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Hyperelliptic d-osculating covers and rational surfaces

1. Introduction 1.1. Let P 1 and (X, q) denote, respectively, the projective line and a fixed elliptic curve marked at its origin, both defined over an algebraically closed field K of arbitrary characteristic p = 2. We will study all finite separable marked morphisms π : (Γ, p) → (X, q), called hereafter hyperelliptic covers, such that Γ is a degree-2 cover of P 1 , ramified at the smooth point p ∈ Γ. Canonically associated to π there is the Abel (rational) embedding of Γ into its generalized Jacobian, A p : Γ → Jac Γ, and {0}

V 1 Γ,p . . . V g Γ,p , the flag of hyperosculating planes to A p (Γ) at A p (p) ∈ Jac Γ (cf. 2.1. & 2.2.). On the other hand, we also have the homomorphism ι π : X → Jac Γ, obtained by dualizing π. There is a smallest positive integer d such that the tangent line to ι π (X) is contained in the d-dimensional osculating plane V d Γ,p . We call it the osculating order of π, and π a hyperelliptic d-osculating cover (2.4.( 2)). If π factors through another hyperelliptic cover, the arithmetic genus increases, while the osculating order can not decrease (2.8.).

Studying, characterizing and constructing those with given osculating order d but maximal possible arithmetic genus, so-called minimal-hyperelliptic d-osculating covers, will be one of the main issues of this article. The other one, to which the first issue reduces, is the construction of all rational curves in a particular anticanonical rational surface associated to X (i.e.: a rational surface with an effective anticanonical divisor). Both problems are interesting on their own and in any characteristic p = 2. They were first considered, however, over the complex numbers and through their link with solutions of the Korteweg-deVries hierarchy, doubly periodic with respect to the d-th KdV flow (cf. [START_REF] Airault | Rational and elliptic solutions of the Korteweg-deVries equation and a related many body problem[END_REF], [START_REF] Dubrovin | A periodicity problem for the Korteweg-deVries-Sturm-Liouville equations. Their connection with algebraic geometry[END_REF], [START_REF] Its | Hill's operator with a finite number of lacunae and multisoliton solutions of the Korteweg-de Vries equation[END_REF], [START_REF] Krichever | Elliptic solutions of the KP equation and integrable systems of particles[END_REF], [START_REF] Treibich | Solitons Elliptiques[END_REF] for d = 1 and [START_REF] Smirnov | Solutions of the KdV equation, elliptic in t[END_REF], [START_REF] Akhmetshin | Elliptic families of solutions of the Kadomtsev-Petviashvili equation, and the field analog of the elliptic Calogero-Moser system[END_REF], [START_REF] Flédrich | Paires 3-tangentielles hyperelliptiques et solutions doublement périodiques en t de l'équation de Korteweg-de Vries[END_REF], [START_REF] Flédrich | Hyperelliptic osculating covers and KdV solutions periodic in t[END_REF] for d = 2). We sketch hereafter the structure and main results of our article.

(1) We start defining in section 2. the Abel rational embedding A p : Γ → Jac Γ, and construct the flag {0} V 1 Γ,p . . . V g Γ,p = H 1 (Γ, O Γ ), of hyperosculating planes at the image of any smooth point p ∈ Γ. We then define the homomorphism ι π : X → Jac Γ, canonically associated to the hyperelliptic cover π, and its osculating order (2.4.( 2)). Regardless of the osculating order, we prove that any degree-n hyperelliptic cover has odd ramification index at the marked point, say ρ, and factors through a unique one of maximal arithmetic genus 2n -ρ+1 2 (2.6.). We finish characterizing the osculating order by the existence of a particular projection κ : Γ → P 1 (2.6.).

(2) The d-osculating criterion 2.6. paves the way to the algebraic surface approach developed in the remaining sections. The main characters are played by (two morphisms between) three projective surfaces, canonically associated to the elliptic curve X: e : S ⊥ → S : the blowing-up of a particular ruled surface π S : S → X, at the 8 fixed points of its involution; ϕ : S ⊥ → S : a projection onto an anticanonical rational surface.

(3) Once S, S ⊥ and S are constructed (3.2., 3.4.), we prove that any hyperelliptic d-osculating cover π : (Γ, p) → (X, q) factors canonically through a curve Γ ⊥ ⊂ S ⊥ , and projects, via ϕ : S ⊥ → S, onto a rational irreducible curve Γ ⊂ S (3.8.). We also prove that any hyperelliptic d-osculating cover dominates a unique one of same osculating order d, but maximal arithmetic genus, so-called minimal-hyperelliptic (3.9.). Conversely, given Γ ⊂ S, we study when and how one can recover all minimal-hyperelliptic d-osculating covers having same canonical projection Γ (3.11.) .

(4) Section 4. is mainly devoted to studying the linear equivalence class of the curve Γ ⊥ ⊂ S ⊥ , canonically associated to any hyperelliptic d-osculating cover π, and associated invariants (4.3. & 4.4.). We end up with a numerical characterization of minimal-hyperelliptic d-osculating covers (4.6.).

(5) At last, we dress the list of all ( -1) and ( -2)-irreducible curves of S (5.7.), needed to study its nef cone, and give, for any n, d ∈ N * , two different constructions of (d -1)-dimensional families of smooth, degree-n, minimalhyperelliptic d-osculating covers: one based on Brian Harbourne's results on anticanonical rational surfaces ( [START_REF] Harbourne | Anticanonical rational surfaces[END_REF]), the other one based on [START_REF] Treibich | Revêtements hyperelliptiques d-osculateurs et solitons elliptiques de la hiérarchie KdV[END_REF] and leading, ultimately, to explicit equations for the corresponding covers.

2. Jacobians of curves and hyperelliptic d-osculating covers 2.1. Let K be an algebraically closed field of characteristic p = 2, P 1 the projective line over K and (X, q) a fixed elliptic curve, also defined over K. The latter will be equipped with its canonical symmetry [ -1] : (X, q) → (X, q), fixing ω o := q, as well as the other three half-periods {ω j , j = 1, 2, 3}. We will also choose once for all, an odd local parameter of X centered at q, say z, such that z • [ -1] = -z. By a curve we will mean hereafter a complete integral curve over K, say Γ, of positive arithmetic genus g > 0. The moduli space of degree-0 invertible sheaves over Γ, denoted by Jac Γ and called the generalized Jacobian of Γ, is a g-dimensional connected commutative algebraic group, canonically identified to H 1 (Γ, O * Γ ), with tangent space at its origin equal to H 1 (Γ, O Γ ). Recall also the Abel (rational) embedding A p : Γ → Jac Γ, sending any smooth point p ′ ∈ Γ to the isomorphism class of O Γ (p ′ -p). For any marked curve (Γ, p) as above, and any positive integer j, let us consider the exact sequence of O Γ -modules 0 → O Γ → O Γ (jp) → O jp (jp) → 0, as well as the corresponding long exact cohomology sequence :

0 → H 0 (Γ, O Γ ) → H 0 Γ, O Γ (jp) → H 0 Γ, O jp (jp) δ → H 1 (Γ, O Γ ) → . . . ,
where δ : H 0 Γ, O jp (jp) → H 1 (Γ, O Γ ) is the cobord morphism. According to the Weierstrass gap Theorem, for any d ∈ {1, . . . , g}, there exists 0 < j < 2g such that δ H 0 Γ, O jp (jp) is a d-dimensional subpace, denoted hereafter by V d Γ,p . For a generic point p of Γ we have V d Γ,p = δ H 0 Γ, O dp (dp) (i.e. : j = d), while for any p ∈ Γ, the tangent to

A p (Γ) at 0 is equal to V 1 Γ,p = δ H 0 Γ, O p (p) . Definition 2.2. ( 1 
) The filtration {0} V 1 Γ,p . . . V g Γ,p = H 1 (Γ, O Γ
) will be called the flag of hyperosculating spaces to A p (Γ) at 0.

(2) The curve Γ will be called a hyperelliptic curve, and p ∈ Γ a Weierstrass point, if there exists a degree-2 projection onto P 1 , ramified at p. Or equivalently, if there exists an involution, denoted in the sequel by τ Γ : Γ → Γ and called the hyperelliptic involution, fixing p and such that the quotient curve Γ/τ Γ is isomorphic to P 1 . Proposition 2.3. ([12] §1.6.) Let (Γ, p, λ) be a hyperelliptic curve of arithmetic genus g, equipped with a local parameter λ, centered at a smooth Weierstrass point p ∈ Γ. For any odd integer 1 ≤ j := 2d -1 ≤ g, consider the exact sequence of O Γ -modules:

0 → O Γ → O Γ (jp) → O jp (jp) → 0 ,
as well as its long exact cohomology sequence

0 → H 0 (Γ, O Γ ) → H 0 Γ, O Γ (jp) → H 0 Γ, O jp (jp) δ → H 1 (Γ, O Γ ) → . . . , δ being the cobord morphism. For any, m ≥ 1, we also let [λ -m ] denote the class of λ -m in H 0 Γ, O mp (mp) . Then V d Γ,p is generated by δ [λ 2l-1 ] , l = 1, .., d .
In other words, the d-th osculating subspace to A p (Γ) at 0 is equal to δ H 0 Γ, O jp (jp) , for j = 2d -1.

Definition 2.4.

(1) A finite separable marked morphism π : (Γ, p) → (X, q), such that Γ is a hyperelliptic curve and p ∈ Γ a smooth Weierstrass point, will be called a hyperelliptic cover. We will say that π dominates another hyperelliptic cover π : (Γ, p) → (X, q), if there exists a degree-1 morphism j : (Γ, p) → (Γ, p), such that π = π • j.

(2) Let ι π : X → Jac Γ denote the group homomorphism q ′ → A p π * (q ′ -q) . There is a minimal integer d ≥ 1, called henceforth osculating order of π, such that the tangent to ι π (X) at 0 is contained in V d Γ,p . We will then call π a hyperelliptic d-osculating cover. Proposition 2.5. Let π : (Γ, p) → (X, q) be a degree-n hyperelliptic cover with ramification index ρ at p, f : (Γ, p) → (P 1 , ∞) the corresponding degree-2 projection, ramified at p, and let

Γ f,π denote the image curve (f, π)(Γ) ⊂ P 1 × X. Then (see diagram below), (1) the hyperelliptic involution τ Γ satisfies [ -1] • π = π • τ Γ and ρ is odd ;
(2) Γ f,π has arithmetic genus 2n -1 and is unibranch at (∞, q); (3) let (Γ, p) denote the partial desingularization of Γ f,π at (∞, q), equipped with its canonical projection via Γ f,π , say π : (Γ, p) → (X, q), then:

π is a hyperelliptic cover of arithmetic genus 2n -1 2 (ρ + 1);

(4) π, as well as any hyperelliptic cover dominated by π, factors through π. 

p ∈ Γ π / / 1:1 & & M M M M M M M M M M q ∈ X p ∈ Γ 1:1 w w w w ; ; w w w w f , , Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y (f,π) / / (∞, q) ∈ Γ f,π 8 
' ' N N N N N N N N N N N / / P 1 × X O O ∞ ∈ P 1 Proof. (1) Let Alb π : Jac Γ → Jac X denote the Albanese homomorphism, sending any L ∈ Jac Γ to Alb π (L) := det(π * L) ⊗ det(π * O Γ ) -1
, and Γ 0 denote the open dense subset of smooth points of Γ. Up to identifying Jac X with (X, q), we know that Alb π • ι π = [n], the multiplication by n, and Alb π • A p is well defined over Γ 0 and equal there to π. Knowing, on the other hand, that

A p • τ Γ = [-1] • A p , we deduce that π • τ Γ = Alb π • A p • τ Γ = [-1] • Alb π • A p = [-1] • π (
over the open dense subset Γ 0 , hence) over all Γ as asserted.

(2) & (3) The projections f and π have degrees 2 and n, implying that Γ f,π is numerically equivalent to n.{∞} × X + 2.P 1 × {q} and, by means of the adjunction formula, that it has arithmetic genus 2n -1. We also know that f and π have ramification indices 2 and ρ at p ∈ Γ. Hence, Γ f,π intersects the fibers P 1 × {q} and {∞} × X at (∞, q), with multiplicities ρ and 2. Adding property 2.5.(1) we deduce that its local equation at (∞, q) can only have even powers of z, and must be equal to z 2 = w ρ h(w, z 2 ), for some invertible element h (i.e.: h(0, 0) = 0). In particular Γ f,π is unibranch and has multiplicity min{2, ρ} at (∞, q). Moreover, for its desingularization over (∞, q), ρ-1 2 successive monoidal transformation are necessary, each one of which decreases the arithmetic genus by 1. Hence Γ has arithmetic genus 2n -1 -ρ-1 2 = 2n -ρ+1 2 as asserted. (4) Since Γ is already smooth at p, we immediately see that (f, π) factors through π. Hence, π dominates π as asserted. Reciprocally, any other hyperelliptic cover dominated by π must factor through Γ f,π , (∞, q) , and should lift to its partial desingularization (Γ, p). In other words, it should dominate π.

Theorem 2.6. The osculating order of an hyperelliptic cover π : (Γ, p) → (X, q), is the minimal integer d ≥ 1 for which there exists a morphism κ : Γ → P 1 satisfying :

(1) the poles of κ lie along π -1 (q); (2) κ+ π * (z -1 ) has a pole of order 2d -1 at p, and no other pole along π -1 (q) (2.1.).

Furthermore, for such d there exists a unique morphism κ : Γ → P 1 satisfying properties (1)&(2) above, as well as (2.2.(2)):

(3) τ * Γ (κ) = -κ.
Proof. According to 2.3., ∀r ≥ 1 the r-th osculating subspace V r Γ,p is generated by δ [λ -(2l-1) ] , l = 1, .., r . On the other hand, π being separable, the tangent to

ι π (X) ⊂ Jac Γ at 0 is equal to π * H 1 (X, O X ) , hence, generated by δ [π * (z -1 )] .
In other words, the osculating order d is the smallest positive integer such that δ [π * (z -1 )] is a linear combination

d l=1 a l δ [λ -(2l-1)
] , with a d = 0. Or equivalently, thanks to the Mittag-Leffler Theorem, the smallest for which there exists a morphism κ : Γ → P 1 , with polar parts equal to π * (z -1 ) - 1) . The latter conditions on κ are equivalent to 2.6.( 1) & (2). Moreover, up to replacing κ by 1 2 κ -τ * Γ (κ) , we can assume κ is τ Γ -anti-invariant. The difference of two such functions should be τ Γ -anti-invariant, while having a unique pole at p, of order strictly smaller than 2d -1 ≤ 2g -1, where g denotes the arithmetic genus of Γ. Hence the difference is identically zero, implying the uniqueness of such a morphism κ. Definition 2.7.

d l=1 a l λ -(2l-
(1) The pair of marked projections (π, κ), satisfying 2.6.( 1),( 2)&(3), will be called a hyperelliptic d-osculating pair, and κ the hyperelliptic d-osculating function associated to π. (2) If the latter π : (Γ, p) → (X, q) does not dominate any other hyperelliptic d-osculating cover, we will call it minimal-hyperelliptic d-osculating cover.

Corollary 2.8. Let π : (Γ, p) → (X, q) and π ′ : (Γ ′ , p) → (X, q) be two hyperelliptic covers of osculating orders, d and d ′ respectively, such that π dominates π ′ . Then d ≤ d ′ .

Proof. Let κ ′ be the hyperelliptic d-osculating function associated to π ′ , and j : (Γ, p) → (Γ ′ , p ′ ) the birational morphism such that π = π ′ • j. Then, the poles of κ ′ • j : Γ → P 1 lie along π -1 (q), while κ ′ • j + π * (z -1 ) = κ ′ + π ′ * (z -1 ) • j has a pole of order 2d ′ -1 and no other pole along π -1 (q). It follows (along the same lines of proof as in 2.6.) that the tangent to ι π (X) must be contained in V d ′ Γ,p . Hence, the minimality of d implies d ≤ d ′ .

3. The algebraic surface set up 3.1. We will construct hereafter the ruled surface π S : S → X and its blowing-up e : S ⊥ → S, both naturally equipped with involutions τ : S → S and τ ⊥ : S ⊥ → S ⊥ , as well as a degree-2 projection S ⊥ ϕ → S to a known anticanonical rational surface . We will then prove that any hyperelliptic d-osculating cover π : (Γ, p) → (X, q) factors uniquely through π S ⊥ : π S • e : S ⊥ → X and projects, via S ⊥ ϕ → S, onto an irreducible rational curve. Moreover, we will prove that π dominates a unique hyperelliptic d-osculating cover (3.9.). Definition 3.2.

(1) Fix an odd meromorphic function ζ : X → P 1 , with divisor of zeroes and poles equal to (ζ) = q + ω 1 -ω 2 -ω 3 , and consider the open affine subsets U o := X \ {q} and U 1 := X \ {ω 1 }. We let π S : S → X denote the ruled surface obtained by identifying P 1 × U o with P 1 × U 1 , over X \ {q, ω 1 }:

∀q ′ = q, ω 1 , (T o , q ′ ) ∈ P 1 × U o is identified with (T 1 + 1 ζ(q ′ ) , q ′ ) ∈ P 1 × U 1 .
In other words, we glue the fibers of P 1 × U 0 and P 1 × U 1 , over any q ′ = q, ω 1 , by means of a translation. In particular the constant sections q ′ ∈ U k → (∞, q ′ ) ∈ P 1 × U k (k = 0, 1), get glued together, defining a particular one denoted by C o ⊂ S.

(2) The involutions

P 1 × U k → P 1 × U k , (T k , q ′ ) → -T k , [ -1](q ′ ) (k = 0, 1)
, get glued under the above identification and define an involution τ : S → S, such that π S •τ = [ -1]•π S . In particular, τ has two fixed points over each half-period ω i : one in C o , denoted by s i , and the other one denoted by r i (i = 0, .., 3). It can also be checked that translating along the fibers of K × U k by any scalar a ∈ K (k = 0, 1), extends to an automorphism t a : S → S, leaving fixed C o and such that π S •t a = π S .

(3) Whenever p ≥ 3, we choose ζ (3.2.( 1)) as a local parameter of X centered at q , and consider the unique meromorphic function f p :

X → P 1 , having a local development f p = 1 ζ p + c ζ + O(ζ)
, for some c ∈ K. We denote C p ⊂ S the curve defined over P 1 × U o by the equation T p o + cT o + f p = 0 , and over

P 1 × U 1 by the equation T p 1 + cT 1 + f p -1 ζ p -c ζ = 0.
Proposition 3.3. The ruled surface S → X has a unique section of self-intersection 0, namely C o , and its canonical divisor is equal to -2C o . In particular, S → X is isomorphic to P(E) → X, the ruled surface associated to the unique indecomposable rank-2, degree-0 vector bundle over X(cf. [START_REF] Hartshorne | Algebraic Geometry[END_REF] §V.2, [14] §3.1.).

Proof. The meromorphic differentials dT o and dT 1 get also glued together, implying that K S , the canonical divisor of S is represented by -2C o . Any section of π S : S → X, other than C o , is given by two non-constant morphisms f i :

U i → P 1 (i = 1, 2), such that f o = f 1 -1 ζ outside {q, ω 1 }. A straightforward calculation
shows that a section as above intersects C o , while having self-intersection number greater or equal to 2. It follows from the general Theory of Ruled Surfaces (cf.

[7] §V.2) that C o must be the unique section with zero self-intersection. Hence, the ruled surface π S : S → X defined above, is isomorphic to the projectivization of the unique indecomposable rank-2, degree-0 vector bundle over X(cf. ) Let e : S ⊥ → S denote hereafter the monoidal transformation of S at {s i , r i , i = 0, .., 3}, the eight fixed points of τ , and τ ⊥ : S ⊥ → S ⊥ its lift to an involution fixing the corresponding exceptional divisors s ⊥ i := e -1 (s i ), r ⊥ i := e -1 (r i ), i = 0, .., 3 . Taking the quotient of S ⊥ with respect to τ ⊥ , we obtain a degree-2 projection ϕ : S ⊥ → S, onto a smooth rational surface S, ramified along the exceptional curves {s ⊥ i , r ⊥ i , i = 0, .., 3}. Proof. The curve C p is τ -invariant, does not intersect the section C o and projects onto X with degree p. Hence, C p is linearly equivalent to pC o and has multiplicity one at r o ∈ S. In order to prove its irreducibility, we may assume C p → X is separable, or equivalently, that c = 0 in 3.2.(3). Otherwise C p → X would be purely inseparable and C p isomorphic to X. The curve C p is then smooth and transverse to the fiber S o := π -1 S (q), and their intersection number at r o ∈ S o ∩ C p is equal to 1. Let C ′ denote the unique irreducible τ -invariant component of C p going through r o , and suppose that C ′ = C p . Then C ′ has zero self-intersection and the projection C ′ → X has odd degree p' , for some 1 < p' < p. Otherwise (i.e.: if p' = 1), C ′ would give another section of π S having zero self-intersection. Contradiction! Its complement, say 2)), we may assume that t a (C ′ ) intersects C ′′ , hence t a (C ′ ) ⊂ C" because their intersection number is equal to 0. It follows that any irreducible component of C p is a translate of C ′ , forcing the prime number p to be a multiple of p ′ > 1. Therefore, p = p' and C p = C ′ is irreducible as asserted. Consider at last, any other irreducible curve, say C, linearly equivalent to mC o for some m > 1. It has zero intersection number with C p and must intersect some translate of C p , implying that they coincide. In particular m = p and any element of pC o , other than pC o , is a translate of C p .

C ′′ := C p \ C ′ , is a smooth, effective divisor linearly equivalent to (p -p' )C o . Translating C ′ by an appropiate automorphism t a (3.2.(
The Lemma and Propositions hereafter, proved in [START_REF] Treibich | Matrix elliptic solitons[END_REF] §2.3., §2.4.,& §2.5., will be instrumental in constructing the equivariant factorization ι ⊥ : Γ → S ⊥ (3.2.).

Lemma 3.6.

There exists a unique, τ -anti-invariant, rational morphism κ s : S → P 1 , with poles over C o + π -1 S (q), such that over a suitable neighborhood U of q ∈ X, the divisor of poles of κ s + π * S (z -1 ) is reduced and equal to C o ∩ π -1 S (U ).

Proposition 3.7. For any hyperelliptic cover π : (Γ, p) → (X, q), the existence of the unique hyperelliptic d-osculating function κ : Γ → P 1 (2.7.( 1)) is equivalent to the existence of a unique morphism ι : Γ → S such that ι

•τ Γ = τ •ι, π = π S • ι and ι * (C o ) = (2d -1)p. Proposition 3.8.
For any hyperelliptic d-osculating pair (π, κ), the above morphism ι : Γ → S lifts to a unique equivariant morphism ι 

⊥ : Γ → S ⊥ (i.e.: τ ⊥ • ι ⊥ = ι ⊥ • τ Γ ). In particular, (π, κ) is the pullback of (π S ⊥ , κ s ⊥ ) = (π S • e, κ s • e), and Γ lifts to a τ ⊥ -invariant curve, Γ ⊥ := ι ⊥ (Γ) ⊂ S ⊥ , which projects onto the rational irreducible curve Γ := ϕ Γ ⊥ ⊂ S. In particular, 2d -1 = e * (C o ) • ι ⊥ * (Γ). Γ ⊥ ⊂ S ⊥ ϕ / / e π S ⊥ 9 
T ι(Γ) ⊂ S πS L L L L % % L L L L L X Proof.
The monoidal transformation e : S ⊥ → S, as well as ι : Γ → S, can be pushed down to the corresponding quotients, making up the following diagram:

Γ 2:1 ι " " E E E E E E E E E E S ⊥ ϕ e } } { { { { { { { { { Γ/τ Γ ι/ " " E E E E E E E E S 2:1 S e } } { { { { { { { { S/τ
Moreover, since e : S → S/τ is a birational morphism and Γ/τ Γ is a smooth curve (in fact isomorphic to P 1 ), we can lift ι/ : Γ/τ Γ → S/τ to S, obtaining a morphism ι : Γ → Γ ⊂ S, fitting in the diagram: e @ @ @ @ @ @ @ @ S/τ

Γ ⊂ S e # # F F F F F F F F Γ ι = = { { { { { { { { { ι " " D D D D D D D D D S/
S 2:1 } } } } > > } } } Furthermore, since ι : Γ → S factors through Γ → Γ/τ Γ ∼ = P 1 , its image Γ := ϕ ι ⊥ (Γ) = ι(Γ) ⊂ S is a rational irreducible curve as claimed.
Taking the fiber product of ι : P 1 → Γ and ϕ : Γ ⊥ → Γ, say Γ ⋆ , we then factorize ι ⊥ in the above diagram, through a birational morphism Γ → Γ ⋆ as follows: 

ι ⊥ * * U U U U U U U U U U U U U U U U U U U π / / q ∈ X p ⋆ ∈ Γ ⋆ 2:1 ι ⋆⊥ / / Γ ⊥ ⊂ S ⊥ ϕ π S ⊥ s s s s 9 9 s s s s P 1 ι / / Γ ⊂ S
where p ⋆ ∈ Γ ⋆ is the image of p ∈ Γ. Furthermore, since p is smooth and the unique pre-image of p ⋆ , we deduce that the latter morphism factorizes via the desingularization of Γ ⋆ at the unibranch point p ⋆ . We will therefore assume till the end of the proof, that Γ ⋆ is indeed smooth at p ⋆ . On the other hand, the degree-2 projection ( Γ → P 1 is ramified at p, hence) Γ ⋆ → P 1 is ramified at p ⋆ . Then, applying 3.8. one immediately checks that the natural projection

π ⋆ := π S ⊥ • ι ⋆⊥ : (Γ ⋆ , p ⋆ ) → (X, q)
is a hyperelliptic d-osculating cover, dominated by π (and π as well). Thus, the latter π ⋆ is the unique minimal-hyperelliptic d-osculating cover dominated by π.

Remark 3.10. The minimal-hyperelliptic d-osculating cover π ⋆ , explicitely constructed in the proof of 3.9., can not be recovered from Γ := ϕ(Γ ⊥ ), unless m := deg (ι ⊥ : Γ → Γ ⊥ ) is equal to 1. There exists indeed a (m -1)-dimensional family of (non-isomorphic) minimal-hyperelliptic d-osculating covers, with same image Γ ⊂ S, as shown hereafter. We will actually start in 3.11. from a minimal-hyperelliptic d-osculating cover π (i.e.: identifying Γ with Γ ⋆ ), and give its complete factorization, in terms of the rational curve Γ ⊂ S.

Corollary 3.11. Let π : (Γ, p) → (X, q) be a minimal-hyperelliptic d-osculating cover, equipped (3.8.) with ι ⊥ : Γ → Γ ⊥ , its equivariant factorization through S ⊥ , as well as P 1 j → Γ, the desingularization of the rational irreducible curve Γ := ϕ(Γ ⊥ ). Then, there exist unique marked morphisms ψ : (Γ, p) → (Γ ♭ , p ♭ ), π ♭ : (Γ ♭ , p ♭ ) → (X, q) and ι ♭⊥ : (Γ ♭ , p ♭ ) → Γ ⊥ , ι ⊥ (p) , such that (see the diagrams below):

(1) π and ι ⊥ factor as π ♭ • ψ and ι ♭⊥ • ψ, respectively;

(2) deg(ψ) = m := deg(ι ⊥ ), and ψ -1 (p ♭ ) = {p}; (3) π ♭ is a minimal-hyperelliptic d ♭ -osculating cover, where 2d -1 = m(2d ♭ -1); (4) there exist a polynomial morphism R : (P 1 , ∞) m:1 -→ (P 1 , ∞) and a degree-2 projection (Γ ♭ , p ♭ ) f ♭ → (P 1 , ∞), such that Γ is the fiber product of R with f ♭ ;
(5) the arithmetic geni of Γ and Γ ♭ , say g and g ♭ , satisfy 2g + 1 = m(2g ♭ + 1). ( 6) Γ is isomorphic to Γ ⊥ , if and only if, m = 1 and Γ is isomorphic to P 1 . Furthermore, the moduli space of degree-n minimal-hyperelliptic d-osculating covers, having same image Γ ⊂ S as π, is birational to a (m-1)-dimensional linear space.

Proof. (1)-( 2)-(3) Let Γ ♭ denote the fiber product of Γ ⊥ ϕ → Γ and P 1 j → Γ, equipped with the corresponding birational morphism Γ ♭ ι ♭⊥ → Γ ⊥ and degree-2 cover

Γ ♭ f ♭ → P 1 .
The equivariant morphism ι ⊥ can be pushed down, as in 3.9., to P 1 ι → Γ and factors through j, say ι = j • R. Moreover, the latter morphisms satisfy ϕ • ι ⊥ = ι = j • R, implying the factorization through the fiber product Γ ♭ . In other words, there exists a degree-m equivariant morphism Γ

ψ → Γ ♭ (i.e.: ψ • τ Γ = τ Γ ♭ • ψ), such that ι ⊥ = ι ♭⊥ • ψ,
and with maximal ramification index at p ∈ Γ (i.e.: ψ -1 (p ♭ ) = {p}, the fiber of ι ⊥ over ι ⊥ (p)). In particular Γ ♭ is unibranch at p ♭ , and up to replacing (Γ ♭ , p ♭ ) by its desingularization at p ♭ , we can assume 

π ♭ := π S ⊥ • ι ♭⊥ : (Γ ♭ , p ♭ ) → (X, q) is a hyperelliptic cover. This construction is sketched in the diagrams below: p ∈ Γ ι ⊥ J J J J J J J J J J J % % J J J J J J J J J J J J f π + + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X ψ 9 9 
p ∈ Γ f ι ⊥ & & L L L L L L L L L L π / / X X Γ ⊥ ⊂ S ⊥ ϕ π S ⊥ v v v v : : v v v v v ∞ ∈ P 1 R $ $ J J J J J J J J J J p ♭ ∈ Γ ♭ f ♭ ι ♭⊥ / / π ♭ 5 5 k k k k k k k k k k k k k k k k k Γ ⊥ ϕ π S ⊥ { { { { = = { { { { ∞ ∈ P 1 ι m:1 / / p ∈ Γ ⊂ S ∞ ∈ P 1 j / / p ∈ Γ
According to 3.8., the osculating order of π ♭ (2.4.( 2)), say

d ♭ , satisfies 2d ♭ - 1 = e * (C o ) • ι ♭⊥ * (Γ ♭ ), while 2d -1 = e * (C o ) • ι ⊥ * (Γ). On the other hand, the factorization ι ⊥ = ι ♭⊥ • ψ gives ι ⊥ * (Γ) = ι ♭⊥ * ψ * (Γ) = ι ♭⊥ * (mΓ ♭
), and replacing in the former equality gives 2d -1 = m(2d ♭ -1). Moreover, the minimal-hyperelliptic d ♭ -osculating cover dominated by π ♭ (3.9.) has same image Γ ⊥ as π ♭ , hence, it must dominate the fiber product product of Γ ⊥ ϕ → Γ and P 1 j → Γ, and Γ ♭ as well. In other words, π ♭ is minimal-hyperelliptic.

(4) Recall that (Γ ♭ , p ♭ ) f ♭ -→ (P 1 , ∞
) is classically represented in affine coordinates, as the zero locus y 2 = P (x) projecting onto the first coordinate, for some degree-(2g ♭ +1) polynomial P (x), p ♭ being identified with the smooth Weierstrass point added at infinity. On the other hand, P 1 R → P 1 , the pushed down of Γ ψ → Γ ♭ defined above, has maximal ramification index at f (p) ∈ P 1 (i.e.: f (p) ∈ P 1 is the unique pre-image of f ♭ (p ♭ ) ∈ P 1 ). Therefore, up to identifying the latter points with ∞ ∈ P 1 , we may say that (P 1 , ∞) R → (P 1 , ∞) is defined by a degree-m polynomial R(t). Taking the fiber product of Γ ♭ f ♭ -→ P 1 with P 1 R -→ P 1 , amounts then to replacing x by R(t), giving the affine equation y 2 = P R(t) , where the composed polynomial P R(t) has odd degree equal to (2g ♭ +1)m. Hence, the latter fiber product is a hyperelliptic curve, say Γ R , of arithmetic genus g R such that 2g R +1 = m(2g ♭ +1), equipped with a smooth Weierstrass point p R ∈ Γ R and a marked projection (Γ R , p R ) m:1 -→ (Γ ♭ , p ♭ ), fitting in the following diagram:
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We can also check that p R ∈ Γ R is the unique pre-image of p ♭ ∈ Γ ♭ , i.e.: the ramification index of (Γ R , p R ) m:1 -→ (Γ ♭ , p ♭ ) at p R is equal to m. Hence, if κ ♭ is the hyperelliptic d ♭ -osculating function for π ♭ , its inverse image gives a hyperelliptic d-osculating function for π R . In other words, π R is a hyperelliptic d-osculating cover dominated by the minimal-hyperelliptic d-osculating cover π. Hence, they are isomorphic, implying that π factors as π ♭ • ψ, 2g + 1 = m(2g ♭ + 1), and Γ is the fiber product of P 1 R -→ P 1 and Γ ♭ f ♭ -→ P 1 , as claimed.

(5) It follows from the latter constructions that Γ is isomorphic to Γ ⊥ , if and only if j : P 1 → Γ is an isomorphism and m = 1.

Consider at last, any other minimal-hyperelliptic d-osculating cover having same image Γ ⊂ S. The latter must also factor through the above minimal-hyperelliptic d ♭ -osculating cover π ♭ . We may replace then R by any other degree-m separable polynomial P : P 1 → P 1 , and take its fiber product with Γ ♭ f ♭ -→ P 1 , to produce the general degree-n minimal-hyperelliptic d-osculating cover having image Γ. Up to isomorphism, they are parameterized by a (m-1)-dimensional linear space.

4. The hyperelliptic d-osculating covers as divisors of a surface 4.1. The next step concerns studying the τ ⊥ -invariant irreducible curve Γ ⊥ ⊂ S ⊥ , associated in 3. to any hyperelliptic cover π. We calculate its linear equivalence class, in terms of the numerical invariants of π, and dress the basic relations between them. We also prove, whenever p:=char(K) ≥ 3, the supplementary bound 2g + 1 ≤ p(2d -1) 4.4.( 1) & ( 6) . We end up giving a numerical characterization for π to be minimal-hyperelliptic (4.6.).

Definition 4.2.

For any i = 0, .., 3, the intersection number between the divisors ι ⊥ * (Γ) and r ⊥ i will be denoted by γ i , and the corresponding vector γ = (γ i ) ∈ N 4 called the type of π. Furthermore, for any µ = (µ i ) ∈ N 4 , µ (1) and µ (2) will denote, respectively:

µ (1) := 3 i=0 µ i and µ (2) := 3 i=0 µ 2 i .
Lemma 4.3. Let (Γ, p) π → (X, q) be a degree-n hyperelliptic d-osculating cover, of type γ and ramification index ρ at p. Consider its unique equivariant factorization through S ⊥ , ι ⊥ : Γ → Γ ⊥ , and let m denote its degree and ι := e • ι ⊥ its composition with the blowing up S ⊥ e → S. Then : (1) ι * (Γ) is equal to m.ι(Γ) and linearly equivalent to nC o + (2d-1)S o ;

(2) ι * (Γ) is unibranch, and transverse to the fiber S o := π * S (q), at s o = ι(p); (3) ρ is odd, bounded by 2d -1 and equal to the multiplicity of ι * (Γ) at s o ; (4) the degree m divides n, 2d -1 and ρ, as well as γ i , for any i ∈ {0, .., 3}; [START_REF] Flédrich | Hyperelliptic osculating covers and KdV solutions periodic in t[END_REF] 

γ o +1 ≡ γ 1 ≡ γ 2 ≡ γ 3 ≡ n(mod.2); (6) ι ⊥ * (Γ) is linearly equivalent to e * nC o +(2d -1)S o -ρ s ⊥ o - 3 i=0 γ i r ⊥ i .
Proof.

(1) Checking that ι * (Γ) is numerically equivalent to nC o +(2d -1)S o amounts to proving that the intersections numbers ι * (Γ) • S o and ι * (Γ) • C o are equal to n and 2d -1. The latter numbers are equal, respectively, to the degree of π : Γ → X and the degree of ι * (C o ) = (2d -1)p, hence the result. Finally, since ι * (Γ) and C o only intersect at s o ∈ S o , we also obtain their linear equivalence.

(2) & (3) Let κ : Γ → P 1 be the hyperelliptic d-osculating function associated to π, uniquely characterized by properties 2.6.( 1),( 2)&(3), and U ⊂ X a symmetric neighborhood of q := π(p). Recall that κ + π * (z -1 ) is τ Γ -anti-invariant and well defined over π -1 (U ), where it has a (unique) pole of order 2d -1 at p. Studying its trace with respect to π we can deduce that ρ must be odd and bounded by 2d -1.

On the other hand, let ι * (Γ), S o so and ι * (Γ), C o so denote the intersection multiplicities at s o , between ι * (Γ) and the curves S o and C o . They are respectively equal, via the projection formula for ι , to ρ and 2d -1. At last, since ι * (Γ) is unibranch at s o and ι * (Γ), S o so = ρ ≤ 2d -1 = ι * (Γ), C o so , we immediately deduce that ρ is the multiplicity of ι * (Γ) at s o (and S o is transverse to ι * (Γ) at s o ).

(4) By definition of m, we clearly have ι * (Γ) = m.ι(Γ), while {ρ, γ i , i = 0, .., 3} are the multiplicities of ι * (Γ) at different points of S. Hence, m divides n and 2d-1, as well as all integers {ρ, γ i , i = 0, .., 3}.

(5) For any i = 0, .., 3, the strict transform of the fiber S i := π -1 S (ω i ), by the monoidal transformation e : S ⊥ → S, is a τ ⊥ -invariant curve, equal to S ⊥ i := e * (S i ) -s ⊥ i -r ⊥ i , but also to ϕ * ( S i ), where S i := ϕ(S ⊥ i ). Hence, the intersection number ι ⊥ * (Γ) • S ⊥ i is equal to the even integer

ι ⊥ * (Γ) • S ⊥ i = ι ⊥ * (Γ) • ϕ * ( S i ) = ϕ * (ι ⊥ * Γ) • S i = 2 Γ • S i , implying that n = ι ⊥ * (Γ) • e * (S i ) is congruent mod.2 to ι ⊥ * (Γ) • S ⊥ i + ι ⊥ * (Γ) • (s ⊥ i + r ⊥ i ) ≡ ι ⊥ * (Γ) • (s ⊥ i + r ⊥ i )(mod.2).
We also know, by definition, that

γ i := ι ⊥ * (Γ) • r ⊥ i , while ι ⊥ * (Γ) • s ⊥ o = ρ, the multiplicity of ι * (Γ) at s o , and ι ⊥ * (Γ) • s ⊥ i = 0 if i = 0, because s i / ∈ ι(Γ)
. Hence, n is congruent mod.2, to ρ+ γ o ≡ 1+ γ o (mod.2), as well as to γ i , if i = 0.

(6) The Picard group P ic(S ⊥ ) is the direct sum of e * (P ic(S)) and the rank-8 lattice generated by the exceptional curves {s ⊥ i , r ⊥ i , i = 0, .., 3}. In particular, knowing that ι * (Γ) is linearly equivalent to nC o + (2d -1)S o , and having already calculated ι ⊥ * (Γ) • s ⊥ i and ι ⊥ * (Γ) • r ⊥ i , for any i = 0, .., 3, we can finally check that

ι ⊥ * (Γ) is linearly equivalent to e * nC o +(2d -1)S o -ρ s ⊥ o - 3 0 γ i r ⊥ i .
Theorem 4.4. Consider any hyperelliptic d-osculating cover π : (Γ, p) → (X, q), of degree n, type γ, arithmetic genus g and ramification index ρ at p. Let m denote the degree of its canonical equivariant factorization ι ⊥ : Γ → Γ ⊥ ⊂ S ⊥ , and g the arithmetic genus of the rational irreducible curve Γ := ϕ(Γ ⊥ ). Then, the numerical invariants {n, d, g, g, ρ, m, γ} satisfy the following inequalities:

(1) 2g+1 ≤ γ (1) ;

(2) 4m 2 g = (2d-1)(2n-2m)+ 4m 2 -ρ 2 -γ (2) and γ (2) ≤ 2(2d -1)(n -m)+4 m 2 -ρ 2 ;

(3) (2g+1) 2 ≤ 8(2d -1)(n -m)+13 m 2 -4ρ 2 ≤ 8(2d -1)n+(2d -1) 2 ;

(4) ρ = 1 implies m = 1, as well as (2g+1) 2 ≤ 8(2d -1)(n -1)+ 9 ;

(5) if p ≥ 3, we must also have γ (1) ≤ p(2d -1) .

Proof. (1) For any i = 0, .., 3, the fiber of π S ⊥ := π S • e : S ⊥ → X over the half-period ω i , decomposes as

s ⊥ i + r ⊥ i + S ⊥ i , where S ⊥ i is a τ ⊥ -invariant divisor and s ⊥ i is disjoint with ι ⊥ * (Γ), if i = 0, while ι ⊥ * (s ⊥ i ) = ρ p, by 4.3.(2). Hence, the divisor R i := ι ⊥ * (r ⊥ i ) of Γ is linearly equivalent to R i ≡ π -1 (ω i ) -(n -γ i
) p (and also 2R i ≡ 2γ i p ). Recalling at last, that3 j=1 ω j ≡ 3 ω o , and taking inverse image by π, we finally obtain that 3 i=0 R i ≡ γ (1) p . In other words, there exists a well defined meromorphic function, (i.e.: a morphism), from Γ to P 1 , with a pole of (odd!) degree γ (1) at the Weierstrass point p. The latter can only happen (by the Riemann-Roch Theorem) if 2g+1 ≤ γ (1) , as asserted.

(2) The curve Γ ⊥ is τ ⊥ -invariant and linearly equivalent 4.3.( 4)&( 6) to:

Γ ⊥ ∼ 1 m e * nC o + (2d -1)S o -ρs ⊥ o -
Recall also that g ≥ 0 and K, the canonical divisor of S, is linearly equivalent to ϕ * e * ( -C 0 ) ([14] §4.2.( 3)). Applying the projection formula for 2) , implying γ (2) ≤ (2d -1)(2n -2m)+ 4m 2 -ρ 2 , as claimed.

S ⊥ ϕ → S, to Γ ⊥ = ϕ * ( Γ), we obtain 0 ≤ g = 1 4m 2 (2d -1)(2n -2m) + 4m 2 -ρ 2 -γ ( 
(3) & (4) We start remarking that, for any j = 1, 2, 3, (γ o -γ j ) is a non-zero multiple of m. Hence, i<j (γ i -γ j ) 2 ≥ 3m 2 , and replacing in 4.4.(1) we get:

(2g+1) 2 ≤ (γ (1) ) 2 = 4γ (2) - i<j (γ i -γ j ) 2 ≤ 4γ (2) -3m 2 .
Taking into account 4. (5) Finally, let us assume p ≥ 3 and denote by C ⊥ p ⊂ S ⊥ the unique τ ⊥ -invariant irreducible curve, linearly equivalent to e * (pC o ) -

3 i=0 r ⊥ i .
In particular, it can not be equal to Γ ⊥ , hence C ⊥ p • Γ ⊥ = p(2d -1) -γ (1) must be non-negative.

Corollary 4.5. Let π : Γ → X be a degree-n separable projection of a hyperelliptic curve onto the elliptic curve X, and let g denote its arithmetic genus. Then, there exists a smooth Weierstrass point p ∈ Γ such that π : (Γ, p ) → X, π(p) is a hyperelliptic d-osculating cover, non ramified at p, with d satisfying:

(2d -1)(2n -2) ≥ g 2 + g -2.
Proof. Consider the global desingularization morphism j : Γ → Γ, composed, either with π, or with the degree-2 cover Γ → Γ/τ Γ ∼ = P 1 As a ramified cover of X and P 1 , we deduce from the Hurwitz formula that Γ is a smooth hyperelliptic curve of positive genus, say g, with 2g +2 Weierstrass points, while π := π • j : Γ → X has, at most, 2g -2 ramifications points. We can choose, therefore, a Weierstrass point p ∈ Γ, at which π is not ramified. In particular, its image p := j( p) ∈ Γ must be a unibranch point. On the other hand, since π is not ramified at p and factors through π : Γ → X, we see that π restricts to a local isomorphism between neighborhoods of p ∈ Γ and q := π(p) ∈ X:

π : p ∈ Γ j → p ∈ Γ π → q ∈ X
Hence, p is a smooth Weierstrass point of Γ, at which π is not ramified, and π : (Γ, p) → (X, q) is a hyperelliptic d-osculating cover (2.4.( 2)), for some integer d ≤ g. Applying 4.4.( 4), we obtain (2d -1)(2n -2) ≥ (g+ 2)(g -1) as claimed.

Corollary 4.6. Let π : (Γ, p) → (X, q) be a hyperelliptic d-osculating cover of type γ and arithmetic genus g. Then 2g+1 ≤ γ (1) , with equality if and only if π is minimal-hyperelliptic.

Proof. Recall that π dominates a unique minimal-hyperelliptic d-osculating (3.9.), say π ⋆ , factoring through the same curve Γ ⊥ ⊂ S ⊥ . Therefore, π ⋆ has same type γ as π, but a bigger arithmetic genus, say g ⋆ , satisfying 2g + 1 ≤ 2g ⋆ + 1 ≤ γ (1) (4.4.( 1)). Hence, it is certainly enough to assume π is minimal-hyperelliptic and prove that 2g+1 ≥ γ (1) .

Recall also, that ι ⊥ : Γ → Γ ⊥ has odd degree m and factors through the cover π ♭ : (Γ ♭ , p ♭ ) → (X, q), of type γ ♭ and arithmetic genus g ♭ , such that γ (1) = mγ ♭ (1) and 2g+1 = m(2g ♭ +1) 3.11. & 4.3.( 4) . Hence 2g +1 = m(2g ♭ +1) ≤ mγ ♭(1) = γ (1) , with equality if and only if 2g ♭ +1 = γ ♭ (1) . We have thus reduced the problem, from π to the minimal-hyperelliptic π ♭ . So let us suppose in the sequel that m = 1, or in other words, that (Γ, p) = (Γ ♭ , p ♭ ). Let (Γ ♦ , p ♦ ) denote the fiber product of the marked morphisms Γ ⊥ , ι ⊥ (p) must have the relation g ⊥ -g ♦ = 2( g -0) = 2 g. Hence, g ♦ = 1 2 (ρ -2+ γ (1) ). We might as well argue that the desingularization morphism P 1 j → Γ is obtained by monoidal transformation S (i.e.: j is the restriction of a finite sequence of monoidal transformations S ′ j -→ S such that the strict transform of Γ ⊂ S is isomorphic to P 1 ), implying that Γ ♦ is contained in the fiber product of S ⊥ ϕ -→ S and S ′ j -→ S, for which we can calculate its canonical divisor. Applying the adjunction formula gives the above value of g ♦ . At last, composing (Γ, p)

1:1 → (Γ ♦ , p ♦ ) with (Γ ♦ , p ♦ ) f ♦ -→ (P 1 , ∞), we get the degree 2 cover f : Γ f → P 1 ,
and a morphism (f, π) : Γ → Γ f,π ⊂ P 1 × X as in 2.5., fitting in:

∞ ∈ P 1 p ∈ Γ 1:1 / / f 4 4 h h h h h h h h h h h h h h h h h h h h h h π * * V V V V V V V V V V V V V V V V V V V V V V p ♦ ∈ Γ ♦ f ♦ 7 7 p p p p p p p p p p p / / (∞, q) ∈ Γ f,π 2:1 O O n:1 / / P 1 × X q ∈ X
We have shown in the proof of 2.5.( 3), that 1 2 (ρ -1) consecutive monoidal transformations are necessary to desingularize Γ f,π at its unibranch point (∞, q), and each monoidal transformation lowers its arithmetic genus by 1. On the other hand, since (Γ, p) dominates (Γ ♦ , p ♦ ) and is smooth over (∞, q), we easily deduce that ). Recall that to any hyperelliptic cover π : (Γ, p) → (X, q) we have uniquely associated a morphism ι ⊥ : Γ → Γ ⊥ ⊂ S ⊥ , a rational irreducible curve Γ := ϕ(Γ ⊥ ) ⊂ S and a vector (n, d, ρ, γ) ∈ N * 3 × N 4 , satisfying the following restrictions (4.3. & 4.4.) :

g ♦ -g ≤ 1 2 (ρ -1). Hence g ♦ -1 2 (ρ -1) = 1 2 (-1+ γ (1) ) ≤ g.
(1) ρ is odd, bounded by 2d -1, and

γ o +1 ≡ γ 1 ≡ γ 2 ≡ γ 3 ≡ n(mod.2); (2) 
if p ≥ 3, we must have γ (1) ≤ p(2d -1).

Furthermore, π can be canonically recovered from Γ := ϕ(Γ ⊥ ) if, and only if, Γ is birational to Γ ⊥ , in which case:

(3) Γ has arithmetic genus g : 1)-( 6), gives rise to a unique element of M H X (n, d, ρ, γ).

= 1 4 (2d -1)(2n -2)+ 4 -ρ 2 -γ (2) ≥ 0; (4) Γ ⊥ = ϕ * ( Γ) is linearly equivalent to e * nC o +(2d -1)S o -ρs o ⊥ - 3 i=0 γ i r i ⊥ ; (5) 
Proof. Given Γ ⊂ S satisfying 5.1.( 1)-( 6), we denote Γ ⊥ := ϕ * ( Γ) ⊂ S ⊥ and consider the fiber product of (Γ ⊥ , p ⊥ ) ϕ → Γ, ϕ(p ⊥ ) with the desingularization morphism (P 1 , ∞) j → Γ, ϕ(p ⊥ ) , say (Γ, p). Proceeding as in the proof of 3.11., for the construction of π ♭ , we can easily prove that the natural domination (Γ, p) → (Γ ⊥ , p ⊥ ), composed with π ⊥ : (Γ ⊥ , p ⊥ ) → (X, q) is indeed the announced minimal-hyperelliptic d-osculating cover.

Studying M H X (n, d, ρ, γ) for a general vector (n, d, ρ, γ), is a difficult and elusive problem. We will henceforth restrict to the simpler case where ρ = 1 and Γ is isomorphic to P 1 . In other words, we will focus on degree-n minimal-hyperelliptic d-osculating covers with ρ = m = 1, and type γ satisfying γ (2) = (2d -1)(2n -2) + 3 (as well as γ (1) ≤ p(2d -1), if p≥ 3). Proof. The properties satisfied by Γ ⊥ assure us that Γ := e * (Γ ⊥ ), its direct image by e : S ⊥ → S, does not contain C o , and that Γ ⊥ is the strict transform of Γ. We can also check, that Γ is smooth at p := e(p ⊥ ) and Γ ∩ C o = {p}. It follows, by 5.4., that (Γ, as well as its strict transform) Γ ⊥ is, either an irreducible curve, or p ≥ 3 and (1) ≤ p, whenever p ≥ 3), gives rise to an exceptional curve of the first kind Γ α ⊂ S. More precisely, let k ∈ {0, 1, 2, 3} denote the index satisfying α k + 1 ≡ α j (mod.2), for any j = k, and

C ⊥ p is a component of Γ ⊥ . Proposition 5.6. ([14] §6.2. & [10]) Any α = (α i ) ∈ N 4 such that α (2) = 2a + 1 is odd (and α
S k := π -1 S (ω k ), then Γ α is a ( -1)-curve and ϕ * ( Γ α ) ⊂ S ⊥ is the unique τ ⊥ - invariant irreducible curve linearly equivalent to e * (aC o + S k ) -s ⊥ k - 3 i=0 α i r ⊥ i .
Proof. Let Λ denote the unique numerical equivalence class of S satisfying

ϕ * (Λ) = e * (aC o + S k ) -s ⊥ k - 3 i=0 α i r ⊥ i . It has self-intersection Λ • Λ = -1, and Λ • K = -1 as well, hence, h o S, O S (Λ) ≥ χ O S (Λ) = 1,
and there exists an effective divisor Γ ∈ Λ . If p = 0, such a divisor Γ is known to be unique and irreducible ([14] §6.2.). Its proof takes in account that for any m > 1 there is no irreducible curve in S, numerically equivalent to mC o . However, when p ≥ 3 the latter property fails, due to the existence of C p ⊂ S, implying that the intersection number C p • Λ = p -α (1) must be non-negative. Conversely, if α (1) ≤ p, Λ intersects non-negatively C p := ϕ(C p ⊥ ), (as well as all other (-1) and (-2)-curves in S), and M.Lahyane's irreducibility criterion for (-1)-classes applies to Λ ( [START_REF] Lahyane | Irreducibility of the (-1)-classes on smooth rational surfaces[END_REF]).

According to 5.6., any α ∈ N 4 such that α (2) is odd (and α (1) ≤ p , if p ≥ 3), gives rise to an exceptional curve of the first kind Γ α ⊂ S. Conversely, we have the Corollary 5.7. Any irreducible curve in S, with negative self-intersection, is either equal to some Γ α as above (5.6.), to C p if p ≥ 3, or belongs to the set C o , s i , r i , i = 0, .., 3 .

Proof. The arithmetic genus of an arbitrary irreducible curve Γ ⊂ S is nonnegative and equal to g := 1 + 1 2 Γ • Γ + Γ • K ≥ 0, where K denotes the canonical divisor of S. In particular Γ • Γ + Γ • K ≥ -2. Moreover, since ϕ * ( K) = e * (-2C o ) (cf. [START_REF] Treibich | Solitons Elliptiques[END_REF]) and C o is nef, we immediately deduce that Γ

• K ≤ 0. Hence, Γ • Γ < 0 implies, either Γ • Γ = -2 and Γ • K = 0, or Γ • Γ = -1 = Γ • K. It follows, in any case, that g = 0, hence Γ is isomorphic to P 1 . If Γ • Γ = -1 = Γ • K,
one can easily check, via the projection formulae for S ⊥ ϕ → S and S ⊥ e → S, that Γ ⊥ := ϕ * ( Γ) is a τ ⊥ -invariant divisor in S ⊥ and its projection in S, Γ := e * (Γ ⊥ ), satisfies:

Γ•C o = e * (Γ ⊥ )•C o = Γ ⊥ •e * (C o ) = -1 2 Γ ⊥ •e * ( -2C o ) = -1 2 Γ ⊥ •ϕ * ( K) = -Γ• K = 1.
It immediately follows that Γ (as well as Γ ⊥ ) is irreducible. Otherwise it would break as a sum of two divisors exchanged by τ : S → S, in which case the above intersection number Γ•C o should have been even. In other words, Γ is an irreducible τ -invariant curve, intersecting C o at s k , for a unique k ∈ {0, 1, 2, 3}. Hence, Γ is linearly equivalent to aC o +S k , for some a ∈ N.

Recall also that Γ

⊥ • (C ⊥ o + 3 i=0 s ⊥ i ) = Γ ⊥ • e * (C o ) = 1
, and let α = (α i ) denote the vector of intersection numbers (Γ ⊥ • r ⊥ i ). Then, Γ ⊥ is linearly equivalent to e * (aC o +S k ) -s ⊥ k -3 i=0 α i r ⊥ i , and intersecting with the numerically equivalent curves S ⊥ i := e * (S i ) -s ⊥ i -r ⊥ i , i = 0, 1, 2, 3 one easily finds out that α k +1 ≡ α i (mod.2), for any i = k. Moreover, its self-intersection is equal to

2a -1 -α (2) = Γ ⊥ • Γ ⊥ = ϕ * ( Γ) • Γ ⊥ = Γ • ϕ * (Γ ⊥ ) = 2 Γ • Γ = -2.
In other words, 2a + 1 = α (2) and Γ = Γ α (5.6.). At last, let us suppose that Γ • Γ = -2 and Γ • K = 0, but Γ does not belong to s i , r i , i = 0, .., 3 . It then follows that Γ ⊥ := ϕ * ( Γ) is a τ ⊥ -invariant divisor of S ⊥ , of self-intersection Γ ⊥ • Γ ⊥ = -4, equal to the strict transform of Γ := e(Γ ⊥ ) ⊂ S. Therefore, it must be, either an irreducible degree-2 cover of Γ, or break as the sum of two copies of Γ ≃ P 1 , interchanged by τ ⊥ . In the latter case, Γ ⊥ should be the strict transform of the divisor π S -1 (q ′ + [ -1]q ′ ), for some q ′ ∈ X, in which case the minimal value of Λ(n, d, 1, γ) • Γ α , taken amongst all α ∈ N 4 with α (2) odd, is attained at α equal, either to µ, to ♮ µ, or to ♭ µ.

Corollary 5.12. The divisor Λ(n, d, 1, γ) is nef if and only if the vector 2ε = γ -(2d -1)µ ∈ Z 4 (5.9.), such that 4ε (2) ≡ 3 mod.(2d -1) and max{|ε i |} ≤ d -1, satisfies the supplementary conditions :

(1)

ε (2) ≥ d 2 -d + 1; (2) (2d -1)( ♮ µ -µ) • ε = (2d -1) 3 i=0 |ε i | ≤ 3d 2 -3d + ε (2) ; (3) (2d -1)( ♭ µ -µ) • ε = max |ε i |+|ε j |, ∀i = j, ≤ d 2 -1 + ε (2) .
As we shall see, given any n, d ∈ N * , there exist types γ = (2d -1)µ+2ε ∈ N 4 , such that γ o +1 ≡ γ 1 ≡ γ 2 ≡ γ 3 (mod.2) and γ (2) = (2n -2)(2d -1)+3, for which Λ := Λ(n, d, 1, γ) is, either nef or not. We will actually construct in 5.13. and 5.14., explicit examples where, either ε satisfies 5.12.( 1),( 2) &(3), hence Λ is nef, or it does not satisfy 5.12.(1), hence Λ is not nef. We actually conjecture that 5.13. exhausts all types such that γ (2) = (2d -1)(2n -2) + 3 and Λ(n, d, 1, γ) is nef.

Proposition 5.13

Let us fix d ≥ 2 , k ∈ {0, 1, 2, 3} , and µ ∈ N 4 such that µ o + 1 ≡ µ j (mod.2) (for j = 1, 2, 3). Pick any vector 2ε = (2ε i ) ∈ 2Z 4 , satisfying (∀i = 0, . . . , 3) :

either |2ε i | = (2d-2)(1-δ i,k ) , or      |2ε i | = d -(-1) δ i,k if d is odd , |2ε i | = d -2δ i,k if d is even .
Then, for n satisfying γ (2) = (2d -1)(2n-2) + 3, and assuming γ := (2d -1)µ + 2ε belongs to N 4 (as well as γ (1) ≤ p(2d -1), if p ≥ 3), the divisor Λ(n, d, 1, γ) is nef.

Proof. One only needs to check (straightforward verification!), that any such ε satisfies 5.12.(1),( 2) & (3). Proof. Take any vector ε ∈ Z 4 satisfying ε (2) = 8h 2 + 3(2k -3)h + k 2 -3k + 3. A straightforward verification shows that ε 2 i ≤ ε (2) < (2d -1) 2 , ∀i = 0, .., 3 and 4ε (2) = 3 + (2d -1)(d -2 + k). In particular, 4ε (2) < 3 + (2d -1) 2 = 4d 2 -4d + 4, hence ε does not satisfy property 5.12. [START_REF] Airault | Rational and elliptic solutions of the Korteweg-deVries equation and a related many body problem[END_REF]. Therefore, choosing any µ ∈ N 4 such that µ o + 1 ≡ µ j (mod.2) (for j = 1, 2, 3), and defining γ ∈ N 4 and n ∈ N by γ := (2d -1)µ + 2ε and γ (2) = (2d -1)(2n-2) + 3, respectively, the corresponding divisor Λ(n, d, 1, γ) is not nef. Lemma 5.15. Let (n, d, γ) ∈ N * × N * × N 4 be such that d ≥ 2, γ (2) = (2d -1)(2n -2) + 3 and Λ(n, d, 1, γ) is nef. Then, for any j = 1, 2, 3, there exists at most one exceptional curve of the first kind Γ ⊂ S, such that Γ • Λ(n, d, 1, γ) = 0 and Γ • s j = 1. In particular, the sum of the latter exceptional curves, denoted by Z(n, d, 1, γ), is a reduced divisor with (at most) three irreducible components.

Proof. Straightforward verification again!.

Remark 5.16. According to Brian Harbourne's results on anticanonical rational surfaces (cf. [START_REF] Harbourne | Anticanonical rational surfaces[END_REF]), for any nef divisor D ∈ P ic( S), such that -K • D ≥ 2, the complete linear system |D| is base point free and dim|D| = 1 2 D • (D -K). The following result is in order.

Lemma 5.17. Let (n, d, γ) ∈ N * × N * × N 4 be such that d ≥ 2, γ (2) = (2d -1)(2n -2) + 3, and let Λ and Z denote, respectively, Λ(n, d, 1, γ) and Z(n, d, 1, γ), the divisors defined in 5.15.. Then, Λ nef implies: (3) any element Γ ∈ Λ Co, po , in the complement of the latter hyperplanes, is a smooth integral divisor isomorphic to P 1 .

(1) Λ -C o -3 j=1 s j -Z is nef ; (2) Λ -C o - 3 j=1 s j -Z is base point free; (3) Λ -C o = 3 j=1 s j + Z + Λ -C o - 3 
Proof.

(1) According to 5.17.(4), we have h 1 S, O S (Λ -C o ) = 0. Hence, the exact sequence of O S -modules: (2) On the other hand, according to 5.17. (3) Any Γ ∈ Λ Co, po , in the complement of the latter hyperplanes, has arithmetic genus 0. Let us also prove its irreducibility. We start remarking that Γ can only intersect C o at p o , and does not contain C o nor s i , (i = 0, 1, 2, 3), as an irreducible component. Hence, its inverse image Γ

0 → O S (Λ -C o ) → O S (Λ) → O Co (Λ) → 0 , gives rise to the exact sequence 0 → H 0 S, O S (Λ -C o ) → H 0 S, O S (Λ) → H 0 C o , O Co (Λ) → 0 . Since deg O Co (Λ) = d -1, we can pick a section f ∈ H 0 C o , O Co (Λ)
⊥ := ϕ * ( Γ) ⊂ S ⊥ is linearly equivalent to e * (nC o +S o ) -s ⊥ o - 3 i=o γ i r ⊥ i , and neither C ⊥ o , nor s ⊥ i (∀i = 0, . . . , 3 
), is an irreducible component of Γ ⊥ . In order to check that Γ ⊥ (hence Γ) is an irreducible curve, by means of 5.5., we still need to show that r ⊥ i Γ ⊥ , ∀i = 0, . . . , 3. (and µ (1) ≤ p, if p ≥ 3), we let π µ denote the minimal-hyperelliptic 1-osculating cover associated to the exceptional curve Γ µ ⊂ S (cf. 5.6. & [14] §6.2.). Then, Λ(n, d, 1, γ) = { Γ µ } and M H X (n, 1, 1, µ) reduces to {π µ } .

Otherwise Γ ⊥ would have an irreducible component Γ

⊥ ⊂ S ⊥ , linearly equivalent to e * (nC o +S o ) -s ⊥ o - 3 i=o γ i r ⊥ i ,
More generally, for any (n, d, γ) ∈ N * × N * × N 4 such that:

(1)

γ o + 1 ≡ γ 1 ≡ γ 2 ≡ γ 3 (mod.2) (and γ (1) ≤ p, if p ≥ 3), ( 2 
) d ≥ 2 and γ (2) = (2d -1)(2n -2) + 3 , (3) Λ(n, d, 1, γ) is nef, the moduli space M H X (n, d, 1, γ) is birational to Λ(n, d, 1, γ) Co, po . In particular, dim M H X (n, d, 1, γ) = d -1
, for any (n, d, γ) as in 5.13..

At last, we propose a less conceptual but more geometrical construction of M H X (n, d, 1, γ). We will construct d effective divisors G ⊥ , F ⊥ j , j = 0, .., d -2 of S ⊥ , with birational models given by explicit equations in P 1 × X, which generate all M H X (n, d, 1, γ). Hence, any element of M H X (n, d, 1, γ) is birational to the zero set of a linear combination of d specific degree-n polynomials with coefficients in K(X), the field of meromorphic functions on X. (1) Γ ⊥ is a τ ⊥ -invariant smooth irreducible curve of genus g : = 1 2 (-1+γ (1) );

(2) Γ ⊥ can only intersect C ⊥ o at p ⊥ o := C ⊥ o ∩ s ⊥ o ;

(3) ϕ(Γ ⊥ ) ⊂ S is isomorphic to P 1 .

Corollary 5.22. Given (n, d, γ) ∈ N * × N * × N 4 as above, the moduli space M H X (n, d, 1, γ) (5.2.) has dimension d -1, and its generic element is smooth of genus g : = 1 2 (-1+ γ (1) ).

Proof of Theorem 5.21.. We will only work out the case γ := (2d -1)µ + 2ε, with ε = (0, d -1, d -1, d -1) .

For any other choice of ε, the corresponding proof runs along the same lines and will be skipped. In our case, the arithmetic genus g and the degree n satisfy: 2g + 1 = (2d -1)µ (1) + 6(d -1) and 2n = (2d -1)µ (2) + 4(d -1)(µ 1 +µ 2 +µ 3 )+ 6d -7.

Consider µ : = µ+ (1, 1, 1, 1), µ ′ : = µ+ (0, 2, 1, 1), µ ′′ = µ+ (0, 0, 1, 1), and let Z ⊥ , Z ′ ⊥ , Z ′′ ⊥ ⊂ S ⊥ denote the unique τ ⊥ -invariant curves linearly equivalent to:

1) Z ⊥ ∼ e * (m C o + S o ) -s ⊥ o -i µ i r ⊥ i
, where 2m +1 = µ (2) ; 2) Z ′ ⊥ ∼ e * (m ′ C o + S 1 ) -s ⊥ 1i µ ′ i r ⊥ i , where 2m ′ +1 = µ ′ (2) ; 3) Z ′′ ⊥ ∼ e * (m ′′ C o + S 1 ) -s ⊥ 1i µ ′′ i r ⊥ i , where 2m ′′ +1 = µ ′′ (2) .

Moreover, if µ o = 0 we choose µ = µ+ (-1, 1, 1, 1) and 2m +1 = µ (2) , and let Z ⊥ ⊂ S ⊥ denote the unique τ ⊥ -invariant curve Z ⊥ ∼ e * (mC o + S o ) -s ⊥ oi µ i r ⊥ i . However, if µ o = 0 we will simply put Z ⊥ : = Z ⊥ + 2r ⊥ o , so that in both cases, the divisors D ⊥ 0 := Z ⊥ +Z ⊥ + 2s ⊥ 0 and D ⊥ 1 := Z ′ ⊥ +Z ′′ ⊥ + 2s ⊥ 1 will be linearly equivalent. Let us also define, oi γ i r ⊥ i = ϕ * (Λ) . The (d-1)-dimensional subspace of ϕ * (Λ) we are looking for, will be made of all above curves. We first remark the following facts : a) we can check via the adjunction formula, that the divisors ϕ * (Λ) and Λ have arithmetic genus g : = 1 2 (-1+ γ (1) ) and 0, respectively, and that ϕ * Λ is equal to ϕ * (Λ) , implying that G ⊥ , F ⊥ j , j = 0, .., d -2 , the (d -1)dimensional subspace they span in ϕ * (Λ) , is component-free; e) any irreducible curve Γ ⊥ ∈ G ⊥ , F ⊥ j , j = 0, .., d -2 projects onto a smooth irreducible curve (isomorphic to P 1 ). In particular Γ ⊥ must be smooth outside ∪ 3 i=0 r ⊥ i .

f) the curves G ⊥ and F ⊥ o have no common point on any r ⊥ i (i = 0, .., 3), implying that Γ ⊥ , the generic element of G ⊥ , F ⊥ j , j = 0, .., d -2 , is smooth at any point of ∪ 3 i=0 r ⊥ i and satisfies the announced properties, i.e.:

(1) Γ ⊥ is τ ⊥ -invariant, smooth and satisfies the irreducibility criterion 5.5.;

(2) p ⊥ o is the unique base point of the linear system and Γ ⊥ ∩ C ⊥ o = {p ⊥ o };

(3) its image ϕ(Γ ⊥ ) ⊂ S is irreducible, linearly equivalent to Λ(n, d, 1, γ) and of arithmetic genus 1 4 (2d -1)(2n-2)+ 3 -γ (2) = 0; hence, isomorphic to P 1 .

Proof of Corollary 5.22.. The degree-2 projection ϕ : Γ ⊥ -→ ϕ(Γ ⊥ ) is ramified at p ⊥ o and ϕ(Γ ⊥ ) is isomorphic to P 1 . Moreover, Γ ⊥ is a smooth irreducible curve linearly equivalent to ϕ * Λ(n, d, 1, γ) , of arithmetic genus g := 1 2 (γ (1) -1). In other words, the natural projection (Γ ⊥ , p ⊥ o ) ⊂ (S ⊥ , p ⊥ o )

π S ⊥ -→ (X, q) is a smooth degree-n minimal-hyperelliptic d-osculating cover of type γ, and genus g, such that (2n-2)(2d -1)+ 3 = γ (2) and 2g +1 = γ (1) .

  [START_REF] Hartshorne | Algebraic Geometry[END_REF] §V.2). Definition 3.4.(cf. [14] §4.1.

Lemma 3. 5 .

 5 Whenever p ≥ 3, the curve C p (3.2.(3)) is irreducible and linearly equivalent to pC o . Moreover, any irreducible curve numerically equivalent to a multiple of C o , is either C o itself or a translate of C p . In particular C p and pC o generate the complete linear system pC o , and S is an elliptic surface.

  4.(3), we obtain the inequality 4.4.(4). At last, since m divides ρ (4.3.(4)), ρ = 1 implies m = 1. Replacing in 4.4.(3) gives us 4.4.(4).

5 .

 5 On hyperelliptic d-osculating covers of arbitrary high genus 5.1. -We will let C ⊥ o and C ⊥ p denote, hereafter, the strict transforms of C o and C p by e : S ⊥ → S and C o := ϕ(C ⊥ o

3 i=0

 3 Γ intersects s o := ϕ(s o ⊥ ), at a unique unibranch point, with multiplicity ρ; (6) Γ ⊥ and Γ intersect C ⊥ o and C o , (at most) at p ⊥ o := C ⊥ o ∩ s ⊥ o and ϕ(p ⊥ o ), respectively, with multiplicities 2d -1 -ρ and 1 2 (2d -1 -ρ). Definition 5.2. For any (n, d, ρ, γ) ∈ N * 3 × N 4 satisfying 5.1.(1),(2)&(3), we let Λ(n, d, ρ, γ) denote the unique element of P ic( S) such that ϕ * Λ(n, d, ρ, γ) is linearly equivalent to e * nC o + (2d -1)S o -ρs o ⊥ -γ i r i ⊥ , and M H X (n, d, ρ, γ) denote the moduli space of degree-n minimal-hyperelliptic d-osculating covers of type γ, ramification index ρ at their marked point, and birational to their canonical images in S ⊥ . Proposition 5.3. Any π ∈ M H X (n, d, ρ, γ) can be canonically recovered from Γ ⊂ S 3.11.(2) . Conversely, any rational irreducible curve Γ ⊂ S satisfying properties 5.1.(

Proposition 5 . 4 .

 54 ([12] §3.4) Any curve Γ ⊂ S intersecting C o at a unique smooth point p ∈ Γ is irreducible, unless p ≥ 3 and C p is a component of Γ. Proposition 5.5. Let Γ ⊥ ⊂ S ⊥ be a curve with no irreducible component in {r ⊥ i , i = 0, .., 3}, and intersecting C ⊥ o (at most) at a unique smooth point p ⊥ ∈ Γ ⊥ . Then, Γ ⊥ is an irreducible curve, unless p ≥ 3 and C ⊥ p is a component of Γ ⊥ .

Proposition 5. 14 .

 14 Let us fix d ≥ 3 and µ ∈ N 4 such that µ o + 1 ≡ µ j (mod.2) (for j = 1, 2, 3), and let k denote the residue (mod.4) of d + 1. Choose any integer vector ε ∈ Z 4 subject to the conditions4ε (2) = 3 + (2d -1)(d -2 + k) and γ := (2d -1)µ + 2ε ∈ N 4 ,and let n satisfy γ(2) = (2d -1)(2n -2) + 3. Then Λ(n, d, 1, γ) is not nef.

j=1 s j -Z ; ( 4 ) 2 )

 42 dim Λ = 2d -2, dim Λ -C o = d -2 and h 1 S, O S (Λ -C o ) = 0 . Definition 5.18. Let p o ∈ S denote the unique point of intersection { p o } := C o ∩ s o and consider any divisor Λ := Λ(n, d, 1, γ) as in 5.15.. We define the following subsets of Λ : Λ Co, po : = D ∈ Λ , D ∩ C o = { p o } or C o ⊂ D ; (1) Λ so Co, po : = Λ Co, po s o + Λ -s o . (Proposition 5.19. If Λ := Λ(n, d, 1, γ) is nef, then: (1) Λ Co, po is a (d -1)-dimensional subspace of Λ ; (2) C o + Λ -C o and Λ so Co, po are two different hyperplanes of Λ Co, po ;

  which only vanishes at p o i.e.: with zero divisor (f ) o = (d -1) p o , as well as a preimage of f , say v ∈ H 0 S, O S (Λ) , such that its zero divisor D := (v) o ∈ Λ only intersects C o at p o i.e.: D ∩ C o = { p o } . Any other section of O S (Λ), satisfying the same property as v, is obtained by adding the image of an arbitrary element of H 0 S, O S (Λ-C o ) . In other words Λ Co, po ⊂ Λ is the (d -1)-dimensional subspace generated by D and C o + Λ-C o .

  (2)&(3), there exists D ′ ∈ Λ-C o avoiding p o , in which case C o + D ′ ∈ Λ is smooth at p o . Up to replacing the former divisor D ∈ Λ , by the generic element of the pencil generated by D and ( C o + D ′ ), we can assume hereafter D smooth and tangent to C o at p o . In particular, for any D ′′ ∈ Λ-C o , either p o / ∈ D ′′ and C o + D ′′ is also smooth and tangent to C o at p o , or p o ∈ D ′′ and C o + D ′′ is singular at p o . In both cases, all but one element of the pencil generated by D and C o + D ′′ is smooth and tangent to C o at p o . Therefore, such a generic element is transverse at p o to s o , and can not contain s o as an irreducible component. At last, since Λ• s o = 1, the unique singular element of the latter pencils must belong to s o + Λ -s o . Hence, Λ so Co, po and C o + Λ -C o are indeed distinct hyperplanes of Λ Co, po .

  for some type γ strictly bigger than γ, implying that ϕ( Γ ⊥ ) ⊂ S has a negative arithmetic genus. Contradiction.! In case p ≥ 3, an analogous line of reasoning shows that Γ ⊥ can not contain C ⊥ p as an irreducible component and 5.5. still applies.Recalling that M HX (n, d, 1, γ) is birationally isomorphic to | Λ(n, d, 1, γ)| Co, po(5.3.), we deduce the: Corollary 5.20. For any (n, µ) ∈ N * ×N 4 satisfying µ o +1 ≡ µ 1 ≡ µ 2 ≡ µ 3 (mod.2) and µ (2) = 2n+1,

Theorem 5 .

 5 21.For any(n, d, γ) ∈ N * × N * × N 4 as in 5.13., e * nC o + (2d-1)S o -s ⊥ oi γ i r ⊥ i contains a (d-1)-dimensional subspace with a generic element, say Γ ⊥ , satisfying:

µ ( 1 )

 1 : = µ ′′ = µ + (0, 0, 1, 1),µ (2) : = µ + (0, 1, 0, 1), µ (3) : = µ + (0, 1, 1, 0), and let Z ⊥ (k) (k = 1, 2, 3) be the τ ⊥ -invariant curve of S ⊥ , linearly equivalent to e * (m (k) C o + S k ) -s ⊥ ki µ (k)i r ⊥ i , where 2m (k) +1 = i µ 2 (k)i . At last, consider Z ⊥ ∼ e * (mC o +S o ) -s ⊥ oi µ i r ⊥ i, where 2m+1 = i µ 2 i (5.2.). Let Λ ∈ P ic( S) denote the unique class such that e * nC o + (2d-1)S o -s ⊥

, 3 k=1

 3 the sub-space of τ ⊥ -invariant elements of ϕ * (Λ) ; b) the d -1 divisorsF ⊥ j := C ⊥ o + +2s ⊥ k )+jD ⊥ o + (d -2 -j)D ⊥ 1 , j = 0, ..., d -2,as well asG ⊥ := Z ⊥ + (d -1)D ⊥ o , are τ ⊥ -invariant,belong to ϕ * (Λ) and have p ⊥ o := C ⊥ o ∩ s ⊥ o as their unique common point; c) the curve F ⊥ o is smooth at p ⊥ o , while any other F ⊥ j has multiplicity 1 < 2j+1 < 2d at p ⊥ o . In particular, they span a (d -2)-dimensional subspace of ϕ * (Λ) , having a generic element smooth and transverse to s ⊥ o at p ⊥ o ; d) the curve G ⊥ has multiplicity 2d at p ⊥ o , and no common irreducible component with any F ⊥ j ( ∀j = 0, . . . , d -2)

π * * T T T T T T T T T T T T T T T T T T T T

i=0 γ i r ⊥ i .

Corollary 3.9. Any hyperelliptic d-osculating cover π : (Γ, p) → (X, q) dominates a unique minimalhyperelliptic d-osculating cover, with same image Γ ⊥ ⊂ S ⊥ as π.

Proof. Let π : (Γ, p) → (X, q) be an arbitrary hyperelliptic d-osculating cover dominated by π : (Γ, p) → (X, q), ψ : (Γ, p) → (Γ, p) the corresponding birational morphism and ι ⊥ : Γ → S ⊥ the factorization of π via S ⊥ . The uniqueness of ι ⊥ implies that ι ⊥ = ι ⊥ • ψ. Hence, they have same image in S ⊥ , ι ⊥ (Γ) = ι ⊥ (Γ) = Γ ⊥ , and project onto the same curve Γ ⊂ S. Furthermore, ψ and ι ⊥ being equivariant morphisms, we can push down ψ : Γ → Γ to an identity between their quotients, Γ/τ Γ ∼ = P 1 = → P 1 ∼ = Γ/τ Γ , as well as ι ⊥ to a morphism ι : P 1 → Γ (of same degree as ι ⊥ : Γ → Γ ⊥ ), as shown hereafter: 

Let g, g ⊥ , g ♦ and g denote the arithmetic geni of Γ, Γ ⊥ , Γ ♦ and Γ, respectively. Knowing the numerical equivalence class of Γ ⊥ we easily obtain e.g.: 4.4.(2) :

and g ⊥ = 2 g+ 1 2 (ρ -2+ γ (1) ).

We can then deduce g ♦ , arguing as follows (like in the proof of [START_REF] Treibich | Solitons Elliptiques[END_REF] §5.8.( 2)): since Γ ⊥ ϕ -→ Γ is a flat degree-2 morphism, and P 1 has arithmetic genus = 0, we

Hence, Γ ⊥ is indeed irreducible (and Γ = e * (Γ ⊥ ) as well). On the other hand, recalling that ϕ * ( K) = e * ( -2C o ) and ϕ * (Γ ⊥ ) = 2 Γ, we obtain Lemma 5.8. Let Λ := Λ(n, d, 1, γ) be as in 5.2., Γ an arbitrary exceptional curve of the first kind on S and α ∈ N 4 the unique vector as in 5.6. such that Γ = Γ α (5.7.). Then:

Proof. Straightforward verification.

For Λ(n, d, 1, γ) to be nef, we must have Λ(n, d, 1, γ) • Γ α ≥ 0, for any α as above. On the other hand, minimizing their value is tantamount (5.8.) to minimizing the norm of γ -(2d -1)α. In order to do it we make the following definitions. Definition 5.9.

(1)

as well as γ (2) = (2d -1)(2n -2) + 3, we let γ = (2d -1)µ + 2ε be the unique decomposition, with µ ∈ N 4 having same parity as γ, and ε ∈ Z 4 such that max{|ε i |} ≤ d -1. We will also assume, here and henceforth, that γ (1) = (2d -1)µ (1) + 2ε (1) ≤ p(2d -1), whenever p ≥ 3.

(2) We define ♮ µ = ( ♮ µ i ) ∈ N 4 in order to have

(3) At last, we choose two indices i o = j o , where |ε i | attains its two maximal values, and let ♭ µ = ( ♭ µ i ) ∈ N 4 be such that for all i ∈ {0, 1, 2, 3} :

The vector ♭ µ may not be uniquely defined by 5.9. [START_REF] Dubrovin | A periodicity problem for the Korteweg-deVries-Sturm-Liouville equations. Their connection with algebraic geometry[END_REF]. It should also be clear that µ ≡ γ(mod.2), and 4ε (2)