of radius r centered on u the set of vertices v such that d(u, v) ≤ r.

In this paper, we will only consider balls of radius 1 and thus call them simply balls.

In a graph, a single error correcting code (or code for shorter) is a subset C of the set of vertices V (G) such that any two vertices of C are at distance at least 3. This is equivalent to say that the balls centered on these vertices are disjoint sets.

We say that a vertex u dominates a vertex v if v belongs to the ball centered on u. A subset S of V (G) is called a dominating set if every vertex of G is dominated by at least one vertex of S.

A code is said to be perfect if it also a dominating set. It equivalently means that the balls centered on code vertices form a partition of the vertex set.

We will call code-coloring of a regular graph of degree n a labeling c of the vertices with {0, 1, . . . , n} such that the neighbors of any vertex u are colored with all distinct colors from {0, 1, . . . , n}\{c(u)}.

Proposition 1 For all i ∈ {0, 1, . . . , n} the set of vertices colored i in a codecoloring of a regular graph is a perfect code.

Proof : By definition vertices of the same color cannot be at distance 1 or 2. Furthermore if a vertex is not colored i then one of its neighbors is labeled with this color. Thus for every i, the set C i of vertices colored i is both a code and a dominating set.

2 It is clear that conversely from a partition of the vertex set of a graph in perfect codes we obtain a code-coloring of this graph.

We will call extended code-coloring of a regular graph of degree n a labeling c of the vertices with {0, 1, . . . , n} such that:

• The neighbors of any vertex u colored 0 are colored with all distinct colors {1, . . . , n}.

• The neighbors of any vertex u colored with a color in {1, . . . , n} are colored 0.

. Proposition 2 Let G be a regular graph of degree n and c be an extended codecoloring of G. Then G is bipartite and for all i ∈ {1, . . . , n} the set of vertices colored i is a code.

Proof : By definition of c the set of vertices colored 0 and the set of vertices colored with a color in {1, . . . , n} define a bipartition of G. Let u and v be two vertices colored with colors in {1, . . . , n}. Then u and v cannot be adjacent or at distance 3. Assume u and v are at distance 2 and let w be a common neighbor of them. The vertex w must be colored 0 thus c(u

) = c(v). Therefore if c(u) = c(v)
the vertices u and v are at distance at least 4. 2

Proposition 3 Assume that there exists a code-coloring in a bipartite regular graph G then there exists an extended code-coloring in G2P 2 .

Proof : It will be convenient to see the vertices of P 2 as the elements of the set {0, 1}. Let c : V (G) → {0, . . . , n} be a code-coloring of G and P : V (G) → {0, 1} be a proper 2-coloring of the graph G. Let c : V (G2P 2 ) → {0, . . . , n + 1} be the labeling defined by:

• If P (x) = 0 then c ((x, 0)) = c(x) + 1 and c ((x, 1)) = 0. • If P (x) = 1 then c ((x, 0)) = 0 and c ((x, 1)) = c(x) + 1.
We claim that c is an extended code-coloring of G2P 2 . Indeed if a vertex (x, 0) is labeled 0 then we have P (x) = 1. The neighbors of (x, 0) are (x, 1) (labeled c(x) + 1) and the (y, 0) with y ∈ N G (x). For all these vertices P (y) = 0 thus c ((y, 0)) = c(y) + 1. Therefore the (y, 0) are labeled with all distinct colors from {1, . . . , n + 1}\{c(x) + 1}.

If a vertex (x, 0) is labeled with a color in {1, . . . , n + 1} then P (x) = 0. The neighbors of (x, 0) are (x, 1) (labeled 0) and the (y, 0) with y ∈ N G (x). For all these vertices P (y) = 1 thus c ((y, 0)) = 0.

The two remaining cases corresponding to vertices of type (x, 1) are similar to the two first ones and left to the reader.

2 In error-correcting codes theory, extended perfect codes are codes of Q n+1 formed from a perfect code C of Q n by adding to every word of C an overall parity check bit. In her doubling construction Soloveva [START_REF] Soloveva | Binary nongroup codes[END_REF] uses partitions of the vertex set of Q n and Q n+1 by perfect codes and extended perfect codes, respectively. Our definition of extended code-coloring generalizes, in some sense, to regular graphs the notion of partition of the set of even vertices of Q n+1 by extended perfect codes.

However notice that there exist extended code-colorings for graphs non decomposable as some G2P 2 . For example there exists an extended code-coloring in the bipartite complete graph K n,n . However for a bipartite graph G the existence of an extended code-coloring in G2P 2 is equivalent to the existence of a code-coloring in G.

Proposition 4 Let G be a regular graph of degree n. Assume that there exists an extended code-coloring in G2P 2 then G is bipartite and there exists a code-coloring in G.

Proof : Let c : V (G2P 2 ) → {0, . . . , n + 1} be an extended code-coloring of G2P 2 . Notice that for all x ∈ V (G) we have c((x, 0)) = 0 if and only if c((x, 1)) = 0.

It is immediate to verify that the sets {x ∈ V (G)/c((x, 0)) = 0} and {x ∈ V (G)/c((x, 0)) = 0} define a bipartition of G.

Let c : V (G) → {0, . . . , n} be the labeling defined by:

• c (x) = c((x, 0)) -1 if c((x, 0)) = 0 • c (x) = c((x, 1)) -1 if c((x, 0)) = 0 c is a code-coloring of G. Indeed let x ∈ V (G).
Without loose of generality we can assume c((x, 0)) = 0; we will deduce the case c((x, 1)) = 0 by symmetry.

We have then c((x, 1)) = 0 and {c((x , 1))/x ∈ N G (x)} = {1, . . . , n+1}\{c((x, 0))}. If x ∈ N G (x) we have c((x , 0)) = 0 thus from the definition of c (x ) we obtain {c (x )/x ∈ N G (x)} = {0, . . . , n}\{c((x, 0)) -1} = {0, . . . , n}\{c (x)}.

2 Let G be a regular graph and let c be an extended code-coloring of G2P 2 . The dual coloring c is defined for any vertex (x, ) with x ∈ V (G) and ∈ {0, 1} by c((x, )) = c((x, 1 -)).

Proposition 5 Let G be a regular graph. The dual coloring c of an extended codecoloring c of G2P 2 is also an extended code-coloring .

Proof : Consider the bijection from V (G2P 2 ) to itself defined for any vertex (x, ), with x ∈ V (G), by θ(x, ) = (x, 1 -). Then θ is the graph automorphism of G2P 2 corresponding to the exchange of two G-layers. The proposition follows by the fact that c is the composition of θ and c. 2

Main results and applications

Theorem 6 Let G and H be two finite or infinite regular graphs of degree respectively n and n + 1. If there exist a code-coloring in G and an extended code-coloring in H then there exists a perfect code in G2H.

Proof : Let c : V (G) → {0, . . . , n} be a code-coloring of G and c : V (H) → {0, . . . , n + 1} be an extended code-coloring of H. Consider the set D of vertices of G2H defined by D = {(x, y) /x ∈ V (G), y ∈ V (H), c (y) = c(x) + 1}. Notice that if c (y) = 0 there is no vertex x of G such that (x, y) ∈ D.

We will prove first that for any distinct vertices (x, y) and (x , y ) of D we have d((x, y), (x , y )) > 2.

• If x = x then c (y) = c (y ) = c(x) + 1. But c (y) = c (y ) is in {1, . . . , n + 1}
thus by proposition 2 d(y, y ) ≥ 3. Thus D is a code and if G and H are finite graphs, by cardinality arguments, we can prove that D is a perfect code. However we consider also infinite graphs, therefore we will prove directly that D is a dominating set. Let (x, y) be a vertex of G2H not in D.

• If d(x, x ) = 1 then c(x) = c(x )
• if c (y) = 0. There exists a vertex y of N H (y) with color c (y ) = c(x) + 1.

The vertex (x, y ) is in D and dominates (x, y).

• if c (y) ∈ {1, . . . , n + 1} then c(x) = c (y) -1 and thus there exists a vertex x of N G (x) with color c(x ) = c (y) -1. The vertex (x , y) is in D and dominates (x, y).

2 Let G and H be two finite or infinite regular graphs of the same degree n. Assume that H is bipartite and that there exists a code-coloring in G and H then, using the previous theorem and proposition 3, there exists a perfect code in the graph G2H2P 2 . In fact we can prove directly the following stronger result.

Theorem 7 Let G and H be two finite or infinite regular graphs of the same degree n. Assume that H is bipartite and that there exists a code-coloring in G and H then there exists a code-coloring, thus a partition in perfect codes, in the graph G2H2P 2 .

Proof : Let c : V (G) → {0, . . . , n} be a code-coloring of G and c : V (H2P 2 ) → {0, . . . , n+1} be the extended code-coloring of H2P 2 deduced from the code-coloring of H. Consider c the dual of c .

Let (x, y) with x ∈ G, y ∈ H2P 2 , be a vertex of G2H2P 2 . Let us define the color e(x, y) by

• If c (y) = 0 then e(x, y) = c(x) -c (y) mod(n + 1)
• If c (y) = 0 then e(x, y) = ẽ(x, y)+n+1 where ẽ(x, y) = c(x)-c (y) mod(n+1).

Notice that in the first (respectively in the second) case e(x, y) belongs to {0, . . . , n} (respectively to {n + 1, . . . , 2n + 1} ). Furthermore the degree of G2H2P 2 is 2n + 1. Let us verify that e is a code-coloring.

• If e(x, y) belongs to {0, . . . , n} then c (y) = 0. Consider the possible neighbors of (x, y).

We have {e(x , y)

/x ∈ N G (x)} = {c(x ) -c (y) mod(n + 1)/x ∈ N G (x)}. But {c(x )/x ∈ N G (x)} = {0, . . . , n}\{c(x)} thus {c(x ) -c (y) mod(n + 1)/x ∈ N G (x)} = {0, . . . , n}\{e(x, y)}.
Consider now a vertex (x, y ) such that y ∈ N H2P 2 (y). We have c (y ) = 0. But {c (y )/y ∈ N H2P 2 (y)} = {1, . . . , n + 1} thus {ẽ(x, y )/y ∈ N H2P 2 (y)} = {0, . . . , n} and {e(x, y )/y ∈ N H2P 2 (y)} = {n + 1, . . . , 2n + 1}.

• If e(x, y) belongs to {n + 1, . . . , 2n + 1} then c (y

) = 0. From {c(x )/x ∈ N G (x)} = {0, . . . , n}\{c(x)} we deduce {c(x )-c (y) mod(n+1)/x ∈ N G (x)} = {0, . . . , n}\{c(x) -c (y)} and thus {e(x , y)/x ∈ N G (x)} = {n + 1, . . . , 2n + 1}\{e(x, y)}.
We have also {c (y )/y ∈ N H2P 2 (y)} = {1, . . . , n + 1} thus {e(x, y )/y ∈ N H2P 2 (y)} = {0, . . . , n}.

2 It is easy to prove that there is no perfect code in K 3 2K 3 2P 2 . Thus we cannot drop the condition that H is bipartite in theorem 7.

We will often use this theorem in the particular case G = H. Using our construction recursively we obtain Corollary 8 Let G be a bipartite graph. If there exists a code-coloring in G then for all integer k there exists a code-coloring, thus a partition in perfect codes, in the graph

G 2 k 2P 2 k -1 2 = G 2 k 2Q 2 k -1 .
Let Γ be a group, S a finite set of elements of Γ such that 1 / ∈ S and S -1 = {s -1 /s ∈ S} = S. The undirected Cayley graph G = Cay(Γ, S) over Γ with connection set S has vertex set V (G) = Γ and edge set E(G) = {{a, b} : a -1 b ∈ S}. This graph is regular of degree |S|. When the group Γ is commutative Cay(Γ, S) is called an Abelian Cayley graph. Notice that the Cartesian product of two Cayley graphs is a Cayley graph over the direct product of the two groups thus is Abelian if the factors are Abelian. From a perfect code it is easy to construct a code-coloring in the particular case of Abelian Cayley graph.

Lemma 9 Let G be an Abelian Cayley graph then if there exists a perfect code in G there exists a code-coloring of G.

Proof :

Let C be a perfect code in G = Cay(Γ, S) and s 1 ,s 2 ,. . . , s n be the elements of S. Consider the coloring c of V (G) define by

• If x ∈ C then c(x) = 0. • If x /
∈ C then let u be the unique element of C which dominates x. Then u -1 x = s i for some unique i in {1, . . . , n}. Let c(x) = i.

The coloring c is a code-coloring.

• Assume first that c(x) = 0. Then the neighbors of x in G are the xs i , i ∈ {1, . . . , n} and are all dominated by x thus are of color i.

• Assume now that c(x) = j for some j = 0 and let u be the vertex of C which dominates x. We have thus x =us j . Let k be such that s k = s -1 j and let K = {1, . . . , n}\{k}. The neighbors of x are u and the {xs i / i ∈ K}. Consider one of these vertices x = xs i . The color of x cannot be 0 because x is not in C. It is not j because this would imply the existence of v in C with x = vs j and using x = xs i , x =us j this gives v = us i thus d(u, v) = 1. Assume now that two neighbors of x say x = xs i and x = xs h for some i, h ∈ K are of the same color d. This would imply the existence of two distinct vertices v and w in C with s d =v -1 x = w -1 x . Then using x = xs i and x xs h this would imply v -1 s i = w -1 s h thus the existence of a vertex at distance 1 of both v and w and this is not possible because C is a code. Thus the neighbors of x are colored with all distinct colors from {0, 1, . . . , n}\{j}.

2

We will now give some examples of use of our construction. Consider for p ≥ 3 the p-crown graph Kp,p obtained from the bipartite complete graph K p,p after deletion of the edges of a perfect matching. This graph is an Abelian Cayley graph G = Cay(Γ, S) with Γ = Z p ×Z 2 and S = {(1, 1), (2, 1), . . . , (p-1, 1)}. By construction each pair of vertices of the removed matching is a perfect code.

The graph K4,4 is Q 3 and we obtain the construction of Hamming codes in hypercubes.

The graph K3,3 is C 6 and we obtain a construction of perfect codes in C 2 k 6 2Q 2 k -1 . On Z n 2Q k , we will say that a code is i-periodical (i ∈ {1, . . . , n}) if there exists a positive integer p i (called the i-period) such that for any vertex x = x 1 x 2 . . . x n v (∀i, x i ∈ Z,v ∈ V (Q k )), the vertex x 1 x 2 . . . x i-1 (x i + p i )x i+1 . . . x n v is in the code if and only if x is in the code. We thus obtain a perfect code on Z 2 k 2Q 2 k -1 of i-period 6 for all i ∈ {1, . . . , 2 k }.

Other values of p ≥ 5 give infinite families of graphs with perfect codes. Golomb and Welsh [START_REF] Golomb | Algebraic coding and the Lee metric[END_REF][START_REF] Golomb | Perfect codes in the Lee metric and the packing of polyominoes[END_REF] proved the existence of perfect codes in the grid Z n . This is again a bipartite Abelian Cayley graph. Thus for all integer k there exists a perfect code in Z n2 k 2Q 2 k -1 . More precisely the codes of Golomb and Welsh are of i-period 2n + 1 thus they induce a code-coloring in the bipartite graph C n 4n+2 . Therefore there exists in Z n2 k 2Q 2 k -1 a perfect code of i-period 4n + 2 for all i ∈ {1, . . . , n2 k }.

Our work [START_REF] Dorbec | Perfect codes in Cartesian products of 2paths and infinite paths[END_REF] about the possible parameters values for the existence of perfect codes in Z n 2Q k can be completed by the following direct consequence of theorem 7.

Corollary 10 Let a, b, c be integers such that b ≥ 2c. Then if there exist perfect codes in Z a 2Q b and in Z a+c 2Q b-2c then there exists a perfect code in Z 2a+c 2Q 2b-2c+1 .

For any integer p ≥ 1 consider the bipartite complete graph K p,p . Label 0 the p vertices of one of the independent sets, and {1, . . . , p} the p other vertices. We

  thus c (y) = c (y ) and y = y . But c (y) and c (y ) are in {1, . . . , n + 1} thus d(y, y ) ≥ 2 . • If d(x, x ) = 2 then again c(x) = c(x ) thus y = y . • If d(x, x ) ≥ 3 we are done.

Acknowledgement

The author thank two anonymous referees for useful remarks .

obtain an extended code-coloring of K p,p . Assume that p = 2 q for some integer q ≥ 0. Then by theorem 6 there exists a perfect code in K 2 q ,2 q 2Q 2 q -1 . But this is a bipartite Abelian Cayley Graph thus by lemma 9 there exits a code-coloring of K 2 q ,2 q 2Q 2 q -1 . Using again corollary 8 we obtain the following result.

Corollary 11 For any integers q, k ≥ 0 there exists a perfect code in K 2 k 2 q ,2 q 2Q 2 q+k -1 .

There exists a trivial code-coloring of the complete graph K n . Thus by theorem 6 there exists a perfect code in K n,n 2K n . But this is also an Abelian Cayley Graph thus we obtain a code-coloring of K n,n 2K n . Using the same idea with Kn,n and Z n we obtain Corollary 12 For any integer n ≥ 1 there exist code-colorings of K n,n 2K n , K n,n 2 Kn,n and K 2n+1,2n+1 2Z n .